
On the use of Regular Expressions for Searching Text

Charles L� A� Clarke Gordon V� Cormack

Department of Computer Science

University of Waterloo� Waterloo� Canada

Technical Report CS������
February� ��� ����

Abstract

The use of regular expressions to search text is well known and understood as a useful

technique� It is then surprising that the standard techniques and tools prove to be of limited

use for searching text formatted with SGML or other similar markup languages� Experience

with structured text search has caused us to carefully re�examine the current practice� The

generally accepted rule of �left�most longest match� is an unfortunate choice and is at the root

of the di�culties� We instead propose a rule which is semantically cleaner and is incidentally

more simple and e�cient to implement� This rule is generally applicable to any text search

application�

�

� Introduction

Regular expressions are widely regarded as a precise� succinct notation for specifying a text search�
with a straightforward e�cient implementation� Many people routinely use regular expressions to
specify searches in text editors and with stand�alone search tools such as the Unix grep utility� A
regular expression states a recognition problem� �Does a given string of text match a particular
pattern�	 However� searching is a di
erent problem� �Find the substrings of a text that match a
particular pattern�	

It is widely assumed that it is trivial to reduce the search problem to the recognition problem
while preserving the desirable properties of precision� succinctness and e�ciency� This paper il�
lustrates di�culties with existing approaches that compromise these properties� We o
er a new
perspective on the use of regular expressions for searching text that preserves them� This per�
spective is particularly relevant to the search of highly�structured text formatted with a markup
language like SGML ��� �
��

We motivate our discussion with a simple example� Figure � presents a portion of a structured
text �le containing the Shakespearean play Macbeth� The text is formatted in the style of SGML�
The start of a structural element is marked with a tag of the form ��name�	 and the end of a
structural element is marked with a tag of the form ���name�	� The segment is taken from the
play�s opening scene� and includes the act and scene numbers� stage directions� speakers and their
speeches� A typical search of such text might be informally stated as� �Find speeches by witches
that contain the words �Dunsinane� or �Birnam��	 Formulating this search using standard tools can
prove quite challenging� particularly as the structural elements may be broken across multiple lines�

�act� �act�number� � ��act�number�

�scene� �scene�number� � ��scene�number�

�direction� Thunder and lightning� Enter three Witches� ��direction�

�speech� �speaker� First Witch ��speaker�

�line� When shall we three meet again� ��line�

�line� In thunder� lightning� or in rain� ��line� ��speech�

�speech� �speaker� Second Witch ��speaker�

�line� When the hurly�burly	s done� ��line�

�line� When the battle	s lost and won� ��line� ��speech�

�speech� �speaker� Third witch ��speaker�

�line� That will be ere the set of sun� ��line� ��speech�

�speech� �speaker� First Witch ��speaker�

�line� Where the place� ��speech�

�speech� �speaker� Second Witch ��speaker�

Upon the heath ��line� ��speech�

Figure �� Excerpt from a structured text �le

�

��� Regular Expressions

A regular expression r denotes a language L�r�� a set of strings composed of symbols from an
alphabet �� Any regular language may be denoted by a regular expression built from �ve primitives
de�ned as follows�

r L�r�

� f�	g �empty string�
a f�a	g �alphabet symbol a � ��
r� j r� L�r�� � L�r�� �alternation�
r�r� L�r�� � L�r�� �concatenation�
r� L�r�� �repetition�

Where the concatenation of two languages L� � L� is de�ned as

L� � L� � fxy j x � L� and y � L�g

and L�� the closure of a language L� is de�ned as the smallest solution to

L� � f�	g � �L �L��

While these �ve primitives are su�cient to describe any regular language� the �ve primitives
alone do not yield a concise notation� For example� consider the operators �� �� and � de�ned as
follows�

r L�r�

r� � r� L�r�� � L�r�� �inclusion�
r� � r� L�r�� n L�r�� �exclusion�
r� L�r� � L�r�� �repetition at least once�

Regular languages are known to be closed under intersection and set di
erence� yet the expres�
sions r� � r� and r��r� are not easily represented using the �ve primitives� and the representation
may be exponentially larger than r� and r�� Even simpler constructions cause exponential growth
in regular expressions� r� is trivially de�ned in terms of r� yet an equivalent expression using only
the �ve primitives may be exponentially larger than one using �� Throughout this exposition we
use these and other operators� de�ned as necessary� to present succinctly our approach� As an
immediate example� a regular expression denoting all of the symbols in the alphabet may be easily
constructed using the alternation operation and the symbols in the alphabet� but it is far simpler
to use � itself to denote this regular expression�

Regular expressions are easily re�cast in terms of the recognition problem� We say that a string
x matches the regular expression r if x � L�r�� For any regular expression� a �nite automaton
may be constructed that solves the recognition problem in O�jxj� time where jxj is the number
of symbols in x� A single left�to�right scan is made over x� Storage requirements depend only on
properties of r� not on the length of x� A regular expression matching a speech by a witch that
contains the words �Dunsinane	 or �Birnam	 is�

�speech� �� �speaker� �� Witch �
speaker� �� �Birnam j Dunsinane� �� �
speech�

�

��� Text Search

The search problem as stated at the beginning of the paper is not precisely de�ned� A more precise
de�nition might be� �Given a universe U �nd all elements of U that contain a substring x matching
a particular pattern r�	 Even this statement is not as precise as we would like� because it may not
be possible or desirable to �nd all solutions� Reducing search to recognition involves two arbitrary
choices� the de�nition of a universe or search space� and the selection of a particular solution or
set of solutions� In existing applications these arbitrary choices are seldom stated at all� let alone
stated formally�

For searching text� a simple universe U is some a priori set of strings � �le names in a directory�
lines in a �le or documents in a collection� A simple search algorithm enumerates U in some order�
reporting elements of U that contain matches to the pattern� until U is exhausted� The time
required for this search technique is O��x�U jxj�� That is� the time to search a text database is at
worst proportional to the number of symbols in the database� This simple search strategy is used
in Unix utilities like sh to search a universe of �le names and grep to search a universe of lines
from text �les�

Requiring a priori that a search �nd a document� page� line� or word may yield a result too
coarse or too �ne to be useful� Further di�culties arise when there is no well de�ned universe of
possible solutions� This situation arises when the text database is a continuous stream or is divided
into units that are not suitable as search results� In the earlier example� it is clear that the most
desirable universe is the set of all speeches� but the text is divided into lines only loosely related
to the structure of the document� and existing tools do not easily allow a search over arbitrarily
de�ned units�

At its most general� the problem of scanning and searching a continuous stream of text with a
regular expression may be characterized as follows� �Given a string x and a regular expression r�
�nd all substrings of x that match r�	 With respect to this characterization� the universe is the
set of all substrings of x� Unfortunately� the cardinality of this set is quadratic in the length of x�
Searching this universe requires quadratic time and may yield a plethora of overlapping and nested
results� For this reason� implementations attempting general search restrict the search to �nd and
report only some subset of the solutions� These arbitrary restrictions� which alter the semantics of
the search� often appear simple� but are di�cult to formalize� di�cult to use precisely� and di�cult
to implement e�ciently�

The most common restriction is the �left�most longest match	 rule� This is the rule mandated
by the POSIX standard ���� and used in many software tools ����� The rule is carefully stated in
the rationale to the POSIX standard�

The search is performed as if all possible su�xes of the string were tested for a pre�x
matching the pattern� the longest su�x containing a matching pre�x is chosen� and
the longest possible matching pre�x of the chosen su�x is identi�ed as the matching
sequence�

Having said this� when performing a general search� rather than looking for a single match� we are
left with the question of what is the next match� There are two obvious choices� �� begin the search
again after the �rst character of the match� or �� begin the search again after the last character of
the match� The second of these choices is the one usually taken� as the �rst choice may result in a

�

large number of nested solutions� We refer to the technique of successively applying the left�most
longest�match rule� starting each time after the last character of the match� as �longest�match
disjoint substring search	� We say �disjoint	 to indicate that the solutions may not overlap or nest�
Using this rule� searching the MacBeth text �le with the regular expression

�speech� �� �speaker� �� Witch �� �
speaker� �� �
speech�

results in a single match� starting at the fourth line of Figure � and continuing to the end of the
last speech in the �le� This clearly not the intended result of this search� Furthermore� it is not
obvious how to amend the regular expression to yield the intended result�

In the next section we propose an alternative linearizing restriction� By applying this restriction
to a regular language we may search a text using a single right�to�left scan and constant storage�
The restricted search ismost general in that any solution to the general search will contain a solution
to the restricted search� Our linearizing restriction may be characterized informally as� �Find the
set of shortest non�nested �but possibly overlapping� strings that each match the pattern�	 Using
this rule� which we term �shortest�match substring search	� the result of searching MacBeth with
the above regular expression will include all speeches by witches� It may also contain undesired
matches� this problem is addressed in the penultimate section�

��� Historical Notes

The basic results in the theory of regular languages and �nite automata were developed in the �����s
and early �����s� A standard account of these results and their development is given by Hopcroft
and Ullman ����� This account includes an algorithm for the conversion of a regular expression to
a nondeterministic �nite automata and a discussion of the closure properties of regular languages�

In ��� � Thompson described the use of regular expressions for searching text ����� Thompson�s
algorithm reports each point in the target text where a match ends� In the same year� a group at
MIT used regular languages for automatically constructing lexical analyzers �� �� This system used
the longest�match rule to resolve simple cases of matching ambiguity and reported errors in others�
A number of variants of Thompson�s algorithm are described by Aho� Hopcroft and Ullman ����
The algorithm described in section ��� of this paper is a extension of one of the variants proposed
in their discussion� A general review of algorithms for searching text� with particular emphasis on
the practical experience gained with tools developed in conjunction with the Unix system� is given
by Aho ���� More recently� a general algorithm for regular expression search in preprocessed text
with average�case time complexity of O�

p
n� has been developed by Baeza�Yates and Gonnet ����

Much e
ort has been devoted to addressing special cases of regular expression search� Search
algorithms have been developed for �nding single keywords � � ��� ���� sets of keywords ���� keywords
separated by sequences of �don�t cares	 ��� ��� ���� and other simple patterns �
� ���� A recent
general survey of the area is given by Aho ����

�

� Shortest Substrings

If L is a language over an alphabet � we de�ne the language G�L� as follows�

De�nition � The string x � L is an element of G�L� if and only if � �y � L such that y is a proper
substring of x�

By proper substring we mean that y is a substring of x and y �� x� If L contains the empty string
then G�L� � f�	g� For the remainder of the paper we will assume that L does not contain the
empty string�

We can now precisely state the search restriction avocated by this paper� �Given a string x and
a language L� �nd all substrings of x that are members of G�L�	� If x � a�a����an� where the ai are
symbols from �� we can represent the result of such a search as a set of ordered pairs of integers�
each giving a start and end position in x corresponding to an element in the result� We use the
notation x�u� v� with u � v to indicate the substring of x starting at au and ending at av�

De�nition � If x � �� and L is a language over � then G�L� x� � f�u� v� j x�u� v� � G�L�g �
For example�

G�ab j a��c� �abracadabra	� � f��� ��� ��� ��� � � ��g
Note that� although the string �abrac	 is a member of the regular language denoted by ab j a��c�
it is not a member of G�ab j a��c� and the pair ��� �� is not included in the set� Several simple
but signi�cant properties of G�L� x� are immediately available�

Theorem � If �u� v� � G�L� x� and �u�� v�� � G�L� x� then either �� u � u� and v � v�� �� u � u�

and v � v�� or �� u � u� and v � v��

Proof� By a straightforward case analysis� If u 	 u� and v � v� or if u � u� and v � v� then x�u� v�
is a proper substring of x�u�� v��� and x�u� v� �� G�L� x�� If u � u� and v 	 v� or if u � u� and v � v�

then x�u�� v�� is a proper substring of x�u� v�� and x�u�� v�� �� G�L� x�� �

The elements of G�L� x� are thus totally ordered� The start and end points place identical total
orders on the elements �if u � u� and v � v� then �u� v� � �u�� v���� The elements of G�L� x� do
not nest but may overlap� That is� we may have u � u� � v � v� or u� � u � v� � v� but not
u � u� � v� � v or u� � u � v � v��

As a further consequence of Theorem � we have jG�L� x�j � n� For if jG�L� x�j � n then two
distinct elements of G�L� x� must share a common start position� But by Theorem � their end
positions would then be the same� in which case the elements could not in fact be distinct�

For classes of languages closed under concatenation �such as the regular languages�� the problem
of recognizing an element of L can be reduced to searching for elements of G�L�� For a class of such
languages� if we have an algorithm that searches a text for elements of G�L�� then by the addition
of start and end tokens� the same algorithm may be used to recognize members of L�

�

Theorem � If � and � are not symbols in � then G�f� � 	g �L � f� ! 	g� � f� � 	g �L � f� ! 	g �

Proof� Assume there exists x ��w! and y ��z!� elements of f� � 	g �L � f� ! 	g such that y is
a proper substring of x� Since y is a proper substring of x� y must either be a substring of �w� or
a substring of w�� The �rst case implies that � appears in w� the second implies that � appears in
w� �

The members of L reported by a longest�match disjoint substring search are dependent on the
text being searched� For example� a longest�match search for the regular expression ab j a��c in
the string �ababab	 results in three matches of the form ab� If we add a �nal �c	 to the end of
the string �making the string �ababc	� the result changes to a single match of the form a��c� The
string still contains three matches of the form ab� but these are no longer reported� In general�
if z � L appears in the target text it is not possible to determine if a longest�match substring
search will �nd a particular occurrence of z without reference to the entire text being searched� In
contrast� over any text a shortest�match search reports all occurrences of the members of L that
are in G�L� and no others�

So far in this section of the paper the exposition has not required that L be a regular language�
The principle of shortest match may in fact be treated as a general principle for any text search
application and has already proven itself for retrieval from indexed text ���� ���� However� we close
the section by examining a speci�c property of regular languages�

Theorem � If L is a regular language then G�L� is a regular language�

Proof� G�L� � L n ��L���� � L � L����� � �L���� � L � L������ which is regular by the various
closure properties of regular languages� �

In a regular expression� we use the notation �r�� where r is a regular expression� to denote the
language G�L�r��� For example� the expression �ab j a��c� denotes G�L�ab j a��c���

� Substring Search Algorithms

In this section we compare algorithms for longest� and shortest�match substring search� A string
may be recognized as member of a regular language by a single left�to�right scan with constant
store� We demonstrate informally that there is no longest�match search algorithm that shares this
property� Any longest�match search algorithm using constant store can be forced to make multiple
scans� In contrast� we present a simple algorithm for shortest�match substring search that makes a
single left�to�right scan over the string and uses storage dependent only on the regular expression
to be matched� In both cases we assume that matches are reported as they are discovered and
consequently no storage is required for the matches�

��� The Complexity of Longest�Match Disjoint Substring Search

Suppose we have an algorithm that performs a longest�match search of a regular expression with
a single scan of the target string using only constant store� Consider a longest�match search with

the regular expression ab j a��c on a string of the form �ab�nd for some �xed but arbitrary n�
The string contains exactly n matches of the form ab� Since a is the initial symbol in the string�
the algorithm must make a full scan of the string� examining every character� to determine that
this initial symbol is not part of a match of the form a��c� Since n may be arbitrarily large� no
constant store may be used to maintain the potential matches that would be discovered while this
determination is being made� It appears that our supposed algorithm cannot exist�

In this speci�c case� a longest�match search may be performed with two scans and constant
store� In practice� longest�match search algorithms do make multiple scans of portions of their
target strings� but this is not a serious problem as searches are generally restricted to a single line
of text�

��� Shortest�Match Substring Search

We detail an algorithm for shortest�match substring search for members of the regular language L
over a text x � a�a����an of length n� We assume that an NFAM has been constructed to recognize
L �perhaps from a regular expression�� Let M � �Q��� �� q�� F � where Q is a set of states� � is
an alphabet of symbols� � is a state transition function mapping each element of Q
 � onto a
subset of Q� q� is the start state� and F is a set of �nal states� We are assuming that M has no
��transitions for simplicity�

For the purposes of the algorithm� we assume that states are designated by numbers in the
range � to jQj where the start state q� is assigned �� The algorithm appears in �gure �� The two
integer arrays P and P � are indexed by state number with each element holding an index into x or
the value �� The symbols i� j� q and u designate integer variables�

Storage requirements �except for the string itself� depend only on jQj� the number of states of
M � The outermost loop at lines �"�� makes a single left�to�right scan over x� Noting that the
loop at lines "� makes at most jQj iterations for each iteration of the outer loop at lines
"�� it
is apparent from the structure of the loops that the algorithm has worst�case time complexity of
O�jQj�n�� That the algorithm correctly performs a shortest�match substring search is the subject
of the next theorem� As a �nal note� in an actual implementation of the algorithm� the arrays P
and P � are more e�ciently represented as lists of states and positions� States for which an array
element would be � are omitted from this list�

Theorem � A pair �u� v� is output by the algorithm of �gure � if and only if �u� v� � G�L� x��
Proof� We begin by establishing invariants for the array P over the loop at lines �"��� At any
point in the execution of the algorithm� let t be the �rst element of the previous pair output or
� if no pair has been output� �When a pair is output on line ��� t is e
ectively updated�� The
invariants are� �� If Pj �� �� then j is not a �nal state and the string x�Pj � i� is the smallest su�x
of x�t � �� i� which speci�es a path in M from the start state to state j� �� If Pj � �� there is no
su�x of x�t���i� which speci�es a path in M from the start state to j� implying that no substring
of x�t���i� is an element of G�L��

Within the body of the loop at lines �"��� the array P � is used to compute the updated value
of P based on the previous value of P � Lines � "�� e
ect the update�

The invariants for P � over the loop at lines
"� are as follows� �� If P �

k �� �� then x�P �

k� i� is the
smallest su�x of x�t � �� i� which speci�es a path in M from the start state to k where the last

� for i� � to jQj do
� Pi � ��
� for i� � to n do begin

� P� � i�
� for j � � to jQj do
� P �

j � ��

� for j � � to jQj do
� for q � ��j� ai� do
	 P �

q � max�P �
q� Pj��

�
 u� ��
�� for j � � to jQj do
�� if j � F then u� max�u� P �

j��

�� if u � � then begin

�� Output �u� i��
�� for j � � to jQj do
�� if P �

j � u then P �

j � ��

�� end�
�� for j � � to jQj do
�	 Pj � P �

j �

�
 end�

Figure �� Shortest�match substring search algorithm

�

transition is from a state numbered j or lower� �� If P �

k � �� then there is no path in M from the
start state to k where the last transition is from a state numbered j or lower� Thus� after line ��
if P �

j �� � then x�P �

j � i� is the smallest su�x of x�t � �� i� that speci�es a path in M from the start
state to j� and if P �

j � � then there is no su�x of x�t � �� u� that speci�es a path in M from the
start state to j�

After line �� there may be �nal state for which P �

j �� �� If this is the case� the loop on lines ��"��
discovers the largest u such that x�u� i� is an element of L� thus x�u� i� is an element of G�L�� The
lines ��"�
 output �u� i� �implicitly setting t � u� and invalidate all partial or complete matches
starting at or before u by setting the appropriate elements of P � to �� This implies that after line
�
� P �

j � � if j is a �nal state�
If �u� v� is a element of G�L� it will the shortest su�x of x�t���i� for some t and will be output

at line ��� �

� Explicit Containment

A regular expression may be used to de�ne an explicit universe for search� Using the search
restriction advocated by this paper the regular expression

� �speech� �� �
speech� �

de�nes the universe of speeches�
We de�ne a new operator �containing	 ���� to express a search over an explicit universe� The

regular expression r �� s� where r and s are regular expressions� is de�ned as �r� � ���s����
Consider our original search statement� �Find speeches by witches that contain the words

�Dunsinane� or �Birnam��	 Using the containing operator and assuming our search restriction we
may formulate this search as�

��speech� �� �
speech�� �� ��speaker� �� Witch �
speaker� �� �Birnam j Dunsinane��
To this point we have not discussed the issue of converting a regular expresion to an NFA� but

some explanation is required in connection with explicit containment� In practice� we accomplish
the conversion using a variant of a well�known technique ��� ���� Generally� the di
erences being
that we construct an NFA with no ��transitions and mantain the NFA as a list of these transitions�
Of some concern is the size of the NFA that will result from this conversion� The size of an NFA
grows additively for alternation� concatenation and the varieties of repetition� for inclusion it grows
multiplicatively� For most applications this growth is not a problem� Unfortunately� in order to
implement exclusion� the NFA must be converted to a DFA� with a possible exponential increase
in size� It is then not reasonable to implement the �containing	 operator by directly using the
equation in the proof of Theorem ��

Fortunately� explicit containment may be implemented without direct use of that equation� We
observe that the regular expression r �� �s� is equilvalent to r �� s� It is thus possible to implement
explicit containment by running two concurrent copies of the algorithm of �gure �� reporting a
match to r only when it contains a match to s� This technique is in fact a simple case of the more
general algorithm described in �����

��

� Conclusion

Despite surface appearances� this paper does not describe theoretical results concerning regular
languages� Instead� this paper describes practical results concerning the application of regular
languages to text searching� We demonstrate that the theory of regular languages has perhaps
been misapplied to text searching� We draw general lessons concerning the extension of language
recognition to search�

Acknowledgements

Charlie Krasic� Dave Mason and Gord Vreugdenhil made useful comments when the ideas of this
paper were in nascent form� The Government of the Province of Ontario provided primary funding
for this work through its InformationTechnology Research Centre� Additional funding was provided
by the Natural Sciences and Engineering Research Council of Canada�

References

��� K� Abrahmson� Generalized string matching� SIAM Journal on Computing� �������"�����
��
�

��� Alfred V� Aho� Pattern matching in strings� In Ronald V� Book� editor� Formal Language
Theory 	 Perspectives and Open Problems� pages ���"���� Academic Press� New York� �� ��

��� Alfred V� Aho� Algorithms for �nding patterns in strings� In J� van Leeuwen� editor�
Handbook of Theoretical Computer Science� pages ���"���� The MIT Press#Elsevier� Cam�
bridge#Amsterdam� �����

��� Alfred V� Aho and Margaret J� Corasick� E�cient string matching � An aid to bibliographic
search� Communications of the ACM� � �������"���� June ��
��

��� Alfred V� Aho� John E� Hopcroft� and Je
rey D� Ullman� The Design and Analysis of Computer
Algorithms� Addison�Wesley� Reading� Massachusetts� ��
��

��� Ricardo A� Baeza�Yates and Gaston H� Gonnet� E�cient text searching of regular expressions�
In Proceedings �
th International Coloquium on Automata� Languages and Programming� pages
��"��� Stresa� Italy� �� ��

�
� Ricardo A� Baeza�Yates and Gaston H� Gonnet� A new approach to text searching� Commu�
nications of the ACM� �������
�" �� October �����

� � R� S� Boyer and J� S� Moore� A fast string searching algorithm� Communications of the ACM�
�������
��"

�� October ��

�

��� M� Bryan� SGML 	 An Author�s Guide to the Standard Generalized Markup Language�
Addison�Wesley� Reading� Massachusetts� �� �

��

���� Charles L� A� Clarke� G� V� Cormack� and F� J� Burkowski� Schema�independent retrieval
from hetrogeneous structured text� In Fourth Annual Symposium on Document Analysis and
Information Retrieval� Las Vegas� Nevada� April ����� An early version of this paper was
distributed as University of Waterloo Computer Science Department Technical Report number
CS������ �����

���� Charles L� A� Clarke� Gordon V� Cormack� and Forbes J� Burkowski� An algebra for structured
text search and a framework for its implementation� The Computer Journal� ����� To appear�
An early version of this paper was distributed as University of Waterloo Computer Science
Department Technical Report number CS������ �����

���� M�J� Fisher and M� Patterson� String matching and other products� In R� Karp� editor�
Complexity of Computation �SIAM�AMS Proceedings�� volume
� pages ���"���� American
Mathematical Society� Providence� Rhode Island� ��
��

���� Kathryn A� Hargreaves and Karl Berry� Regex� Free Software Foundation� �
� Mass Ave�
Cambridge� MA ������ USA� ����� ftp
��prep�ai�mit�edu�pub�gnu�

���� John E� Hopcroft and Je
rey D� Ullman� Introduction to Automata Theory� Languages and
Computation� Addison�Wesley� Reading� Massachusetts� ��
��

���� R� Nigel Horspool� Practical fast searching in strings� Software 	 Practice and Experience�
������"���� �� ��

���� Institute of Electrical and Electronics Engineers� Standard for Information Technology 	
Portable Operating System Interface �POSIX� 	 Part � �Shell and Utilities� 	 Sec�
tion ��
 �Regular Expression Notation�� September ����� IEEE Std �������

��
� International Standards Organization� Information Processing 	 Text and O�ce Systems 	
Standard Generalized Markup Language �SGML�� October �� �� ISO
��

�� � Walter L� Johnson� James H� Porter� Stephanie I� Ackley� and Douglas T� Ross� Automatic
generation of e�cient lexical processors using �nite state techniques� Communications of the
ACM� ������� ��" ��� December ��� �

���� D� E� Knuth� J� H� Morris� and V� R� Pratt� Fast pattern matching in strings� SIAM Journal
on Computing� ��������"���� June ��

�

���� Udi Manber and Ricardo Baeza�Yates� An algorithm for string matching with a sequence of
don�t cares� Information Processing Letters� �
����"���� February �����

���� The MultiText Project� Project repository� ftp
��plg�uwaterloo�ca�pub�mt�

���� Ken Thompson� Regular expression search algorithm�Communications of the ACM� ���������"
���� June ��� �

���� Sun Wu and Udi Manber� Fast text searching allowing errors� Communications of the ACM�
������� �"��� October �����

��

