
A Calculus for Concurrent Update

Gordon V. Cormack

Department of Computer Science, University of Waterloo

1. Introduction

This paper introduces a calculus for concurrent
update (CCU) that is used to specify distributed
objects. The calculus permits updates to be effected
immediately at each site − no central server, locking,
token passing, rollback, or other form of serialization
is enforced. Notice of each update at each site is
transmitted to every other site, where a
corresponding update is effected. Unless special
provisions are taken, network transmission delay
may cause corresponding updates to be effected at
different sites in different orders, potentially
rendering them meaningless or inconsistent. CCU
avoids this eventuality: transformations are applied
to corresponding updates as necessary to preserve
overall meaning and consistency.

CCU derives from the Distributed Operational
Transform (dOPT) algorithm proposed by Ellis and
Gibbs (1989) as a concurrency control mechanism
for groupware systems. dOPT introduces the notion
of consistency-preserving transformations, and
embeds exactly the lightweight CBCAST algorithm
published later by Birman, Schiper and Stephenson
(1991). However, Ellis and Gibbs merely allude to
the need to preserve meaning, and present no method
for reasoning about either the overall consistency or
meaningfulness of the transforms as applied by
dOPT. Indeed, dOPT is incorrect, as demonstrated
by a counterexample in which it fails to maintain
consistency (appendix A).

In 1991, the author implemented a conference
editor and discovered the error in dOPT, which was
corrected for the special case of two sites. It was
necessary to develop CCU to prove the algorithm
meaningful and consistent, to generalize it beyond
two sites, and to extend its domain of application
beyond simple text editors.

Waterloo, Ontario N2L 3G1, Canada
gvcormack@plg.uwaterloo.ca

Research report CS-95-06

2. Objects as Models

An object is adata storewith a set of functions that
models some abstractentity. Each value of the store
models astate of the entity. Eachupdate− the
application of a function to modify the store −
models aneventthat affects the state of the entity.
The object models the entity if its store initially
models the entity’s state, and updates are performed
that model all events affecting the entity (figure 1).

Figure 1. Modeling an entity.

Object Entity
Data store State
Update Event

Models

Modeled by

In a sequential model, updates model events in the
order that they occur. Each update modeling an
ev ent relies on the the store modeling the state before
the event, and ensures that the store models the state
after the event. It is reasonably well understood how
to design sequential models for sequential events.

It is less well understood how to model concurrent
ev ents − events occurring from distinct sources for
which it is impossible to determine a temporal order.
One approach is to use a sequential model, which
dictates that an artificial order must be imposed on
the modeling of concurrent events. This serialization
may introduce unwanted delay: the update
corresponding to an event can be applied only after it
is determined that there could be no unmodeled
ev ent earlier in the order.

A concurrent model provides an alternative to
serializing concurrent events. In a concurrent model,
the update modeling an event may not rely on the
store modeling the state immediately before the
ev ent. The store may, in fact, model a state that
differs by the effect of several events. It is necessary
to define how updates should be applied in this

- 1 -

situation.

This paper presents a calculus for defining
concurrent models. A concurrent model is specified
by a sequential model augmented with definitions for
the concurrent application of all possible pairs of
elementary updates. From these definitions is
derived a consistent definition for all possible
concurrent update sequences.

The concurrent model is implemented by a set of
objects: one for each source of events. Each ev ent is
modeled at its source by an immediate update to the
corresponding object. A notice of the update is
transmitted to all other objects, which are updated to
model the same event as defined by the calculus.
Although the objects have different update orders,
each is a model for the same entity.

3. Modeling Sequential Events

We wish to model some abstract entity that takes on
states {Si } and is affected by events {Ei }. The effect
of an event Ei on an entity with stateSi is to
transform it to a new stateSj − this transformation is
denotedSi < Ei > Sj . The model is constructed from
an object whose store takes on values {Xi }
manipulated by update functions {Fi }. An update,
denotedFi : Xi is the replacement of a specific data
valueXi by Fi (Xi).

The sequential model maintains a homomorphic
mapping from values to states, and from updates to
ev ents. This mapping is denotedM: M(Xi) = Si

means that the valueXi models the stateSi ;
M(Fi : Xi) = Ei means that the updateFi : Xi models
the event Ei . By definition, if Si < Ei > Sj and
M(Xi) = Si andM(Fi : Xi) = Ei it must be the case that
M(Fi (Xi)) = Sj . Therefore, the stateSn resulting
from the transformation ofS0 by the sequence of
ev entsE1E2

. . .En on S0, denoted
S0 < E1E2

. . .En > Sn,
is modeled by

Fn(Fn−1(. . .F1(X0)))
whereM(X0) = S0 and

M(Fi : Fi−1(. . .F1(X0))) = Ei (0 < i ≤ n).

U is avalid update sequence with respect toX0 if
U = F1: X0 F2: X1

. . .Fn: Xn−1

where Xi = Fi (Xi−1) (0 < i ≤ n) . The result of
applyingU to X0 is

U(X0) = Fn(Fn−1(. . .F1(X0))) .
U models the sequence of eventsE1E2

. . .En where
Ei = M(Fi : Xi−1) (0 < i ≤ n).

In addition, we know that
M(X0) < E1E2

. . .En > M(U(X0)).

4. Modeling Pairs of Concurrent Events

Consider two concurrent eventsE1 andE2 affecting a
common stateS0. Individually, E1 and E2 transform
S0 to S1 andS2 respectively; that is,S0 < E1 > S1 and
S0 < E2 > S2. Since the relative order ofE1 andE2 is
unknown, the combined effect ofE1 andE2 might be
to transform S0 to either S12 or S21 where
S0 < E1E2 > S12 andS0 < E2E1 > S21. It is not true in
general thatS12 = S21 − the combined meaning of
concurrent events must be defined in terms of some
arbitraryevent order.

Our model for the combined effect of concurrent
ev ents is built from the sequential model for each
ev ent. Consider F1, F2 and X such that
E1 = M(F1: X) and E2 = M(F2: X) and S0 = M(X).
One might consider constructing the update
sequenceF1: X F2: X, but this sequence is not valid
with respect toX because it is not true in general that
F1(X) = X. Another approach might be to construct
the sequenceF1: X F2: F1(X) − this sequence may be
valid but does not modelE1E2 because it is not true
in general thatM(F2: X) = M(F2: F1(X)).

If we find F ′ such thatM(F ′: F1(X)) = M(F2: X),
we can model E1E2 by the update sequence
U = F1: X F′: F1(X). We can model S12 where
S0 < E1E2 > S12 by U(X0). One approach to finding a
suitableF ′ might be to require the implementor to
provide an axiomatic definition ofM, and to use this
definition to derive a suitableF ′. We do not regard
this as a viable approach, asM is an intangible
mapping only tacitly defined by a sequential object.

Our approach is based on an axiomatization of the
equivalence relation=M defined as follows:

Fi : Xj =M Fk: Xm

means that
M(Fi : Xj) = M(Fk: Xm) ,

and
F1: X1

. . . Fn: Xn =M G1: Y1
. . . Gn: Yn

means that
Fi : Xi =M GiYi (0 < i ≤ n) .

That is, we do not have to define the meaning of
updates; we define instead equivalence classes of
updates having the same meaning. Using this
definition we construct a common model for
concurrent events from separate sequential models
for the same events.

A second equivalence relation=X relates update
sequences with a common effect. We say that

U1 =X U2

if U1 andU2 are valid update sequences with respect
to the same valueX and

- 2 -

U1(X) = U2(X) .
=X is used to construct alternative models for the
state of an object.

A canonical model for E1E2
. . .En is a valid update

sequence
U1 = F1: X0 F2: X1 Fn: Xn−1

where
M(Fi : Xi−1) = Ei (0 < i ≤ n).

It follows from the definition of =M that any
U2 =M U1 is also a canonical model for the same
ev ent sequence. Any other other update sequence
U3 =X U2 =M U1 is anoncanonicalmodel for the same
ev ent sequence, as it has exactly the same effect on
the store as the canonical modelU2.

4.1. Axioms for =M

A definition of the operator/ (read after) must be
specified for all pairs of update functionsF1 and F2

such that
F1/F2 ∈ { Fi } and for allX ∈ dom(F1) ∩ dom(F2)

F1: X =M F1/F2: F2(X) .

That is, F1/F2: F2(X) is defined to model the same
ev ent asF1: X after the updateF2: X.

Consider two concurrent eventsE1 and E2

modeled separately asF1: X and F2: X. Building a
common model requires that the events be
sequenced: a canonical model forE1E2 is

F1: X F2/F1: F1(X) ,
while a canonical model forE2E1 is

F2: X F1/F2: F2(X) .
In a canonical model, updates modeling individual
ev ents are applied in the chosen event order.

4.2. Axioms for =X

The concurrent model relies on being able to
construct noncanonical models in which updates
corresponding to events are applied in a different
order. Such update sequences are specified using a
dual operator \ (readbefore), defined in terms of /
such that for allF1 , F2, andX

F1/F2(F2(X)) = F2\F1(F1(X)) ;
that is,

F1: X F2/F1: F1(X) =X F2: X F1\F2: F2(X) .

The first update sequence models the events in
canonical order; that is, updates modeling events are
applied in one-to-one correspondence and in the
same order as the events they model. The second
sequence is noncanonical: its first update modelsE2;
its second update does not modelE1 − rather it
transforms the data store as ifE1 had been modeled

beforeE2. Such noncanonical update sequences are
the essence of the concurrent model - it is possible to
model concurrent updates in various orders while
ensuring equivalence with a canonical update
sequence.

5. A Concrete Example - A Shared Text Buffer

Figure 2 gives / and \ modeling concurrent edits to a
text buffer, as used in a simple text editor. The data
store is a variable-length array of characters with two
parameterized update functions:

Inser t(position, string)
Delete(position, length)

Insert addsstring to the array atposition, moving the
following characters to make room. Delete removes
length characters from the array starting atposition.
While a text editor typically offers the user a large
number of editing operations, each may be reduced
to some combination of Insert and Delete.

The buffer
"the brown fox jumps over the dog"

may be subject to the concurrent updates
Inser t(5, "quick ")
Inser t(30, "lazy ")

intended to change the buffer to
"the quick brown fox jumps over the dog"

and
"the brown fox jumps over the lazy dog"

respectively. Informally, the events modeled by
these updates are

insert the wordquick betweenthe andbrown
and

insert the wordlazy betweenthe anddog.
The result of modeling this pair of events in either
order should be

"the quick brown fox jumps over the lazy dog".
If the updates are applied in the above order without
modification, the result is inappropriate:

"the quick brown fox jumps ovelazy r the dog".
To model the second event correctly, it is necessary
to transform the second update:

Inser t(30, "lazy ") / Insert(5,"quick ")
= Inser t(36, "lazy ") .

Events are not always commutative. Consider the
pair of updates

Inser t(5,"quick ")
Inser t(5,"sly ")

modeling the concurrent events insertingquick and
sly at the same position in the buffer.

The result of modeling these events might be
"the quick sly brown fox jumps over the dog"

- 3 -

Figure 2. / and \ for text buffer.

Inser t(p1,s1) / Inser t(p2,s2) =
Inser t(p1,s1) (p1 < p2)
Inser t(p1+ s2 ,s1) (p2 ≤ p1)

Inser t(p1,s1) \ Inser t(p2,s2) =
Inser t(p1,s1) (p1 ≤ p2)
Inser t(p1+ s2) (p2 < p1)

Delete(p1,l1) / Delete(p2,l2) =
Delete(p1,l1) (p1 + l1 ≤ p2)
Delete(p1,p2-p1)

(p1 ≤ p2 ≤ p1 + l1 ≤ p2 + l2)
Delete(p1,l1-l2) (p1 ≤ p2 ≤ p2 + l2 ≤ p1 + l1)
Delete(p2,0) (p2 ≤ p1 ≤ p1 + l1 ≤ p2 + l2)
Delete(p2,p1+l1-p2+l2)

(p2 ≤ p1 ≤ p2 + l2 ≤ p1 + l1)
Delete(p1-l2,l1) (p2 + l2 ≤ p1)

Delete(p1,l1) \ Delete(p2,l2) =
Delete(p1,l1) / Delete(p2,l2)

Delete(p1,l1) / Insert(p2,s2) =
Delete(p1,l1) (p1 + l1 ≤ p2)
Delete(p1,l1+ s2) (p1 ≤ p2 < p1 + l1)
Delete(p1+ s2 ,l1) (p2 < p1)

Inser t(p1,s1) / Delete(p2,l2) =
Inser t(p1,s1) (p1 ≤ p2)
Inser t(p2,"") (p2 < p1 < p2 + l2)
Inser t(p1-l2,s1) (p2 + l2 ≤ p1)

Delete(p1,l1) \ Insert(p2,s2) =
Delete(p1,l1) / Insert(p2,s2)

Inser t(p1,s2) \ Delete(p2,l2) =
Inser t(p1,s2) / Delete(p2,s2)

or
"the sly quick brown fox jumps over the dog"

depending on the arbitrary order chosen for the
concurrent events. Using the definition of / in figure
2, the stated event order yields the first result, and the
opposite order yields the second. The use of \ allows
the update order to be reversed while yielding the
same result.

The case of concurrent deletions is handled in a
similar manner, except that overlapping deletions are
modified to eliminate the overlap: Delete events are
commutative and therefore the definitions of / and \
are identical.

Finally, deletions and insertions may be
concurrent with one another. In the case that the
deleted interval contains the insert position, the
insertion is nullified; otherwise the position of the
update is shifted as necessary. Deletions and
insertions are commutative with respect to one
another. For example, consider the updates

Delete(21,13)
Inser t(30,"sly ")

modeling the events
delete"over the dog "
insertsly betweenthe anddog .

Regardless of event order, the deletion extends to
include the insertion ofsly, resulting in

"the brown fox jumps"

These axioms specify precisely a reasonable model
for concurrent text buffer edits. Other definitions are
possible for text buffers and for other objects. It is
impossible to say that any particular set of axioms is
right or wrong; different axioms merely model
different abstractions. As in the design of sequential
objects, it is the responsibility of the implementor to
ensure that the model aptly represents the intended
abstraction.

6. Modeling sets of events

Consider the set of events{ Ei } modeled individually
by elements of{ Fi : Xi } . We wish to construct a
common model for all the events according to some
specific event order. It is convenient to denote the
ev ent order by affixing to each update a unique
timestamp T, totally ordered by the relation< ;
T1 < T2 indicates that the event modeled byF1: X1: T1

precedes the event modeled byF2: X2: T2 in the event
order. In all other respectsF : X: T represents the
same update asF : X.

Let W be a set of updates with unique timestamps.
W denotes the event sequenceE1E2

. . .En where
Ei = M(Fi : Xi : Ti) (0 < i ≤ n) and
Ti < Ti+1 (0 < i < n) and
W = { Fi : Xi : Ti } .

A valid sequenceU is acanonical formfor W if
U = F ′1: X′1: T1

. . .F ′n: X′n: Tn

where
X′1 = X1 and
F ′i : X′i : Ti =M Fi : Xi : Ti (0 < i ≤ n) and
Ti < Ti+1 (0 < i < n) and
W = { Fi : Xi : Ti } .

U clearly models the set of events denoted byW, as
does anyU ′ =X U . Unfortunately, it is not possible to
find a canonical form for arbitraryW. The algorithm

- 4 -

manipulates onlyW known to have a specific
canonical form, denoted[W] (figure 5, section 7.3).

7. The concurrent model

The concurrent model is implemented by one object
per source of events. Each object models directly the
ev ents from a particular source. In addition, each
object transmits its updates to all other objects. Each
object merges its own updates with those of the other
objects. Each object thus converges toward a
common model for all events from all sources.

An implementation framework for the concurrent
model involves the execution of the same algorithm
for each object (figure 3). Timestamps must have
two orderings: the partial ordering⊂ must
implement exactly Lamport’s (1978)happened
before relation, and the total ordering< may be
chosen arbitrarily provided it is consistent with⊂ .
T0 is the minimal timestamp; that is,T0 < T and
T0 ⊂ T for all T ≠ T0.

Figure 3 . CCU Algorithm at Site s.

Initialization:
Xs ← X0 − data store
Ws ← {} − update history
Ts ← T0 − timestamp

Occurrence of local event E:
deter mine F such that M(F : Xs) = E
compute globally unique T such that

Ts ⊂ T
Ti ⊂/ T (Fi : Xi : Ti ∈/ Ws)

transmit Ts, T, F to other sites
Ws ← Ws ∪ { F : Xs: T}
Xs ← F(Xs)
Ts ← T

Receipt of message Tr , T, F :
delay until Tr ⊆ Ts

Ws ← Ws ∪ { F : Xr : T}
where Xr = [{ Fi : Xi : Ti ∈ Ws Ti ⊆ Tr }] (X0)

Xs ← [Ws](X0)
compute T ′ such that

Ts ⊆ T ′
T ⊆ T ′
Ti ⊂/ T ′ (Fi : Xi : Ti ∈/ Ws)

Ts ← T ′

Several issues must be addressed in order to
transform this conceptual implementation into
concrete algorithms and data structures.T must be
computed so as to generate globally unique
timestamps with the total order< (event order) and
the partial order ⊂ (causal order). A delay
mechanism must hold the processing of updates
whose causal prerequisites have not yet arrived due
to transmission latency. A reliable delivery
mechanism must ensure that all transmitted
messages are eventually received by all sites, albeit
with arbitrary delay and arrival order. Finally, an
algorithm must be found to computeU(X0) whereU
is a canonical form for Ws. As mentioned
previously, it is not possible to compute a canonical
form for arbitraryW, but a solution[Ws] exists for
the specific class ofW that arise in the concurrent
model outlined here.

7.1. Timestamp generation

We must be able to generate locally and without
delay a timestamp meeting two ordering criteria: the
total event order< and the partial causal order⊂ .
The generated timestamp must succeed in event
order and in causal order every element of a known
set (the timestamps ofWs). The timestamp must be
unique among timestamps generated at all sites, and
must not succeed in causal order any generated
timestamp other than those inWs.

A suitable timestamp forn sites is of a vector ofn
integers. The causal order⊂ is correctly
implemented by:

T1 ⊂ T2 if T1 ⊆ T2 andT1 ≠ T2

where ⊆ is the conjunction of element comparisons:
(a0a1

. . .am) ⊆ (b0b1
. . .bm)

if ai ≤ bi (0 ≤ i ≤ m)

A suitable total event order< is implemented as
simple vector comparison:

(a0a1
. . .am) < (b0b1

. . .bm)
if a0 < b0

or a0 = b0 and(a1
. . .am) < (b1

. . .am)

The sites are statically numbered from0 to n − 1, and
at site s a new timestampT succeeding any
timestamp inW is defined as

T[s] = 1 + Ts[s]
T[i] = Ts[i] (i ≠ s) .

7.2. Delay and reliable message delivery

The notice of an update cannot be processed until
ev ery event that causally precedes the update has
been modeled. If this is not the case, it is because

- 5 -

the notice of a causally preceding update is delayed
or lost. In this case processing the message is
delayed until the preceding update arrives or is
recovered. This delay is accomplished by queuing
the incoming message; the processing of other
updates is unaffected.

The timestamp generation strategy ensures that
timestampsT1 and T2 generated consecutively at a
given site t have consecutive integral values at
position t; that is,T2[t] = T1[t] + 1. Whenever delay
occurs, it must be the case thatTs[t] < Tr [t] for some
t, indicating that a message withTr [t] was sent byt
but not yet received bys. A retransmission protocol
may be invoked to recover the message fromr , from
t, or from any other site that has previously received
the missing message. Duplicate messages arising
from spurious retransmission have no effect.
Network partitioning is merely another form of
delay; the models in separate partitions proceed
independently, and when connectivity is re-
established, they are merged automatically.

Thus it is possible to meld a retransmission
protocol with the concurrent model, because the
model is insensitive to transmission delay and
delivery order, and because the timestamp provides
the necessary information to detect missing and
duplicated messages. The specific details of a
recovery protocol are omitted from this presentation,
and the reader is referred to Birman et al (1991) for
further details. Our presentation simply assumes that
all messages are eventually delivered.

7.3. Finding canonical forms

The simplest setW for which a canonical form is
known is the set of elements of a valid update
sequence. That is, ifU = F1: X1: T1

. . .Fn: Xn: Tn is a
canonical sequence andW = { Fi : Xi : Ti (1 ≤ i ≤ n)} ,
[W] = U .

The operator ˆ, defined in figure 4, is used to
append a valid sequence to another that is concurrent
with it (i.e. valid with respect to the sameX). The
empty sequenceλ is valid with respect to anyX.

Theorem 1. GivenU1 andU2 both valid with respect
to X and having disjoint timestamps,

U1(U2ˆU1) =X U2(U1ˆU2) .

Proof. If U1 = λ or U2 = λ the theorem holds
trivially. For U1 ≠ λ and U2 ≠ λ , the theorem is
proved by induction onn = U1 + U2 ≥ 2. If n = 2,
we haveU1 = F1: X: T1 andU2 = F2: X: T2 and either
T1 < T2 or T2 < T1. In either case, the theorem holds

Figure 4. Definition of ˆ.

F1: X: T1ˆ F2: X: T2 =
F1/F2: F2(X): T1 (T2 < T1)
F1\,F2: F2(X): T1 (T1 < T2)

Uˆ λ = U

λ ˆU = λ

U1ˆ (U2U3) =X (U1ˆU2)ˆU3

(U1U2)ˆU3 =X (U1ˆU3)(U2ˆ (U3ˆU1))

by the definitions of̂ , /, and \. Forn > 2, we assume
by induction the theorem holds for allU ′1 and U ′2
where2 ≤ U ′1 + U ′2 < n. Sincen > 2 it must be the
case that eitherU1 = U1aU1b (U1a ≠ λ andU1b ≠ λ) or
U2 = U2aU2b (U2a ≠ λ and U2b ≠ λ). In the first case
we begin with

U1(U2ˆU1)

and substitute at each step the underlined sequence
by an equivalent:

=X U1aU1b(U2ˆ (U1aU1b) [subst =]

=X U1a(U1b((U2ˆU1a)ˆU1b)) [defn ˆ]

=X U1a(U2ˆU1a)(U1bˆ (U2ˆU1a)) [induction]

=X U2(U1aˆU2)(U1bˆ (U2ˆU1a)) [induction]

=X U2((U1aU1b)ˆU2) [defn ˆ]

=X U2(U1ˆU2) [subst =]

In the second case we have

U1(U2ˆU1)

=X U1((U2aU2b)ˆU1) [subst =]

=X U1(U2aˆU1)(U2bˆ (U1ˆU2a)) [defn ˆ]

=X U2a(U1ˆU2a)(U2bˆ (U1ˆU2a)) [induction]

=X U2aU2b((U1ˆU2a)ˆU2b) [induction]

=X U2aU2b(U1ˆ (U2aU2b)) [defn ˆ]

=X U2(U1ˆU2) [subst =]

The operator (figure 5) is used to append the
canonical form of one setW1 to that of another,W2.
In the special case thatW2 is empty, computes the
canonical form[W1]. We say thatW is valid with
respect to X0 if for every F : X: T ∈ W,
X = [W⊂ F :X:T](X0), where W⊂ F :X:T denotes
{ Fi : Xi : Ti ∈ W Ti ⊂ T} . We say thatW1 andW2 are
mutually valid with respect toX if W1, W2 and

- 6 -

W1 ∪ W2 are all valid with respect toX. In addition,
we use the notation W<F :X:T to denote
{ Fi ∈ W: Xi : Ti Ti < T} .

Figure 5. Definitions of and [] .

W W = λ

W1 W2 =
(W<u

1 W2) (uˆ (W<u W⊂ u)) if u ∈/ W2

(W<u
1 W<u

2)ˆ (uˆ (W<u
2 W⊂ u)) if u ∈ W2

where
W = W1 ∪ W2

u = Fu: Xu: Tu ∈ W such that
Ti ≤ Tu for all Fi : Xi : Ti ∈ W

[W] = W {} = [W<u] uˆ (W<u W⊂ u)

where
u = Fu: Xu: Tu ∈ W such that

Ti ≤ Tu for all Fi : Xi : Ti ∈ W

Theorem 2. Given W1 and W2 mutually valid with
respect toX,

[W2] (W1 W2) =X [W1 ∪ W2] .

Proof. The theorem is proved by induction on
n = W1 + W2 . For n = 0 we haveW1 = W2 and the
theorem holds trivially. Forn > 0, we assume by
induction that the theorem holds forW′1 and W′2
such that0 ≤ W′1 + W′2 < n.
Let W = W1 ∪ W2 and u = Fu: Xu: Tu ∈ W such that
Ti ≤ Tu for all Fi : Xi : Ti ∈ W. Eitheru ∈ W2 or u ∈/ W2.
Consider the case ofu ∈/ W2.

[W2] (W1 W2)

=X [W2] (W<u
1 W2) (uˆ (W<u W⊂ u)) [defn]

=X [W<u] (uˆ (W<u W⊂ u)) [induction]

=X [W] [defn []]

Now consider the case ofu ∈ W2.

[W2] (W1 W2)

=X [W<u
2] uˆ (W<u

2 W⊂ u
2) (W1 W2) [defn []]

=X [W<u
2] uˆ (W<u

2 W⊂ u) (W1 W2) [W valid]

=X [W⊂ u] (W<u
2 W⊂ u) uˆ (W<u

2 W⊂ u) (W1 W2) [ind.]

=X [W⊂ u] u (W<u
2 W⊂ u)ˆ u (W1 W2) [theorem 1]

=X [W⊂ u] u (W<u
2 W⊂ u)ˆ u (W<u

1 W<u
2)ˆ (uˆ (W<u

2 W⊂ u))

[defn]

=X [W⊂ u] u ((W<u
2 W⊂ u) (W<u

1 W<u
2))ˆ u [defn ˆ]

By the inductive assumption and becauseW⊂ u ⊆ W<u
2

we know that
[W<u

2] =X [W⊂ u] (W<u
2 W⊂ u).

Also by the inductive assumption we know that
[W<u] =X [W<u

2] (W<u
1 W<u

2)
and

[W<u] =X [W⊂ u] (W<u W⊂ u).
Solving these three equations yields

W<u W⊂ u =X (W<u
2 W⊂ u) (W<u

1 W<u
2).

This equation is substituted into the underlined
subsequence above to showthat

[W2] (W1 W2)

=X [W⊂ u] u (W<u W⊂ u)ˆ u

=X [W⊂ u] (W<u W⊂ u) uˆ (W<u W⊂ u) [theorem 1]

=X [W<u] uˆ (W<u W⊂ u) [induction]

=X [W] [defn []]

Theorem 3. If W is valid with respect to someX,
[W] is a canonical form forW.

Proof. By straightforward induction on then = W .
The key observation is that if[W1] is a canonical
form for W1 valid with respect toX and [W2] is a
canonical form forW2 valid with respect to[W1] (X),
[W1] [W2] is valid with respect toX and is a canonical
form for W1 ∪ W2.

Theorem 4: Convergence of CCU algorithm.The
data store at each site converges to a common value
that models a common entity as affected by the set of
ev ents at all sites.

Proof. Every event causes one message to be
generated. The message delivery mechanism ensures
that each message transmitted or received is added to
Ws. Therefore as messages are deliveredWs

approaches a common value for alls. Theorem 2
shows that[Ws] and thereforeXs also approach a
common value, and theorem 3 shows that they model
a common entity.

Corollary. When there are no messages in transit,
the stores at all sites are equal.

8. Implementation Considerations

It is unnecessary to storeWs or to compute[Ws] in its
entirety. Theorem 2 permits the two statements

Ws ← Ws ∪ { F : Xr : T}
Xs ← [Ws](X0)

to be replaced by

- 7 -

Xs ← ((Ws ∪ { F : Xr : T)}) Ws) (Xs)
Ws ← Ws ∪ { F : Xr : T}

Computing occasions computation only to the
extent thatWs differs from Wr ; if there have been
have been no out-of-order messages,Ws will differ
from Wr only in the number of messages transmitted
by s that r had not received at the time the incoming
message was sent. Each element ofWs must be
maintained at sites only until it is known that every
other site has processed it. ThusWs is really a
queue. Theproperty of that it never references
elements in common betweenWs and Wr ensures
that purged elements are never accessed. All set
operations are performed on timestamps representing
subsets of this queue.

In the 2-site case, there is a particularly simple
implementation. At siteS, rather than storingWs we
storeUs = Ws Wr , whereWr is the last known value
of Wr . When a new messageTr , T, F arrives, we
must compute

Us ← Us less any elements Fi : Xi : Ti with Ti ⊆ Tr

Xs ← (F : Xr : T ˆ Us)(Xs)
Us ← Us ˆ F : Xr : T

The size of Us is bounded by the number of
unacknowledged messages, and the time necessary
to effect a remote update is linear in the size ofUs.

The n-site case is more problematic. It is
relatively simple to storeWs as a set, but the
algorithm for remote update is doubly recursive and
potentially requires exponential time in the number
of unacknowledged messages. In practice, it may be
that only pathological combinations of transmission
delay result in an exponential running time; the
investigation of this phenomenon provides an
interesting avenue for future research.

The simplest n-site algorithm is a star built from
multiple versions of the 2-site implementation, with
site 0 at the hub. It is important that site 0 be at the
hub, because the canonical order over all sites must
be the order that they are processed at the hub.
Vadura (1994) has used this approach to build a
shared text editor based on EMACS. Various tree
topologies might be used; care would have to be
taken to ensure a valid canonical ordering. An n-site
broadcast algorithm could be built along the lines of
the 2-site algorithm with a set ofn − 1 Ur at each
site − i.e. oneUr for each remote site. A broadcast
topology would have a number of advantages over a
tree in terms network performance and robustness.

9. Conclusions

Distributed concurrency control is of interest in
many disciplines including operating systems,
databases, simulation, and computer supported
collaborative work. Although Ellis and Gibbs
propose dOPT within the context of computer
supported collaborative work, it is unique and has
application within the context of each of these areas.
CCU advances the approach by providing a method
for reasoning about concurrent update and an
algorithm that is provably correct. The algorithm
applies to any object provided that / and \ are defined
for all pairs of update functionsf and g asserting
two axioms:

f : x g/ f : f (x) =X g: x f \ g: g(x)

g/ f : f (x) =M g: x .

Recent articles (Cheriton and Skeen 1993, 1994,
Birman 1993, 1994, van Renesse 1994, and Cooper
1994) have debated the benefits and liabilities of
causally and totally ordered communication systems.
Cheriton argues that total ordering is expensive to
implement, difficult to use, and causes unwanted
delay. Instead, he suggests that concurrency control
should be done in the application layer. Birman
argues that embedding concurrency control at the
application level is difficult and error-prone, and that
total ordering provides a good abstraction with
which to build applications. We offer CCU as a
compromise in this debate: it does not require totally
ordered communication, but it supports in a sense the
abstraction of a total order; it allows the specification
of application-level control mechanisms while
providing a system-level algorithm that maintains
consistency. In addition to being provided by an
operating system as a tool for application support,
we foresee CCU being used to implement objects
within distributed operating systems. A typical
example would be a file-system directory with
operations to create, destroy, rename, and modify the
attributes of files.

Bhargava (1987, p. 40) mentions the notion of
application-dependentreconciliation formulas to
merge transactions from a partitioned system, but
describes no method for their construction. CCU is
such a method. Bhargava’s example is trivial:
expressed in terms of CCU, the data store is a simple
integer and the only update isadd(k) which adds a
constantk to the store. For this example,

add(k) / add(j) = add(k) \ add(j) = add(k) .
To illustrate the use of CCU, we extend the example
slightly: instead of add(k), we use the update

- 8 -

function axb(a, b) which multiplies the store by a
constanta and adds another constantb. A definition
of / and \ that preserves these semantics is

axb(a1, b1) / axb(a2, b2) = axb(a1, b1)
axb(a1, b1) \ axb(a2, b2) = axb(a1, a2b1 − a1b2) .

In this case, / obviously preserves the semantics as
stated, and \ can be shown consistent using simple
algebra. The algorithm ensures that appropriate
algebraic manipulations are performed on concurrent
updates to yield a result exactly as if those updates
had been performed in some specific order.

Our notion of a total order is not the same as that
of serializability in database systems. The issue in
serializability is to examine the elementary data read
and written by transactions to deduce potentially
conflicting operations. From this information
serializable schedules may be deduced. Either delay
or rollback is used to avoid nonserializable
schedules. In a sense, CCU is used to make all
schedules serializable; it is conceivable that a partial
implementation of / and \ could be used to relax the
conditions under which transactions could proceed
without delay or rollback. It is also conceivable that
locks could be enforced (updates are annulled if the
lock is not held), or rollback could be effected (for
example,f /g = g−1) using CCU. It is also possible to
implement a lock or a circulating token as a CCU
object. Various other objects like error logs, buffers,
and user interfaces are amenable to definition with
CCU. A topic of future research is to examine to
what extent the semantics of existing control
mechanisms can be expressed using CCU as a tool.

Acknowledgments

The author thanks Charlie Clarke for his insightful
criticism. This research is supported by the Natural
Sciences and Engineering Research Council of
Canada.

References

Bhargava B.K. [ed.] (1987),Concurrency Control
and Reliability in Distributed Systems, Van Nostrand
Reinhold.

Birman K.B., Schiper A. and Stephenson P. (1991),
Lightweight causal and atomic group multicast,
ACM TOCS 9:3, 272-314.

Birman K. (1993),The process group approach to
reliable distributed computing, CACM 36:12,
December, 37-53.

Birman K. (1994), A response to Cheriton and
Skeen’s criticism of causal and totally ordered
communication, SIGOPS Review 28:1, January,
11-20.

Cheriton D.R. and Skeen (1993),Understanding the
limitations of causally and totally ordered
communication, ACM SIGOPS Symposium on
Operating Systems Principles, 44-57.

Cheriton D.R. and Skeen D. (1994),Comments on
the responses by Birman, van Renesse and Cooper,
SIGOPS review 28:1, January, 32.

Cooper R. (1994),Experience with causally and
totally ordered communication support − A
cautionary tale, SIGOPS Review 28:1, January,
28-31.

Ellis C.A. and Gibbs S.J. (1989),Concurrency
control in groupware systems, Proc. 19 ACM
SIGMOD Conference on Management of Data, in
ACM SIGMOD Record 18:2, 399-407.

Holtz B. (1991)CoEd − A shared text editor, Sun
Microsystems.ftp://plg.uwater loo.ca/pub/CoEd.

Lamport L. (1978),Time, clocks, and the ordering of
events in a distributed system, Commun. ACM
21:7, 558-565.

Vadura D. (1994) Elfe − Editing Live Files
Everywhere, University of Waterloo.
ftp://plg.uwater loo.ca/pub/elfe.

van Renesse R. (1994),Why bother with CATOCS?,
SIGOPS Review 28:1, January, 22-27.

- 9 -

Appendix A − Counterexample to dOPT

The dOPT algorithm is given in figure A1. The
definition of the priority function is elided because
Ellis and Gibbs give sev eral possibilities and the
counterexample demonstrates that dOPT fails
regardless of the definition. The set of update
operations used here (figure 2) is more general than
that of Ellis and Gibbs but yields an identical result
for this example. An unpublished variant of dOPT
due to Holtz (1991) fails the counterexample with an
identical result.

Consider a text object with an initial value of
abcdefg. Site 1 deletes thea while concurrently site
2 deletes thea and then thee (figure A2). That is,
site 1 takes on the valuebcdefg while site 2 takes on
the valuebcdfg, and three messages are transmitted:

< 1, (0, 0),delete(1, 1), p1) >

from site 1 to site 2, and

< 2, (0, 0),delete(1, 1), p2) >
< 2, (0, 1),delete(4, 1), p3) >

from site 2 to site 1. (p1, p2 andp3 may be chosen
arbitrarily.) When the message destined for site 2
arrives, its update is transformed todelete(1,0),
resulting in a final value at site 2 ofbcdfg. When
the first message destined for site 1 arrives, its update
is also transformed todelete(1,0), leaving site 1’s
value atbcdefg. The second message is transformed
(inappropriately) todelete(3,1), resulting in a final
value at site 1 ofbcefg. Since there are no messages
in transit and the two sites are unequal, the algorithm
is incorrect.

Figure A2. dOPT Counterexample.

Site 1 Site 2

abcdefg abcdefg
delete(1,1) delete(1,1)

bcdefg bcdefg
delete(4,1)
bcdfg
delete(1,0)
bcdfg

delete(1,0)
bcdefg

delete(3,1)
bcefg

Discussion

In relation to the two-site implementation, it is easy
to point out the flaw in dOPT. dOPT performs the
following computations on the arrival of a remote
message:

Figure A1 . dOPT Algorithm at Site s.

Initialization:
Xs ← X0 − data store
Ls ← λ − update log; initially empty
Ts ← (0, 0,. . .0) − timestamp

Occurrence of local update u
transmit < s, Ts, u, prio(s, u, . . .) > to other sites
Ls ← Ls, < s, Ts, u, prio(s, u, . . .) >
Xs ← u(Xs)
Ts[s] ← Ts[s] + 1

Receipt of message < r , Tr , u, p >
delay until Tr [i] ≤ Ts[i] for all i
for each < s′, T ′, u′, p′ > in L

if Tr [s′] ≤ T ′[s′] then
if p < p′ then

u ← u / u′
else

u ← u \ u′
L ← L, < r , Tr , u, p >
X ← u(X)
Ts[r] ← Ts[r] + 1

Us ← Us less any elements Fi : Xi : Ti with Ti ⊆ Tr

Xs ← (F : Xr : T ˆ Us)(Xs)
After this update,Us is not updated, and any
subsequent concurrent update will be transformed
incorrectly. The algorithm is corrected (for the two-
site case) by replacing the statements

u ← u / u′ andu ← u \ u′
by

u, u′ ← u / u′, u′ \ u andu, u′ ← u \ u′, u′ / u .

There does not appear to be any simple way to
correct dOPT for a general broadcast topology. It is
apparent that no simple single-queue implementation
can capture the exponential number of message
delivery orderings that may arise. Furthermore, the
use of priority in dOPT appears to belie that the
following definition of< is consistent with the causal
order ⊂ :

Ts < Tr =def

Ts ⊂ Tr or
Ts ⊂/ Tr andTr ⊂/ Ts ands < r .

Ellis and Gibbs suggest replacings < r in this
definition by a more complex priority scheme; it is
unclear whether the resulting definition of< is
consistent with⊂ .

- 10 -

