
User�s Guide to Grail

Version ���

Darrell Raymond�

Derick Wood�

January ����

� Department of Computer Science� University of Waterloo� Waterloo� Canada

� Department of Computer Science� Hong Kong University of Science and Tech�

nology� Kowloon� Hong Kong

��



table of contents

Introduction � ��

Objects � ��

Filters � ��

Minimizing machines � ��

Executing machines � ��

Language equivalence is not identity � �	

Using other alphabets � �	

Generating large machines � �


An extended example � ��

Implementation � ��

Acknowledgements � 
	

��



introduction

Grail is a collection of programs for manipulating �nite�state ma�

chines and regular expressions� Using Grail you can convert regular

expressions to �nite�state machines and vice versa
 you can minimize

machines
 make them deterministic
 execute them on input strings


enumerate their languages
 and perform many other useful activities�

Each of Grail �s facilities is provided as a �lter that can be used

as a standalone program
 or in combination with other �lters� Most

�lters take a machine or regular expression as input and produce a

new machine or expression as output� Expressions and machines can

be entered directly from the keyboard or �more usually� redirected

from �les� To convert a regular expression into a �nite�state machine


for example
 one might issue the following command�

� echo ��a�b���abc�� � retofm

�START� �� 	


 a �

� b 



 a 



 a �

� b 


� b �

	 a �

	 a 


	 a �

	 b 


	 b 


	 b �

� a �


 a �

	 a �

� c �


� b �

�
 �� �FINAL�

The �lter retofm converts its input regular expression to a nondeter�

ministic �nite�state machine
 which it prints on its standard output�

The machine is speci�ed as a list of instructions
 with some special

��



pseudo�instructions to indicate the states that are start and �nal�

The output of one �lter can be the input for another� for example


we can convert the machine back to a regular expression �the result

is folded here to �t onto the page��

� echo ��a�b���abc�� � retofm � fmtore

��aa�a�ba�a�a�b��b�ba�a��ba�aab�aab�aa�aab�ab�ba�aab�

��aa�a�ba�a�a�b��b�ba�a��b�b�ab�c

The �lter fmtore converts a machine to a regular expression� We

may choose to make the machine deterministic
 using the �lter fmdeterm


before converting it to a regular expression�

� echo ��a�b���abc�� � retofm � fmdeterm � fmtore

�aa�b�bb�aa�b��aa�b�bb�aa�b��c

We may choose to minimize the deterministic machine
 using the

�lter fmmin
 before converting it to a regular expression�

� echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmtore

b�aa�b�bb�aa�b�aa�b��c

We can test the membership of a string in the given language by

executing it on the machine�

� echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmexec �ababababc�

accepted

The �lter fmexec executes its input machine on an argument string

and prints accepted if the string is a member of the language of

the machine� Finally
 we can enumerate some of the strings in the

language of the machine�

� echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmenum �n �


abc

aabc

babc

aaabc

ababc

baabc

bbabc

aaaabc

�




aababc

abaabc

The �lter fmenum enumerates the language of a machine
 shortest

�rst and then in lexicographical order� the argument �n �
 speci�es

the number of strings to be printed�

objects

Grail manages regular expressions and �nite�state machines� Grail �s

regular expressions follow the conventional theoretical notation �not

the UNIX notation�� Each of the following is a regular expression�

fg empty set

�� empty string

a�b�A�Z any single letter

xy catenation of two expressions

x � y union of two expressions

x� Kleene star

Grail follows the normal rules of precedence for regular expres�

sions� Kleene star is highest
 next is catenation
 and lowest is union�

Parentheses can be used to override precedence� Internally
 Grail

stores regular expressions with the minimum number of parentheses

�even if you input it with redundant parentheses��

The conventional method for describing a �nite�state machine is

as a ��tuple of states
 labels
 instruction relation
 start state
 and

�nal states� In Grail 
 however
 machines are represented completely

by lists of instructions� The machine accepting the language ab
 for

example
 is given as�

�START� �� 



 a �

� b �

� �� �FINAL�

Each instruction is a triple that speci�es a source state
 a label


and a sink state� States are numbered with nonnegative integers


and labels are single letters� In addition
 the machine contains one

��



or more pseudo�instructions to indicate the start and �nal states�

Pseudo�instructions use the special labels �� and ��
 which can be

thought of as end�markers on the input stream� The label �� can

appear only with the �START� state
 and the label �� can appear only

with the �FINAL� state� �START� can appear only as a source state

of a pseudo�instruction
 and �FINAL� can appear only as a target

state of a pseudo�instruction�

Unlike the conventional model for machines
 Grail machines can

have more than one start state
 and �as with conventional machines�

more than one �nal state� Machines with more than one start state

are nondeterministic�

Transitions need not be ordered on submission to Grail � they�ll

be ordered internally in the process of being input� The output of

Grail �s �lters is not generally sorted�

filters

The following list provides a brief description of the �lters provided

by Grail � More details on individual �lters can be found by consult�

ing their man pages�

Predicates for �nite�state machines

The following �lters return � if the argument machine possesses the

desired property
 and 	 otherwise� A diagnostic message is also writ�

ten on standard error�

iscomp test a machine for completeness

isdeterm test a machine for determinism

isomorph test two machines for isomorphism

isuniv test a machine for universality

Filters for �nite�state machines

Among other functionality
 there are �lters for constructing �nite�

state machines
 complementing them
 completing them
 minimizing

them
 executing them
 and enumerating their languages�

��



fmcment complement a machine

fmcomp complete a machine

fmcat catenate two machines

fmcross cross product of two machines

fmdeterm make a machine deterministic

fmenum enumerate strings in the language of a machine

fmexec execute of a machine on a given string

fmmin minimize a machine by Hopcroft�s method

fmminrev minimize of a machine by reversal

fmplus plus of a machine

fmreach reduce of a machine to reachable states and instructions

fmrenum renumber a machine

fmreverse reverse a machine

fmstar star of a machine

fmtore convert of a machine to regular expression

fmunion union of two machines

Predicates for regular expressions

Currently
 there are only two predicates provided for regular expres�

sions�

isempty test for equivalence to empty set

isnull test for equivalence to empty string

Filters for regular expressions

In addition to the basic construction operations for regular expres�

sions �union
 catenation
 and star�
 Grail also supports conversion

of regular expressions to �nite�state machines�

recat catenate two regular expressions

remin minimal bracketing of a regular expression

restar Kleene star of a regular expression

retofm convert a regular expression to a machine

reunion union of two regular expressions

��



Minimizing machines

There are two ways to minimize machines� The standard method is

to minimize by repeatedly partitioning the set of states according to

di�erences in instruction labels� This method is implemented in the

Grail �lter fmmin� The second method
 introduced by Brzozowski


is to reverse the machine
 make it deterministic
 and repeat these

two steps� Using Grail 
 we can show that this procedure results in

an isomorphic result�

� cat dfm

�START� �� 



 a �


 b 	

� c �

� d 



 �� �FINAL�

	 e �

� f �

� �� �FINAL�

� fmmin �dfm � �out

� fmreverse �dfm � fmdeterm � fmreverse � fmdeterm �out�

� isomorph out out�

isomorphic

Brzozowski�s minimization technique is implemented by the Grail

�lter fmminrev�

executing machines

The �lter fmexec is used to execute a machine
 given an input string�

By default
 this �lter simply says whether a string is a member of

the language of the machine� For example
 we can apply fmexec to

the machine of the last section�

� fmexec dfm �acd�

��



accepted

� fmexec �d dfm �abc�

not accepted

If supplied with the �d option �for �diagnostic��
 fmexec will not

only check for acceptance
 but it will also indicate at each stage of

execution which instruction is being taken� Consider fmexec applied

to the following machine�

� cat nfm

�START� �� �

� a �

� a 


� b �


 b 


� c 	


 c �

	 d 	

� d �

	 �� �FINAL�

� �� �FINAL�

� fmexec �d nfm �abcd�

on a take instructions

� a �

� a 


on b take instructions

� b �


 b 


on c take instructions

� c 	


 c �

on d take instructions

	 d 	

� d �

terminate on final states 	 �

accepted

��



language equivalence is not identity

One of the standard problems in textbooks on automata theory is

to determine whether two regular expressions denote the same lan�

guage� This is di�cult because
 unlike machines
 minimal regular

expressions are not unique� One procedure for checking language

equivalence involves several steps� �i� convert the expressions to nfms

�ii� convert the nfms to dfms �iii� minimize the dfms �iv� test for iso�

morphism� If done manually
 this is a tedious process� however
 it

can be done easily with Grail simply by combining the appropriate

�lters� For example�

� echo ��rs�r��r� � retofm � fmdeterm � fmmin � �out�

� echo �r�sr�r��� � retofm � fmdeterm � fmmin � �out�

� isomorph out� out�

isomorphic

The two expressions are of the same size
 are minimal �we determine

this by inspection�
 and they denote the same language
 but they are

not identical�

Non�identical but language�equivalent regular expressions can also

be produced by Grail 
 without the user being aware of it�

using other alphabets

As distributed
 Grail can be compiled with �lters for three types

of alphabets� characters �used in the other examples in this paper�


ordered pairs of integers
 and regular expressions� A machine that

has ordered pairs of integers as its alphabet looks like this�

�START� �� 



 ����� �

� ����� �

� �
�	� �

� �� �FINAL�

We can convert this machine to a regular expression of ordered pairs�

� fPtorP op

������������
�	�

�	



We can enumerate the language of the machine
 generating a set of

strings of ordered pairs�

� fPenum �n �
 op

������
�	�

�����������
�	�

����������������
�	�

���������������������
�	�

��������������������������
�	�

�������������������������������
�	�

������������������������������������
�	�

�����������������������������������������
�	�

����������������������������������������������
�	�

���������������������������������������������������
�	�

We can complement the machine�

� fPcment op

�START� �� 



 ����� �

� ����� �

� �
�	� �


 ����� 



 �
�	� 


� ����� 


� ����� 


� �
�	� 


� ����� 



 ����� 



 ����� 



 �
�	� 



 �� �FINAL�


 �� �FINAL�

� �� �FINAL�

Grail does not have a separate speci�cation of the alphabet of its

machines� Thus
 its complement operator assumes that the set of

labels on the instructions de�nes the whole alphabet to be used for

the purpose of complement� This is particularly useful when the

��



alphabet is chosen from a potentially in�nite set
 like that of ordered

pairs��

We can also manipulate machines whose instruction labels are

regular expressions�

�START� �� 



 �ab�� �


 �ba�� �

� �a�b�c �


� �c�d�e��� 



 �x� 



 �� �FINAL�

Note that we use the angle brackets to delimit each regular expres�

sion� We can enumerate the language of this machine
 producing a

set of strings of regular expressions�

� fXenum �n �
 re

�ba���c�d�e���

�ab���a�b�c�ba���c�d�e���

�ba���c�d�e����x��ba���c�d�e���

�ab���a�b�c�ab���a�b�c�ba���c�d�e���

�ba���c�d�e����x��ab���a�b�c�ba���c�d�e���

�ab���a�b�c�ba���c�d�e����x��ba���c�d�e���

�ba���c�d�e����x��ba���c�d�e����x��ba���c�d�e���

�ab���a�b�c�ab���a�b�c�ab���a�b�c�ba���c�d�e���

�ba���c�d�e����x��ab���a�b�c�ab���a�b�c�ba���c�d�e���

�ab���a�b�c�ba���c�d�e����x��ab���a�b�c�ba���c�d�e���

We can also complete the machine �that is
 produce an equivalent

machine in which every state has an instruction on every symbol��

Completion
 like complement
 is done with respect to the limited

alphabet of only those labels that appear on the instructions of the

input machine�

� fXcomp re

� If the alphabet de�ned by a given machine�s instructions is incomplete� it

is always possible to generate a language�equivalent machine with additional

labels� simply by adding instructions with those labels to a non��nal sink

state�

��



�START� �� 



 �ba�� �


 �ab�� �

� �a�b�c 


� �c�d�e��� 



 �x� 



 �a�b�c 	


 �c�d�e��� 	


 �x� 	


 �ba�� 	


 �ab�� 	


 �a�b�c 	


 �c�d�e��� 	

� �ba�� 	

� �ab�� 	

� �a�b�c 	

� �x� 	

� �ba�� 	

� �ab�� 	

� �c�d�e��� 	

� �x� 	

	 �ba�� 	

	 �ab�� 	

	 �a�b�c 	

	 �c�d�e��� 	

	 �x� 	


 �� �FINAL�

Finally
 we can generate a regular expression corresponding to the

complete machine�

� fXcomp re � fXtorX

� bin�fXcomp remach � bin�fXtorX

�ba����c�d�e����x��ba�����c�d�e������ab����ba����c�d�e���

�x��ba�����c�d�e����x��ab�����a�b�c�ab����a�b�c�ba����c�

d�e����x��ba���� �c�d�e����x��ab�����a�b�c�ba����c�d�e���

�x��ba�����c�d�e���

Notice that the names of the �lters for these special alphabets

are simple modi�cations of the names of the �lters for the standard

��



alphabet� We use fP and rP in �lters for machines and expressions of

ordered pairs
 and fX and rX for machines and expressions of regular

expressions�

generating large machines

Our previous examples showed Grail �lters being used in pipelines�

Grail �lters can also be used in general purpose shell scripts� Since

machines and expressions are stored as text �les
 they can also be

processed with standard �lters� In the following session
 we output

a machine �to display its content�
 then apply cross product recur�

sively to the machine
 using wc to compute the size of the resulting

machines�

� cat nfm

�START� �� 



 a �


 a �

� �� �FINAL�

� �� �FINAL�

� for i in � � 
 	

� do

� bin�fmcross nfm nfm �tmp

� mv tmp nfm

� wc nfm

� done

� �� �� nfm



 �� 
�� nfm

��
 ��
� ���� nfm

�
�
�
 
�
��� ���
��
 nfm

�

As we recursively apply cross product
 the resulting machines grow

in size very rapidly
 as does Grail �s use of memory� it requires almost

�	 Mbytes to compute the last iteration of cross product�

The preceding script was written in the Bourne shell �sh� rather

than the C�shell �csh�� We could just as easily have called Grail

�




�lters from ksh
 bash
 tcsh
 vi
 or any other program that can

launch processes as part of its activity�

The machines generated by cross product of a machine with itself

have the same language �as before
 we can determine this by mak�

ing the result of the cross product deterministic
 minimizing
 and

checking for isomorphism�� Generating large machines for a given

language is useful for evaluating the performance of other Grail �l�

ters�

an extended example

In this section we show how Grail can be used to do some simple

lexical processing�

We start with a regular expression that de�nes the language con�

sisting of C�� keywords� This can be converted to a �nite�state ma�

chine� The conversion is nondeterministic
 incomplete
 and nonuni�

versal�

� cat keywd

asm�auto�break�case�catch�char�class�const�continu

e�default�delete�do�double�else�enum�extern�float�

for�friend�goto�if�inline�int�long�new�operator�pr

ivate�protected�public�register�return�short�signe

d�sizeof�static�struct�switch�template�this�throw�

try�typedef�union�unsigned�virtual�void�volatile�w

hile

� retofm keywd �key�fm

� isdeterm key�fm

nondeterministic

� iscomp key�fm

not complete

� isuniv key�fm

nonuniversal

We can make the machine deterministic and then minimize it
 us�

��



ing either Hopcroft�s algorithm or reversal and subset construction�

The results of the two algorithms are isomorphic
 but they are only

language�equivalent with the original machine�

� fmdeterm key�fm �key�det

� isdeterm key�det

deterministic

� fmminrev key�det �key�mv

� fmmin key�det �key�min

� isomorph key�mv key�min

isomorphic

� isomorph key�mv key�fm

nonisomorphic

Using wc shows us the sizes of the machines that are produced�

� retofm keywd � wc


�
 �
�� 
���

� retofm keywd � fmdeterm � wc

��
 ��� ����

� retofm keywd � fmdeterm � fmmin � wc

��� ��� �	��

We can enumerate the language of the result� Note that the keywords

are produced in order of their length
 and then sorted lexicographi�

cally�

� fmenum key�det

do

if

asm

for

int

��



new

try

auto

case

char

else

enum

goto

long

this

void

break

catch

class

const

float

short

throw

union

while

delete

double

extern

friend

inline

public

return

signed

sizeof

static

struct

switch

default

private

typedef

virtual

continue

operator

��



register

template

unsigned

volatile

protected

We can execute the machines with various strings and
 using the �d

option
 show the instructions that are executed at each point�

� fmexec key�det �protected�

accepted

� fmexec �d key�fm �priVate�

on p take instructions

�		 p �	�

��� p ���

��� p ���

on r take instructions

�	� r �	�

��� r ���

on i take instructions

�	� i �	�

no states acccessible on V

not accepted

Next we produce the complementary machine
 which will accept any

string other than the C�� keywords� This is useful for determining

a subset of valid identi�ers� We enumerate the �rst �� of these �note

that the empty string is not a keyword
 though of course it is not

an identi�er either�� We can test potential identi�ers by executing

them on the complement machine�

� fmcment key�mv �key�cment

� fmenum �n �� key�cment

a

b

c

d

��



e

f

g

h

i

k

l

m

n

o

� fmexec �d key�cment �protectx�

on p take instructions


 p ��

on r take instructions

�� r 	�

on o take instructions

	� o ��

on t take instructions

�� t �
�

on e take instructions

�
� e ��


on c take instructions

��
 c ���

on t take instructions

��� t �


on x take instructions

�
 x ���

terminate on final states ���

accepted

implementation

Grail is written in C��� It includes classes for regular expressions

�re� and standard �nite�state machines �fm�� It includes its own

array
 string
 list
 and set classes
 which are also useful for program�

ming that does not involve machines or expressions� The class library

��



provides all the capabilities of the �lters and more
 accessible directly

from a C�� program� For more information on programming with

the Grail class library
 consult the Programmer�s Guide to Grail�

acknowledgements

This research was supported by grants from the Natural Sciences

and Engineering Research Council of Canada
 and the Information

Technology Research Centre of Ontario� The �rst author was also

supported by an IBM Canada Research Fellowship�

Darrell Raymond can be reached at drraymon�daisy�uwaterloo�ca�

Derick Wood can be reached at dwood�cs�ust�hk�


	


