
A Counterexample to the Distributed Operational Transform and a
Corrected Algorithm for Point-to-point Communication

Gordon V. Cormack

Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

The distributed operation transform (dOPT) is proposed by Ellis and Gibbs as a lock-free algorithm to ensure the
consistency of concurrently updatable distributed objects. dOPT is shown by counterexample to be incorrect. A
corrected algorithm is given for a restricted environment based on point-to-point communication. There appears to
be no simple correction to dOPT for a general environment based on broadcast communication.

Ke ywords:Distributed computing, distributed algorithm, concurrency control, causal ordering, groupware.

Introduction

The Distributed Operational Transform Algorithm (dOPT)
is proposed by Ellis and Gibbs (1989) as a concurrency
control mechanism for groupware systems. dOPT is
attractive beyond the domain of groupware systems
because it promises to ensure consistency among
distributed replicated objects without requiring
serialization or even serializability among updates at
different locations.

The essence of dOPT is that all update messages are
delivered to each site; each site executes the messages in
some order consistent with Lamport’shappened-before
relation (1978). Becausehappened-before is a partial
ordering, different sites may execute the messages in
different orders. Anoperation-transform function T is
used to ensure that the various orders yield an identical
result. The definition ofT embodies the concurrent
semantics of a particular replicated object.

dOPT assumes an underlying reliable but unordered
broadcast-based communication system and correctly
computes at each site the execution order consistent with
happened-before that results in minimal delay. In
particular, messages generated at a particular site are
always executed at that site without delay, and execution
at other sites is delayed only to await the arrival of in-
transit messages. This component of dOPT is identical to
the lightweight CBCAST implementation published later
by Birman, Schiper, and Stephenson (1991).

dOPT requires that each update message be given a
priority such that no pair of messages from different sites
have the same priority. The operation transform function
T is defined for all pairs of updatesu1 andu2 and for all
pairs of unequal priorities p1 and p2.

gvcormac@plg.uwaterloo.ca

University of Waterloo Technical Report CS-95-08

u1′ = T(u1, u2, p1, p2) is a new update, in some sense
equivalent tou1 that is executed afteru2 althoughu2 did
not happen beforeu1. T must have the following
consistency property: the execution of

u2 followed byT(u1, u2, p1, p2)

must yield an identical result to the execution of

u1 followed byT(u2, u1, p2, p1).

Ellis and Gibbs give a set of updates and a consistentT
amenable for use in a shared text editor. Sev eral schemes
are suggested for assigning priorities, including a simple
encoding of site identifiers, and a more complex encoding
based on historical information. Ellis and Gibbs reject the
simpler scheme in favour of the more complex, citing a
3-site counterexample.

This paper presents a 2-site counterexample in which
dOPT fails for any possible priority scheme. We suggest a
correction to dOPT that uses the simpler priority scheme,
but is suitable only for two sites connected by a point-to-
point communication channel. Using several point-to-
point connections to form a tree, it is easy to derive a
consistent solution for an arbitrary number of sites. There
appears to be no simple and efficient correction to dOPT
that maintains its suitability for broadcast-based
applications. A more formal development of the point-to-
point and broadcast-based algorithms appears elsewhere
(Cormack 1995).

The dOPT algorithm

The dOPT algorithm maintains a copy of a shared object
at each site; each copy is initially identical. Each siteS
runs an identical algorithm (see figure 1) which accepts
messages denoting the following events:

• a local update generated at siteS
• a remote update generated at another sites ≠ S .

- 1 -

For each local update, the algorithm modifies its copy of
the object and transmits a message denoting the update to
all other sites. Each remote update message is held until
all happened-before updates have been processed; then
the update is transformed to compensate for non-
happened-before updates already executed atS; finally
the algorithm updates its copy of the object to reflect the
transformed update.

Ellis’ and Gibbs’ specific definitions for a shared text
editor are now described. The shared object is a variable-
length array of characters, and the update operations
consist of:

inser t[c,i] inserts a characterc at position i in the
object, first moving every character at
position i and beyond to the right by one
position.

delete[i] deletes the character at positioni, moving
ev ery character beyond positioni to the left
one position.

nop does not change the object.

The operation transform (figure 2) shifts the position of
insertion or deletion so that the same character is affected.
In the event of two deletions at the same place, or two
insertions of the same character at the same place, the
second update is annulled by transforming it into the
identity functionnop.

A counterexample to dOPT

Consider a text object as defined above with an initial
value of abcdefg (figure 3). Site 1 deletes thea while
concurrently site 2 deletes thea and then thee. That is,
site 1 takes on the valuebcdefg, site 2 takes on the value
bcdfg, and three messages are transmitted:

Remote_update(1, (0,0), delete[1], p1)

from site 1 to site 2, and

Remote_update(2, (0,0), delete[1], p2)
Remote_update(2, (0,1), delete[4], p3)

from site 2 to site 1. The priority valuesp1, p2 and p3
may be chosen arbitrarily. When the message destined for
site 2 arrives, its update is transformed tonop, resulting in
a final value at site 2 ofbcdfg. When the first message
destined for site 1 arrives, its update is also transformed to
nop, leaving site 1’s value atbcdefg. The second
message is transformed (inappropriately) todelete[3],
resulting in a final value at site 1 ofbcefg. Since there are
no messages in transit and the two sites are unequal, the
algorithm is incorrect.

A corrected point-to-point algorithm

A correct, restricted variant of the algorithm is obtained
by replacing components of the algorithm as shown in
figure 4. SIT is restricted to two values, and the priority
of an update is simply its site id. The major modification

Figure 1. dOPT algorithm.

Type
SIT = { the set of site ids }
OBJ = { the type of the shared object }
UPD = OBJ → OBJ { an update function }
VEC = ARRAY SIT OF INTEGER { state vector }
LOG = LIST OF SIT × VEC × UPD × PRI
PRI = { prior ity }

Const
S: SIT { the site id for this site }
X0: OBJ { the initial value }
T: UPD × UPD × PRI × PRI → UPD { transfor m }
P: SIT × UPD × ... → PRI { pr ior ity }

Var
X: OBJ := X0 { local copy of object }
L: LOG := φ
V: VEC := (0, 0, ... 0)

Event
Local_update(U: UPD) =

Broadcast Remote_update(S, V, U, P(S,X, ...))
L := L <S, V, U, P(S,X, ...)>
X := U(X)
V[S] := V[S] + 1

Remote_update(s: SIT, v: VEC, u: UPD, p: PRI) =
Delay until V[i] ≥ v[i] for all i: SIT
For each <s’,v’,u’,p’> in L

If v’[s’] ≥ v[s’] then
u := T(u,u’,p,p’)

L := L <s, v, u, p>
X := u(X)
V[s] := V[s] + 1

is that each log entry is itself transformed whenever it is
used to transform an incoming update. Tw o optimizations
are occasioned by the following observations: unused log
entries with indexes less than or equal toV[s]+vS will
never be used and may be deleted; remote updates will not
participate in transforming later remote updates and
therefore need not be logged. These optimizations make
the algorithm quite efficient: the size of the log is
bounded by the number of unacknowledged messages,
and the transformation time for an update is proportional
to the size of the log. Finally, the algorithm may easily be
enhanced to compensate for an unreliable communication
channel: (1) any missing message will delay the next
message indefinitely, and a suitable timeout and
retransmission protocol may be implemented within the

- 2 -

Figure 2. Operation transform for text editor.

T(inser t[c,i], insert[c’,i’], p, p’) =
inser t[c,i] if i < i’
inser t[c,i+1] if i > i’
nop if i = i’ and c = c’
inser t[c,i] if i = i’ and p < p’
inser t[c,i+1] if i = i’ and p > p’

T(delete[i], delete[i’], p, p’) =
delete[i] if i < i’
delete[i-1] if i > i’
nop if i = i’

T(inser t[c,i], delete[i’], p, p’) =
inser t[c,i] if i ≤ i’
inser t[c,i-1] if i > i’

T(delete[i], insert[c’,i’], p, p’) =
delete[i] if i < i’
delete[i+1] if i ≥ i’

T(nop, u, p, p’) = nop

T(u, nop, p, p’) = u

Figure 3. dOPT Counterexample.

Site 1 Site 2

abcdefg abcdefg
delete[1] delete[1]

bcdefg bcdefg
delete[4]

bcdfg
nop

bcdfg

nop

bcdefg
delete[3]

bcefg

delay; (2) any duplicate message will have the property
thatV[s] > v[s] and may be ignored.

Consistency of the point-to-point algorithm

At any instant, it is impossible to determine whether or not
there are messages in transit. Nevertheless, the algorithm
is shown consistent by demonstrating that at all times,if
there are no messages in transit, the value ofX at sites is
equal to the value ofX at the other sites

_
.

At any giv en time, sites will have executed, in some
sequence,V[S] local updates andV[s] remote updates.

Figure 4. Point-to-point algorithm.

Type
SIT = {1, 2}
OBJ = { the type of the shared object }
UPD = OBJ → OBJ { an update function }
VEC = ARRAY SIT OF INTEGER { state vector }
LOG = ARRAY [1 ..] OF UPD { local update log }

Const
S: SIT { the site id for this site }
X0: OBJ { the initial value }
T: UPD × UPD × PRI × PRI → UPD { transfor m }

Var
X: OBJ := X0 { local copy of object }
V: VEC := (0, 0) { local state vector }
vS: INTEGER := 0 { last v[S] from other site }
L: LOG { equivalent update sequence }

Event
Local_update(U: UPD) =

V[S] := V[S] + 1
Broadcast Remote_update(S, V, U)
L[V[s]+V[S]] := U
X := U(X)

Remote_update(s: SIT, v: VEC, u: UPD) =
Delay until v[s] = V[s] + 1
L[V[s]+v[S]+1..V[s]+V[s]+1] :=

L[V[s]+v[S]..V[s]+V[S]]
L[V[s]+v[S]] := u
For k := V[s]+v[S]+1 to V[s]+V[S]+1 do

Let U = L[k]
L[k] := T(U, u, S, s)
u := T(u, U, s, S)

vS := v[S]
V[s] := V[s] + 1
X := u(X)

Also, sites
_

is known to have executed at leastV[s] local
updates andvS updates froms. Thus, the most recent
V[S] - vS are not known to have been executed ats

_
. The

log entries L[V[s]+vS+1..V[s]+V[S]] represent this
sequence of updates. When a remote update arrives, it is
known that that update was executed ats

_
before this

sequence, and it must be transformed over the sequence.
Furthermore, the sequence must be transformed over the
update.

We extend the definition ofT to apply to sequences:

- 3 -

T(U , u1u2
. . .uk, S, s)

=def T(T(U , u1, S, s), u2
. . .uk, S, s)

T(u1u2
. . .uk,U , s, S)
=def T(u1,U , s, S) T(u2

. . .uk,T(U , u1, S, s), s, S).

We denote byu1u2
. . .uk(X) =def uk(uk−1(. . .u1(X) . . .))

the application of a sequence of updates. Tw o update
sequencesu1

. . .uk andu′1 . . .u′k′ are equivalent if, for all
X, u1

. . .uk(X) = u′1 . . .u′k′(X). Obviously, equal
sequences are equivalent, and substitution of equivalent
subsequences preserves equivalence.

Theorem 1 − Extended consistency of T. For any
update U , any sequence of updatesu1u2

. . .uk where
k ≥ 1, and anyS ≠ s, the following two sequences are
equivalent:

u1u2
. . .uk T(U , u1u2

. . .uk, S, s)

U T(u1u2
. . .uk,U , s, S) .

Proof. For k = 1 the theorem holds because of the
(unextended) definition ofT. For k = m > 1, we assume
the hypothesis that the theorem holds for all 1≤ k < m.
By substitution of equivalent subsequences, the following
pairs of update sequences are equivalent:

u1u2
. . .uk T(U , u1u2

. . .uk, S, s)

u1u2
. . .uk T(T(U , u1, S, s), u2

. . .uk, S, s) [defn. T]

u1u2
. . .uk T(T(U , u1, S, s), u2

. . .uk, S, s)

u1 T(U , u1, S, s) T(u2
. . .uk,T(U , u1, S, s), s, S) [hyp.]

u1 T(U , u1, S, s) T(u2
. . .uk,T(U , u1, S, s), s, S)

U T(u1,U , s, S) T(u2
. . .uk,T(U , u1, S, s), s, S) [defn. T]

U T(u1,U , s, S) T(u2
. . .uk,T(U , u1, S, s), s, S)

U T(u1u2
. . .uk,U , s, S) . [defn. T]

Theorem 2. Consistency of algorithm.Whenever both
sites have executed the samen updates their values ofX
are equal.

Proof. We maintain the invariant that the sequence
L[1..V[s]+vS] is equivalent to the same sequence at the
other site. As a consequence, if there are no messages in
transit, L[1..V[s]+V[S]] must be equivalent to the same
sequence at the other site. Finally, we show the invariant
that X = L[1. .V[s] + V[S]](X0) and therefore the values
of X are equal.

CoEd

CoEd is a conference editor implemented by Holtz (1991)
which contains an unpublished variant of dOPT. Holtz
attempts to keep each log sorted according to a common
order, and inserts remote updates in a position so as to
maintain the order. Although CoEd was developed
independently, its treatment of the log resembles the
corrected algorithm presented here. However, it fails the
counterexample in the same manner as dOPT.

Elfe

Vadura (1984) has used the corrected algorithm presented
here and EMACS to implement Elfe, a distributed
conference editor for files shared over a network. Using
Elfe, a file to be edited is specified using a Uniform
Resource Locator. Any number of users may view and
update the file, subject to the restrictions imposed by a
security system. All updates are effected immediately
within the editor, and are transmitted to all other users
where they are applied in a consistent manner as enforced
by the algorithm. The shared file behaves as a shared
bulletin board that is insensitive to network delay.

Acknowledgements

The author thanks Charlie Clarke for many useful
suggestions. Thanks also to Brian Holtz for his C++
implementation of CoEd, and to Dennis Vadura for
reverse-engineering the CoEd algorithm from its
implementation. This research is supported by the Natural
Sciences and Engineering Research Council of Canada.

References

Birman K.B., Schiper A. and Stephenson P. (1991),
Lightweight causal and atomic group multicast, ACM
TOCS 9:3, 272-314.

Cormack G.V. (1995),A calculus for concurrent update,
University of Waterloo CS-95-06.
http://plg.uwater loo.ca/˜gvcor mac/ccu.ps

Ellis C.A. and Gibbs S.J. (1989),Concurrency control in
groupware systems, Proc. 19 ACM SIGMOD Conference
on Management of Data, inACM SIGMOD Record
18:2, 399-407.

Holtz B. (1991)CoEd − A shared text editor, Sun
Microsystems.ftp://plg.uwater loo.ca/pub/CoEd.

Lamport L. (1978),Time, clocks, and the ordering of
events in a distributed system, Commun. ACM 21:7,
558-565.

Vadura D. (1994)Elfe − Editing Live Files Everywhere,
University of Waterloo.ftp://plg.uwater loo.ca/pub/elfe.

- 4 -

