Programmer’s Guide to Grail

Version 2.3

Darrell Raymond'®

January 1995

1 Department of Computer Science, University of Waterloo, Waterloo, Canada

41

TABLE OF CONTENTS

Introduction

Working with Grail
Organization of the files
Compiling

Testing

Filters

Classes

Changing and extending Grail
Adding a new Grail filter
Adding a new alphabet to Grail
Modifying Grail’s classes
Profiling

Miscellaneous

Changes in version 2.3

Changes in version 2.2

Changes in version 2.1

Changes in version 2.0

Changes in version 1.2

42

43
44
44
45
46
48
49
54
54
57
61
63
65
67
68
69
71
72

Introduction

This document is about programming with the Grail class library. It
describes how to compile, test, and profile Grail, how to write C++
programs using Grail, and how to modify and extend Grasl.

If you plan only to install Grail with its standard filters, then
you need to read only the first few sections of the document, which
describe the organization of the file system and how to go about
compiling and testing Grail. It isn’t necessary to know much about
C++ in order to use Grail as shipped. If you intend to parameterize
Grail’s finite-state machines and expressions, or to write your own
filters, then you should read most of the document. In addition,
you should ensure that you have a good understanding of templates,
since most of Grail’s classes are template classes.

This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada, and by an IBM Canada Re-
search Fellowship.

The author can be reached at drraymon@daisy.uwaterloo.ca.

43

Working with Gra:l

This section is about compiling and testing the distributed version

of Grail.

ORGANIZATION OF THE FILES

Grail is a self-contained package organized in the following directo-

ries:

bin

This directory contains the Grail filters for a given architecture.
Generally, these programs are symbolic links to the binaries
found in binaries.

binaries

This directory contains subdirectories for specific machine ar-
chitectures, and compiled binaries for filters for three types of
alphabets.

classes

This directory contains subdirectories for each of Grail’s classes.
These classes define the objects that Grail can manipulate.
Most of the source code belongs to classes.

doc

This directory contains .dvi files for the User’s Guide and the
Programmer’s Guide.

man

This directory contains man pages for Grail, suitable for online
documentation.

profiles

This directory contains profiling scripts, profiling machines,
and the results of previous profiling sessions.

44

e tests
This directory contains test scripts, test machines, and the

expected results for each test.

There are also directories present for each type or class that serves
as an alphabet. Programmers are able to add their own alphabets to
Grail; the distribution supplies at least the following alphabets (and
directories):

e char

ASCII characters

e pair

ordered pairs of integers

® Tre

regular expessions
The binaries in binaries are labelled char.out, pair.out, and
re.out, corresponding to the filters for a given input alphabet.

COMPILING

Before compiling Grail, you need to specify which system and C++
compiler you’re using. In the Makefile, you choose between the

following:

set SYS to:

XLC - if you’re using IBM’s x1C under AIX

DEC - if you’re using USL’s Cfront on DEC Ultrix
SUN - if you’re using USL’s Cfront under Sun 0S
WAT - if you’re using Watcom under DOS

SGI - if you’re using Delta/C++ compiler under IRIX
#SYS=WAT

SYS=XLC

#SYS=DEC

#SYS=SUN

#SYS=SGI

45

Uncomment the appropriate SYS variable for the type of system
you’re using. This will automatically result in choosing the appropri-
ate compiler, compilation flags, and other operating system utilities
needed to prepare Grail.

Assuming you have both the source code and the distributed bi-
naries, there are two ways to install Grail. The first method simply
installs the binaries that are appropriate for your architecture. Ex-
ecute one of the following:

make 486
make sparc
make rs6000
make dec
make sgi

No compilation occurs with this technique; it simply constructs sym-
bolic links for each filter to the appropriate existing binary. !

If you want different compilation options, or the distributed bina-
ries simply don’t work in your environment, then you must compile
the code first before installing binaries. You can do this simply by
invoking

make

Compilation first constructs a single file from each of Grail’s classes,
compiles this file (using the compiler designated by the SYS variable),
copies the binary to the appropriate binaries subdirectory, and then
makes all filters. This process is repeated for each alphabet.

TESTING

Grail has its own test system. The test system is useful as a check
that Grail has compiled correctly. It’s also useful as a preliminary
check that modifications you make to Grail don’t affect the correct-
ness of its algorithms. Grail is tested by doing

make checkout

1 In the case of 486, separate copies of the binary are made for each filter, since
DOS doesn’t have symbolic links.

46

from the root of the Grail filesystem. The testing procedure checks
only the standard filters in bin (that is, those filters intended for use
with an ASCII alphabet) against the test objects. Testing scripts ex-
ecute each filter with each test object as input, and compare the re-
sult with a previously obtained result stored in a subdirectory named
for the filter; for example, fmtore is run against d1 and the result
compared with tests/fmtore/d1. If the result is identical, the script
proceeds to the next test; otherwise, the differences are printed and
the whole test result is placed in the directory errors. If tests are
successfully completed, the following output will be generated:

Testing fmcment on di
Testing fmcment on d2
Testing fmcment on d3
Testing fmcment on d4
Testing fmcment on db
Testing fmcment on d6
Testing fmcment on ni
Testing fmcment on n2
Testing fmcomp on di
Testing fmcomp on d2
Testing fmcomp on d3
Testing fmcomp on d4

(No news is good news.) Some of the tests may put diagnostic mes-
sages on the standard error stream (for example, can’t minimize
nfm) but this is normal output. If a filter fails a test, the differ-
ence between the stored result and the computed result is displayed
and is saved in the errors directory. An error is saved in a file
with the name filter.object; for example, an error when running
fmtore on n2 would result in the file errors/fmtore.n2. Comparing
errors/fmtore.n2 with fmtore/n2 will help you debug fmtore.
The output of test runs and the stored results are both sorted
before comparison. This avoids differences that result only from the
order of the output. What it does not avoid is differences that re-
sult from language-equivalent but non-identical objects. The testing

47

procedure can detect only non-identical output; it isn’t satisfied by
language-equivalent results, or even isomorphic results. Thus, if you
write a completely new conversion for finite-state machines to regu-
lar expressions, for example, you should not expect that your con-
version will generate identical results for the test machines (though
they should be language equivalent).

The set of test cases includes some boundary cases and a few
small examples. We hope to expand the set of test cases in future
versions of Grail.?

FILTERS

Grail provides 27 filters that can be used like any other command
available at shell level. In previous versions of Grail, each of these
filters was represented by a separate source code file and a sepa-
rate executable. Structuring the filters in this way led to very long
compile times, since some compilers re-instantiate the templates for
each filter. Another problem with this approach is that the filter
code itself was duplicated many times.

In Version 2, we’ve taken a different approach. All filters for a
given alphabet are implemented by a single executable. This exe-
cutable determines which function to apply by checking the name by
which it was invoked. If the char.out executable was invoked with
the name fmdeterm, for example, then it would execute the conver-
sion to deterministic machines. The advantage of this technique is
that it is easier and faster to copy or rename a file than to recompile
it. This is particularly true for the current version of Grail, which
makes extensive use of templates.

Each of the individual filters in Version 2 is actually a symbolic
link from bin to the appropriate executable in grail. Using symbolic
links eliminates the cost of storing multiple copies of the files.

2 Note that we don’t yet have fmexec in the test suite; this may explain why
we’'ve shipped buggy versions of fmexec in the past!

48

array

list
set
string

fm

inst

Te

state

subexp
null_exp
empty_set
empty_string
symbol_exp
cat_exp
plus_exp
star_exp

Table 2.1: Grail’s class hierarchy.
CLASSES

Version 2.3 of Grail employs 16 classes, organized in a relatively flat
hierarchy shown in Figure 2.1. The main classes are £m (finite-state
machines) and re (regular expressions). These classes define the
capabilities that make Grail useful for symbolic computation with
machines and expressions.

There are two types of support classes. The first type implements
the basic container classes set, 1ist, array, and string. In Grail,
lists, sets, and strings are all forms of array. The second type im-
plements substructures of the main classes; state implements the
states of a finite-state machine, inst implements the instructions of
a finite-state machine, and subexp implements the subexpressions of
a regular expression.

subexp is an abstract base class for the set of possible subex-
pressions. These include expressions for null (null_exp), empty set
(empty_set), empty string (empty_string) single-symbol (symbol_exp),
catenation (cat_exp), union (plus_exp), and Kleene closure (star_exp).
Null expressions represent neither empty sets nor empty strings; they

49

are an initialization expression that denote a regular expression with
no content.

With the exception of state, all of Grail’s classes are templates
that are instantiated for a chosen type or class. Grail thus provides
wide flexibility in designing and executing machines.

Here are some general comments about the design of the classes:

e With the exception of re, all assignment and copying is deep;
that is, the whole substructure of an object is duplicated. With
the exception of re, none of Grail’s structures point to shared
data. There is no reference counting.

e There are no iterator classes. Utilities that want to iterate
through a set or a list simply use a loop over the selection
operator.

e No implicit casts have been defined, and the number of copy
constructors (which act like implicit casts) is severely limited.
This has been done to ensure the strictest possible type check-
ing.

Here are some comments about technical points of the design of the
classes.

fm Internally, fms are stored as three sets: a set of start states, a set
of final states, and a set of insts.

fm contains operations for ‘disjoint union’. These can be used
for fast union of machines that are known to be disjoint. The
standard union operator (operator+=) tests for membership
before adding, while the disjoint union does not. It is the
programmer’s responsibility to check for disjointness.

fm contains operations for ‘selecting’ instructions based on their
states or labels. These operations will in future be moved to
a class relation that will support general-purpose project,
select, and join operators.

re Note that a given instance of re contains one null_exp, one
empty_set, and one empty_string, that all ‘constructions’ of
these classes merely point to the single instance, and that de-
struction does nothing. This is to avoid the overhead of con-

50

structing and destructing objects whose instances are indistin-

guishable.

Why isn’t fmtore a member of fm, rather than of re? fmtore
operates on an fm<S> and generates an fm<re<S> >; if it was
made a member of fm, it would result in an infinite template
instantiation (the generated fm<re<S> > would itself be a tar-
get of fmtore, generating an fm<re<re<S > > >, that would
itself be a target of fmtore ...).

state Statesin a finite-state machine are non-negative integers. The
class state shifts all integers by 2, to ensure that 0 and 1 are
available to represent the start and final pseudo-state, respec-
tively.

inst inst looks for the pseudo-labels |- and -| on its input, and
generates them on output, but does not represent them inter-
nally.

array The array is the basic data structure. lists, sets, and
strings are all derived from it, with small differences that are
due to the different update constraints required by each struc-
tured. Generally speaking, sets are unordered and do not have
duplicates; lists preserve their order and may have duplicates;
strings preserve their order, may have duplicates, and can be
compared with a strcmp-like function. There are efficient con-
version operations from 1list and from_set that simply adjust
the array pointers (and in the case of conversion from list,
removes duplicates); these conversion routines do not preserve
the original 1list or set.

list defines a static comparison function that can be passed
to gsort.

set contains operations for ‘disjoint union’. These can be used
for fast union of sets that are known to be disjoint. The stan-
dard union operator (operator+=) tests for membership before
adding, while the disjoint union does not. It is the program-
mer’s responsibility to check for disjointness.

A string in Grail is not a char*. Even a string<char> is
not a char*, since it is not null-terminated. It is necessary

51

to append a null character to a string<char>’s content if you
intend to handle it with functions such as strcmp or printf.

string defines a function ptr () which returns the array pointer.
This is a trapdoor for potential problems, since the array can
be arbitrarily modified without the string object adjusting its
size and maximum value. Use this capability only for opera-
tions that do not perform update to the array.

The string comparison operators are defined such that strings
will be ordered first by size, then lexicographically within equal
sizes. This differs from the usual ordering, but is more appro-
priate for dealing with languages, where we typically want to
see the shortest words first.

subexp A subexp is the virtual base class for the recursive defi-
nition of regular expressions. A regular expression contains
one subexpression, which may be one of null_exp, empty_set,
empty _string, symbol_exp, cat_exp, plus_exp, or star_exp.
The latter three subexpressions are themselves made up of
subexpressions.

One interesting problem for subexpressions is defining their
comparison operators. Individual subexpressions are ordered
according to the following precedence:

empty_set < empty_string < symbol_exp < plus_exp < cat_exp
< star_exp

Hence, empty string: :operator>(const empty_set<S>&)
should return 1, since empty string expressions are always
greater than empty set expressions. We cannot simply compare
the content of subexpression pointers, however, since function
arguments are interpreted according to their apparent type,
not their actual type. Each subexpression therefore defines a
set of functions of the form compare xzy_exp. This function
determines how a given subexpression compares to an xyz ex-
pression. In effect, we are using two function calls (the opera-
tor and the compare xyz_exp) to determine the actual types of
both arguments to the comparison operation. This technique
is sometimes referred to as double dispaiching.

52

Most subexpressions define a new_subexp() function, which is
the actual constructor. This function is defined because it is
not possible to have virtual constructors. Similarly, the func-
tions copy and clone are defined to provide the effect of a
virtual constructor. See p. 217 of Stroustrup’s The C++ Pro-
gramming Language, 2nd Edition for more information.

The null_exp class is the only subexpression that does not
have an analogue in the formal recursive definition of regular
expressions. It is used as an initialization class and as a return
value (it can be used when necessary to return something that
has the type ‘regular expression’, but that actually indicates
an error or other exceptional condition).

star_exp overloads the star operator of subexp and defines
it as a no-op. This has the effect of ensuring that a ‘starred’
expression is only starred once.

53

Changing and extending Grazl

There are two basic ways to modify Graeil: you can add a new al-
phabet, or you can add some new functionality that is alphabet-
independent. The latter method typically results in a new filter.

ADDING A NEW (rail FILTER

A new filter for Grail may simply combine existing Grail functions,
or it may include new functionality that you add to one or more of
Grail’s classes. As an example, let us suppose you have discovered a
new operation on machines that you call ‘squeezing’, and you want
to add a filter that ‘squeezes’ a machine.

The first task is to write up the algorithm as a member function of
the class fm. You might put this in a file classes/fm/squeeze.src.
Note that we use the .src suffix, rather than .C or .cpp, because we
don’t compile routines separately; instead, all the .src files will be
catenated together to make up one file describing fm.! squeeze.src
will make use of existing functions in fm, and it will probably also
use other data structures in Grail, such as sets and lists. You
needn’t worry about including any header files if you only use other
Grail classes, since they are all (eventually) provided for you.

The second task is to ensure that squeeze.src will be included
in the next compilation of Grail. You do this by making sure that
squeeze.src is listed in the file classes/fm/include.h.

The third task is to arrange for a ‘squeeze’ filter to be produced
when Grail is compiled. This involves several steps:

1. Add the necessary code toinvoke fm: : squeeze to char/grail.C.

grail.C is essentially a large case statement that selects the
action to be executed based on the value of its name that was
used to invoke the program; that is, based on the value of
argv[0]. Simplified, grail.cC looks like this:

1 Even this file will not be separately compiled; since this file describes a tem-
plate, the compiler can’t do much until the template is given a specific alpha-
bet type.

54

main(argc, argv)

{
if (strcmp(my_name, fmcment) == 0)
{ // do complement operation }
if (strcmp(my_name, fmcat) == 0)
{ // do catenation operation }
if (strcmp(my_name, fmenum) == 0)
{ // do enumeration operation }
}

The variable my name is initialized to argv[0]. To make a
‘squeeze’ filter, you would add something like:

if (strcmp(my_name, fmsqueeze) == 0)
{
get_one(a, argc, argv)
a.squeeze();
cout << a;
return 0;

Here the programmer arranges for fmsqueeze to be the name of
the filter. If the executable is called with this name, then it will
enter the body of the if statement. The function get_one is a
utility function that obtains the input machine; it will get input
either from a file or from standard input (if ‘squeezing’ was a
binary operation, you would use the utility function get_two to
get two finite-state machines as arguments. The input machine
is stored in a; the function squeeze is called, the squeezed
machine is printed on standard output, and the filter returns.

2. Define the strings that will used to name the filter’s file.

55

fmsqueeze, the second parameter to the strempin char/grail.C,
is not a string but a variable pointing to a string. This variable

is initialized to different strings for different operating systems.
Under DOS, it points to an uppercase name with a .EXE ex-
tension, and limited to 8 characters. Under UNIX, it points to

a lowercase name with no extension and not limited to 8 char-
acters. In char, you will find files names.h and dosnames.h
that define the names to be used for each filter. You must add

a definition for fmsqueeze to each of these files.

3. Repeat the previous two steps for re, pair, and any other
alphabets that your version of Grail supports.

The steps completed so far have been done for char; that is,
for finite-state machines parameterized by characters. You will
need to repeat them for each alphabet type you want to support
the squeeze function.

4. Add aline to the main Makefile to create a symbolic link from
bin/fmsqueeze to the executable binaries/*/char.out.

This step must be performed for every machine architecture
you want to support.

To fully integrate your filter with Grail, you should also add it to the
profile and test directories. To add the filter to the test directory,
you need to do the following:

e Make a directory tests/fmsqueeze. This is where pre-computed
results of testing are kept.

e Modify tests/Makefile to run fmtest (or fm2test, if your
filter takes two arguments) on your filter.

e Run your filter on each of the test cases and carefully check
the output. If you’re certain that the results are correct, then
store the output for each test case in tests/fmsqueeze. (If
you’re not certain that the output is correct, then by storing
the output all you’re doing is giving future testers a false sense
of confidence.) The result of ‘squeezing’ dfm1 should be in
tests/fmsqueeze/dfml, the result of ‘squeezing’ dfm2 should
be in tests/fmsqueeze/dfm2, and so on.

56

e If you need to add some new test machines to test special
conditions (for example, an ‘unsqueezable’ machine) for your
filter, it would be useful if you also run all the other filters in
Grail on this test case, check their results, and add the output
to the respective directories. This practice will increase the
value of the test system for the whole of Grasl.

e Write a man page for your new filter.

To add your filter to the profile directory, edit profiles/Makefileso
that your filter will be profiled (use fmprofile if your filter uses only
one argument, and fm2profile if your filter uses two arguments).
The next time you run the profiler, the ratio shown for your filter for
all test cases will be 0.0, because the profiler has no baseline. The
second time you run the profiler, however, you will see some values
(1.0 if you haven’t improved your filter in the meantime, and some
other non-zero value otherwise).

Adding functionality may seem too complicated. The only excuse
we can offer is that when you have an environment that attempts
to support multiple architectures, operating systems, and alphabets,
there is going to be a lot to worry about.

ADDING A NEW ALPHABET TO Grail

Adding a new alphabet can be simpler than adding new functional-
ity. If your type or class is well specified, and you have a modern
compiler, then almost all of the work will be done for you, and all of
the functionality of Grail will be carried over to your parameterized
class.?

Parameterizing over a base type

Suppose you want to create finite-state machines whose instruction
labels are instances of int. The following steps are necessary:

1. Do a recursive copy of the directory char (or some other di-
rectory for an existing alphabet type) to a new directory int.

2 If your class is not well specified, or if you use a compiler that doesn’t have
a professional approach to templates, then there may be a lot of heartache
before you manage to integrate Grail and your alphabet.

57

2. Edit int/grail.c.

Change all variables of type fm<char> to fm<int>. Change all
variables of type re<char> to re<int>. Change all variables
of type string<char> to string<int>.

3. Edit int/lexical.h.

You need to define lexical delimiters that will be used to in-
put and output machines and expressions of type int. The
following delimiter variables need to be defined:

static char re_star<int>;

static char re_plus<int>;

static char re_cat<int>;

static char re_lparen<int>;

static char re_rparen<int>;

static char* re_estring<int>;

static char* re_eset<int>;

static char re_lambda<int>;

static char re_left_delimiter<int>;

static char re_right_delimiter<int>;
static char re_left_symbol_delimiter<int>;
static char re_right_symbol_delimiter<int>;

There is one instance of each of these variables per parameter-

ized class; so, there is one re<char>: :re_star, one re<int>::re star,
and so on. These variables are provided to permit you to define

your own symbols, either because you prefer some other delim-

iters or because one or more of the defaults is a valid symbol

in the input alphabet you want to use.

Note that the default symbol for catenation and the left and
right delimiter are both 0. If these values are specified for these
variables (only), then no output is generated for those symbols.

4. Edit int/names.h and int/dosnames.h.

You need to create names for all the executables that satisfy
the constraints that the operating systems impose on filenames,
and that are distinguishable from all other Grail executables
or other programs you use.

58

5. Edit int/Makefile. Change all the executable names to be the
same as those you used in int/names.h and int/dosnames.h.
The single binary file should also be changed to the name of
your type (char.out should become int.out).

6. Edit the root Makefile. Add a compilation statement with
TYPE=int. Add install statements for each architecture for
int. Add int to the make clean command.

7. Compile Grail (which, if you’ve done the previous steps cor-
rectly, will compile all types and install all filters).

Remember that using a template inside a template is permitted, but
you must leave a space between end-brackets. That is,

fm<re<char> >
is valid, but
fm<re<char>>

is not (the C++ parser thinks that >> is the ostream operator, not
the end of the template specification).

Parameterizing over your own classes

Parameterizing over your own classes or types is much the same as
parameterizing over base types or Grail types. The main difference is
that the grail.C file must be able to find the class definition and its
member files. Typically this is done by copying them to the directory
for that alphabet, and putting an #include statement in grail.c®

There are two problems that may arise with parameterization of
your own classes.

The first problem is the provision of minimally required functions
and operators. Grail’s templates (like those of any other C++ class
library) operate on the assumption that certain functions are defined
by the type used for parameterization. There is no way for us to
arrange that you define these functions, but if they aren’t defined

3 For classes that you only need to link, you are only required to make the class
header accessible; the compilation command should be altered to include the
necessary linking directive to locate your class binary.

59

(or if you define them ambiguously), then your compilation will fail
at template instantiation time. We require that you define a small
number of operators:

<<
>>

If you have defined these operators for your type, it should in-
stantiate without trouble.

Even if all necessary operators are defined, you may misinterpret
the results of Grail’s operations. To understand this problem, let us
look at fm<re<char> > in some detail.

There are at least two possible ways to define the == operator
for re<char>. One way, based on identity, treats two re<char>s as
equivalent only if they are identical. The second way, based on lan-
guage equivalence, treats two re<char>s as equivalent only if they
denote the same language. In general, the only feasible way to deter-
mine language equivalence for regular expressions is to convert them
to finite-state machines, minimize the finite-state machines, and test
the minimal finite-state machines for identity. This test is an ex-
pensive proposition, so there is some motivation for choosing to base
equivalence on identity.

Grail, of course, has no way of knowing which choice you have
made; indeed, the whole point of parameterization is that it should
not need to know which choice you have made. Grail simply takes
it for granted that the operator == will return positively if the two
regular expressions are equivalent, and negatively otherwise. But
your choice of semantics for == will affect the outcome of Grail’s
operations. == is used in subset construction, for example, to clus-
ter all states which are reachable on the same instruction label. If
you’ve defined language equivalence as your semantics, then Grail
will treat the regular expressions a and a*a(at+a) as equivalent; if
you’ve chosen identity as your semantics, then Grail will treat these

60

two expressions as distinct. Thus, the two semantics lead to different
output.

Parameterization allows Grail to implement a collection of func-
tions that are performed on ‘black boxes’, which you can instantiate
with a type. Grail will provide correct results, but only within the
semantics you defined for the operators of that type. If you choose to
define identity semantics, don’t expect to get language equivalence
semantics in the result.

The same is true of the semantics of the other comparison oper-
ators <, >, and !=.

MODIFYING Grail’s CLASSES

Modifying Grail’s classes can be straightforward, but it requires a
good understanding of three complicated areas: C++ templates,
Grail’s existing structure, and the theoretical properties of finite-
state machines and regular expressions. Here are some points to
remember:

1. Maintain the separation between a class’s interface and its im-
plementation. The class fm, for example, is implemented as
two sets of states and one set of insts, but this should not be
visible outside the class. As much as possible, ensure that the
interface is restricted to logical functionality.

2. Remember that your new function must work regardless of the
type of the instruction label (or, for regular expressions, of the
symbols of the alphabet). Do not make assumptions that are
true only of fixed types. Is your function general enough to
apply to a fm<re<fm<set<string> > > >? If not, should you
rethink the function?

3. Remember to run the tests on all Grail filters after you have
made your modifications.

4. If you create important new functionality, consider making it
available through a separate filter. Follow the procedure that
we described in the section on making filters.

61

It would be convenient if your additions to Grail are consistent with
the set of conventions Grail uses for filenames. We use two-letter pre-
fixes for filters. Regular expression filters use the prefix re. Finite-
state machine filters use the prefix fm. We also use these prefixes
as suffixes for commands that convert from one type of object to
another; for example, retofm. *

Each class directory has a file classname.h that contains the
class declaration. The string class, for instance, is declared in the
file string.h. This is the first place to look for information about
the class, since it contains declarations of all the methods.

Each of the functions defined for a class is contained in a separate
function.src file. When the function is a function call with an
alphanumeric name, its filename is the same name (for compatibility
with non-flexname file systems, long function names are shortened
to fit an 8-character limit). Hence, the function parse in the class
re is located in the file parse.src. Since operator functions don’t
have alphabetic names, we’ve chosen to use the following standard
alphabetic names for operators:

<< ostream.src

>> istream.src

< 1t.src
gt.src

== eq.src

!= neq.src

+= pluseq.src

-= minuseq.src

A= concat.src

+ plus.src

- minus.src

[1 index.src

We use classname.src for constructors and ~classname.src
for destructors. Constants, macros, and types that are specific to a

4 All predicates begin with the prefix is. This is likely to be changed in the
future, because it does not distinguish between predicates for machines and
predicates for expressions, and because ‘is’ is not the only type of predicate

we want to support.

62

class are kept in defs.h. The set of system and local files that are
necessary for compilation of functions are specified in include.h.

PROFILING

Grail has its own profiling system. This is useful for checking that
‘improvements’ to Grail actually do result in a performance benefit.
Assuming you have an environment that supports the pizie profiler,
Grail is profiled by doing

make profile

from the root of the Grail filesystem. The results of profiling are
given as a table found in profiles/profile.results. The table
looks like the result in Table 3.1.

profile.results shows the cost of each filter for several sample
inputs. The cost is shown as a ratio of the number of machine cy-
cles used by the current implementation against a previously stored
value. If the current version is significantly different from the previ-
ous one the ratio of cycles will be larger or smaller than 1.0—larger
if current implementation is less efficient, and smaller if the current
implementation is more efficient. The table shows the cycle ratio for
each of a set of test cases, and also the total cycle ratio over all cases;
this latter value appears in the leftmost column.

In the example table, we see that overall the current implemen-
tation is slightly less efficient than previous versions; it might sug-
gest that the ‘improvement’ most recently added is actually making
things worse. It’s wise to use some care when interpreting the profile
results, however, both because the results are dependent on the type
of computer you use, and because the test machines are of different
sizes. In particular, nfm3 is ten times larger than the other test cases;
thus, nfm3 accounts for a disproportionate amount of the cycles in
the overall total. Often, improvements will make some cases worse
and some better; for example, if your improvement involves a sub-
stantial fixed overhead, you may notice the performance of the small
test cases is worse, while that of the large test cases is better.

The profiles directory contains scripts that automatically in-
strument and execute each filter (fmprofile, fm2profile, reprofile,
and re2profile; the ‘2’ scripts are used for filters that take two ar-

63

fmcment
fmcomp
fmcat
fmcross
fmdeterm
fmenum
fmmin
fmminrev
fmplus
fmreach
fmrenum
fmreverse
fmstar
fmtore
fmunion
iscomp
isdeterm
isomorph
isuniv

recat
remin
restar
retofm
reunion
isempty
isnull

total
1.02
1.03
1.08
1.20
1.04
1.08
0.90
1.07
1.04
1.05
1.10
1.15
1.04
1.30
1.14
1.16
1.11
1.09
1.16
total
0.98
1.02
1.02
0.99
0.98
1.02
1.02

dfm1
0.99
0.99
1.00
1.01
1.00
1.05
1.08
1.00
0.99
0.99
0.99
0.99
0.99
1.02
1.01
0.99
0.99
1.00
0.99
regl
0.98
0.98
0.98
0.99
0.98
0.98
0.98

dfm2 dfm3
1.00 1.00
1.01 1.00
1.01 1.01
1.02 1.03
1.01 1.00
1.01 1.01
1.09 1.11
1.00 1.00
1.01 1.00
1.01 1.00
1.01 1.01
1.04 1.02
1.01 1.00
1.25 1.15
1.03 1.02
1.02 1.01
1.02 1.01
1.01 1.02
1.02 1.01
reg2 reg3
0.98 0.98
1.04 1.02
1.04 1.02
0.99 0.99
0.98 0.98
1.04 1.02
1.04 1.02

nfm1
1.00
1.01
1.01
1.03
1.00
0.95
0.25
1.02
1.01
1.01
1.01
1.03
1.00
1.13
1.02
1.02
1.02
1.01
1.02

Table 3.1: Profiler output.

64

nfm?2
1.00
0.99
1.00
1.01
1.00
1.52
0.23
0.99
0.99
0.99
0.99
0.99
0.99
1.03
1.01
0.99
0.99
1.00
0.99

nfm3
1.03
1.04
1.09
1.25
1.04
1.18
1.03
1.12
1.04
1.05
1.12
1.16
1.04
1.30
1.18
1.19
1.12
1.13
1.19

nfm4
1.01
1.01
1.06
1.13
1.02
1.08
0.40
1.12
1.05
1.05
1.08
1.11
1.05
1.50
1.09
1.10
1.12
1.08
1.10

guments) and scripts that compute the cycle ratio and produce a
new profile.results file (fmdiff and rediff).

It’s possible to generate profiles of current Grail with respect
to older versions. The profiles directory contains a collection of
previous profile results, named with a date and .profile suffix.
Copying any of these files onto the file current.profile and then
doing make recompute will generate a new results file that shows
how Grail has improved since the date of the previous profile.

If you profile Grail over a long period of time, you may wish
to retain a history of improvements. At each milestone, simply
copy current.profile into a file named with the date or some
other identifying label. Note that it isn’t sufficient to save the file
profile.results. This file is derived data and contains only the
cycle ratios. The actual numbers of cycles are stored in files with a
.profile suffix; they are the files that must be retained.

Grail’s profiling mechanism is designed to work in environments
that support the pizie profiler (provided on DEC MIPS systems).
The profile harness should be easily extendible to other profilers.
To make the profiling mechanism work with other profilers, write
new scripts fmprofile, fm2profile, reprofile, and re2profile.
They must automatically generate instrumented versions of the code,
extract the number of cycles after running a profile, and properly
update the intermediate files.

MISCELLANEOUS

Some odds and ends:

1. Why do we use the suffix . src for our class code files? Because
too many compilers make invalid inferences from suffixes like
.c or .C. In some cases the compiler decides that the code is
C rather than C++; in other cases, the compiler’s template
instantiation mechanism thinks that a .c file with the same
prefix as the template’s .h file must be the template definition
file. Many C++ compilers allow you to specify your own suffix
with a command line option, but their template instantiation
mechanisms do not always use this information. Consequently,
we use a suffix that no one expects, #include all the files into

65

a single class module, and use that as (part of) the compilable
object.

. Why do we include all files in Grazl in one single, monolithic
module for compilation? In our experience, this is the fastest
approach to compiling Greil. Multiple modules mean multi-
ple invocations of the compiler, with redundant processing of
many common header files. Another reason is that some C++
compilers use the source filename to construct an external en-
try point for the destructor function for each class; this has
led to linking problems if the same filename is used for some
other class. The third reason is Grail’s heavy use of templates.
With some compilers, separate compilation of templates in-
volves a costly process in which each failure of the linker to
locate an instantiation of a needed template function causes
the compiler to be invoked to generate that function. Separate
compilation of Grail in such an environment can take over an
hour. By producing a single module, we completely avoid the
interaction between linker and compiler, and we have seen our
compile times drop to about five minutes.

. The class headers include an #ifdef to ensure that every class
is defined only once. This hack should be avoidable by proper
use of the #include facility, but it doesn’t seem possible (the
problem may be due to how template instantiation works).

. The classes derived from subexp (empty_set, empty_string,
cat_exp, plus_exp, symbol _exp, and star_exp) are accessed
only within re, and indeed should not even be visible outside
subexp. Why then are these derived classes not nested within
subexp? The reason is that some compilers don’t implement
nested classes within templates.

. Why haven’t we made Grail work with GNU C++4? The main
reason in the past was GNU’s non-standard behavior and poor
template support. The commercial compilers are better and
more reliable than GNU, at least for the moment.

. Some notes on compilation: On most UNIX machines Grail
compiles in five to ten minutes, depending on load and com-

66

pilation options. IBM’s xIC on the RS/6000 550 and SGI’s
Delta compiler on the Onyx/2 are the fastest environments
we’ve used. xlC and Watcom 10.0 are tied for most robust
compiler; each is able to find errors that the other one won’t,
and both are much more strict than cfront-based compilers.

If you’re using Watcom 10.0, we strongly recommend that
you do most of your compiling without the optimization flags
-oneatx. Without these flags, Grail compiles in five to ten
minutes on a 33 MHz 486 with 16 Mbyte of RAM; with op-
timization enabled, compiling takes as much as an hour (per

alphabet).

CHANGES IN VERSION 2.3

This section describes the changes and improvements made since
Version 2.2.

1. Fixed string/istream.src (again).

2. Added xfmenum, xfmexec, xfmcross, xfmmin, xfmminrev, xfmcment,
xfmcomp.

3. Fixed bug in fm/catenate; was removing self-loops on start states
of argument machine.

4. Fixed bug in retofm; was not incrementing state number
high enough (and thus generating self loops on null
expression).

5. Fixed bug in fm/catenate; was not making final state of
invoking machine final if argument machine included empty
string.

6. Added specialized set deletion that substitutes last element.

7. Split xfm stuff into separate directory; now using directory
‘type’ instead of ‘grail’ (e.g., ‘char’, ‘re’, ‘pair’, etc.)

67

8. Added sorting and tests for sortedness to set.
9. Added state::operator=(const state&).

10. Substituted initialization for assignment in constructors
(Myers #12).

11. Return value of empty_set<S>::operator=() was subexp<S>&;
changed to empty_set<S>& (Myers #15).

12. fm data members made private.
13. minor improvements made to re::fmtore
14. -n flag added to fmenum.

15. Makefiles improved for multiple architectures, multiple compilers,
multiple alphabet types.

CHANGES IN VERSION 2.2

This section describes the changes and improvements made since
Version 2.1.

1. New array class; set, list, and string are derived from
array.

2. Removed classes/Makefile and classes/*/Makefile; instead,
we use #include and compile everything in one shot

(thus avoiding long template instantiation and makefile
differences across systems).

3. fm altered to save start and final states explicitly.

4, Redundant class members removed; small functions inlined;
classes generally cleaned up.

68

5. Removed grail/template.2 (not necessary with new #include
style).

6. Merged Makefile and Makefile.wat.

7. Fixed bugs: fmexec did not handle 4-argument case correctly;
string/istream.src read last character twice.

Thanks to Jochen Seemann of the University of Wurzburg

8. Added flags for static binding.

9. Fixed profiler to use proper filter names (null profiles were
being generated because filters had .pixie suffix).

10. Added .EX, .EE macro definitions to top of each man page.

11. Included Rational DOS extender.

CHANGES IN VERSION 2.1

This section describes the changes and improvements made since
Version 2.0.

1. Fixed bug in handling of istrstream for fmexec arguments
in fm.C.
Thanks to Tillman Kolks of IMEC, Belgium

2. Change loop index variable to "j" where "i'" was being used
twice in nested loops in fm::enumerate.
Thanks to Tillman Kolks of IMEC, Belgium

3. Fixed bug in min_by_partition; machines consisting of only

final states should not be reduced to single-state machine.
Thanks to Tillman Kolks of IMEC, Belgium

69

4., Made sure fmrenum does not include unreachable states.
Thanks to Tillman Kolks of IMEC, Belgium

5. All classes/*/*.cc files moved to classes/*/*.src files,
and Makefiles converted correspondingly. This change made
to support Sun CC template instantiation.

Thanks to Scot Dyer, University of Nebraska-Lincoln

6. —-c argument to fmenum in grail/fm.C fixed.
Thanks to Tillman Kolks of IMEC, Belgium

7. Missing return statements added to grail/fm.C, grail/re.C, and
grail/fmre.C.

8. inst::operator== changed to eliminate label test for start and
final transitions. This necessitated changes to re:fmtore to
handle regular expressions on start and final transitions.

9. grail/mnames.h and grail/dosnames.h added to permit compilation
under DOS.

10. Makefile.wat added to various directories, for compilation under
Watcom C++ 9.5.

11. Changed argv[0] usages to my_name in grail/fm.C, grail/re.C,
grail/fmre.C. Made executable name extraction work with both

Unix and DOS-style path delimiters.

12. Fixed bug in fmstar (added too many final/start instructions
to clone state).

13. Added test cases d7, d8. Renamed all test cases to work within
DOS-style file suffix limitations.

70

CHANGES IN VERSION 2.0

This section describes the changes and improvements made since
Version 1.2.

1. Converted fa and trans to template classes.
2. Removed tset and xfa.
3. Cleaned up directories and files.

4. #ifdefs used to avoid duplicate definitions of classes
(seems to be required by template instantiation mechanism)

5. fa filters are all now symbolic links to one executable
that checks argv[0] to determine which operation to perform.

6. state::number made private.

7. Fixed trans comparison operators to avoid checking labels
for pseudo-transitions.

9. Removed fa::operator+=(trans&) (it had different semantics
from fa::operator+=(fa&), which could be confusing).

10. Filters renamed to use "fm" prefix; fixed test cases.
11. isomorph does its own renumbering and sorting now.

12. Renamed "fa'" class to "fm"; renamed '"trans" class to '"inst'",
"regexp" class to '"re"

13. re class rewritten; new classes: empty_set, empty_string,
cat_exp, plus_exp, star_exp, symbol_exp, subexp.

14. re filters are all now symbolic links to one executable
that checks argv[0] to determine which operation to perform.

71

15. xfm filters are all now symbolic links to one executable
that checks argv[0] to determine which operation to perform.

16. Made string parameterized; altered usage of string where
necessary to string<char>.

17. Rewrote retofm and fmtore.

18. Added various hacks to enable proper template instantiation
(grail/template.1l, grail/template.2, note changes in re.h)

19. re now does not automatically "minimize" expressions; remin
has the "minimization" functionality.

CHANGES IN VERSION 1.2

This section describes the changes and improvements made since
Version 1.0.

1. Compiles under x1C 1.00, AT&T 3.0, Watcom C++ 9.5.

2. Added set/gt.cc and set/lt.cc.

3. string::operator+= reallocation changed so that blocks
are always a power of 2. This seemed to fix a bug

when running fatore on RS/6000.

4. In string.h, fa.h, state.h, grail.h, use <iostream.h>
instead of <gtream.h>.

5. Removed "form" from regexp/concat.cc, regexp/term.cc,
regexp/token.c.

6. End-of-function return values required for regexp/test*.cc.

72

7. Removed duplicate xfaplus from grail/Makefile.

8. Improved grail/Makefile to use default rules, removed
unnecessary operations.

9. Added "tempinc'" to clean targets so that x1C recompilation
proceeds correctly.

10. set/include.h and list/include.h designed to handle the
default requirements of x1C/Cfront template mechanisms

(for x1C, you include the template header file, for Cfront,

you don’t).

11. Added "XLC" and "ATT" defines to Makefile, tset.h.

12. "delete [] p" removed from “tset(). It incorrectly duplicates
the functionality of “set(), causes a crash under Watcom 9.5

(discovered by Mark DeLaFranier of Watcom).

13. mksys scripts written for list, set (to provide correct
suffixes for x1C and Cfront).

14. Removed <libc.h>, substituted <stdlib.h>.

15. A1l grail filters given "return 0" at end of main; all
return values checked (and modified) for correctness.

16. from_set and from_list made members of list and set
respectively.

17. find_part removed from xfa.h.

18. list::compare() only; removed compare from all other classes;
compared contents of pointers instead of pointers.

19. list::< and list::>.

20. Removed print functions from set, tset, list; redefined

73

ostream operators.

21.

22.

23.

24.

converted Item::compare to list<Item>::compare in list::sort

note that tset:operator<< second argument must be const.

famin fixed; can’t treat min_by_partition result as boolean.

Added functions fa::deterministic_density, xfa::number_of_transitic

xfa::number_of_labels, xfa::number_of_states.

25.

For nfa’s, faenum computes deterministic density and

converts to deterministic automata if appropriate.

26.

Purify’d. Fixed bugs in string::operator+=(const char*) and

ostream: :<<(ostream&, regexp&).

74

