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Abstract

Assume that we have an SQL query containing joins� a GROUP�BY and possibly a

HAVING predicate� The standard way of evaluating this type of query is to �rst per�

form all the joins and then the group�by operation� However� it may be possible to per�

form the group�by early� that is� to push the group�by operation past one or more joins�

This may reduce the query processing cost by reducing the amount of data participat�

ing in joins� The reverse transformation� i�e�� performing join before group�by� can

also be bene�cial because the join may greatly reduce the input to the group�by� We for�

mally de�ne the problem� adhering strictly to the semantics of SQL�� and prove neces�

sary and su�cient conditions for deciding when the transformation is valid� In prac�

tice� it may be expensive or even impossible to test whether the conditions are satis�ed�

Therefore� we also present a more practical algorithm that tests a simpler� su�cient

condition� This algorithm is fast and detects a large subclass of transformable queries�

� Introduction

��� Group�by Push Down

SQL queries containing joins and group�by are fairly common� The standard way of evalu�
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ating such a query is to perform all joins �rst and then the group�by operation� However�

it may be possible to interchange the evaluation order� that is� to push the group�by opera�

tion past one or more joins�

The following example illustrates the basic idea� This and subsequent examples are all

based on a subset of the TPC�D database����� The tables are de�ned in Appendix A�

Example � � Find the number of orders for each customer� Output customer key� cus�

tomer name and total number of orders�

SELECT C�CUSTKEY� C�NAME�COUNT�O�CUSTKEY�

FROM CUSTOMERS� ORDERS

WHERE C�CUSTKEY � O�CUSTKEY

GROUP C�CUSTKEY� C�NAME

Plan � in Figure � illustrates the standard way of evaluating the query� fetch the rows in ta�

bles CUSTOMER and ORDERS� perform the join� and group the result by C CUSTKEY and C NAME�

counting the number of rows in each group� Since there are �	
K orders and �	K customers�

the input to the join is �	
K ORDERS rows and �	K CUSTOMER rows� The input to the group�

by consists of �	
K rows� Now consider plan � in Figure �� We �rst group the ORDERS table

on O CUSTKEY and perform the COUNT� then join the resulting �	K rows to the �	K CUSTOMER

rows� This reduces the join from ��	
K � �	K
 to ��	K � �	K
� The input cardinality of

the group�by remains the same� Normally� plan � would be faster than plan ��

The reason why the group�by can be pushed down for this query is as follows� C NAME

is functionally determined by C CUSTKEY so it can be dropped from the list of group�by

columns� Since C CUSTKEY is the key of the CUSTOMER table� each O CUSTKEY matches at

most one C CUSTKEY value and thus joins with at most one CUSTOMER row� Therefore� if we

�rst perform the group�by on O CUSTKEY of the ORDERS table� every row of a group will join

with the same CUSTOMER row� Consequently� we obtain the same result as for the the origi�

nal query� �

The following example shows that we sometimes have several ways of pushing down a

group�by operator�

Example � � Find the total amount of orders for every supplier with a positive account

balance and with total order value exceeding ��� millions� Output supplier key� order key�

total price of the order and the total value of the items from the supplier�
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Group By

150K x 15K
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Plan 1: Group by after join

COUNT

Join Group By
150K

15K
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COUNT

Join

Plan 2: Group by before join

C_CUSTKEY,C_NAME

O_CUSTKEY=C_CUSTKEY

ORDERS:150K CUSTOMERS:15K ORDERS:150K

CUSTOMERS:15K

O_CUSTKEY

O_CUSTKEY=C_CUSTKEY

15K x 15K150K

Figure �� Two access plans for Example �

SELECT S�SUPPKEY� L�ORDERKEY� O�TOTALPRICE� SUM�L�QUANTITY�L�EXTENDEDPRICE�

FROM SUPPLIERS� LINEITEM� ORDERS

WHERE S�SUPPKEY � L�SUPPKEY AND S�ACCTBAL � �

AND L�ORDERKEY� O�ORDERKEY

GROUP BY S�SUPPKEY� L�ORDERKEY� O�TOTALPRICE

HAVING SUM�L�QUANTITY�L�EXTENDEDPRICE� � 	
������

We can push down the the tables SUPPLIER and LINEITEM and rewrite the query as

CREATE VIEW LINESUPP �V�ORDERKEY� V�SUPPKEY� V�TOTALVALUE� AS

�

SELECT L�ORDERKEY� L�SUPPKEY� SUM�L�QUANTITY�L�EXTENDEDPRICE�

FROM SUPPLIERS� LINEITEM

WHERE S�SUPPKEY � L�SUPPKEY AND S�ACCTBAL � �

GROUP BY L�ORDERKEY� S�SUPPKEY

HAVING SUM�L�QUANTITY�L�EXTENDEDPRICE�� 	
�����

��

SELECT V�SUPPKEY� V�ORDERKEY� O�TOTALPRICE� V�TOTALVALUE

FROM LINESUPP� ORDERS

WHERE V�ORDERKEY� O�ORDERKEY�

Since each row in the view joins with at most one row from ORDERS� the transformation is

intuitively correct� The HAVING predicate in the view is very selective� so it greatly reduces
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the number of rows output from the group�by� Therefore� the join between the view and

ORDERS is very fast� In the original query we need to perform all the joins �rst� generating

many rows that are later eliminated by the HAVING predicate� Much of the join e�ort is

wasted� Therefore� it is very likely that the rewritten query can be evaluated faster�

It is also possible to push down only the LINEITEM table� and rewrite the query as

CREATE VIEW TPCD�LINEVALUE �V�ORDERKEY� V�SUPPKEY� V�TOTALVALUE� AS

�

SELECT L�ORDERKEY� L�SUPPKEY� SUM�L�QUANTITY�L�EXTENDEDPRICE�

FROM TPCD�LINEITEM

GROUP BY L�ORDERKEY� L�SUPPKEY

HAVING SUM�L�QUANTITY�L�EXTENDEDPRICE�� 	
�����

��

SELECT V�SUPPKEY� V�ORDERKEY� O�TOTALPRICE� V�TOTALVALUE

FROM LINEVALUE� ORDERS� SUPPLIERS

WHERE S�SUPPKEY�V�SUPPKEY AND S�ACCTBAL � � AND V�ORDERKEY� O�ORDERKEY�

Since each row in the view joins with at most one row from the join of ORDERS and

SUPPLIER� the transformation is intuitively correct� Again� the HAVING predicate in the view

is very selective� so the number of groups output is small� There is an index on �L ORDERKEY�

L SUPPKEY
�see Appendix A� so no sort is needed to perform the group�by� Furthermore�

since the second rewrite only groups on one table instead of the join of two tables� the sec�

ond rewrite further reduces the join e�ort�

Database System Tables Pushed Down

LINEITEM� SUPPLIER LINEITEM

DB���


 V� �	� �	�

ORACLE V� �	� ���

Figure �� Reduction in Elapsed Time by Group�by Push�down for Example �

Figure � shows the reduction in elapsed time obtained on two di�erent database sys�

tems� In the above examples� it was both possible and bene�cial to perform the group�by
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operation before the join� However� it is also easy to �nd examples where this is not possi�

ble� or possible but not bene�cial�

��� Group�by Pull up

Consider a query that involves one or more joins and where one of the tables mentioned in

the FROM clause is in fact an aggregated view� An aggregated view is a view obtained by

aggregation on a grouped view� In a straightforward implementation� the aggregated view

is �rst materialized and the result then joined with other tables in the FROM clause� In other

words� group�by is performed before join� However� it may be possible �and bene�cial
 to

reverse the order and �rst perform the joins and then the group�by� as illustrated by the

following example�

Example � � For each supplier with an account balance greater than ����� 	nd the total

value of items from this supplier among all orders� Assume that the user writes this query

using the aggregated view shown below�

CREATE VIEW SUPPVALUE �V�SUPPKEY� V�TOTALVALUE� AS

�

SELECT L�SUPPKEY� SUM�L�QUANTITY�L�EXTENDEDPRICE�

FROM LINEITEM

GROUP BY L�SUPPKEY

��

SELECT V�SUPPKEY� V�TOTALVALUE

FROM SUPPVALUE� SUPPLIERS

WHERE S�ACCTBAL � 


� AND V�SUPPKEY � S�SUPPKEY�

The standard evaluation process for this query is to �rst materialize the view LINEITEM

and then join it with the SUPPLIERS table� However� the group�by in the view can be pulled

up and the query rewritten as

SELECT L�SUPPKEY� SUM�L�QUANTITY�L�EXTENDEDPRICE�

FROM LINEITEM� SUPPLIERS

WHERE S�ACCTBAL � 


� AND L�SUPPKEY � S�SUPPKEY

GROUP BY L�SUPPKEY�

	



The reason why the transformation is correct is similar to the ones we stated for group�

by push down in Section ���� For this query� the predicate S ACCTBAL � 


� is very se�

lective and it greatly reduces the number of rows participating in the join �� The rewritten

query is very likely to perform better than the original one� This was con�rmed by our ex�

periments� Rewriting the query reduced the elapsed time by ��� on DB���


 V� and by

��� on Oracle V��

��� Outline of Paper

In Sections ��� and ���� we presented examples which show that interchanging the order

of grouping and join can be bene�cial� However� it is very easy to �nd examples where the

transformation is �a
 not possible or �b
 possible but not bene�cial� This raises the follow�

ing general questions�

�� Exactly under what conditions is it possible to interchange the order of grouping and

join�

�� Under what conditions does this transformation reduce the query processing cost� In

other words� when should we perform group�by push down and group�by pull up�

This paper concentrates on answering the �rst question� Our main theorem provides suf�

�cient and necessary conditions for deciding when the transformation is valid� The condi�

tions cannot always be tested e�ciently so we also propose a more practical algorithm that

tests simpler� su�cient conditions�

The rest of the paper is organized as follows� Section � summarizes related research

work� Section � de�nes the class of queries that we consider� Section � presents the formal�

ism that our results are based on� Section 	 introduces and proves the main theorem� which

states necessary and su�cient conditions for performing the proposed transformation� Sec�

tion � describes an e�cient algorithm for deciding whether group�by can be interchanged

with a join� In order to simplify the proofs� the �rst part of the paper does not allow queries

with a HAVING clause� Section � considers the case when the HAVING clause is present and ex�

tends the theorems to handle this case� Section � proposes an e�cient algorithm for parti�

tioning the tables into pushed down tables and left�up tables� Section � illustrates that col�

�A typical database system would apply the local predicate �rst before the join
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umn substitution can be used to generate equivalent queries� Section �� continues some ob�

servations about the trade�o�s of the transformation� Section �� summarizes the paper�

� Related Work

We �rst proposed the idea of interchanging the order of group�by and join in ��	�� However�

we did not present proofs of the conditions and algorithms� and queries with HAVING were

not considered� This paper presents the full proofs� extends the result to queries with a

HAVING clause� and proposes an e�cient algorithm for table partitioning�

The idea of interchanging the order of group�by and join can be generalized to partial

grouping����� which partially pushes a group�by past a join� In other words� for some queries

which �rst perform a join and then group�by� we can perform a new group�by �rst� then the

join� and �nally the original group�by� The new �eager� group�by only partially groups the

input so the original group�by is still needed after the join� Partial grouping reduces the

input cardinality to the subsequent join and may reduce the overall processing time�

Chaudhuri and Shim independently generalized our idea of interchanging the order of

group�by and join into a technique similar to partial grouping���� They also proposed a

greedy conservative approach to modifying traditional System�R style optimizers to incor�

porate the transformation�

Klug��� observed that in some cases� the result from a join is already grouped correctly�

Nested�loop and sort merge joins� both have this property� In this case� explicit grouping is

not needed and the join can be pipelined with aggregation� Dayal��� stated� without proof�

that the necessary condition for direct pipelining is that the group�by columns must be a

primary key of the outer table in the join� This is the only work we know of which attempts

to reduce the cost of group�by by utilizing information about primary keys�

Several researchers ��� �� 	� ��� �
� have investigated when a nested query can be trans�

formed into a semantically equivalent query that does not contain nesting� As part of this

work� techniques to handle aggregate functions in the nested query were discussed� How�

ever� none considered interchanging the order of joins and group�by�
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� Class of Queries Considered

A table can be a base table or a view in this paper� Any column occurring as an operand

of an aggregation function �COUNT� MIN� MAX� SUM� AVG
 in the SELECT clause is called an ag�

gregation column� In SQL�� a value expression may include aggregation functions� We call a

value expression that includes aggregation functions an aggregation expression� Any column

occurring in the SELECT clause which is not an aggregation column is called a selection col�

umn� Aggregation columns may be drawn from more than one table� Clearly� the transfor�

mation cannot be applied unless at least one table contains no aggregation columns� There�

fore� we partition the tables in the FROM clause into two groups� those tables that contain at

least one aggregation column and those that do not contain any such columns� Technically�

each group can be treated as a single table consisting of the Cartesian product of the mem�

ber tables� Therefore� without loss of generality� we can assume that the FROM clause con�

tains only two tables� Rd and Ru� where Rd denotes the table containing aggregation columns

and Ru the table not containing any such columns�

The search condition in the WHERE clause can be expressed as Cd�C��Cu� where Cd� C��

and Cu are in conjunctive normal form� Cd only involves columns in Rd� Cu only involves

columns in Ru� and each disjunctive component in C� involves columns from both Rd and

Ru� Note that subqueries are allowed�

The grouping columns mentioned in the GROUP BY clause may contain columns from Rd

and Ru� denoted by GAd and GAu� respectively� According to SQL������ the selection columns

in the SELECT clause must be a subset of the grouping columns� We denote the selection

columns as SGAd and SGAu� subsets of GAd and GAu� respectively� For the time being� we

assume that the query does not contain a HAVING clause�relaxed in Section �
� The columns

of Rd participating in the join and grouping is denoted by GA�

d � and the columns of Ru par�

ticipating in the join and grouping is denoted by GA�
u �

In summary� we consider queries of the following form�

SELECT �ALL�DISTINCT� SGAd� SGAu� F �AA�

FROM Rd� Ru

WHERE Cd � C� � Cu

GROUP BY GAd� GAu

where�

�



GAd� grouping columns of table Rd�

GAu� grouping columns of table Ru� GAd and GAu cannot both be empty�

SGAd� selection columns	 must be a subset of grouping columns GAd�

SGAu� selection columns	 must be a subset of grouping columns GAu�

AA� aggregation columns of table Rd�

Cd� conjunctive predicates on columns of table Rd�

Cu� conjunctive predicates on columns of table Ru�

C�� conjunctive predicates involving columns of both tables Rd and Ru	 e�g�	 join predicates�

��C��� columns involved in C��

F � array of aggregation functions and�or aggregation expressions applied on AA �may be

empty��

F �AA�� application of aggregation functions and�or aggregation expressions F on aggregation

columns AA�

GA�

d � � GAd � ��C��� Ru	 i�e�	 the columns of Rd participating in the join and grouping�

GA�
u � � GAd � ��C��� Rd	 i�e�	 the columns of Ru participating in the join and grouping

Our objective is to determine under what conditions the query can be evaluated in the

following way�

SELECT �ALL�DISTINCT� SGAd� SGAu� FAA

FROM R�

d� R�
u

WHERE C�

where

R�

d�GA
�

d � FAA� 



SELECT ALL GA�

d � F �AA�

FROM Rd

WHERE Cd

GROUP BY GA�

d

and

�



R�
u�GA

�
u � 



SELECT ALL GA�
u

FROM Ru

WHERE Cu

Group�by generates one row per group����� even when there are no aggregation columns

�AA is empty
 and no aggregation functions�F is empty
� Therefore� throughout this paper�

the only assumption we make about F �AA
 is that it produces one row for each group�

� Formalization

In this section we de�ne the formal �machinery� we need for the theorems and proofs to

follow� This consists of an algebra for representing SQL queries and clari�cation of the e�ects

of NULLs on comparisons� duplicate eliminations� and functional dependencies using strict

SQL� semantics�

��� An Algebra for Representing SQL Queries

Specifying operations using standard SQL is tedious� As a shorthand notation� we de�ne an

algebra whose basic operations are de�ned by simple SQL statements� Because all opera�

tions are de�ned in terms of SQL� there is no need to prove the semantic equivalence between

the algebra and SQL statements� Note that transformation rules for �standard� relational al�

gebra do not necessarily apply to this new algebra� The operations are de�ned as follows�

� G�GA� R� Group table R on grouping columns GA � fGA�� GA�� ���� GAng� This op�

eration is de�ned by the query � SELECT � FROM R ORDER BY GA� The result of this

operation is a grouped table�

� R� �R�� The Cartesian product of tables R� and R��

� ��C�R� Select all rows of table R that satisfy condition C� Duplicate rows are not

eliminated� This operation is de�ned by the query SELECT � FROM R WHERE C�

�Certainly� this query does more than GROUP BY by ordering the resulting groups
 However� this appears

to be the only valid SQL query that can represent this operation
 It is appropriate for our purpose as long

as we keep the di�erence in mind
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� �d�B�R� where d � A or D� Project table R on columns B� without eliminating du�

plicates when d � A and with duplicate elimination when d � D� This operation is

de�ned by the query SELECT �ALL �DISTINCT� B FROM R�

� F �AA�R� F �AA� � �f��AA
� f��AA
� ���� fn�AA

� where AA � fA�� A�� ���� Ang� and

F � ff�� f�� ���� fng� AA are aggregation columns of grouped table R and F are aggre�

gation expressions operating on AA� We must emphasize the requirement that table R

is grouped by some grouping columns GA� All rows of table R must agree on the val�

ues of all columns except AA columns� For i � �� �� ���� n� fi is an aggregation expres�

sion�which maybe just an aggregation function
 applied to some columns in AA of each

group of R and yields one value� An example of fi�AA
 is COUNT�A�
 � SUM�A� �A�
�

Duplicates in the overall result are not eliminated� This operation is de�ned by the

query SELECT GA�A� F�AA� FROM R GROUP BY GA� where GA is the grouping columns

of R� and A is a set of columns that are functionally determined by GA �A may be

empty
� Note that this is not a syntactically valid SQL� statement since the columns

A in the SELECT clause are not mentioned in the GROUP BY clause� However� since

GA�� A� from a query processing point of view� this is semantically sound�

We also use �� ��� � and � to represent logical implication� logical equivalence� logical

conjunction and logical disjunction respectively� The class of SQL queries we consider can be

expressed as ��

�d�SGAd� SGAu� FAA�F �AA��A�GAd� GAu� AA�G�GAd� GAu���Cd � C� � Cu��Rd �Ru
�

where d � A or d � D� and FAA are the aggregation columns after applying F �AA� on each

group� The last projection simply projects the rows on the columns wanted� and may elim�

inate duplicates� The last projection may be omitted when it is the same as the projection

before the group�by operation F �AA�� Our objective is to determine under what conditions

this expression is equivalent to

�d�SGAd� SGAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GAd���Cd�Rd � �A�GA�
u ���Cu�Ru
�

�In the case that there exists fi
Ai� � COUNT
�� � F 
AA�� we can replace it with COUNT
A�� where A is

any column in GAd� without changing the result of the query
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��� The Semantics of NULL in SQL�

SQL����� �� �� represents missing information by a special value NULL� It adopts a three�valued

logic in evaluating a conditional expression� having three possible truth values� namely true�

false and unknown� Figure � shows the truth tables for the Boolean operations AND and OR�

Testing the equality of two values in a search condition returns unknown if any one of the val�

AND true unknown false

true true unknown false

unknown unknown unknown false

false false false false

OR true unknown false

true true true true

unknown true unknown unknown

false true unknown false

Figure �� The semantics of AND and OR in SQL�

ues is NULL or both values are NULL� A row quali�es only if the condition in the WHERE clause

evaluates to true� that is� unknown is interpreted as false�

However� the e�ect of NULLs on duplicate operations is di�erent� Duplicate operations

include DISTINCT� GROUP BY� UNION� EXCEPT and INTERSECT� which all involve the detection

of duplicate rows� Two rows are de�ned to be duplicates when every pair of corresponding

column values are duplicates� Two column values are de�ned to be duplicates when they are

equal and both not NULL or when they are both NULLs� In other words� SQL� adopts �NULL

equal to NULL� semantics when determining duplicates�

Note that we do not include the UNIQUE predicate among the duplicate operations� SQL�

uses �NULL not equal to NULL� semantics when considering UNIQUE�

We need� some special �interpreters� capable of transferring the three�valued result to the

usual two�valued result based on SQL� semantics in order to formally de�ne functional de�

pendencies and SQL operations� We adopt two interpretation operators bP c and dP e spec�

�There certainly exist other solutions to this problem
 We just present the one we think is most appro�

priate for our purpose
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i�ed in Figure � for interpreting unknown to false and true respectively� These operators

were �rst used in ��
�� In addition� a special equality operator�
n
�� is proposed to re�ect the

�NULL equal to NULL� characteristics of SQL duplicate operations�

Operation Result

P is a predicate P is true P is unknown P is false

P true unknown false

bP c true false false

dP e true true false

X�Y are variables X is NULL � Y is NULL Otherwise

X
n
� Y true bX � Y c

Figure �� The de�nition of interpretation operators

��� Functional Dependencies

SQL� ���� provides facilities for de�ning �primary
 keys of base tables� A key de�nition im�

plies two constraints� �a
 no two rows can have the same key value and �b
 no column of

a key can be NULL� We can exploit knowledge about keys to determine whether the pro�

posed transformation is valid�

De�ning a key implies that all columns of the table are functionally dependent on the

key� This type of functional dependency is called a key dependency� Keys can be de�ned for

base tables only� For our purpose� derived functional dependencies are of more interest� A

derived table is a table de�ned by a query �or view
� A derived functional dependency is a

functional dependency that holds in a derived table� Similarly� a derived key dependency is

a key dependency that holds in a derived table� The following example illustrates derived

dependencies�

Example � � Assume that we have the following two tables�

Part�ClassCode� PartNo� PartName� SupplierNo�

Supplier�SupplierNo� Name� Address�

��



where�ClassCode� PartNo� is the key of Part and SupplierNo is the key of Supplier�

Consider the derived table de�ned by

SELECT P�PartNo� P�PartName� S�SupplierNo� S�Name

FROM Part P� Supplier S

WHERE P�ClassCode � �� and P�SupplierNo � S�SupplierNo

We claim that PartNo is a key of the derived table� Clearly� PartNo is a key of the de�

rived table T de�ned by T � ��ClassCode � �	��Part
� When T is joined with Supplier�

each row joins with at most one Supplier row because SupplierNo is the key of Supplier�

�If P�SupplierNo is NULL� the row does not join with any Supplier row�
 Consequently�

PartNo remains a key of the joined table and also of the �nal result table obtained after pro�

jection�

In Supplier� Name is functionally dependent on SupplierNo because SupplierNo is a

key of Supplier� It is obvious that this functional dependency must still hold in the derived

table� That is� a key dependency in one of the source tables resulted in a non�key functional

dependency in the derived table� �

Even though SQL does not permit NULL values in any columns of a key� columns on

the right hand side of a key dependency may allow NULL values� In a derived dependency�

columns allowing NULL values may occur on both the left and the right hand side of a func�

tional dependency� The essence of the problem is how to de�ne the result of the comparison

NULL � NULL�

Consider a row t 	 r� where r is an instance of a table R� Assuming that a is an column

of R� we denote the value of a in t as t�a��

De�nition ���Row Equivalence
� Consider a table scheme R����� A� ���
� where A is a set of

columns fa�� a�� ���� ang� Let r be an instance of R� Two rows t� t� 	 r are equivalent with

respect to A if
�

i	������n

�t�ai�
n
� t��ai�
�

which we also write as t�A�
n
� t��A��

De�nition �� �Functional Dependency
 Consider a table R�A�B� ���
� where A is a set of

columns and B is a single column� Let r be an instance of R� A functionally determines B�

denoted by A��B� in r if the following condition holds�


t� t� 	 r� f�t�A�
n
� t��A�
 � �t�B�

n
� t��B�
g�

��



Let Key�R
 denote a candidate key of table R� We can now formally specify a key de�

pendency as


r�R
�
t� t� 	 r� ft�Key�R
�
n
� t��Key�R
� � t���R
�

n
� t����R
�g�

Note that� since NULL is allowed for a candidate key� we need to consider the �NULL equals

to NULL� condition in the statement�

The basic data type in SQL is a table� not relation� A table may contain duplicate rows

and is therefore a multiset� In this paper� we use the term �set� to refer to �multiset�� In

order to distinguish the duplicates in a table in our analysis� we assume that there always

exists a column in each table called �RowID�� which can uniquely identify a row� It is not

important whether this column is actually implemented by the underlining database system�

We use RowID�R
 to denote the RowID column of a table R�

We use the notation E�rd� ru
 to denote the result generated by an SQL expression E

when evaluated on instances rd and ru of tables Rd and Ru� respectively� We summarize all

symbols de�ned in Section ��� and this section in Figure 	�

Symbol De�nitions

rd� ru Instances of table Rd and Ru

A �B the concatenation of two rows A and B into one row

g �B the concatenation of a grouped table g and a row B into a

new grouped table� Each row in the new grouped table is

the result of a row in g concatenated with B�

T �S� shorthand for �A�S�T � where S is a set of columns and T

is a grouped or ungrouped table� or a row�

E�rd� ru
 the result from applying E on instances rd and ru�

RowID�R
 the RowID of table R

Figure 	� Summary of Symbols
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� Theorems and Proofs

Theorem � �Main Theorem�� The expressions

E� � F �AA��A�GAd� GAu� AA�G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

E� � �A�GAd� GAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd � �A�GA�
u ���Cu�Ru


are equivalent if and only if the following two functional dependencies hold in the join of Rd

and Ru� ��Cd � C� � Cu��Rd �Ru
�

FD� � �GAd� GAu
�� GA�

d

FD� � �GA�

d � GAu
�� RowID�Ru
�

FD� means that for all valid instances rd and ru of Rd and Ru� respectively� if two dif�

ferent rows in ��Cd � C� � Cu� �rd � ru
 have the same value for columns �GA�

d � GAu
� then

the two rows must be produced from the join of one row in ��Cu�ru and two rows �could be

duplicates
 in ��Cd�rd�

Note that Ru does not necessarily have to include a column RowID� The notation

��GA�

d � GAu
 �� RowID�Ru
 in the join of Rd and Ru� is simply a shorthand for the re�

quirement that �GA�

d � GAu
 uniquely identi�es a row of Ru in the join of Rd and Ru�

The intuitive meaning of FD� and FD� is as follows� FD� ensures that each group in

G�GAd� GAu���Cd � C� � Cu��Rd �Ru
 corresponds to exactly one group in G�GA�

d ���Cd�Rd

Exact correspondence means that there is an one to one matching between rows in the two

groups� This condition guarantees that two matching groups will produce the same aggre�

gation values in E� and E� respectively� Note that the aggregation functions and aggrega�

tion expressions operate only on columns of Rd�

FD� ensures that each row in F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd contributes at most

one row in the overall result of E� by joining with at most one row from ��Cu�Ru� In other

words� FD� prevents such a row from contributing two or more rows in the overall result

of E�� If FD� is not true� there may exist a row td in F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd

which contributes two or more rows after the join in E�� Then� since

��



� in E�� after the join and before the aggregation� the rows� which correspond to those

rows produced by the join between td and some rows of Ru in E�� will belong to the

same group in G�GAd� GAu���Cd � C� � Cu��Rd �Ru
� and

� every group in G�GAd� GAu���Cd � C� � Cu��Rd � Ru
 yields one row in the overall

result of E��

E� contains one row corresponding to more than one rows in E�� and consequently the trans�

formation cannot be valid�

Lemma � � The expression

E�

� � �A�GAd� GAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd � ��Cu�Ru


is equivalent to E��

The di�erence between E� and E�

� is that E�

� does not remove the columns other than

GA�
u of table ��Cu�Ru before the join� In practice� the optimizer usually removes these un�

necessary columns to reduce the data volume�

Proof� The only di�erence between E� and E�

� is the change from �A�GA�
u � ��Cu�Ru to

��Cu�Ru� Since the columns in Ru other than GA�
u do not participate in any of the opera�

tions in the expressions and the �nal projection is on columns �GAd� GAu� FAA
� this change

does not a�ect the result of the expression� Consequently the two expressions are equiva�

lent� �

It follows from Lemma � that we only need to prove that E� is equivalent to E�

� if and

only if FD� and FD� hold in ��Cd �C� �Cu��Rd �Ru
� Lemmas � � � essentially prove the

Main Theorem for the case when GA�

d and GA�
u are both non�empty� The proof is divided

into several steps� Lemmas � and � show the necessity of FD� and FD� Lemmas � and 	

demonstrate that there are no duplicates in the result of E� and E�

� Lemma � proves the

su�ciency� Finally we prove the Main Theorem using these lemmas�

��� Necessity

Lemma � � If the two expressions E� and E�

� are equivalent� and GA
�

d and GA�
u are both

non�empty� then FD� holds in ��Cd � C� � Cu��Rd �Ru
�

��



Proof� We prove the lemma by contradiction� Assume that E� and E�

� are equivalent� and

GA�

d and GA�
u are both non�empty� but FD� does not hold in ��Cd�C��Cu��Rd�Ru
� Then

there must exist two valid instances rd and ru of Rd and Ru� respectively� with the following

properties� �a
 E��r�� r�
 and E �

��r�� r�
 produce the same result and �b
 there exist two rows t

and t� 	 ��Cd�C��Cu��rd�ru
 such that t�GAd� GAu�
n
� t��GAd� GAu� but t�GA�

d � �
n
� t��GA�

d ��

Clearly� t and t� are produced from the join of two sets� S� � ft���Rd
�� t����Rd
�g 
 ��Cd�rd

and S� � ft���Ru
�� t����Ru
�g 
 ��Cu�ru� Note that t���Rd
� and t����Rd
� must be two dif�

ferent rows whereas t���Ru
� and t����Ru
� might be the same row�

Consider E��r�� r�
 �rst� Since t�GAd� GAu�
n
� t��GAd� GAu�� t and t� will be grouped into

the same group in G�GAd� GAu���Cd � C� � Cu��rd � ru
� All rows sharing the same value

t�GAd� GAu� in ��Cd �C� �Cu��rd� ru
 will be grouped into this group� In E��r�� r�
� there

is therefore exactly one row whose value for columns �GAd� GAu� is t�GAd� GAu��

Now consider E�

��r�� r�
� Since t�GA�

d � �
n
� t��GA�

d �� t���Rd
� and t����Rd
� will be

grouped into two di�erent groups in G�GA�

d ���Cd�rd� Denote these groups as g� and g� re�

spectively� Therefore� F �AA��A�GA�

d � AA� G�GA�

d ���Cd�rd must contain the following two

rows� F �AA��A�GA�

d � AA�g� and F �AA��A�GA�

d � AA�g�� whose values for columns GA�

d are

t�GA�

d � and t��GA�

d �� respectively� Since t and t� are in the join result ��Cd � C� � Cu�

�rd � ru
� and GA�

d are the only columns of Rd participating in the join� it follows that

�F �AA��A�GA�

d � AA�g�
 �t���Ru
� and �F �AA��A�GA�

d � AA�g�
 �t����Ru
� must be in the join

result ��C���F �AA��A�GA�

d � AA� G�GA�

d � ��Cd�rd � ��Cu�ru
� Therefore� there are �at least


two rows� in E�

��r�� r�
� with the same value �t�GAd� GAu�
 for columns �GAd� GAu�� Since

there is only one row in E��r�� r�
 with the value �t�GAd� GAu�
 for columns �GAd� GAu��

E��rd� ru
 and E��rd� ru
� cannot be equivalent� This proves the lemma� �

Lemma � � If the two expressions E� and E�

� are equivalent� and GA
�

d and GA�
u are both

non�empty� then FD� holds in ��Cd � C� � Cu��Rd �Ru
�

Proof� We prove the lemma by contradiction� Assume that E� and E�

� are equivalent� and

GA�

d and GA�
u are both non�empty� but FD� does not hold in ��Cd � C� � Cu��Rd � Ru
�

Then� there must exist two valid instances rd and ru of Rd and Ru� respectively� with the

following properties� �a
 E��rd� ru
 � E �

��r�� r�
� and �b
 there exist two rows t and t� 	

��Cd � C� � Cu��rd � ru
 such that t�GA�

d � GAu�
n
� t��GA�

d � GAu� but t���Ru
� �
n
� t����Ru
��

Clearly� t and t� are produced from the join of two sets� S� � ft���Rd
�� t����Rd
�g 
 ��Cd�rd

��



and S� � ft���Ru
�� t����Ru
�g 
 ��Cu�ru� Note that t���Rd
� and t����Rd
� can be the same

row but t���Ru
� and t����Ru
� must be di�erent rows�

First consider E��r�� r�
� Since t�GAd� GAu�
n
� t��GAd� GAu�� t���Rd
� and t����Rd
� will

be grouped into the same group in G�GAd� GAu���Cd�C��Cu��rd�ru
� All rows sharing the

same value t�GAd� GAu� in ��Cd�C��Cu��rd�ru
 will be grouped into this group� In E��r�� r�


there is therefore exactly one row whose value for columns �GAd� GAu� is t�GAd� GAu��

Now consider E�

��r�� r�
� Since t�GA�

d �
n
� t��GA�

d �� t and t� will be grouped into the

same group in G�GA�

d ���Cd�rd� Therefore� there is exactly one row in F �AA��A�GA�

d � AA�

G�GA�

d ���Cd�rd having the value t�GA�

d � for columns GA�

d � Denote this row by t��

Since t and t� are in the join result ��Cd � C� � Cu��rd � ru
� and GA�

d are the only

columns of Rd participating in the join� t��t���Ru
� and t��t����Ru
� are in the join re�

sult ��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd � ��Cu�ru
� Therefore� there are �at least
 two

rows� �A�GAd� GAu� FAA� �t��t���Ru
�
 and �A�GAd� GAu� FAA� �t��t����Ru
�
 in E�

��r�� r�
�

having the value t�GAd� GAu� for columns �GAd� GAu�� Since there is only one row in

E��r�� r�
 having the value t�GAd� GAu� for columns �GAd� GAu�� E��r�� r�
 and E�

��r�� r�


cannot be equivalent� This proves the lemma� �

Lemma � and Lemma � prove that FD� and FD� must hold in ��Cd�C� �Cu��Rd�Ru


if E� and E�

� are equivalent and GA�

d and GA�
u are both non�empty�

��� Distinctness

Lemma � � The table produced by expression E� contains no duplicate rows�

Proof� Clearly� �GAd� GAu
 is the key of the derived table resulting from applying E� to

valid instances rd and ru of Rd and Ru respectively� Therefore there are no duplicate rows

in E�� �

Lemma 	 � If FD� and FD� hold in ��Cd � C� � Cu��Rd �Ru
� and GA�

d and GA�
u are

both non�empty� then there are no duplicate rows in the table produced by expression E�

��

Proof� We prove the lemma by contradiction� Assume that there exist two valid instances

rd and ru of Rd and Ru� respectively� such that� FD� and FD� hold in ��Cd�C��Cu��rd�ru
�

but there exist two di�erent rows t� t� 	 E�

��r�� r�
 which are duplicates of each other� that is�

t
n
� t�� Then there must exist two rows� td� t�d 	 ��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd �

��



��Cu�ru
� such that t � td�GAd� GAu� FAA�� and t� � t�d�GAd� GAu� FAA�� td and t�d must be

produced by the join between rows in F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd and ��Cu�ru� As�

sume td � t�� � t�� and t�d � t��� � t
�

��� where t��� t��� 	 F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd and

t��� t
�

�� 	 ��Cu�ru� There are two cases to consider�

Case �� Assume that t���GA
�

d � �
n
� t����GA

�

d �� Clearly� t���GAd�
n
� t����GAd� and

t���GAu�
n
� t����GAu�� Since FD� holds in ��Cd � C� � Cu��rd � ru
� �GAd� GAu
 func�

tionally determines GA�

d in ��Cd � C� � Cu��rd � ru
� Consider the grouping and ag�

gregation in F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd� these operations only merge several rows

with the same value for columns GA�

d in ��Cd�rd into one row� consequently the num�

ber of rows cannot increase and there is no new value for columns GA�

d in all re�

sulting rows� It follows that �GAd� GAu
 must still functionally determine GA�

d in

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd � ��Cu�ru
� Since td�GAd� GAu�
n
� t�d�GAd� GAu��

td�GA
�

d �
n
� t�d�GA

�

d � must hold� Therefore� t���GA
�

d �
n
� t�

��
�GA�

d �� which is a contradiction�

Case �� Assume that t���GA
�

d �
n
� t����GA

�

d �� Since the grouping in G�GA�

d ���Cd�rd is on

GA�

d � t�� and t��� must be the same row� which is denoted by Td� Since FD� holds in ��Cd �

C��Cu��rd�ru
� �GA�

d � GAu
 functionally determines RowID�Ru
 in ��Cd�C��Cu��rd�ru
�

Similarly due to the reasons above� �GAd� GAu
 must still functionally determine RowID�Ru


in ��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�rd���Cu�ru
� Since td�GAd� GAu�
n
� t�d�GAd� GAu��

t�� and t��� must be the same row� which is denoted as Tu� The join between Td and Tu can

only generate one row� Therefore� td and t�d are the same row� Hence t and t� must be the

same row� which is a contradiction�

The two cases above are the only possible cases and both lead to contradictions� This

proves the lemma� �

��� Su	ciency

Lemma 
 � If FD� and FD� hold in ��Cd � C� � Cu��Rd �Ru
� and GA�

d and GA�
u are

both non�empty� then the two expressions E� and E�

� are equivalent�

Proof� Lemma � and Lemma 	 guarantee that neither E� nor E�

� produce duplicate rows if

GA�

d and GA�
u are both non�empty� Let rd and ru be valid instances of Rd and Ru respec�

tively� All we need to prove is that� if t 	 E��rd� ru
� then t 	 E�

��rd� ru
 and vice versa�

Case �� t 	 E��rd� ru
 � t 	 E�

��rd� ru
� Consider a row t 	 E��rd� ru
� There exists a

group g 	 G�GAd� GAu���Cd � C� � Cu��rd � ru
 such that t � F �AA��A�GAd� GAu� AA�g�

�




Since �GAd� GAu
��RowID�Ru
 �follows from FD� and FD�
 in ��Cd � C� � Cu��rd � ru
�

there is exactly one row tu 	 ��Cu�ru which joins with a subset gd of rows in ��Cd�rd to form

g� We can therefore write g � gd � tu� Clearly� every row tp 	 gd has the property that

tp�GAd�
n
� t�GAd� and C��tp� tu
 is true� Furthermore� all rows in gd have the same values for

columns GA�

d because �GAd� GAu
���GA�

d 
 holds in ��Cd � C� � Cu��rd � ru
� Therefore�

for every row to 	 ��Cd �C� �Cu��rd� ru
� if to�GA
�

d �
n
� t�GA�

d � then to�GAd�
n
� t�GAd�� and

consequently to 	 g� and to���Rd
� 	 gd�

Now consider E �

��rd� ru
� Clearly� there must exist a group g�d 	 G�GA�

d � ��Cd�rd contain�

ing all rows in ��Cd�rd having the value t�GA�

d � for columns GA�

d Therefore� gd 
 g�d� The

rows in gd and g�d all have the same value for columns GA�

d but may di�er on other columns�

In the same way as above� every row tq 	 g�d has the property that tq�GAd�
n
� t�GAd� and

C��tq� tu
 is true� �Recall that GA�

d are the only columns of Rd involved in C��
 Conse�

quently� g�d consist of exactly those rows in ��Cd�rd that satisfy C� when concatenate with tu

and therefore gd � g�d�

Therefore� the row t� � �A�GAd� GAu� FAA���C���F �AA��A�GA�

d � AA�gd � tu
 must then

exist in E�

��rd� ru
 and� since gd � g�d� t
n
� t�d� In other words� t 	 E�

��rd� ru
�

Case �� t 	 E�

��rd� ru
 � t 	 E��rd� ru
� Consider a row t 	 E�

��rd� ru
� There must exist a

group gd 	 G�GA�

d ���Cd�rd such that t � ��A�GAd� GAu� FAA���C���F �AA��A�GA�

d � AA�gd
�

tu
� for some tu 	 ru� For every row td 	 gd� C��td� tu
 is true and consequently

�td � tu
 	 ��Cd � C� � Cu��rd � ru
� Since all such �td � tu
 rows have the same value of

�GAd� GAu
� they all belong to the same group g 	 G�GAd� GAu���Cd � C� � Cu��rd � ru
�

From the fact that �GAd� GAu
��RowID�Ru
 holds in ��Cd � C� � Cu��rd � ru
� it follows

that there exists exactly one row in ��Cu�ru that join with some set of rows in ��Cd�rd to

form g� Clearly this row must be tu� In other words� there exists a subset g�d 
 ��Cd�rd such

that g � g�d � tu�

Now gd 
 g�d because

�a
 for any row tp 	 ��Cd�rd� if tp�GAd�
n
� t�GAd� and C��tp� tu
 is true� then tp must be in

g�d 

�b
 if a row tp 	 gd� then tp�GAd�
n
� t�GAd� and C��tp� tu
 is true�

Since �GAd� GAu
���GA�

d 
� all rows in g�d have the same value for columns �GA�

d 
�

Therefore� the rows in gd and g�d all have the same value for columns GA�

d 
 but may di�er on

��



other columns� Since gd contains all rows in ��Cd�rd having the value t�GA�

d � for columns

�GA�

d 
� the rows in g�d must all be in gd� In other words� g�d 
 gd� Therefore gd � g�d� It fol�

lows that the row t� � �A�GAd� GAu� FAA� ��F �AA��A�GA�

d � AA�g�d
� tu
 	 E�

��r�� r�
� Since

gd � g�d� t � t�� In other words� t 	 E�� �

Proof of the Main Theorem�

For the case that GA�

d and GA�
u are both non�empty� Lemma � and Lemma � prove that

FD�� FD� must hold in ��Cd � C� � Cu� �rd � ru
 if E� and E�

� are equivalent�necessity
�

Lemma � shows that E� and E�

� are equivalent if FD� and FD� hold in ��Cd � C� � Cu�

�rd � ru
�su�ciency
� Lemma � ensures that E� � E �

�� These lemmas together prove the

theorem for the case that GA�

d and GA�
u are both non�empty� GA�

d and GA�
u cannot both

be empty because in that case �GAd� GAu
 would be empty and the query does not belong

to the class of queries we consider� Therefore there are two cases left to consider�

Case �� GA�

d is empty but GA�
u is not empty� Since GA�

d is empty� GAd and C� must

be empty� Consequently the join must be a Cartesian product� But GAu cannot be empty

because in that case the grouping columns in query E� is empty and the query does not

belong to the class of queries we consider� Therefore� E� and E �

� degenerate to�

E� � F �AA��A�GAu� AA�G�GAu���Cd � Cu��Rd �Ru


and

E� � �A�GAu� FAA��F �AA��A�AA���Cd�Rd � �A�GA�
u ���Cu�Ru
�

Similarly� FD� and FD� degenerate to �GAu
��� and �GAu
��RowID�Ru
 respectively�

FD� is always true� Thus the necessary and su�cient condition is that FD� holds in ��Cd�

Cu��Rd �Ru
�

Since there is no grouping operation in E�� F �AA��A�AA���Cd�Rd can yield only one row

of result� Therefore its Cartesian product with Ru produces j��Cu�Ruj rows� If FD� holds in

��Cd � Cu��Rd � Ru
� then �GAu
��RowID�Ru
 in ��Cu�ru because the join is a Cartesian

product� Therefore� the grouping in E� is actually based on every row of Ru� Therefore�

E� and E� are equivalent� If FD� does not hold in ��Cd � Cu��Rd � Ru
� then there must

exist an instance of table Ru in which GAu is not unique� It follows that E� must produce

a table with cardinality less than jRuj� and E� must produce a table with cardinality equal

to jRuj� Therefore E� and E� cannot be equivalent� Therefore� if and only if FD� holds in

��



��Cd � Cu��Rd � Ru
� E� is equivalent to E�� Consequently our Main Theorem holds when

GA�

d is empty�

Case �� GA�
u is empty but GA�

d is not empty� Since GA�
u is empty� GAu and C� must

be empty� Therefore the join is a Cartesian product� Since C� is empty� GA�

d must be the

same as GAd�

Hence� E� and E� degenerate to�

E� � F �AA��A�GAd� AA�G�GAd���Cd � Cu��Rd �Ru


and

E� � �A�GAd� FAA���C���F �AA��A�GAd� AA�G�GAd���Cd�Rd � ��Cu�Ru


respectively� FD� and FD� degenerate to �GAd
��GAd and �GAd
��RowID�Ru
 respec�

tively�

FD� always holds� Therefore� we only need to determine whether FD� is a necessary

and su�cient condition� Since the join is merely a Cartesian product� this condition means

that ��Cu�ru can contain no more than one row�

Clearly� if FD� holds in ��Cd �Cu��rd� ru
� then E� and E� are equivalent� If FD� does

not hold in ��Cd�Cu��rd� ru
� that is� ��Cu�ru contains more than one row� then� for every

t� 	 ��Cd�rd� E� must contain more rows with the value t��GAd� for columns GAd than E�

does� Hence E� and E� cannot be equivalent� Consequently� our main theorem holds also

when GA�
u is empty� �

Corollary � � The two expressions

�d�SGAd� SGAu� AA�F �AA��A�GAd� GAu� AA�G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

�d�SGAd� SGAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd � �A�GA�
u ���Cu�Ru
�

where d is either A or D� are equivalent if FD� and FD� hold in ��Cd �C� �Cu��Rd�Ru
�

The Main Theorem assumes that the �nal selection columns are the same as the group�

ing columns�GAd� GAu
 and the �nal projection must be an ALL projection� This corollary

��



relaxes these two restrictions� i�e�� the �nal selection columns may be a subset�SGAd� SGAu


of the grouping columns�GAd� GAu
� and the �nal projection can be a DISTINCT projection�

The two conditions FD� and FD� are still su�cient but not necessary�

Proof� If FD� and FD� hold in ��Cd � C� � Cu��Rd �Ru
� then

�A�GAd� GAu� AA�F �AA��A�GAd� GAu� AA�G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

�A�GAd� GAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd � �A�GA�
u ���Cu�Ru


are equivalent according to our main theorem� Then

�A�SGAd� SGAu� AA�F �AA��A�GAd� GAu� AA�G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

�A�SGAd� SGAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd � �A�GA�
u ���Cu�Ru


are also equivalent because they project on the same columns in the last projection� There�

fore� the two expressions in the corollary are equivalent when d � A�

F �AA��D�SGAd� SGAu� AA�G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

�D�SGAd� SGAu� FAA�

��C���F �AA��A�GA�

d � AA�G�GA�

d ���Cd�Rd � �A�GA�
u ���Cu�Ru


are also equivalent because they both eliminate duplicates at the last projection� Therefore�

the two expressions in the corollary are also equivalent when d � D� �

Corollary � �
Key Joins� Consider a query where the join is an equi�join between

columns of tables Rd and key columns of table Ru� The two expressions in Corollary � are

equivalent if GAd contain all Rd columns participating in the joins with Ru�

��



Proof� The condition requires that GAd �� GA�

d � Therefore� FD�� �GAd� GAu
�� GA�

d �

clearly holds� Since the join contains an equi�join between columns of tables Rd and key

columns of table Ru� the join columns of Rd functionally determine the RowId of Ru tables�

Therefore� GAd��RowId�Ru
 holds� Therefore FD� holds� �

It is easy to see that� when ��
 the joins are all foreign key joins � all join columns of

Rd tables are foreign keys to Ru tables
� and ��
 the Rd grouping columns GAd contain all

columns involving the joins with Ru� the two expressions in Corollary � are equivalent�

A more special case of the above observation is when ��
 the joins are foreign key joins

with all joins columns of Rd tables are foreign keys to Ru tables ��
 the Rd grouping columns

GAd are all joins columns of the joins with Ru tables and ��
 GAu is empty� These con�

ditions are identical to the conditions presented in ���� The advantage of these conditions

is that it does not need any functional dependency checking� but of course� it is very re�

stricted and can only catch simple cases�

� Algorithms to Test the Conditions

To apply the transformation in the Main Theorem� we need an algorithm to test whether the

functional dependencies FD� and FD� are guaranteed to hold in the join result of Rd and

Ru� To achieve this� we can make use of semantic integrity constraints and the conditions

speci�ed in the query� SQL� ���� allows users to specify integrity constraints on the valid

state of SQL data and these constraints are enforced by the SQL implementation�

There are two types of constraints� immediate constraints and deferred constraints� Im�

mediate constraints are immediately enforced after every update within a transaction� De�

ferred constraints are enforced at the end of a transaction� A deferred constraints may not

hold in the database in the middle of a transaction� Therefore� for a query that is within one

of the following two types of transactions�

� a transaction with no updates� or

� a transaction containing updates and all the constraints a�ected by updates before the

query are immediate constraints�

we can assume that all integrity constraints hold in the join result of Rd and Ru and can add

these constraints into the WHERE clause of a query without changing the result of the query�

�	



In addition� the predicates in the WHERE clause and HAVING clause of the query also hold in

the join result� We can make use of this information to determine whether the functional

dependencies FD� and FD� hold� For the rest of this paper� without loss of generality� we

assume that all constraints are immediate constraints�


�� Constraints in SQL�

In SQL����� �� ��� users can specify several kinds of semantic integrity constraints on tables

and columns� For our purpose� we classify SQL� constraints into �ve classes� column con�

straints� domain constraints� key constraints� referential integrity constraints and assertion

constraints� We will use the table in Figure � as an example as we brie�y explain these con�

straints�

CREATE DOMAIN DepIdType SMALLINT

CHECK VALUE � � AND VALUE � ����

CREATE TABLE Department �

EmpID INTEGER CHECK �EmpID � ���

EmpSID INTEGER UNIQUE�

LastName CHARACTER�
�� NOT NULL�

FirstName CHARACTER�
���

DeptID DepIdType CHECK �DeptID����

PRIMARY KEY �EmpID��

FOREIGN KEY �DeptID� REFERENCES Dept��

Figure �� SQL constraints

Column constraints include NOT NULL and CHECK constraints� In Figure �� the statement

LastName CHARACTER�
�� NOT NULL speci�es that LastName cannot be NULL� and the state�

ment EmpID INTEGER �CHECK EmpID � �� speci�es that EmpID must be positive�

A domain constraint speci�es a constraint on a domain� and all columns de�ned on the

domain must satisfy the constraint� In Figure �� the statement CREATE DOMAIN DepIdType

SMALLINT CHECK VALUE � � AND VALUE � ��� speci�es the domain name DepIdType and

its constraint� Then the statement DeptID DepIdType speci�es that DepID must satisfy

��



the constraint� A domain constraint is equivalent to column constraints on the appropri�

ate columns�

Key constraints include primary key and candidate key constraints� Primary key and can�

didate keys are de�ned by the statement PRIMARY KEY and UNIQUE respectively in a base ta�

ble de�nition� A primary key cannot contain NULL� whereas a candidate key may contain

NULL� In Figure �� the statement PRIMARY KEY �EmpID� speci�es that �EmpID� is the pri�

mary key� and the statement EmpSID INTEGER UNIQUE speci�es that EmpSID is a candidate

key�

A referential integrity constraint � foreign key constraint
 speci�es a constraint between

two tables� A foreign key is a list of columns in one table whose values must either be NULL

or match the values of some candidate key or primary key in some table�may be the same as

the original table
� In Figure �� the statement FOREIGN KEY �DeptID� REFERENCES Dept

is an example of a referential integrity constraint�

An assertion constraint speci�es a restriction involving multiple tables� It is de�ned by

the statement CREATE ASSERTION outside of the table de�nition�

We can add all immediate constraints into the WHERE clause of a query without chang�

ing the result of the query� Because each primary�candidate key functionally determines all

columns in a table� we can use the notation de�ned in Section ��� to represent these condi�

tions as Boolean expressions� NOT NULL and CHECK constraints on a column can also be easily

represented as Boolean expressions� Each domain constraint can be treated as a CHECK con�

straint on a column de�ned over the domain� Referential integrity and assertion constraints

can also be expressed as Boolean expressions�

The detailed method to translate domain� column� referential integrity and assertion con�

straints into Boolean expressions is not the focus of this paper and will not be discussed fur�

ther here�

Within a query block� the values of host variables� columns referencing outer tables and

parameter markers are constants� We can regard these values as input parameters to the

query block� We denote the set of input parameters to a query block by I� and the Cartesian

product of the domains of all the input parameters by H� We call H the domain of I�

We use Td and Tu to denote the Boolean expressions representing domain� column� refer�

ential integrity and assertion constraints in table Rd and Ru� respectively� We use Ki�R
 to

denote the ith candidate�primary
 key of table R� and jRj to denote the cardinality of a ta�

��



ble R� These symbols are summarized in Figure ��

Symbol De�nitions

Ki�R
 The ith candidate�primary� key of table R

Td Column� domain� referential integrity and assertion con�

straints on table Rd

Tu Column� domain� referential integrity and assertion con�

straints on table Ru

I The set of input parameters for a query block

H The domain of the set of input parameters I�

jRj the cardinality of a table R

Figure �� Summary of Symbols


�� Using Semantic Constraints to Test the Conditions

There are many ways to test the conditions FD� and FD�� The semantic constraints in SQL

discussed in Section ��� can be used to determine whether FD� and FD� are true�

Theorem � � 
Exploiting Semantic Constraints� FD� and FD� hold in ��Cd � C� � Cu�

�Rd �Ru
 if the following two conditions are true�

Condition A�


h 	 H�
t� t� 	 Domain�Rd �Ru


fbCd�t� h
 � Cd�t
�� h
 � C��t� t

�� h
 � C��t� t
�� h
 � Cu�t� h
 � Cu�t

�� h


�T��t� h
 � T��t
�� h
c

��
�

�i

�t�Ki�Rd
�
n
� t��Ki�Rd
� � t���Rd
�

n
� t����Rd
�



��
�

�i

�t�Ki�Ru
�
n
� t��Ki�Ru
� � t���Ru
�

n
� t����Ru
�

g

� f�t�GAd� GAu�
n
� t��GAd� GAu� � t�GA�

d �
n
� t��GA�

d �
g

��



Condition B�


h 	 H�
t� t� 	 Domain�Rd �Ru


fbCd�t� h
 � Cd�t
�� h
 � C��t� t

�� h
 � C��t� t
�� h
 � Cu�t� h
 � Cu�t

�� h


�T��t� h
 � T��t
�� h
c

��
�

�i

�t�Ki�Rd
�
n
� t��Ki�Rd
� � t���Rd
�

n
� t����Rd
�



��
�

�i

�t�Ki�Ru
�
n
� t��Ki�Ru
� � t���Ru
�

n
� t����Ru
�

g

� f�t�GA�

d � GAu�
n
� t��GA�

d � GAu� � t�RowID�R�
�
n
� t��RowID�R�
�
g

Condition A and B correspond to FD� and FD� respectively� The consequents of Con�

dition A and B� �t�GAd� GAu�
n
� t��GAd� GAu� � t�GA�

d �
n
� t��GA�

d �
 and �t�GA�

d � GAu�
n
�

t��GA�

d � GAu� � t�RowID�R�
�
n
� t��RowID�R�
�
� are actually FD� and FD� according

to our de�nition on functional dependency� There are three parts in each of the an�

tecedents of Condition A and B� In the Cartesian product of Rd and Ru� part one�

bCd�t� h
 � Cd�t�� h
 � C��t� t�� h
 � C��t� t�� h
 � Cu�t� h
 � Cu�t�� h
 � T��t� h
 � T��t�� h
c� re�

quires that all input parameters and rows satisfy the join condition Cd � C� � Cu and all

the semantic constraints except the key constraints of table Rd and Ru part two and three�

�
V

�i�t�Ki�Rd
�
n
� t��Ki�Rd
� � t���Rd
�

n
� t����Rd
�

 and �

V
�i�t�Ki�Ru
�

n
� t��Ki�Ru
� �

t���Ru
�
n
� t����Ru
�

� require that all rows satisfy the key constraints of table Rd and Ru�

The proof of this theorem is straightforward�

Proof� Assume that the conditions stated in the theorem hold� In the join result ��Cd�C��

Cu��Rd � Ru
� all semantic constraints �key constraints� T� and T�
 and all join conditions

Cd� C�� Cu must be satis�ed� that is� the antecedents of both conditions are true� Therefore

the two consequents�

t�GA�

d � GAu�
n
� t��GA�

d � GAu� � t�RowID�R�
�
n
� t��RowID�R�
�

and

t�GAd� GAu�
n
� t��GAd� GAu� � t�GA�

d �
n
� t��GA�

d �

are both true� This means that FD� and FD� hold in ��Cd � C� � Cu��Rd �Ru
� �

If we can design an e�cient algorithm to test the satis�ability of the conditions in Theo�

rem �� we can use it to determine the validity of the transformation� An example of such an

��



algorithm is the satis�ability algorithm in ���� This algorithm can be used to test the satis�

�ability of a restricted class of Boolean expressions� Hence we can simplify the conditions

stated in Theorem � into a stronger condition which contains only Boolean expressions be�

longing to the restricted class� If the simpli�cation cannot be done� it immediately returns

false� If it can be done then we apply that satis�ability algorithm to test the simpli�ed con�

dition and if the algorithm returns true� the transformation is valid�


�� TestGroupJoin� A Fast Algorithm

In this section� we present an e�cient algorithm that handles a large subclass of queries�

This algorithm returns YES when it can determine that FD� and FD� hold in the join result

��Cd � C� � C���Rd �Ru
� and returns NO when it cannot�

Atomic conditions not involving ��� are seldom useful for generating new functional de�

pendencies� The algorithm exploits only information about primary�candidate
 keys and

equality conditions in the WHERE clause� column and domain constraints� We de�ne two

types of atomic conditions� Type � of the form �v � c
 and Type � of the form �v� � v�
�

where v�� v�� v are columns and c is a constant or an input parameter� An input parame�

ter can be treated as a constant because its value is �xed when evaluating the query block�

We �rst present an algorithm that �nds the columns functionally determined by a set of

columns�

Algorithm FindClosure� 	nd the columns functionally determined by a set of columns

Inputs� PRD� set of Predicates 

FDs� set of functional dependencies 

S� set of columns�

Output� CS� set of columns functionally determined by S

Convert PRD into conjunctive normal form� C 
 D� �D� � ��� �Dm��

for each Di do�

if Di contains an atomic condition not of Type � or Type � then delete Di from C��

end for�

convert C into disjunctive normal form� C 
 E� � E� � ���� En��

�




A2

A4
c

a

a

A1 b

A3
a

Known conditions and constraints	

a � Ad � �	 b � Ad��A� c � A� � A�

Conclusion	 Au��A�

Figure �� Illustration of Algorithm FindClosure

for each Ei do�

CSi 
 S�


for each atomic condition of Type � �v 
 c� in Ei do add v into CSi��


 Compute the transitive closure of CSi based on


 Type � atomic conditions and key constraints�

while �� a Type � condition �v� 
 v�� � C such that v� � CSi and v� �� CSi� or�

�� a functional dependency �d��v�� � FDs such that d 	 CSi and v� �� CSi�

add v� to CSi���

end while��

end for��

CS 
 CS� 
 CS� 
 ���
 CSn���

Return CS���

End Algorithm FindClosure

The basic idea of the algorithm is quite simple� Lines � to � discard all non�equality

conditions in join conditions and semantic constraints� Then we convert the conditions into

disjunctive normal form in Line 	� For each conjunct Ei� we then compute the closure on S

as illustrated by Figure �� Assume that an Ei contains the following constraints� fa � A� �

�	 c � A� � A�g� and functional dependency fb � A���A�g holds� These assertions are

satis�ed in the join result� Since A� is a constant in the join result� every column functionally

determines A�� which is represented by the directed edges marked by a in Figure �� These

FDs are generated by Line � in the algorithm� Furthermore� since A� equals to A�� they

functionally determine each another� This is illustrated by a bi�directional edge marked by

c in Figure �� The FD A���A� is also shown as a directed edge marked by b in the �gure�

��



Due to the transitive property of functional dependencies� we can draw the conclusion that

A���A�� If S � fA�g� the algorithm generates the set CSi � fA�� A�� A�� A�g� Therefore

CSi contains the columns functionally determined by S given that Ei is true and the input

FDs are true� Since the input PRD is the disjunction of all Ei� the intersection of CS�

is

contains the set of columns functionally determined by S given that PRD is true and the

input FDs are true�

Therefore� if Ai��Aj is to be tested� where Ai and Aj are some sets of columns� we

can see whether the CS set for Ai contains Aj� If so� then Ai��Aj is true� The following

algorithm can then be used to determine whether grouping and join can be interchanged�

Algorithm TestGroupJoin� determine whether grouping can be interchanged with join

Inputs� Predicates PRD Cd� C�� Cu� Td� Tu key constraints of Rd and Ru�

Output� YES or NO�


 Convert all key constraints into functional dependencies�

FDs 
 empty��

for each key K do�

for each column A in the same table as K do�

FDs 
 FDs � �K��A��

end for�

end for�


 Check whether FD�� �GAd� GAu��� GA�

d 	 holds

CS 
 FindClosure�PRD 
 Cd � C� � Cu � Td � Tu� FDs�S 
 GAd �GAu��


if �GA�

d �	 CS� Return NO�


 Check whether FD�� �GA
�

d
� GAu��� RowID�Ru�	 holds

CS 
 FindClosure�PRD 
 Cd � C� � Cu � Td � Tu� FDs�S 
 GA�

d � GAu���

for each table T � Rd do��

if � Key�T � �	 CS� return NO��

end for��

Return YES��

��



End Algorithm TestGroupJoin

If the joins satisfy the conditions in Corollary �� the transformation can always be done�

Therefore� a very simple algorithm would consist of checking whether� ��
 the joins between

Ru tables and Rd tables are equi�joins mentioning all keys of Ru and ��
 the Rd grouping

columns GAd contain all Rd columns participating in the joins with Ru�

� Queries Including HAVING

��� Class of Queries Considered

In this section� we consider SQL queries containing both GROUP BY and HAVING clauses� We

assume that the query excluding the HAVING clause belongs to the class of queries described

in Section �� The HAVING clause operates on the grouped table resulting from the GROUP BY�

It applies the search conditions speci�ed in the HAVING clause to each group and produces a

grouped table� Only the groups for which the evaluation of the search condition is true re�

main in the result from the HAVING clause� The search condition may contain aggregation

functions referencing some aggregation columns� The di�erence between a HAVING predicate

and a WHERE predicate is that the former operates on a grouped table� while the later oper�

ates on a regular table� Our objective is to �nd out when both GROUP BY and HAVING can

be pushed past joins and vice versa�

Assume that the predicate in the HAVING clause of a query block is in conjunctive normal

form� According to SQL ��� a HAVING clause may contain conjunctive terms on the group�

ing columns and aggregation functions operating on some columns 
� We also call any col�

umn occurring as an operand of an aggregation function in a HAVING clause an aggregation

column� If we push down the GROUP BY� each group will be aggregated into one row and no

aggregation functions can be performed on the rows after the joins� Therefore� if there are

any aggregations functions in the HAVING clause� these functions must be pushed down along

with the GROUP BY in order to be evaluated� The grouping columns are still available af�

ter the join� Hence� after the join� the predicate in the HAVING clause can still be evaluated�

�Actually� SQL �� also allows the HAVING clause to reference a column� called an outer reference� in a

table outside the scope of the query block being considered
 This column can be treated as a constant with

respect to this query block


��



Therefore� in addition to the assumptions made in Section �� we have the following two as�

sumptions�

� The tables in the FROM clause can be partitioned into two groups� Rd and Ru� Rd con�

tains the aggregation columns� denoted by AA� in both the SELECT clause and the

HAVING clause� while Ru does not� Rd and Ru are both non�empty� If we cannot per�

form this partitioning� the transformation cannot be done�

� Since conjunctive terms in the HAVING clause involving only grouping columns can be

moved to the WHERE clause without changing the result of the query� we assume that

this has been done and the original query does not contain any such conjunctive terms

in the HAVING clause�

Therefore� the predicate on aggregation expressions in the HAVING clause can be ex�

pressed in the following conjunctive form� Hd �H�� where Hd contains columns exclusively

from Rd� and H� contains aggregation columns from Rd and non�aggregation columns from

Ru� The aggregation expressions mentioned in H� and Hd can be denoted as F��AA
 and

Fd�AA
 respectively� which are arrays of aggregation functions and�or aggregation expres�

sions operating on AA� Since all columns in AA belong to Rd� i�e�� there is no aggregation

columns from Ru� there is no corresponding Hu conjunctive terms�

Clearly� when performing group�by push down� Hd can be pushed down along with the

group�by� That is� we push down group�by along with HAVING predicate past a join� This is

often bene�cial because it reduces the input cardinality to the join� When performing group�

by pull up� we also pull up the HAVING predicate in the aggregated view with the group�by�

This is often bene�cial when we have a selective join� In summary� the class of queries we

consider is de�ned as follows�

SELECT �ALL�DISTINCT� GAd� GAu� F �AA�

FROM Rd� Ru

WHERE Cd � C� � Cu

GROUP BY GAd� GAu

HAVING H��F��AA���Hd�Fd�AA��

The alternative way to write the query is�

SELECT �ALL�DISTINCT� GAd� GAu� FAA

��



FROM R�

d� Ru

WHERE Cu � C� �H��F�AA�

where

R�

d�GA
�

d � FAA� F�AA� 



SELECT ALL GA�

d � F �AA�� F��AA�

FROM Rd

WHERE Cd

GROUP BY GA�

d

HAVING Hd�Fd�AA��

where GA�

d is GAd � ���C�
 �Rd
� i�e�� the grouping columns belonging to Rd� and the join

columns of Rd mentioned in the WHERE clauses of the two join queries� Note that� the Rd

join columns in the HAVING clause must be grouping columns so those columns have been

included in GA�

d � In the above queries� we use H��F�AA
 to denote the predicate obtained

by replacing the aggregation expressions in H��F��AA

 by F�AA respectively�

Note that� GA�

d de�ned here includes the grouping columns belonging to tables contain�

ing the aggregation columns in both the WHERE clause and the HAVING clause� The GA�

d

de�ned in Section � contains only grouping columns belonging to tables containing the ag�

gregation columns in the WHERE clause� which is a special case of GA�

d de�ned here since the

class of queries we considered before does not contain a HAVING clause�

As a shorthand notation� we add the notation H�P �R to our SQL algebra� representing the

operation of selecting the groups in the grouped table R satisfying predicate P � The result of

this operation is also a grouped table� Also� we use the shorthand notation �A�GA�F �AA�� to

represent �A�GA�FAA�F �AA��A�GA�AA�� where FAA are the columns produced by F �AA��

The above two queries can then be expressed as

E� � �A�GAd� GAu� F �AA�� H�Hd�Fd�AA���H��F��AA���

G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

E� � �A�GAd� GAu� FAA���C� � Cu �H��F�AA
�

�f�A�GA�

d � F �AA
� F��AA
� H�Hd�Fd�AA�
� G�GA�

d ���Cd�Rdg �Ru


�	



��� Main Theorem with HAVING

Theorem � �Main Theorem with HAVING�� The expressions

E� � �A�GAd� GAu� F �AA�� H�Hd�Fd�AA���H��F��AA���

G�GAd� GAu���Cd � C� � Cu��Rd �Ru


and

E� � �A�GAd� GAu� FAA���C�� Cu �H��F�AA
�

�f�A�GA�

d � F �AA
� F��AA
� H�Hd�Fd�AA�
� G�GA�

d ���Cd�Rdg �Ru


are equivalent if and only if the following two functional dependencies hold in the join of Rd

and Ru� ��Cd � C� � Cu��Rd �Ru
�

FD� � �GAd� GAu
�� GA�

d

FD� � �GA�

d � GAu
�� RowID�Ru
�

As will be shown in the proof� an SQL query with a HAVING clause can be transformed into

a query without a HAVING clause� We prove the theorem by transforming E� into an equiv�

alent query without a HAVING clause� then applying the transformation in our Main The�

orem with known su�cient and necessary conditions� and �nally converting the sub�query

into a query with a HAVING clause�

Proof�

When applying the HAVING predicate to the grouped table resulting from the GROUP BY

operation� we �rst evaluate the aggregation functions� then apply the predicate on these

aggregation functions� Therefore� E� is equivalent to�

�A�GAd� GAu� FAA���Hd�FdAA��H��F�AA�


�A�GAd� GAu� F �AA�� Fd�AA�� F��AA��G�GAd� GAu���Cd � C� � Cu��Rd �Ru
 ��


Now consider the last part of the above expression�

�A�GAd� GAu� F �AA�� Fd�AA�� F��AA��

G�GAd� GAu���Cd � C� � Cu��Rd �Ru
 ��


��



It belongs to the class of queries de�ned in Section �� Therefore� according to the Main

Theorem� if and only if FD� and FD� hold in ��Cd�C� �Cu��Rd�Ru
� ��
 is equivalent to

�A�GAd� GAu� FAA�FdAA�F�AA���C� � Cu�

�f�A�GA�

d � F �AA�� Fd�AA�� F��AA�� G�GA�

d ���Cd�Rdg �Ru
 ��


Hence� if and only if FD� and FD� hold in ��Cd � C� � Cu��Rd �Ru
� ��
 is equivalent to

�A�GAd� GAu� FAA���Hd�FdAA��H��F�AA�


��A�GAd� GAu� FAA�FdAA�F�AA���C� � Cu�

f�A�GA�

d � F �AA�� Fd�AA�� F��AA�� G�GA�

d ���Cd�Rdg �Ru
 ��


Since

� Hd�FdAA� mentions only columns of Rd 

� the columns FdAA are deleted in the �nal projection and

� the columns FdAA are not used in the join between Rd and Ru�

we can move the predicate Hd�FdAA� to the sub�query and remove FdAA from the outer

query� Therefore the above expression is equivalent to

�A�GAd� GAu� FAA���H��F�AA�


�A�GAd� GAu� FAA�F�AA���C� � Cu�

�f�A�GA�

d � FAA�F�AA���Hd�FdAA�
 �	


�A�GA�

d � FAA�Fd�AA�� F��AA�� G�GA�

d ���Cd�Rdg �Ru


Clearly� ��Hd�FdAA�
 is equivalent to a HAVING clause� which gives us

�A�GAd� GAu� FAA���H��F�AA�


�A�GAd� GAu� FAA�F�AA���C� � Cu�

�f�A�GA�

d � F �AA�� F��AA�� H�Hd�Fd�AA��
 ��


G�GA�

d ���Cd�Rdg �Ru


��



The selection ��H��F�AA�
 is a join condition and columns F�AA do not appear in the

�nal result� Therefore� the above query is equivalent to

�A�GAd� GAu� FAA���C� � Cu �H��F�AA��

�f�A�GA�

d � F �AA�� F��AA�� H�Hd�Fd�AA��
 ��


G�GA�

d ���Cd�Rdg �Ru


Expression ��
 is E�� Since

� E� is equivalent to ��
 

� E� is equivalent to ��
 and

� Expressions ��
 and ��
 are equivalent if and only if FD� and FD� hold in ��Cd�C��

Cu��Rd �Ru
�

the theorem holds� �

� Partitioning of Tables


�� Table Partitioning

In Sections � and �� we assumed that tables in the FROM clause can be partitioned into two

groups� Rd and Ru� Ru is the Cartesian product of tables containing aggregation columns�

and Ru is the Cartesian product of the rest of the tables� We call the tables in Rd pushed

down tables� and the tables in Ru pulled up tables� If some partitioning of the tables into

Rd and Ru satis�es the conditions of our theorems� the conditions would still hold if we add

a subset of Ru into Rd and subtract the subset from Ru� In other words� even though all

tables in Rd which contain the aggregation columns must be pushed down� only a subset

of the Ru tables need to be pulled up� If a subset of Ru is pushed down along with Rd�

the assumption that �aggregation columns must belong to the tables pushed down� is still

satis�ed� Therefore� there can be multiple valid partitionings of tables� Example � shows a

case with three valid table partitionings�see Section �

� In this section� we will investigate

how to e�ciently obtain all valid partitionings�

��




�� Rewriting of Necessary and Su	cient Conditions

First� let us prove the following lemma�

Lemma � �Rewritten FDs�� The two conditions in Theorem ��

FD� � �GAd� GAu
�� GA�

d

FD� � �GA�

d � GAu
�� RowID�Ru
�

are equivalent to

FD� � �GAd� GAu
�� JAd

FD� � �GAd� GAu
�� RowID�Ru
�

where JAd � ��Rd
 � ��C�

�

Observe that �GAd� GAu
 is the set of all grouping columns� and JAd is the set of join

columns of Rd tables�

Proof�

We only need to prove that FD�� FD� � FD�� FD�� and FD�� FD� � FD�� FD��

FD�� FD� � FD�� FD�� Since JAd 
 GA�

d � FD� holds when FD� is true� Since FD�

holds� we have�

�GAd� GAu
��GA�

d � GAu

Combining the above expression with FD�� we obtain FD��

FD�� FD� � FD�� FD�� FD� is clearly implied by FD�� From FD�� we have�

�GAd� GAu
��JAd � GAd�

Since GA�

d � JAd �GAd by its de�nition� it follows that FD� also holds�

�


�� Algorithm for Finding All Valid Partitionings

According to Lemma �� to test whether the transformation is valid� we can simply perform

a closure on the grouping columns� Then if both JAd and RowID�Ru
 are in the closure� the

transformation is valid� Note that� this closure is partitioning independent� Therefore� we

��



only need to compute the closure once� We use the notation FD�Rd� Ru
 to denote that the

table partitioning of Rd and Ru satis�es the functional dependency FD�

We can also easily prove the following corollaries�

Corollary � �

If FD��Rd� Ru
 holds� then� FD��Rd � R�� Ru �R�
� where R� 
 Ru� also holds�

Corollary � �

If FD��Rd � R�� Ru �R�
 holds� then� FD��Rd� Ru
� where R� 
 Ru� also holds�

Since all aggregation columns must belong to Rd� the minimum subset of tables that can

be pushed down is the set of tables containing the aggregation columns� However� according

to FD�� all Ru tables must also be functionally determined by the grouping columns� Con�

sequently� all tables not functionally determined by the grouping columns have to be pushed

down� The minimum set of tables that can be pushed down is the set of tables containing

the aggregation columns� plus the set of tables not functionally determined by the group�

ing columns� The remaining tables are the maximum set of tables that can be pulled up�

We can then start from the minimum Rd set and maximum Ru set� and try to add a

subset of Ru to Rd to �nd all possible valid partitionings� This way we will �nd all valid

partitionings� The algorithm follows�

Algorithm Find Partitionings� 	nd all valid table partitionings

Inputs� Predicates PRD Cd� C�� Cu� Td� Tu�

key constraints of all table R

Output� Valid table partitionings for interchanging grouping and join


 Convert all key constraints into functional dependencies FDs�

FDs 
 empty��

for each key K do�

for each column A in the same table as K do�

FDs 
 FDs � �K��A��

end for�

end for�


 Find the closure of all grouping columns

S 
 FindClosure�PRD 
 Cd � C� � Cu � Td � Tu� FDs�S 
 GAd � GAu��


�





 every table containing an aggregation column or not


 functionally determined by the grouping columns must be pushed down

Rd 
 fRijRi � R� �A � AA such that A � ��Ri�or � �Key�Ri� such that Key�Ri� 	 Sg��


 The rest of the tables can either be pushed down or pulled up

Ru 
 R�Rd��

if JAd 	 S then��


 we have a valid partitioning �with minimal Rd�

OUTPUT� Rd� Ru� ���


 try to push down additional tables from Ru

for each subset R� � Ru do��

R�
u 
 Ru �R�� R�

d 
 Rd �R����

if JA�

d 	 S then OUTPUT�R�

d� R
�
u����

end for��

end if��

End Algorithm Find Partitionings

Note that� at line �
� we try to �nd more valid partitionings only when JAd 
 S� ac�

cording to Corollary �� Also� FD� holds for the new partitioning at line ��� according to

Corollary ��

There are two interesting special cases�

� If RowID�all tables

 S then each group has only one row� Therefore� the grouping

operation can be eliminated� The aggregation expressions can then be modi�ed so that

no GROUP BY clause is needed for this query� For example� COUNT �
� can be modi�ed

as �� and SUM �COLUMN� can be modi�ed as COLUMN�

� If ��all join predicates

 S� then FD� is always true� We then only need to check

FD�� Let RAA � fRijRi 	 R��A 	 AA such that A 	 ��Ri
g� i�e�� all tables contain�

ing the aggregation columns and let T � fRijRowID�Ri
 	 Sg � RAA� i�e�� all ta�

bles except RAA with RowID in S� Then� Ru � any subset R� of T and Rd � R � R�

will form a valid partition�

��



	 Column Substitution

The algorithm in the previous section �nds all valid partitionings of the tables in the FROM

clause� The tables are partitioned into two groups� one to be pushed down and one to be

pulled up� However� some queries may not be transformable because� �a
 no partitioning

is possible� e�g�� every table contains some aggregation columns or �b
 it can be somehow

partitioned but the testing algorithm returns NO� Column substitution� that is substituting

a column with another equivalent column� can be used to generate additional equivalent

queries� First� column substitution can be employed to obtain a set of equivalent queries�

We can then �nd all possible partitionings of tables for each query in the set� Theoretically�

all possible partitionings of the tables for all queries can be considered and the best one� if

bene�cial� can be picked for the transformation�

Two columns are equivalent if they functionally determine each other in the result of the

current query block� That is� they always agree on their value in every row in the result�

Sometimes we are able to substitute a column by its equivalent column in a query block

without changing the result of the query block� For example� we can always perform the

substitution in the SELECT clause� We cannot always perform the substitution in the WHERE

clause since it may change a predicate to a true constant� A typical source of equivalent

columns is an equi�join� After the equi�join� the values of the join columns are always the

same in every row� Therefore� in any operation after the join� e�g�� selection� one column can

be substituted by another�

Example 	 � Assume that we have the following query generated by some automatic tool�

SELECT L�ORDERKEY� MIN�O�ORDERDATE�

FROM LINEITEM� ORDERS

WHERE L�ORDERKEY � O�ORDERKEY AND

O�ORDERDATE � L�SHIPDATE

GROUP BY L�ORDERKEY

Since the aggregation column is O ORDERDATE� only ORDERS can be pushed past the

join based on our previous algorithms� However� this query cannot be transformed into

a query which �rst performs group�by on ORDERS and then the join� Based on the predi�

cate O ORDERDATE � L SHIPDATE in the WHERE clause� we can �rst rewrite the query as

��



SELECT L�ORDERKEY� MIN�L�SHIPDATE�

FROM LINEITEM� ORDERS

WHERE L�ORDERKEY � O�ORDERKEY AND

O�ORDERDATE � L�SHIPDATE

GROUP BY L�ORDERKEY

This query can then be rewritten as

CREATE VIEW V�V�ORDERKEY�V�SHIPDATE� V�MIN�SHIPDATE�

SELECT L�ORDERKEY� L�SHIPDATE� MIN�L�SHIPDATE�

FROM LINEITEM

GROUP BY L�ORDERKEY� L�SHIPDATE

SELECT L�ORDERKEY� V�MIN�SHIPDATE

FROM LINEITEM� V

WHERE V�ORDERKEY � O�ORDERKEY AND

O�ORDERDATE � V�SHIPDATE

according to our algorithms�

In the original query� since O ORDERKEY �� O ORDERDATE in the ORDERS table� after the

join� L ORDERKEY �� O ORDERDATE� Then� in each group based on L ORDERKEY� the values

of O ORDERDATE are the same� and so are the values of L SHIPDATE due to the join predicate�

Therefore� in the original query� the grouping on L ORDERKEY generates the same groups as

grouping on L ORDERKEY and L SHIPDATE�

The user may actually have submitted the original query as

SELECT L�ORDERKEY� L�SHIPDATE

FROM LINEITEM� ORDERS

WHERE L�ORDERKEY � O�ORDERKEY AND

O�ORDERDATE � L�SHIPDATE

GROUP BY L�ORDERKEY� L�SHIPDATE

Based on the above analysis� the original query is more likely to perform better because it

has fewer grouping column and thus may require one less sort�

Since Algorithm Find Partitionings and Algorithm FindClosure have taken column

equivalence into account for grouping columns and join columns� we only need to perform

��



column substitution on the aggregation columns�AA
� Therefore� we can �rst perform col�

umn substitution on AA� then call Algorithm Find Partitioning for each query generated

to obtain a set of validly transformed queries�

�
 Examples

Example �� �continued


We apply Algorithm Find Partitionings to the original query in the following steps�

The number�s
 in front of each statement represent�s
 the line number�s
 in the algorithm�

�� Since the set of the grouping columns is fS SUPPKEY� L ORDERKEY� O TOTALPRICEg	 its closure

is S 
 fS SUPPKEY� O ORDERKEY� L SUPPKEY� L ORDERKEY� all ORDERS columns�

all SUPPLIER columnsg�

�� Since AA 
 �L QUANTITY� L EXTENDEDPRICE�	 the table containingAA is LINEITEM � Since

S contains the the key S SUPPKEY for the SUPPLIER table	 and the key O ORDERKEY for the

ORDERS table	 no more tables have to be pushed down� Therefore	 Rd 
 fLINEITEMg�

�� Ru 
 R�Rd 
 fSUPPLIER� ORDERSg�

��� The join columns of Rd tables are� JAd 
 fL SUPPKEY� L ORDERKEYg� Therefore	 JAd 	 S

holds	 and we proceed into the if block�

��� The �rst valid partitioning is �Rd 
 fLINEITEMg	 Ru 
 fSUPPLIER� ORDERSg�� We then try

to �nd more valid partitionings in the following steps�

��� There are two non�empty subsets of Ru� fSUPPLIERg and fORDERSg�

��� Let R� 
 fSUPPLIERg� Then	 R�
u 
 Ru � R� 
 fORDERSg	 and R�

d 
 Rd � R� 


fLINEITEM� SUPPLIERg�

��� The join columns of R�

d tables are� JA�

d 
 fL SUPPKEY� L ORDERKEY� S SUPPKEYg� Since

JA�

d 	 S holds	 the next valid partitioning is �R�

d 
 fLINEITEM� SUPPLIERg	 R�
u 
 fORDERSg��

��� Let R� 
 fORDERSg� Then	 R�
u 
 Ru � R� 
 fSUPPLIERg	 and R�

d 
 Rd � R� 


fLINEITEM� ORDERSg�

��� The join columns of R�

d tables are� JA�

d 
 fL SUPPKEY� L ORDERKEY� O ORDERKEYg� Since

JA�

d 	 S holds	 the next valid partitioning is �R�

d 
 fLINEITEM� ORDERSg	 R�
u 
 fSUPPLIERg��

��



Therefore� there are three di�erent ways to push down the group�by�

To illustrate the transformation� we consider the option of pushing down LINEITEM and

SUPPLIER� Clearly� GA�

d � fL ORDERKEY� S SUPPKEYg� Cd � fS SUPPKEY � L SUPPKEY

AND S ACCTBAL� 
g Pd is empty and Hd is SUM�L QUANTITY�L EXTENDEDPRICE
 � ��




�

Therefore� the view can be de�ned as�

CREATE VIEW LINESUPP �V�ORDERKEY� V�SUPPKEY� V�TOTALVALUE� AS

�

SELECT L�ORDERKEY� L�SUPPKEY� SUM�L�QUANTITY	L�EXTENDEDPRICE�

FROM SUPPLIERS� LINEITEM

WHERE S�SUPPKEY � L�SUPPKEY AND S�ACCTBAL 
 �

GROUP BY L�ORDERKEY� S�SUPPKEY

HAVING SUM�L�QUANTITY	L�EXTENDEDPRICE�
 �
�����

��

and the join after the group�by is

SELECT V�SUPPKEY� V�ORDERKEY� O�TOTALPRICE� V�TOTALVALUE

FROM LINEVALUE� ORDERS� SUPPLIERS

WHERE S�SUPPKEY�V�SUPPKEY AND S�ACCTBAL 
 � AND V�ORDERKEY� O�ORDERKEY�

�� When Is the Transformation Bene�cial�

The best way for the optimizer to choose whether to perform group�by �rst or later is to

cost the two alternative plans� However� when costing the two plans is too expensive� or at

the stage of deciding whether or not to perform group�by �rst or later the cost function is

unavailable� or there is no cost function at all in the optimizer� we may need some heuristic

to decide whether to perform group�by �rst or later� The following list some observation

regarding the e�ect of the transformation�

� Group�by push down cannot increase the input cardinality of the join�

� Group�by push down may increase or decrease the input cardinality of the group�by

operation� This depends on the selectivity of the join�

� Group�by push down may restrict the choice of join orders� We �rst have to perform all

joins required to create Rd so we can perform the grouping� However� the join order of

�	



Rd with members of Ru is not restricted� On the other hand� group�by pull up provides

additional choices for join ordering� However� if we decide whether to perform the

transformation as part of the join enumeration process�using dynamic programming
�

the join order is not restricted by group�by push down�

� In a distributed database� group�by push down may reduce the communication cost�

Instead of transferring all of Rd to some other site to be joined with Ru� we transfer

only one row for each group of Ru� Since communication costs often dominate the

query processing cost� this may reduce the overall cost signi�cantly�

� When group�by is pushed down� the resulting table will normally be sorted based on

the grouping columns� This fact can be exploited to reduce the cost of subsequent

joins�

� When a HAVING predicates is very selective� group�by push down is a good choice since

it reduce the input cardinality of the join� On the other hand� when the join predicates

are very selective� or the predicates on the pulled up tables are very selective� it is

more likely that group�by pull up would perform better since it can save most of the

grouping e�ort�

�� Summary

We proposed a new strategy for processing SQL queries containing group�by� namely� inter�

changing the order of grouping and join� This transformation may result in signi�cant sav�

ings in query processing time� We derived conditions for deciding whether the transforma�

tion is valid and showed that they are both necessary and su�cient� HAVING clause is also

considered in our algorithms� Since testing the full conditions may be expensive or even im�

possible� a fast algorithm was designed that tests a simpler� su�cient condition� We also de�

signed an e�cient algorithm for �nding all valid partitionings of the tables into two sets� the

pushed down tables and the pulled up tables�

��



A The TPCD Database

TPCD is a Decision support benchmark proposed by the the Transaction Processing Per�

formance Council
TPC�� It is a suite of business oriented queries to be executed against a

database that allows continuous access as well as concurrent updates����� The size of the

database is scalable adjusted by a scale factor� The scale factor for a �

MB database is 
���

Figure � shows the subset of the TPCD database we used through out this paper� The size

of the database we used through out this paper is �

MB� We ran the queries in this pa�

per on Oracle V� and DB���


 V� on an IBM RISC��


 machine using the AIX operat�

ing system�
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* The arrows are pointing in the direction of one-to-many relationships between tables.

. , 

Legend:

* Scale factor 1

* The parentheses following each table name contain the prefix of the column names for that table.

* The highlighted column names in each table form the primary key of each table. 

* The number below the table name represents the number of rows (cardinality) of the table. 

* Table SUPPLIERS has an index on (S_SUPPKEY),Table ORDERS has an index on (O_ORDERKEY)
Table CUSTOMERS has an index on (C_CUSTKEY)
Table  LINEITEM has an index on (L_ORDERKEY,L_SUPPKEY), an index on (L_ORDERKEY) and an index on (L_PARTKEY)

Figure �� Subset of the TPCD Database �Scale Factor �
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