
Programmer�s Guide to Grail

Version ���

Darrell Raymond�

January ����

� Department of Computer Science� University of Waterloo� Waterloo� Canada

��

table of contents

Introduction � ��

Working with Grail � ��

Organization of the �les � ��

Compiling � ��

Testing � �	

Filters � �

Classes � ��

Changing and extending Grail � ��

Adding a new Grail �lter � ��

Adding a new alphabet to Grail � ��

Modifying Grail �s classes � 	�

Pro�ling � 	�

Miscellaneous � 	�

Changes in version ��� � 	�

Changes in version ��� � 	

Changes in version ��� � 	�

Changes in version ��
 � ��

Changes in version ��� � ��

��

Introduction

This document is about programming with the Grail class library� It

describes how to compile� test� and pro�le Grail � how to write C��

programs using Grail � and how to modify and extend Grail �

If you plan only to install Grail with its standard �lters� then

you need to read only the �rst few sections of the document� which

describe the organization of the �le system and how to go about

compiling and testing Grail � It isn�t necessary to know much about

C�� in order to use Grail as shipped� If you intend to parameterize

Grail �s �nite�state machines and expressions� or to write your own

�lters� then you should read most of the document� In addition�

you should ensure that you have a good understanding of templates�

since most of Grail �s classes are template classes�

This research was supported by the Natural Sciences and Engi�

neering Research Council of Canada� and by an IBM Canada Re�

search Fellowship�

The author can be reached at drraymon�daisy�uwaterloo�ca�

��

Working with Grail

This section is about compiling and testing the distributed version

of Grail �

organization of the files

Grail is a self�contained package organized in the following directo�

ries�

� bin

This directory contains the Grail �lters for a given architecture�

Generally� these programs are symbolic links to the binaries

found in binaries�

� binaries

This directory contains subdirectories for speci�c machine ar�

chitectures� and compiled binaries for �lters for three types of

alphabets�

� classes

This directory contains subdirectories for each ofGrail �s classes�

These classes de�ne the objects that Grail can manipulate�

Most of the source code belongs to classes�

� doc

This directory contains �dvi �les for the User�s Guide and the

Programmer�s Guide�

� man

This directory contains man pages for Grail � suitable for online

documentation�

� profiles

This directory contains pro�ling scripts� pro�ling machines�

and the results of previous pro�ling sessions�

��

� tests

This directory contains test scripts� test machines� and the

expected results for each test�

There are also directories present for each type or class that serves

as an alphabet� Programmers are able to add their own alphabets to

Grail � the distribution supplies at least the following alphabets �and

directories��

� char

ASCII characters

� pair

ordered pairs of integers

� re

regular expessions

The binaries in binaries are labelled char�out� pair�out� and

re�out� corresponding to the �lters for a given input alphabet�

compiling

Before compiling Grail � you need to specify which system and C��

compiler you�re using� In the Makefile� you choose between the

following�

� set SYS to�

� XLC � if you�re using IBM�s xlC under AIX

� DEC � if you�re using USL�s Cfront on DEC Ultrix

� SUN � if you�re using USL�s Cfront under Sun OS

� WAT � if you�re using Watcom under DOS

� SGI � if you�re using Delta�C�� compiler under IRIX

�SYS	WAT

SYS	XLC

�SYS	DEC

�SYS	SUN

�SYS	SGI

��

Uncomment the appropriate SYS variable for the type of system

you�re using� This will automatically result in choosing the appropri�

ate compiler� compilation �ags� and other operating system utilities

needed to prepare Grail �

Assuming you have both the source code and the distributed bi�

naries� there are two ways to install Grail � The �rst method simply

installs the binaries that are appropriate for your architecture� Ex�

ecute one of the following�

make
��

make sparc

make rs�

make dec

make sgi

No compilation occurs with this technique� it simply constructs sym�

bolic links for each �lter to the appropriate existing binary� �

If you want di�erent compilation options� or the distributed bina�

ries simply don�t work in your environment� then you must compile

the code �rst before installing binaries� You can do this simply by

invoking

make

Compilation �rst constructs a single �le from each of Grail �s classes�

compiles this �le �using the compiler designated by the SYS variable��

copies the binary to the appropriate binaries subdirectory� and then

makes all �lters� This process is repeated for each alphabet�

testing

Grail has its own test system� The test system is useful as a check

that Grail has compiled correctly� It�s also useful as a preliminary

check that modi�cations you make to Grail don�t a�ect the correct�

ness of its algorithms� Grail is tested by doing

make checkout

� In the case of ���� separate copies of the binary are made for each �lter� since

DOS doesn�t have symbolic links�

�	

from the root of the Grail �lesystem� The testing procedure checks

only the standard �lters in bin �that is� those �lters intended for use

with an ASCII alphabet� against the test objects� Testing scripts ex�

ecute each �lter with each test object as input� and compare the re�

sult with a previously obtained result stored in a subdirectory named

for the �lter� for example� fmtore is run against d� and the result

compared with tests�fmtore�d�� If the result is identical� the script

proceeds to the next test� otherwise� the di�erences are printed and

the whole test result is placed in the directory errors� If tests are

successfully completed� the following output will be generated�

Testing fmcment on d�

Testing fmcment on d�

Testing fmcment on d�

Testing fmcment on d

Testing fmcment on d�

Testing fmcment on d�

Testing fmcment on n�

Testing fmcment on n�

Testing fmcomp on d�

Testing fmcomp on d�

Testing fmcomp on d�

Testing fmcomp on d

�

�

�

�No news is good news�� Some of the tests may put diagnostic mes�

sages on the standard error stream �for example� can�t minimize

nfm� but this is normal output� If a �lter fails a test� the di�er�

ence between the stored result and the computed result is displayed

and is saved in the errors directory� An error is saved in a �le

with the name filter�object� for example� an error when running

fmtore on n� would result in the �le errors�fmtore�n�� Comparing

errors�fmtore�n� with fmtore�n� will help you debug fmtore�

The output of test runs and the stored results are both sorted

before comparison� This avoids di�erences that result only from the

order of the output� What it does not avoid is di�erences that re�

sult from language�equivalent but non�identical objects� The testing

��

procedure can detect only non�identical output� it isn�t satis�ed by

language�equivalent results� or even isomorphic results� Thus� if you

write a completely new conversion for �nite�state machines to regu�

lar expressions� for example� you should not expect that your con�

version will generate identical results for the test machines �though

they should be language equivalent��

The set of test cases includes some boundary cases and a few

small examples� We hope to expand the set of test cases in future

versions of Grail ��

filters

Grail provides �� �lters that can be used like any other command

available at shell level� In previous versions of Grail � each of these

�lters was represented by a separate source code �le and a sepa�

rate executable� Structuring the �lters in this way led to very long

compile times� since some compilers re�instantiate the templates for

each �lter� Another problem with this approach is that the �lter

code itself was duplicated many times�

In Version �� we�ve taken a di�erent approach� All �lters for a

given alphabet are implemented by a single executable� This exe�

cutable determines which function to apply by checking the name by

which it was invoked� If the char�out executable was invoked with

the name fmdeterm� for example� then it would execute the conver�

sion to deterministic machines� The advantage of this technique is

that it is easier and faster to copy or rename a �le than to recompile

it� This is particularly true for the current version of Grail � which

makes extensive use of templates�

Each of the individual �lters in Version � is actually a symbolic

link from bin to the appropriate executable in grail� Using symbolic

links eliminates the cost of storing multiple copies of the �les�

� Note that we don�t yet have fmexec in the test suite� this may explain why

we�ve shipped buggy versions of fmexec in the past�

�

array

list

set

string

fm

inst

re

state

subexp

null exp

empty set

empty string

symbol exp

cat exp

plus exp

star exp

Table ���� Grail �s class hierarchy�

classes

Version ��� of Grail employs �	 classes� organized in a relatively �at

hierarchy shown in Figure ���� The main classes are fm ��nite�state

machines� and re �regular expressions�� These classes de�ne the

capabilities that make Grail useful for symbolic computation with

machines and expressions�

There are two types of support classes� The �rst type implements

the basic container classes set� list� array� and string� In Grail �

lists� sets� and strings are all forms of array� The second type im�

plements substructures of the main classes� state implements the

states of a �nite�state machine� inst implements the instructions of

a �nite�state machine� and subexp implements the subexpressions of

a regular expression�

subexp is an abstract base class for the set of possible subex�

pressions� These include expressions for null �null exp�� empty set

�empty set�� empty string �empty string� single�symbol �symbol exp��

catenation �cat exp�� union �plus exp�� and Kleene closure �star exp��

Null expressions represent neither empty sets nor empty strings� they

��

are an initialization expression that denote a regular expression with

no content�

With the exception of state� all of Grail �s classes are templates

that are instantiated for a chosen type or class� Grail thus provides

wide �exibility in designing and executing machines�

Here are some general comments about the design of the classes�

� With the exception of re� all assignment and copying is deep�

that is� the whole substructure of an object is duplicated� With

the exception of re� none of Grail �s structures point to shared

data� There is no reference counting�

� There are no iterator classes� Utilities that want to iterate

through a set or a list simply use a loop over the selection

operator�

� No implicit casts have been de�ned� and the number of copy

constructors �which act like implicit casts� is severely limited�

This has been done to ensure the strictest possible type check�

ing�

Here are some comments about technical points of the design of the

classes�

fm Internally� fms are stored as three sets� a set of start states� a set

of �nal states� and a set of insts�

fm contains operations for �disjoint union�� These can be used

for fast union of machines that are known to be disjoint� The

standard union operator �operator�	� tests for membership

before adding� while the disjoint union does not� It is the

programmer�s responsibility to check for disjointness�

fm contains operations for �selecting� instructions based on their

states or labels� These operations will in future be moved to

a class relation that will support general�purpose project�

select� and join operators�

re Note that a given instance of re contains one null exp� one

empty set� and one empty string� that all �constructions� of

these classes merely point to the single instance� and that de�

struction does nothing� This is to avoid the overhead of con�

�

structing and destructing objects whose instances are indistin�

guishable�

Why isn�t fmtore a member of fm� rather than of re� fmtore

operates on an fm�S� and generates an fm�re�S� �� if it was

made a member of fm� it would result in an in�nite template

instantiation �the generated fm�re�S� � would itself be a tar�

get of fmtore� generating an fm�re�re�S � � �� that would

itself be a target of fmtore � � ���

state States in a �nite�state machine are non�negative integers� The

class state shifts all integers by �� to ensure that
 and � are

available to represent the start and �nal pseudo�state� respec�

tively�

inst inst looks for the pseudo�labels �� and �� on its input� and

generates them on output� but does not represent them inter�

nally�

array The array is the basic data structure� lists� sets� and

strings are all derived from it� with small di�erences that are

due to the di�erent update constraints required by each struc�

tured� Generally speaking� sets are unordered and do not have

duplicates� lists preserve their order and may have duplicates�

strings preserve their order� may have duplicates� and can be

compared with a strcmp�like function� There are e�cient con�

version operations from list and from set that simply adjust

the array pointers �and in the case of conversion from list�

removes duplicates�� these conversion routines do not preserve

the original list or set�

list de�nes a static comparison function that can be passed

to qsort�

set contains operations for �disjoint union�� These can be used

for fast union of sets that are known to be disjoint� The stan�

dard union operator �operator�	� tests for membership before

adding� while the disjoint union does not� It is the program�

mer�s responsibility to check for disjointness�

A string in Grail is not a char�� Even a string�char� is

not a char�� since it is not null�terminated� It is necessary

��

to append a null character to a string�char��s content if you

intend to handle it with functions such as strcmp or printf�

string de�nes a function ptr��which returns the array pointer�

This is a trapdoor for potential problems� since the array can

be arbitrarily modi�ed without the string object adjusting its

size and maximum value� Use this capability only for opera�

tions that do not perform update to the array�

The string comparison operators are de�ned such that strings

will be ordered �rst by size� then lexicographically within equal

sizes� This di�ers from the usual ordering� but is more appro�

priate for dealing with languages� where we typically want to

see the shortest words �rst�

subexp A subexp is the virtual base class for the recursive de��

nition of regular expressions� A regular expression contains

one subexpression� which may be one of null exp� empty set�

empty string� symbol exp� cat exp� plus exp� or star exp�

The latter three subexpressions are themselves made up of

subexpressions�

One interesting problem for subexpressions is de�ning their

comparison operators� Individual subexpressions are ordered

according to the following precedence�

empty set � empty string � symbol exp � plus exp � cat exp

� star exp

Hence� empty string��operator��const empty set�S���

should return �� since empty string expressions are always

greater than empty set expressions� We cannot simply compare

the content of subexpression pointers� however� since function

arguments are interpreted according to their apparent type�

not their actual type� Each subexpression therefore de�nes a

set of functions of the form compare xzy exp� This function

determines how a given subexpression compares to an xyz ex�

pression� In e�ect� we are using two function calls �the opera�

tor and the compare xyz exp� to determine the actual types of

both arguments to the comparison operation� This technique

is sometimes referred to as double dispatching�

��

Most subexpressions de�ne a new subexp�� function� which is

the actual constructor� This function is de�ned because it is

not possible to have virtual constructors� Similarly� the func�

tions copy and clone are de�ned to provide the e�ect of a

virtual constructor� See p� ��� of Stroustrup�s The C�� Pro�

gramming Language� �nd Edition for more information�

The null exp class is the only subexpression that does not

have an analogue in the formal recursive de�nition of regular

expressions� It is used as an initialization class and as a return

value �it can be used when necessary to return something that

has the type �regular expression�� but that actually indicates

an error or other exceptional condition��

star exp overloads the star operator of subexp and de�nes

it as a no�op� This has the e�ect of ensuring that a �starred�

expression is only starred once�

��

Changing and extending Grail

There are two basic ways to modify Grail � you can add a new al�

phabet� or you can add some new functionality that is alphabet�

independent� The latter method typically results in a new �lter�

adding a new Grail filter

A new �lter for Grail may simply combine existing Grail functions�

or it may include new functionality that you add to one or more of

Grail �s classes� As an example� let us suppose you have discovered a

new operation on machines that you call �squeezing�� and you want

to add a �lter that �squeezes� a machine�

The �rst task is to write up the algorithm as a member function of

the class fm� You might put this in a �le classes�fm�squeeze�src�

Note that we use the �src su�x� rather than �C or �cpp� because we

don�t compile routines separately� instead� all the �src �les will be

catenated together to make up one �le describing fm�� squeeze�src

will make use of existing functions in fm� and it will probably also

use other data structures in Grail � such as sets and lists� You

needn�t worry about including any header �les if you only use other

Grail classes� since they are all �eventually� provided for you�

The second task is to ensure that squeeze�src will be included

in the next compilation of Grail � You do this by making sure that

squeeze�src is listed in the �le classes�fm�include�h�

The third task is to arrange for a �squeeze� �lter to be produced

when Grail is compiled� This involves several steps�

�� Add the necessary code to invoke fm��squeeze to char�grail�C�

grail�C is essentially a large case statement that selects the

action to be executed based on the value of its name that was

used to invoke the program� that is� based on the value of

argv�
�� Simpli�ed� grail�C looks like this�

� Even this �le will not be separately compiled� since this �le describes a tem	

plate� the compiler can�t do much until the template is given a speci�c alpha	

bet type�

��

main�argc� argv�

�

�

�

if �strcmp�my�name� fmcment� 		
�

� �� do complement operation �

if �strcmp�my�name� fmcat� 		
�

� �� do catenation operation �

if �strcmp�my�name� fmenum� 		
�

� �� do enumeration operation �

�

�

�

The variable my name is initialized to argv�
�� To make a

�squeeze� �lter� you would add something like�

if �strcmp�my�name� fmsqueeze� 		
�

�

get�one�a� argc� argv�

a�squeeze���

cout �� a�

return
�

�

Here the programmer arranges for fmsqueeze to be the name of

the �lter� If the executable is called with this name� then it will

enter the body of the if statement� The function get one is a

utility function that obtains the input machine� it will get input

either from a �le or from standard input �if �squeezing� was a

binary operation� you would use the utility function get two to

get two �nite�state machines as arguments� The input machine

is stored in a� the function squeeze is called� the squeezed

machine is printed on standard output� and the �lter returns�

�� De�ne the strings that will used to name the �lter�s �le�

��

fmsqueeze� the second parameter to the strcmp in char�grail�C�

is not a string but a variable pointing to a string� This variable

is initialized to di�erent strings for di�erent operating systems�

Under DOS� it points to an uppercase name with a �EXE ex�

tension� and limited to
 characters� Under UNIX� it points to

a lowercase name with no extension and not limited to
 char�

acters� In char� you will �nd �les names�h and dosnames�h

that de�ne the names to be used for each �lter� You must add

a de�nition for fmsqueeze to each of these �les�

�� Repeat the previous two steps for re� pair� and any other

alphabets that your version of Grail supports�

The steps completed so far have been done for char� that is�

for �nite�state machines parameterized by characters� You will

need to repeat them for each alphabet type you want to support

the squeeze function�

�� Add a line to the main Makefile to create a symbolic link from

bin�fmsqueeze to the executable binaries���char�out�

This step must be performed for every machine architecture

you want to support�

To fully integrate your �lter with Grail � you should also add it to the

pro�le and test directories� To add the �lter to the test directory�

you need to do the following�

� Make a directory tests�fmsqueeze� This is where pre�computed

results of testing are kept�

� Modify tests�Makefile to run fmtest �or fm�test� if your

�lter takes two arguments� on your �lter�

� Run your �lter on each of the test cases and carefully check

the output� If you�re certain that the results are correct� then

store the output for each test case in tests�fmsqueeze� �If

you�re not certain that the output is correct� then by storing

the output all you�re doing is giving future testers a false sense

of con�dence�� The result of �squeezing� dfm� should be in

tests�fmsqueeze�dfm�� the result of �squeezing� dfm� should

be in tests�fmsqueeze�dfm�� and so on�

�	

� If you need to add some new test machines to test special

conditions �for example� an �unsqueezable� machine� for your

�lter� it would be useful if you also run all the other �lters in

Grail on this test case� check their results� and add the output

to the respective directories� This practice will increase the

value of the test system for the whole of Grail �

� Write a man page for your new �lter�

To add your �lter to the pro�le directory� edit profiles�Makefile so

that your �lter will be pro�led �use fmprofile if your �lter uses only

one argument� and fm�profile if your �lter uses two arguments��

The next time you run the pro�ler� the ratio shown for your �lter for

all test cases will be
�
� because the pro�ler has no baseline� The

second time you run the pro�ler� however� you will see some values

���
 if you haven�t improved your �lter in the meantime� and some

other non�zero value otherwise��

Adding functionality may seem too complicated� The only excuse

we can o�er is that when you have an environment that attempts

to support multiple architectures� operating systems� and alphabets�

there is going to be a lot to worry about�

adding a new alphabet to Grail

Adding a new alphabet can be simpler than adding new functional�

ity� If your type or class is well speci�ed� and you have a modern

compiler� then almost all of the work will be done for you� and all of

the functionality of Grail will be carried over to your parameterized

class��

Parameterizing over a base type

Suppose you want to create �nite�state machines whose instruction

labels are instances of int� The following steps are necessary�

�� Do a recursive copy of the directory char �or some other di�

rectory for an existing alphabet type� to a new directory int�

� If your class is not well speci�ed� or if you use a compiler that doesn�t have

a professional approach to templates� then there may be a lot of heartache

before you manage to integrate Grail and your alphabet�

��

�� Edit int�grail�C�

Change all variables of type fm�char� to fm�int�� Change all

variables of type re�char� to re�int�� Change all variables

of type string�char� to string�int��

�� Edit int�lexical�h�

You need to de�ne lexical delimiters that will be used to in�

put and output machines and expressions of type int� The

following delimiter variables need to be de�ned�

static char re�star�int��

static char re�plus�int��

static char re�cat�int��

static char re�lparen�int��

static char re�rparen�int��

static char� re�estring�int��

static char� re�eset�int��

static char re�lambda�int��

static char re�left�delimiter�int��

static char re�right�delimiter�int��

static char re�left�symbol�delimiter�int��

static char re�right�symbol�delimiter�int��

There is one instance of each of these variables per parameter�

ized class� so� there is one re�char���re star� one re�int���re star�

and so on� These variables are provided to permit you to de�ne

your own symbols� either because you prefer some other delim�

iters or because one or more of the defaults is a valid symbol

in the input alphabet you want to use�

Note that the default symbol for catenation and the left and

right delimiter are both
� If these values are speci�ed for these

variables �only�� then no output is generated for those symbols�

�� Edit int�names�h and int�dosnames�h�

You need to create names for all the executables that satisfy

the constraints that the operating systems impose on �lenames�

and that are distinguishable from all other Grail executables

or other programs you use�

�

�� Edit int�Makefile� Change all the executable names to be the

same as those you used in int�names�h and int�dosnames�h�

The single binary �le should also be changed to the name of

your type �char�out should become int�out��

	� Edit the root Makefile� Add a compilation statement with

TYPE	int� Add install statements for each architecture for

int� Add int to the make clean command�

�� Compile Grail �which� if you�ve done the previous steps cor�

rectly� will compile all types and install all �lters��

Remember that using a template inside a template is permitted� but

you must leave a space between end�brackets� That is�

fm�re�char� �

is valid� but

fm�re�char��

is not �the C�� parser thinks that �� is the ostream operator� not

the end of the template speci�cation��

Parameterizing over your own classes

Parameterizing over your own classes or types is much the same as

parameterizing over base types or Grail types� The main di�erence is

that the grail�C �le must be able to �nd the class de�nition and its

member �les� Typically this is done by copying them to the directory

for that alphabet� and putting an �include statement in grail�C�

There are two problems that may arise with parameterization of

your own classes�

The �rst problem is the provision of minimally required functions

and operators� Grail �s templates �like those of any other C�� class

library� operate on the assumption that certain functions are de�ned

by the type used for parameterization� There is no way for us to

arrange that you de�ne these functions� but if they aren�t de�ned

 For classes that you only need to link� you are only required to make the class

header accessible� the compilation command should be altered to include the

necessary linking directive to locate your class binary�

��

�or if you de�ne them ambiguously�� then your compilation will fail

at template instantiation time� We require that you de�ne a small

number of operators�

	

		

 	

�

�

��

��

If you have de�ned these operators for your type� it should in�

stantiate without trouble�

Even if all necessary operators are de�ned� you may misinterpret

the results of Grail �s operations� To understand this problem� let us

look at fm�re�char� � in some detail�

There are at least two possible ways to de�ne the 		 operator

for re�char�� One way� based on identity� treats two re�char�s as

equivalent only if they are identical� The second way� based on lan�

guage equivalence� treats two re�char�s as equivalent only if they

denote the same language� In general� the only feasible way to deter�

mine language equivalence for regular expressions is to convert them

to �nite�state machines� minimize the �nite�state machines� and test

the minimal �nite�state machines for identity� This test is an ex�

pensive proposition� so there is some motivation for choosing to base

equivalence on identity�

Grail � of course� has no way of knowing which choice you have

made� indeed� the whole point of parameterization is that it should

not need to know which choice you have made� Grail simply takes

it for granted that the operator 		 will return positively if the two

regular expressions are equivalent� and negatively otherwise� But

your choice of semantics for 		 will a�ect the outcome of Grail �s

operations� 		 is used in subset construction� for example� to clus�

ter all states which are reachable on the same instruction label� If

you�ve de�ned language equivalence as your semantics� then Grail

will treat the regular expressions a and a�a�a�a� as equivalent� if

you�ve chosen identity as your semantics� then Grail will treat these

	

two expressions as distinct� Thus� the two semantics lead to di�erent

output�

Parameterization allows Grail to implement a collection of func�

tions that are performed on �black boxes�� which you can instantiate

with a type� Grail will provide correct results� but only within the

semantics you de�ned for the operators of that type� If you choose to

de�ne identity semantics� don�t expect to get language equivalence

semantics in the result�

The same is true of the semantics of the other comparison oper�

ators �� �� and 	�

modifying Grail �s classes

Modifying Grail �s classes can be straightforward� but it requires a

good understanding of three complicated areas� C�� templates�

Grail �s existing structure� and the theoretical properties of �nite�

state machines and regular expressions� Here are some points to

remember�

�� Maintain the separation between a class�s interface and its im�

plementation� The class fm� for example� is implemented as

two sets of states and one set of insts� but this should not be

visible outside the class� As much as possible� ensure that the

interface is restricted to logical functionality�

�� Remember that your new function must work regardless of the

type of the instruction label �or� for regular expressions� of the

symbols of the alphabet�� Do not make assumptions that are

true only of �xed types� Is your function general enough to

apply to a fm�re�fm�set�string� � � �� If not� should you

rethink the function�

�� Remember to run the tests on all Grail �lters after you have

made your modi�cations�

�� If you create important new functionality� consider making it

available through a separate �lter� Follow the procedure that

we described in the section on making �lters�

	�

It would be convenient if your additions to Grail are consistent with

the set of conventions Grail uses for �lenames� We use two�letter pre�

�xes for �lters� Regular expression �lters use the pre�x re� Finite�

state machine �lters use the pre�x fm� We also use these pre�xes

as su�xes for commands that convert from one type of object to

another� for example� retofm� �

Each class directory has a �le classname�h that contains the

class declaration� The string class� for instance� is declared in the

�le string�h� This is the �rst place to look for information about

the class� since it contains declarations of all the methods�

Each of the functions de�ned for a class is contained in a separate

function�src �le� When the function is a function call with an

alphanumeric name� its �lename is the same name �for compatibility

with non��exname �le systems� long function names are shortened

to �t an
�character limit�� Hence� the function parse in the class

re is located in the �le parse�src� Since operator functions don�t

have alphabetic names� we�ve chosen to use the following standard

alphabetic names for operators�

�� ostream�src

�� istream�src

� lt�src

� gt�src

		 eq�src

 	 neq�src

�	 pluseq�src

�	 minuseq�src

�	 concat�src

� plus�src

� minus�src

�� index�src

We use classname�src for constructors and �classname�src

for destructors� Constants� macros� and types that are speci�c to a

� All predicates begin with the pre�x is� This is likely to be changed in the

future� because it does not distinguish between predicates for machines and

predicates for expressions� and because �is� is not the only type of predicate

we want to support�

	�

class are kept in defs�h� The set of system and local �les that are

necessary for compilation of functions are speci�ed in include�h�

profiling

Grail has its own pro�ling system� This is useful for checking that

�improvements� to Grail actually do result in a performance bene�t�

Assuming you have an environment that supports the pixie pro�ler�

Grail is pro�led by doing

make profile

from the root of the Grail �lesystem� The results of pro�ling are

given as a table found in profiles�profile�results� The table

looks like the result in Table ����

profile�results shows the cost of each �lter for several sample

inputs� The cost is shown as a ratio of the number of machine cy�

cles used by the current implementation against a previously stored

value� If the current version is signi�cantly di�erent from the previ�

ous one the ratio of cycles will be larger or smaller than ��
�larger

if current implementation is less e�cient� and smaller if the current

implementation is more e�cient� The table shows the cycle ratio for

each of a set of test cases� and also the total cycle ratio over all cases�

this latter value appears in the leftmost column�

In the example table� we see that overall the current implemen�

tation is slightly less e�cient than previous versions� it might sug�

gest that the �improvement� most recently added is actually making

things worse� It�s wise to use some care when interpreting the pro�le

results� however� both because the results are dependent on the type

of computer you use� and because the test machines are of di�erent

sizes� In particular� nfm� is ten times larger than the other test cases�

thus� nfm� accounts for a disproportionate amount of the cycles in

the overall total� Often� improvements will make some cases worse

and some better� for example� if your improvement involves a sub�

stantial �xed overhead� you may notice the performance of the small

test cases is worse� while that of the large test cases is better�

The profiles directory contains scripts that automatically in�

strument and execute each �lter �fmprofile� fm�profile� reprofile�

and re�profile� the ��� scripts are used for �lters that take two ar�

	�

total dfm� dfm� dfm� nfm� nfm� nfm� nfm�

fmcment ��
�
��� ��

 ��

 ��

 ��

 ��
� ��
�

fmcomp ��
�
��� ��
� ��

 ��
�
��� ��
� ��
�

fmcat ��

 ��

 ��
� ��
� ��
� ��

 ��
� ��
	

fmcross ���
 ��
� ��
� ��
� ��
� ��
� ���� ����

fmdeterm ��
� ��

 ��
� ��

 ��

 ��

 ��
� ��
�

fmenum ��

 ��
� ��
� ��
�
��� ���� ���
 ��

fmmin
��
 ��

 ��
� ����
���
��� ��
�
��

fmminrev ��
� ��

 ��

 ��

 ��
�
��� ���� ����

fmplus ��
�
��� ��
� ��

 ��
�
��� ��
� ��
�

fmreach ��
�
��� ��
� ��

 ��
�
��� ��
� ��
�

fmrenum ���

��� ��
� ��
� ��
�
��� ���� ��

fmreverse ����
��� ��
� ��
� ��
�
��� ���	 ����

fmstar ��
�
��� ��
� ��

 ��

��� ��
� ��
�

fmtore ���
 ��
� ���� ���� ���� ��
� ���
 ���

fmunion ���� ��
� ��
� ��
� ��
� ��
� ���
 ��
�

iscomp ���	
��� ��
� ��
� ��
�
��� ���� ���

isdeterm ����
��� ��
� ��
� ��
�
��� ���� ����

isomorph ��
� ��

 ��
� ��
� ��
� ��

 ���� ��

isuniv ���	
��� ��
� ��
� ��
�
��� ���� ���

total reg� reg� reg�

recat
��

��

��

��

remin ��
�
��
 ��
� ��
�

restar ��
�
��
 ��
� ��
�

retofm
���
���
���
���

reunion
��

��

��

��

isempty ��
�
��
 ��
� ��
�

isnull ��
�
��
 ��
� ��
�

Table ���� Pro�ler output�

	�

guments� and scripts that compute the cycle ratio and produce a

new profile�results �le �fmdiff and rediff��

It�s possible to generate pro�les of current Grail with respect

to older versions� The profiles directory contains a collection of

previous pro�le results� named with a date and �profile su�x�

Copying any of these �les onto the �le current�profile and then

doing make recompute will generate a new results �le that shows

how Grail has improved since the date of the previous pro�le�

If you pro�le Grail over a long period of time� you may wish

to retain a history of improvements� At each milestone� simply

copy current�profile into a �le named with the date or some

other identifying label� Note that it isn�t su�cient to save the �le

profile�results� This �le is derived data and contains only the

cycle ratios� The actual numbers of cycles are stored in �les with a

�profile su�x� they are the �les that must be retained�

Grail �s pro�ling mechanism is designed to work in environments

that support the pixie pro�ler �provided on DEC MIPS systems��

The pro�le harness should be easily extendible to other pro�lers�

To make the pro�ling mechanism work with other pro�lers� write

new scripts fmprofile� fm�profile� reprofile� and re�profile�

They must automatically generate instrumented versions of the code�

extract the number of cycles after running a pro�le� and properly

update the intermediate �les�

miscellaneous

Some odds and ends�

�� Why do we use the su�x �src for our class code �les� Because

too many compilers make invalid inferences from su�xes like

�c or �C� In some cases the compiler decides that the code is

C rather than C��� in other cases� the compiler�s template

instantiation mechanism thinks that a �c �le with the same

pre�x as the template�s �h �le must be the template de�nition

�le� Many C�� compilers allow you to specify your own su�x

with a command line option� but their template instantiation

mechanisms do not always use this information� Consequently�

we use a su�x that no one expects� �include all the �les into

	�

a single class module� and use that as �part of� the compilable

object�

�� Why do we include all �les in Grail in one single� monolithic

module for compilation� In our experience� this is the fastest

approach to compiling Grail � Multiple modules mean multi�

ple invocations of the compiler� with redundant processing of

many common header �les� Another reason is that some C��

compilers use the source �lename to construct an external en�

try point for the destructor function for each class� this has

led to linking problems if the same �lename is used for some

other class� The third reason is Grail �s heavy use of templates�

With some compilers� separate compilation of templates in�

volves a costly process in which each failure of the linker to

locate an instantiation of a needed template function causes

the compiler to be invoked to generate that function� Separate

compilation of Grail in such an environment can take over an

hour� By producing a single module� we completely avoid the

interaction between linker and compiler� and we have seen our

compile times drop to about �ve minutes�

�� The class headers include an �ifdef to ensure that every class

is de�ned only once� This hack should be avoidable by proper

use of the �include facility� but it doesn�t seem possible �the

problem may be due to how template instantiation works��

�� The classes derived from subexp �empty set� empty string�

cat exp� plus exp� symbol exp� and star exp� are accessed

only within re� and indeed should not even be visible outside

subexp� Why then are these derived classes not nested within

subexp� The reason is that some compilers don�t implement

nested classes within templates�

�� Why haven�t we made Grail work with GNU C��� The main

reason in the past was GNU�s non�standard behavior and poor

template support� The commercial compilers are better and

more reliable than GNU� at least for the moment�

	� Some notes on compilation� On most UNIX machines Grail

compiles in �ve to ten minutes� depending on load and com�

		

pilation options� IBM�s xlC on the RS�	

 ��
 and SGI�s

Delta compiler on the Onyx�� are the fastest environments

we�ve used� xlC and Watcom �
�
 are tied for most robust

compiler� each is able to �nd errors that the other one won�t�

and both are much more strict than cfront�based compilers�

If you�re using Watcom �
�
� we strongly recommend that

you do most of your compiling without the optimization �ags

�oneatx� Without these �ags� Grail compiles in �ve to ten

minutes on a �� MHz �
	 with �	 Mbyte of RAM� with op�

timization enabled� compiling takes as much as an hour �per

alphabet��

changes in version ���

This section describes the changes and improvements made since

Version ����

�� Fixed string�istream�src �again��

�� Added xfmenum� xfmexec� xfmcross� xfmmin� xfmminrev� xfmcment�

xfmcomp�

�� Fixed bug in fm�catenate� was removing self�loops on start states

of argument machine�

� Fixed bug in retofm� was not incrementing state number

high enough �and thus generating self loops on null

expression��

�� Fixed bug in fm�catenate� was not making final state of

invoking machine final if argument machine included empty

string�

�� Added specialized set deletion that substitutes last element�

!� Split xfm stuff into separate directory� now using directory

"type� instead of "grail� �e�g�� "char�� "re�� "pair�� etc��

	�

�� Added sorting and tests for sortedness to set�

#� Added state��operator	�const state���

�
� Substituted initialization for assignment in constructors

�Myers �����

��� Return value of empty�set�S���operator	�� was subexp�S���

changed to empty�set�S�� �Myers �����

��� fm data members made private�

��� minor improvements made to re��fmtore

�
� �n flag added to fmenum�

��� Makefiles improved for multiple architectures� multiple compilers�

multiple alphabet types�

changes in version ���

This section describes the changes and improvements made since

Version ����

�� New array class� set� list� and string are derived from

array�

�� Removed classes�Makefile and classes���Makefile� instead�

we use �include and compile everything in one shot

�thus avoiding long template instantiation and makefile

differences across systems��

�� fm altered to save start and final states explicitly�

� Redundant class members removed� small functions inlined�

classes generally cleaned up�

	

�� Removed grail�template�� �not necessary with new �include

style��

�� Merged Makefile and Makefile�wat�

!� Fixed bugs� fmexec did not handle
�argument case correctly�

string�istream�src read last character twice�

Thanks to Jochen Seemann of the University of Wurzburg

�� Added flags for static binding�

#� Fixed profiler to use proper filter names �null profiles were

being generated because filters had �pixie suffix��

�
� Added �EX� �EE macro definitions to top of each man page�

��� Included Rational DOS extender�

changes in version ���

This section describes the changes and improvements made since

Version ��
�

�� Fixed bug in handling of istrstream for fmexec arguments

in fm�C�

Thanks to Tillman Kolks of IMEC� Belgium

�� Change loop index variable to j where i was being used

twice in nested loops in fm��enumerate�

Thanks to Tillman Kolks of IMEC� Belgium

�� Fixed bug in min�by�partition� machines consisting of only

final states should not be reduced to single�state machine�

Thanks to Tillman Kolks of IMEC� Belgium

	�

� Made sure fmrenum does not include unreachable states�

Thanks to Tillman Kolks of IMEC� Belgium

�� All classes�����cc files moved to classes�����src files�

and Makefiles converted correspondingly� This change made

to support Sun CC template instantiation�

Thanks to Scot Dyer� University of Nebraska�Lincoln

�� �c argument to fmenum in grail�fm�C fixed�

Thanks to Tillman Kolks of IMEC� Belgium

!� Missing return statements added to grail�fm�C� grail�re�C� and

grail�fmre�C�

�� inst��operator		 changed to eliminate label test for start and

final transitions� This necessitated changes to re�fmtore to

handle regular expressions on start and final transitions�

#� grail�names�h and grail�dosnames�h added to permit compilation

under DOS�

�
� Makefile�wat added to various directories� for compilation under

Watcom C�� #���

��� Changed argv�
� usages to my�name in grail�fm�C� grail�re�C�

grail�fmre�C� Made executable name extraction work with both

Unix and DOS�style path delimiters�

��� Fixed bug in fmstar �added too many final�start instructions

to clone state��

��� Added test cases d!� d�� Renamed all test cases to work within

DOS�style file suffix limitations�

�

changes in version ���

This section describes the changes and improvements made since

Version ����

�� Converted fa and trans to template classes�

�� Removed tset and xfa�

�� Cleaned up directories and files�

� �ifdefs used to avoid duplicate definitions of classes

�seems to be required by template instantiation mechanism�

�� fa filters are all now symbolic links to one executable

that checks argv�
� to determine which operation to perform�

�� state��number made private�

!� Fixed trans comparison operators to avoid checking labels

for pseudo�transitions�

#� Removed fa��operator�	�trans�� �it had different semantics

from fa��operator�	�fa��� which could be confusing��

�
� Filters renamed to use fm prefix� fixed test cases�

��� isomorph does its own renumbering and sorting now�

��� Renamed fa class to fm� renamed $trans$ class to $inst$�

$regexp$ class to re�

��� re class rewritten� new classes� empty�set� empty�string�

cat�exp� plus�exp� star�exp� symbol�exp� subexp�

�
� re filters are all now symbolic links to one executable

that checks argv�
� to determine which operation to perform�

��

��� xfm filters are all now symbolic links to one executable

that checks argv�
� to determine which operation to perform�

��� Made string parameterized� altered usage of string where

necessary to string�char��

�!� Rewrote retofm and fmtore�

��� Added various hacks to enable proper template instantiation

�grail�template��� grail�template��� note changes in re�h�

�#� re now does not automatically $minimize$ expressions� remin

has the $minimization$ functionality�

changes in version ���

This section describes the changes and improvements made since

Version ��
�

�� Compiles under xlC ��

� AT�T ��
� Watcom C�� #���

�� Added set�gt�cc and set�lt�cc�

�� string��operator�	 reallocation changed so that blocks

are always a power of �� This seemed to fix a bug

when running fatore on RS��

�

� In string�h� fa�h� state�h� grail�h� use �iostream�h�

instead of �stream�h��

�� Removed $form$ from regexp�concat�cc� regexp�term�cc�

regexp�token�c�

�� End�of�function return values required for regexp�test��cc�

��

!� Removed duplicate xfaplus from grail�Makefile�

�� Improved grail�Makefile to use default rules� removed

unnecessary operations�

#� Added $tempinc$ to clean targets so that xlC recompilation

proceeds correctly�

�
� set�include�h and list�include�h designed to handle the

default requirements of xlC�Cfront template mechanisms

�for xlC� you include the template header file� for Cfront�

you don�t��

��� Added XLC and ATT defines to Makefile� tset�h�

��� $delete �� p$ removed from %tset��� It incorrectly duplicates

the functionality of %set��� causes a crash under Watcom #��

�discovered by Mark DeLaFranier of Watcom��

��� mksys scripts written for list� set �to provide correct

suffixes for xlC and Cfront��

�
� Removed �libc�h�� substituted �stdlib�h��

��� All grail filters given $return
$ at end of main� all

return values checked �and modified� for correctness�

��� from�set and from�list made members of list and set

respectively�

�!� find�part removed from xfa�h�

��� list��compare�� only� removed compare from all other classes�

compared contents of pointers instead of pointers�

�#� list��� and list����

�
� Removed print functions from set� tset� list� redefined

��

ostream operators�

��� converted Item��compare to list�Item���compare in list��sort

��� note that tset�operator�� second argument must be const�

��� famin fixed� can�t treat min�by�partition result as boolean�

�
� Added functions fa��deterministic�density� xfa��number�of�transitio

xfa��number�of�labels� xfa��number�of�states�

��� For nfa�s� faenum computes deterministic density and

converts to deterministic automata if appropriate�

��� Purify�d� Fixed bugs in string��operator�	�const char�� and

ostream�����ostream�� regexp���

��

