
A Global Search Architecture

F� J� Burkowski G� V� Cormack C� L� A� Clarke R� C� Good

Department of Computer Science

University of Waterloo� Waterloo� Canada

email� mt�plg�uwaterloo�ca
www� ftp���plg�uwaterloo�ca�pub�mt

Technical Report CS������
March ��� ����

Abstract

Recent advances in communication and storage technology make available vast quantities of

on�line information� But this information is of limited use unless it can be searched e�ectively�

Huge scale and heterogeneity of data raise a unique combination of architectural issues that must

be addressed to support e�ective search� These issues occasion the use of multi�user distributed

search databases with the following capabilities� e�cient structured searching of the contents of

�les having various schema� continuous availability in spite of failures and maintenance� high�

throughput incorporation of a continuous stream of updates� especially the arrival new data

and removal of obsolete data� We present an architecture that embodies solutions to speci�c

technical problems that arise in the provision of these capabilities�

The global data abstraction

Until recently� the availability of useful information was constrained by the capacity of physical
storage and communicationmedia� While this capacity has ceased to be a constraint the availability
of useful information is limited by our ability to �nd it ���� A number of architectural principles
arise in addressing the problem of �nding useful information when we assume that everyone has
the capacity to access all the world�s data at all times�

Multiple users� It is not reasonable to assume that each user has a copy of all useful information�
No matter how vast the capacity of a single user to collect and store information� it will be exceeded
by the world�s capacity� It may be argued that the user could elect to store only information useful to
him or her� but e�ecting this selection begs the question raised here	 how to �nd useful information�

Multiple servers� It is not reasonable to assume that any server has the capacity to handle all
the data� To a�ord scalability� the data must reside on several servers that collaborate to solve
search problems posed by users�

Heterogeneous data� It is not reasonable to expect that the world�s data be converted to a
common format or organization for the purpose of searching� Data exist in a variety of formats

and a variety of repositories� It must be possible to integrate these data and repositories into a
common architecture� while harnessing their unique characteristics for search and retrieval�

Navigational and non�navigational structured search� Navigational access such as browsing is a
useful technique for exploring data according to a pre�de�ned organizational structure� Creating�
maintaining and navigating this structure imposes a burden on the user and archivist alike� It is
not reasonable to assume that it is feasible to create a navigational structure amenable to all users�
search requirements� Therefore� it must be possible to �nd data without resorting to navigation�
Nevertheless� it must also be possible to harness whatever structure is available to guide the search�

Continuous availability� The universe constantly acquires new data� It is unlikely that growth
in on�line storage and communication capacity will accommodate the addition of all new data unless
a comparable quantity of data is deleted� It is necessary that the architecture accommodate this
�ux without massive reorganization� It is reasonable to assume that platform components undergo
a similar �ux	 at any given time� some part of the system will be subject to failure or maintenance

new components will continuously be added and old components removed� The abstraction of a
continuously available universe of data must be preserved � it is not reasonable to require the user
to circumnavigate failures or to accommodate to system reorganization�

The abstraction of a global searchable data repository will never be fully realized� However� it
suggests design decisions that yield an architecture with wide applicability� The obvious application
is to improve our ability to search data on the World�Wide Web� The current Web architecture
is heavily navigational� exhibiting a number of the problems cited above� On the other hand�
specialized search databases �even those reachable via the Web� do not well support the browsing
and heterogeneity of the Web� Other applications include more specialized large applications like
bulletin boards� newspapers and archival publications�

In support of the abstraction we have designed an architecture and built the key components
of a multi�user multi�server search database system� This paper reports on the overall architecture
and three critical components	 a new query language supporting non�navigational search of data
with heterogeneous organization
 a search engine embodying new e�cient algorithms for searching
text and for on�line update
 a coded redundancy strategy that maintains availability in the face of
failures and maintenance�

The global search architecture

Data model

We assume that the data to be searched is decomposed into �les of various sizes and schema� Each
�le must be uniquely identi�ed within the universe
 a hierarchical naming scheme like the Uniform
Resource Locator� while not ideal� is su�cient for this discussion� We project each �le onto a linear
stream of tokens that represent the searchable content and structure of the �le� While each token
has a textual mnemonic representation� we do not require that the contents of each �le be text� Nor
do we require that the tokens in the stream represent elements of the �le in any straightforward
correspondence�

In the simplest case� a �le may be ASCII text and the stream of tokens a list of all the words
or word stems in order of occurrence� The token stream may instead be an abstract or list of
keywords in the �le� A �le may be text with internal markup like SGML� the internal format

�

of a word processor� or a display language like Postscript� A �le may be compressed� or it may
not represent text at all � many kinds of data may be displayed sensibly as a linear sequence
of tokens� The token stream need not be derived entirely from the contents of a �le� The �le�s
name� type� update time� and other environmental information might be used to determine� alter
or augment the token stream� For example� annotations or markup may be stored in a separate �le
or derived using a program� A machine�language program might be disassembled to a stream of
opcodes and operands with mnemonic representations derived an using external symbol table� A
table in a relational database might be represented in row�major order with annotations to indicate
the row and column boundaries� Entire �le systems can be represented by traversing them in some
canonical order� with su�cient annotation to recover the structure of the �le system�

Our global data model treats the word�s data as belonging to a huge global �le system� projected
onto a stream of tokens as described above� A search takes the form of a query that is satis�ed
by zero or more subsequences in the token stream� A retrieval is a request to fetch the �le �or �le
fragment or set of �les� containing a particular subsequence�

Search model

A search must identify subsequences of tokens that meet speci�c criteria speci�ed by the user� It
is commonly assumed that a logical predicate or objective function is su�cient to specify a search�
This is not the case� A predicate or objective function can be used only to determine which members
of some a priori set �universe� meet or optimize speci�c criteria� For the data model used here�
there is no suitable universe�

One might treat each �le as a member of the universe� An elementary predicate might involve
testing the presence of a particular token in the �le� and expressions might be built using the
boolean connectives and� or and not� This boolean model for information retrieval is inadequate
to take advantage of the intra� and inter��le markup that represents the structural relationships
among the data�

Instead of a predicate� one might state an objective function and recast the search as an op�
timization problem� This is the relevance ranking model ���� Commonly� the universe and the
elementary terms in the objective function are the same as those for the boolean model �the pres�
ence or number of occurrences of tokens in a �le�� and so this approach is no more adept than the
boolean model in harnessing structural information�

Using the same universe of �les� one might use a regular expression or other formal language
as a predicate� The result of a search would then be the set of �les whose token sequence was a
member of the language� This approach can harness intra��le but not inter��le markup� Retrievals
are restricted exactly to members of the universe
 more �ne�grained selection is impossible� as is the
selection as a unit of a group of �les� Also� common formal language notations� such as ordinary
regular expressions� are not amenable as search notations�

To harness the structural relations among �les and components of �les� it is necessary to abandon
the assumption that the universe for search is the set of �les	 The division of data into �les is
arbitrary� and any particular choice will necessarily be too coarse for some purposes and too �ne
for others
 hierarchical and other structural relationships cannot be captured by any simple set�
Instead� we allow any search to specify any subsequence of the global data� Care must be taken�
however� to limit the number of subsequences that are deemed to meet the user�s search criteria	

�

The number of solutions to a query could be quadratic in the size of data� A simple constraint
imposed on all queries guarantees linearity
 namely that a sequence satis�es a query only if it does
not properly contain a subsequence that also satis�es the query� We call this approach the shortest
substring model�

Query language

The query language GCL is used to specify search criteria under the shortest substring model� A
GCL query speci�es a set of valid sequences� The validity of a sequence depends on the contents
of the sequence �like a formal language� and on the context in which it occurs �unlike a formal
language�� An elementary term in GCL is simply a token� specifying all single�element subsequences
consisting of exactly that token� GCL has three types of operators	 combination� ordering and
containment�

The combination operators are a generalization of boolean and and or under the shortest sub�
string model� A query of the form

all of �list of queries�

speci�es every subsequence that contains a solution to every element in the list of queries� A query
of the form

one of �list of queries�

speci�es every subsequence that is a solution to one of the queries in the list� �We say �is a solution�
rather than �contains a solution� because the shortest substring model precludes a solution from
properly containing a solution to the same query�� A query of the form

n of �list of queries�

is a generalization of the two
 it speci�es every subsequence that contains solutions to n of the
queries in the list� It is important to note that none of the combination operators assume any
a priori structure	 They may be satis�ed by by the sequence of tokens representing a �le� a line� a
row� a �le fragment� a collection of �les� or any other substructure represented by markup�

The ordering operator

query� ��� query�

speci�es every subsequence that begins with a solution to one query and ends with a non�overlapping
solution to another� It is used to identify regions of text bracketed by words� markup or patterns
speci�ed by more complex queries� While some retrieval systems based on the boolean model include
queries based on word position� the ordering operator is more general because the bracketing queries
can be non�elementary terms� and because the ordering operator can be used in combination with
the containment operators�

There are four containment operators	

query� containing query�
query� not containing query�

query� contained in query�
query� not contained in query�

�

Each containment operator speci�es every subsequence satisfying the �rst query such that the
subsequence contains� does not contain� is contained in� or is not contained in a subsequence
satisfying the second query� Thus queries like

�nd the titles of documents authored by Burkowski and not referencing Cormack

are easily expressed� provided that documents� titles� authors and references are identi�ed by
suitable markup�

Further details of our data and search model� the formal query algebra on which GCL is based�
and a complete description of GCL itself is available elsewhere ��� ���

Implementation framework

GCL has a straightforward implementation for two common data representations	 linear and in�
verted� The implementation based on a linear token stream yields a utility like grep� which has
running time proportional to the length of the token sequence �
�� The implementation based on
inverted lists is like that used in many text�retrieval engines� and has running time no greater than
the length of the inverted lists for each of the elementary terms in the query ���� In addition� the
implementation can avoid examining infeasible solutions to subterms in the query if the capability
exists to skip forward in the index lists� Both implementations are amenable to use in a distributed
system	 it is possible to divide�and�conquer the token stream� especially if an additional constraint
is imposed restricting inter��le solutions to the ordering operator�

Retrieval is a facility separate from and e�ected after search� Given a subsequence of tokens
yielded by search� the retrieval process recovers from the sequence the names of �les� records� or
other necessary information to fetch the original data that yielded the subsequence� Because each
�le in the original data is uniquely named� it is a simple matter to maintain reverse�directory
information mapping each token to the �le from whence it came� It is also a simple matter to
maintain with the original data additional sequencing information that allows the particular record
or fragment containing the token to be selected� In the global architecture� the search and retrieval
engines are quite separate�

The overall architecture consists of a number of search engines �or index engines� and retrieval
engines �text servers� connected by a network ��gure
�� Each �le in the global data abstraction
is handled by at least one search engine and at least one retrieval engine� A search� expressed
as a GCL query� may involve several retrieval engines	 the query must be dispatched to a search
engine for each �le that may contain a solution to the query
 the results from the various search
engines must be marshalled to yield the overall set of search results� To preserve the global data
abstraction� the burden of identifying search engines� dispatching queries and marshalling results
must not fall on the user� The architecture therefore includes several marshaller�dispatcher engines
to automate this process�

From the user�s point of view� the marshaller�dispatcher appears to be a single search engine� It
accepts a GCL query and yields subsequences in the global information space that satisfy the query�
The marshaller�dispatcher maintains a list of available search engines� selects the set necessary
to solve the query� and dispatches the query to each of them� It receives the various results�
combines them and returns them to the user as if they were the result of a single search� The

�

Text

Server

Marshaller/

 Dispatcher

Text

Server Engine

Index

Engine

Index

Engine

Index

Engine

Index

Engine

Index

Client Applications

Figure
	 Architecture of the retrieval system�

marshaller�dispatchermay be replicated as necessary to provide capacity adequate to meet demand�
Also� marshaller�dispatcher engines may be arranged hierarchically or in layers�

Continuous availability

We wish to maintain continuous availability� uncompromised by component failures� hardware
maintenance� software maintenance� data update or data reorganization� Ideally� all data should
be continuously available in spite of these occurrences� At least� the global abstraction must be
continuously available� even if some data are not� The global search architecture is designed to
approach the ideal as closely as available resources permit� while also maintaining the weaker
requirement� In this section we outline how the architecture supports a variety of availability
mechanisms�

Availability in spite of failures is achieved using redundant data� which may be organized in a
number of ways� Data may be replicated on various devices and if one device fails� its data may be
found elsewhere� Mirroring is the use of redundant search engines with data that duplicate others�
If one fails� it is a simple matter to use the mirror instead� Full mirroring involves
��� space
overhead� and the issue of how to coordinate access and updates to the various mirrors must be
addressed� In the event that a database and its mirror both fail� its contents are lost� Scattering
involves distributing pieces of the data from one database to many others� When a failure occurs�
each of the others assumes responsibility for part of the data� In the event that a database and one
of the replicants fails� only part of its contents are lost� The problem of coordinating access and

�

updates to scattered data is somewhat more complex than with mirroring� Coded redundancy ���
is an alternative to replication� Using coded redundancy� n units of data may be encoded in
m units of storage �n � m�� Provided n units of storage remain operational� the data can be
recovered� Of the m storage units� n store the original data� and so search and retrieval speed
are unimpaired so long as these units are operational� However� if one or more of these units
fails� recovering its data from the others involves considerable overhead� Also� the problem of
coordinating access and updates is more complex than with either of the replication schemes� The
architecture supports both replication and coded redundancy � a hybrid of scattering and coded
redundancy is particularly attractive because it achieves greater availability than replication alone
while incurring only a fraction of the overhead of coded redundancy�

Maintenance can be viewed as the addition and deletion of hardware and software components�
Ideally� the system as a whole would automatically adjust to the addition or deletion of these
components� resulting in the most e�cient and reliable organization� At least� the systemmust allow
components to be added and deleted without necessitating a global shutdown or reorganization of
the system� Within this model� data update and reorganization can be viewed as a maintenance
activity subject to the same criteria	 it must be possible to add or delete and reorganize data
while maintaining continuous availability and an e�cient and reliable organization� Central to
maintenance is the ability to copy or move data from one place to another� while keeping invariant
the ability to search it as a uni�ed and consistent whole� The marshaller�dispatcher a�ords this
ability� It must be aware of the location of data� and it must ensure that queries are dispatched
that yield all solutions� The marshaller�dispatcher must also eliminate replicated answers� and
must ensure that inconsistent or incomplete results� such as those that might arise from querying
a partially updated database� are consolidated before being returned to the user�

The problem of maintenance can largely be reduced to that of on�line update� One approach to
on�line update is to devise data structures and algorithms that can be updated in real�time� This
approach is unlikely to yield high�performance searching� and is likely to mandate periodic data
reorganization either because of over�ow or because of fragmentation or other gradual degradation
of the data structures� Another approach is to apply the updates to a delta database and to have
the marshaller�dispatcher merge the delta with the master database� Because the delta is small
relative to the master� it can be implemented �possibly in RAM� so as to optimize update without
signi�cantly compromising overall search performance� From time to time� the delta may be frozen
�and a new delta created� and merged with the master to form a new master� This new master is
then adopted by the marshaller�dispatcher in place of the old master and old delta� A hybrid of
on�line update and old�master�new�master techniques yields a high�performance self�reorganizing
search engine ����

Implementation experience

The MultiText project at the University of Waterloo is working to realize the architecture described
in this paper� Each of the components described has been prototyped� Work is proceeding to make
some of the components available as a software release and toward integrating the components into
an Internet�accessible Network News server as a demonstration of the system as a whole�

�

cgrep

The cgrep regular expression search utility makes signi�cant improvements on existing search
utilities� Existing search tools limit searches to single lines� The cgrep utility allows the search
universe itself to be de�ned using a regular expression� The utility has been used for search and
retrieval from repositories of personal email� network news articles� and from text structured with
SGML tagging � none of which would be possible with current tools� The results of a search may
be tagged to aid further searches�

GCL

An implementation of GCL that is designed to front�end existing search engines has been developed
for Internet release� This front end may be used a query language for systems that provide basic
indexing of document terms and markup� The back�end interface is extremely simple and sup�
ports either sequential indexing or skip�forward indexing� The implementation provides a simple
command�line interface and an API to permit the development of a graphical interface�

Text server and index engine

Our TCP�IP�based text server supports the functions of a retrieval engine and our index engine
supports the functions of a search server� The servers support multiple search or retrieval clients
and permit simultaneous update by an single maintenance client�

RSS

The Robust Storage System �RSS� provides a layer of fault tolerance on which storage for both
the search and retrieval servers may be provided� Using the system� a group of disks distributed
about a LAN appears either as a smaller group of equally sized disks or as an equally sized group
of smaller disks� In either case the storage provided by the disks is more robust� A predetermined
number of the disks may fail without apparent e�ect from the point�of�view of the client� apart
from a slight decrease in storage speed�

References

�
� Charles L� A� Clarke and Gordon V� Cormack� On the use of regular expressions for search�
ing text� Technical Report CS������� University of Waterloo Computer Science Department�
February
����

��� Charles L� A� Clarke� Gordon V� Cormack� and Forbes J� Burkowski� Fast inverted indexes
with on�line update� Technical Report CS������� University of Waterloo Computer Science
Department� November
����

��� Charles L� A� Clarke� Gordon V� Cormack� and Forbes J� Burkowski� An algebra for structured
text search and a framework for its implementation� The Computer Journal�
���� To appear�
An early version of this paper was distributed as University of Waterloo Computer Science
Department Technical Report number CS������ ����

�

��� Charles L� A� Clarke� Gordon V� Cormack� and Forbes J� Burkowski� Schema�independent re�
trieval from heterogeneous structured text� In Fourth Annual Symposium on Document Analysis
and Information Retrieval� Las Vegas� Nevada� April
���� An early version of this paper was
distributed as University of Waterloo Computer Science Department Technical Report number
CS������ ����

��� William B� Frakes and Ricardo Baeza�Yates� Information Retrieval � Data Structures and
Algorithms� Prentice Hall� Englewood Cli�s� NJ�
����

��� R� C� Good� G� V� Cormack� C� L� A� Clarke� and D� Taylor� A robust storage system architec�
ture� Technical Report CS����
�� University of Waterloo Computer Science Department� March

����

��� The MultiText Project� Project repository	 ftp���plg�uwaterloo�ca�pub�mt�

��� Ian H� Whitten� Alistair Mo�at� and Timothy C� Bell� Managing Gigabytes� Van Nostrand
Reinhold� New York�
����

�

