
Grail� Engineering Automata in C��

Version ���

Darrell Raymond�

Derick Wood�

January ����

� Department of Computer Science� University of Waterloo� Waterloo� Canada

� Department of Computer Science� Hong Kong University of Science and Tech�

nology� Kowloon� Hong Kong

�

table of contents

Introduction � �

Features of Grail � �

Grail �s design � 	

A short history of Grail � �

Related software systems � ��

Some empirical lessons � ��

How do I obtain Grail� � �

Acknowledgements � �

References � �

�

introduction

I saw the Holy Grail� All pall�d in crimson samite�

Tennyson� Holy Grail

They seemed to seek some Hofbrauhaus of the spirit

like a grail� hold a krug of Munich beer like a chalice�

T� Pynchon� V

This equipment can be used to counter heat�seeking

missiles such as the Soviet SA�	 Grail shoulder��red

weapon� now extensively deployed in Third World

countries�

Daily Telegraph� Nov� ��� ��
�

We can�t go doddering across Malaya behind an in�

spired crackpot following the Holy Grail� can we�

H�M� Tomlinson� Gallions Reach

The Edge was Fox�s grail� that essential fraction of

sheer human talent� nontransferable� locked in the

skulls of the world�s hottest research scientists�

W� Gibson� New Rose Hotel

Grail is a symbolic computation environment for �nite�state ma�

chines� regular expressions� and other formal language theory ob�

jects� Using Grail � one can input machines or expressions� convert

them from one form to the other� minimize� make deterministic� com�

plement� and perform many other operations� Grail is intended for

use in teaching� for research into the properties of machines� and for

e�cient computation with machines�

This paper provides a basic introduction to Grail and describes

�

some of its history and development� If you want to use Grail � you

should also consult the User�s Guide to Grail and the man pages

for the individual �lters� If you are installing Grail � or if you want

to write C�� programs that use Grail � consult the Programmer�s

Guide to Grail �

Grail is written in C��� It can be accessed either through a

process library or through a C�� class library� The process library

is used much like other �lters� from a command shell� a user can

execute processes on �les or input streams� generating output that

can be �ltered by other processes� The C�� class library can be

compiled into applications that need direct access to Grail � or that

wish to minimize the costs of stream I�O�

The name �grail� isn�t necessarily an acronym� though it could be�

In the past� we have sometimes suggested that Grail stands for some�

thing like �Grammars� regular expressions� automata� languages�

�we�ve never come up with something convincing for the i��� It�s

probably just as reasonable to think of our Grail experience as a

search for the hofbrauhaus of formal language theory�

features of Grail

Version ��� ofGrail enables you to manipulate parameterizable �nite�

state machines and regular expressions� By �parameterizable�� we

mean that the alphabet is not restricted to the usual twenty�six let�

ters and ten digits� Instead� all algorithms are written in a type�

independent manner� so that any valid C�� base type and any

user�de�ned type or class can de�ne the alphabet of a �nite�state

machine or regular expression�

Regular expressions in Grail use the conventional notation of

the theoretical community� Grail supports catenation� union� and

Kleene star for regular expressions� along with parentheses to spec�

ify precedence �complement is not supported�� The following are

examples of regular expressions acceptable to Grail �

a�b

��a�bcde���c��

��

���a

�

The expression fg denotes the empty set� and the expression ��

denotes the empty string�

The traditional representation for automata is the ��tuple�

� Q��� �� s� F �

where Q is the set of states� � is the input alphabet� � is a partial

relation � � Q � � � fQg� s � Q is the start state� and F � Q

is a set of �nal states� In Grail � we represent machines as sets of

instructions� A machine that accepts the language ab� for example�

is speci�ed by�

�START� �	

 a �

� b �

� 	� �FINAL�

Each instruction is a triple consisting of a source state� an instruc�

tion symbol� and the corresponding target state� The start and ��

nal states of the machine are indicated by means of special pseudo�

instructions� whose labels are special symbols that can be thought of

as endmarkers on the input tape� The states �START� and �FINAL�

are pseudo�states� they simply indicate that the other state in the

instruction is a start or �nal state� The set of �non�pseudo� instruc�

tions is an enumeration of the instruction relation� The alphabet of

the machine is given implicitly� it is the set of symbols that appear in

�non�pseudo� instructions� Grail �s machines di�er from conventional

machines in that we permit multiple start states as well as multiple

�nal states� Grail �s machines are also parameterizable�

To the user� Grail is a set of individual �lter programs that op�

erate on streams containing descriptions of �nite�state machines or

regular expressions� Most �lters take a machine �or regular expres�

sion� as input� and produce a machine �or regular expression� as

output� Regular expressions and machines can be entered directly

from the keyboard or �more usually� redirected from �les� To con�

vert a regular expression into a �nite�state machine� for example�

one might issue the following command�

 echo ��a�b���abc�� � retofm

whose output would be

�

�START� �	 �

 a �

� b �

 a

 a �

� b

� b �

� a �

� a

� a �

� b �

� b

� b �

� a �

� a �

� a �

� c �

� b �

�
 	� �FINAL�

The �lter retofm converts an input regular expression into a non�

deterministic �nite�state machine� which it prints on its standard

output� This output can be the input for another �lter� for exam�

ple� a �lter that converts the machine back into a regular expression

�folded here to �t onto the page��

 echo ��a�b���abc�� � retofm � fmtore

��aa�a�ba�a�a�b��b�ba�a��ba�aab�aab�aa�aab�ab�ba�aab�

��aa�a�ba�a�a�b��b�ba�a��b�b�ab�c

For those who want to avoid the cost of I�O implicit in the use

of the �lter approach� Grail can also be accessed directly as a C��

library� The above �lter command

 echo ��a�b���abc�� � retofm � fmtore

can also be written directly in C���

�

�include �grail�h�

main��

�

re�char� r�

char� example � ��a�b���abc��n��

istrstream�example� strlen�example�� �� r�

r�fmtore�r�retofm����

cout �� r �� endl�

�

In the above program� the istrstream function is used to convert

an internal string into input to be read as a regular expression� the

retofm function converts the expression into a machine� and the

fmtore function converts it back to an expression�

Grail �s algorithms are independent of the type of alphabet de�

�ned� We can have� for example� machines whose transition symbols

are ordered pairs of integers�

�START� �	

 ����� �

� ����� �

� ����� �

� 	� �FINAL�

Each of Grail �s �lters can be compiled to work with this symbol

set� thus� we can convert such a machine to a regular expression �of

ordered pairs�� enumerate its language �which is a set of strings of

ordered pairs�� and so on�

Grail �s design

Most tools for working with machines and expressions are designed

for a speci�c application� such as program parsing� Grail � on the

other hand� is designed to be a general�purpose package for symbolic

computation with machines and expressions� We intend for Grail to

�eventually� �ll all of the following needs�

	

� research

Grail should facilitate the theoretical and practical investiga�

tion of machines and expressions� and the development of new

algorithms for processing them� Grail has already been useful

in investigating the properties of subset construction �Leslie

����

� education

Grail should facilitate teaching about machines� In part� it

should do this by making it easier to experiment with machines�

but we also hope that Grail will add a leavening of engineering

to a subject that is mostly taught as theoretical mathematics�

Grail has already been used for undergraduate teaching�

� application

Grail should facilitate the use of machines in solving applied

problems� such as protocol testing� embedded state machines�

executing concurrent processes� parsing� string searching� and

any other application that can be described by machines or

expressions� Currently this aspect of Grail is underexplored�

The key theme of Grail �s design is modularity� We seek modu�

larity not just because it is the generally accepted route to a good

software design� but because we expect that adding new facilities to

Grail and developing new uses for Grail will be the most common

activity of both its users and its designers� Modularity in Grail arises

in four important areas�

� philosophy

Other approaches to software for machines assume that min�

imal� deterministic machines are the desired end result of all

processing� In Grail we do not make this assumption� we treat

machines and expressions as equal �rst�class objects� Program�

mers will �nd in Grail a collection of useful tools and a number

of ways to connect the tools to address new and interesting

problems in formal language theory� Moreover� we intend to

make many algorithms and implementations of algorithms ac�

cessible within Grail � both the �apparently� ine�cient as well

as the e�cient� in order to facilitate experimentation and study�

as well as to generate test cases�

� process�based software

Instead of developing yet another language for writing ma�

chine programs� Grail is based on a set of individual processes

that can be accessed by any command shell or any program

that is capable of launching processes� Processes are mod�

ules whose encapsulation is enforced by the operating system�

a process�based approach encourages programmers to develop

simple� generally�applicable tools� A second advantage of this

approach is that it is easy to distribute computation� by us�

ing the capabilities of rsh to set up Internet pipes� we can

run processes on di�erent machines� A third advantage is that

a process�based approach separates language issues from ma�

chines processing� It also leverages users� knowledge of shell

programming� rather than requiring users to learn a new lan�

guage� users can exploit sh� csh� ksh� bash� perl� and many other

languages�

� textual interchange

A multiple�process design requires some form of interprocess

communication� since processes cannot access each others� data�

We use a textual description of machines and regular expres�

sions as the intermediary for Grail � Each process reads a tex�

tual description of the input machine� converts it into an in�

ternal form� processes it� and writes a textual description of

an output machine� The advantage of this approach is that

the input and output can be read� edited� and manipulated by

standard utilities such as vi� sort and wc� The disadvantage

is the extra cost of encoding and decoding between the lan�

guage and internal forms� and the cost of process invocation

and switching�

� C�� class library

C�� encourages encapsulation and the de�nition of interfaces�

and hence encourages modularity in low�level code� In addi�

tion� we make extensive use of template classes� which in e�ect

�

de�ne operations on �black boxes� that are ready to be instan�

tiated with the user�s choice of modules�

Grail �s �	 �lters are listed in Table ��

a short history of Grail

Grail was preceded by two packages written at the University of

Waterloo� The earlier e�ort was Leiss�s REGPACK �Leiss 	��� a pack�

age written in ��		 to support experimentation and research with

�nite�state machines� REGPACK� written in SPITBOL� supported the

conversion of nondeterministic machines to deterministic machines�

minimization of deterministic machines� and construction of syntac�

tic monoids� While REGPACK did not directly in�uence the current

e�ort� it is interesting to note that Leiss�s goal of an environment for

experimentation with machines is still one of our primary goals�

A program with more direct in�uence on Grail was Howard John�

son�s INR �Johnson
��� INR was developed because of Johnson�s

interest in rational relations and their use in de�ning string simi�

larity �Johnson
��� INR takes rational relations �including regular

expressions� as input and converts them into �nite�state machines�

which can then be manipulated in various ways� INR can produce

single� or multiple�tape machines� the latter are useful for describing

transducers� since one tape can be considered an output tape for the

other �input� tapes�

Johnson made special e�orts to ensure that INR was a highly ef�

�cient and powerful tool for managing machines� His goal was the

e�ective processing of machines with thousands of states and instruc�

tions� As a result� INR is written very compactly in C� and is espe�

cially e�cient in handling potentially costly tasks such as memory

allocation� subset construction� and minimization of machines� The

basic algorithms for handling such tasks are well known� but there

has been relatively little attention paid to e�cient implementation

of these algorithms� Johnson made the e�ort to develop e�cient im�

plementations� with the result that INR was the only software system

capable of handling the transduction of the Oxford English Dictio�

nary �Kazman
��� Even today� many of INR�s capabilities are more

advanced than those of other software �though we like to think that

�

fmcment complement a machine

fmcomp complete a machine

fmcat catenate two machines

fmcross cross product of two machines

fmdeterm make a machine deterministic

fmenum enumerate strings in the language of a machine

fmexec execute a machine on a given string

fmmin minimize a machine by Hopcroft�s method

fmminrev minimize a machine by reversal

fmplus plus of a machine

fmreach reduce a machine to reachable states and instructions

fmrenum canonical renumbering of a machine

fmreverse reverse a machine

fmstar star of a machine

fmtore convert a machine to regular expression

fmunion union of two machines

iscomp test a machine for completeness

isdeterm test a machine for determinism

isomorph test two machines for isomorphism

isuniv test a machine for universality

isempty test for equivalence to empty set

isnull test for equivalence to empty string

recat catenate two regular expressions

remin minimal bracketing of a regular expression

restar Kleene star of a regular expression

retofm convert a regular expression to a machine

reunion union of two regular expressions

Table ���� Grail �lters

��

Grail is catching up�� The present e�ort has borrowed INR�s philos�

ophy of combining powerful capabilities with e�cient design� as well

as its notation for machines�

The �rst project to actually use the name �Grail� was a joint e�ort

between Howard Johnson� Carl�Johan Seger� and Derick Wood� This

project extended INR to handle context�free grammars and machines

with regular expressions as instruction labels� Software developed

for this project consisted of a layer of code that used INR as an

underlying computational engine� After some work� this e�ort was

discontinued�

The Grail project was resuscitated by the present authors in ���
�

We began with the observation that some issues were not satisfacto�

rily handled either by INR or �old Grail�� The �rst issue was obscurity�

In pursuit of e�ciency� INR had become a somewhat complex and

monolithic piece of code� The layer of software added by �old Grail�

merely increased the complexity� because it was not easily main�

tainable or modi�able� The lack of documentation for INR and �old

Grail� made this software di�cult to understand for anyone other

than its programmers� Thus� the �rst order of business was to de�

velop software that was more approachable and better documented�

to improve maintainability and robustness� and to ensure that many

programmers could work on the software�

The second issue was modularity� Much of the di�culty of build�

ing upon INR was a result of its tightly connected structure� Adding

a new algorithm for subset construction� for example� required know�

ing much about the internals of INR� including its data structures�

memory allocation� parser� and so on� We wanted a software en�

vironment in which programmers could work on algorithms without

having to learn too much about the details of the existing code� This

meant that we would have to build the software in a modular fashion�

devising interfaces at several levels�

The third issue was generality� Like most systems that have ap�

peared since� INR assumed that the user wanted to input regular

expressions and receive deterministic� minimized machines as out�

put� INR did not support the user who wanted to input machines

and produce regular expressions as output� We wanted Grail to be a

general purpose manipulation language� in which one could convert

machines and expressions freely� with user control over minimization

��

and determinism�

Grail version
�� was written in C� and consisted of the following

�lters�

cross compute the cross product of two machines

lreverse reverse the input using empty�string instructions

min minimize the input by Hopcroft�s partition algorithm

min� minimize the input by reversal and subset construction

percent compute the alternation �i�e� �ab��� of two machines

plus compute star�� of the machine

quest compute the machine��

reverse reverse the input machine

star compute the Kleene star of the input machine

subset subset construction of the input machine

union compute the union of two machines

These �lters accessed a library of functions that did most of the

actual work �the �lters themselves were essentially simple I�O rou�

tines�� The library contained procedures for handling I�O and for

processing machines� The idea behind this decomposition was that

the �lters should be e�cient enough for most problems involving

machines� for very large or complex problems� a competent C pro�

grammer could access the library directly and thereby avoid any

ine�ciency introduced by process communication�

While the �lters were reasonably successful� the library was not�

Our C code was not particularly reliable� readable� or reusable� This

latter problem was irritating both aesthetically and as a pure engi�

neering problem� Operations on machines and regular expressions

involve frequent manipulation of container structures such as sets

and relations� it would be both elegant and e�cient to use a sin�

gle implementation of these structures for many di�erent contents�

Using C� however� one can provide this generality only by giving

up strict type checking� In spite of these problems� version
�� did

support a signi�cant research project on subset construction �Leslie

����

We decided to switch to C�� to re�implement Grail � We made

this choice of language under the impression that we would develop

an elegant class hierarchy that would greatly increase code reuse and

the overall robustness of the system� C�� has led to much better

��

clarity and robustness� largely because of its strict type checking and

encapsulation� C���s template facility is indispensable to Grail �

and recent versions of the software have made more extensive use of

inheritance and virtual functions�

Versions
�
 through ��� ofGrail saw the development of our C��

class library� which included the classes set� list� string� regexp�

trans �transition�� state� fa� tset �sets of transitions�� and xfa

�extended �nite machine�� This latter class de�nes machines that

have regular expressions as transition labels� The set and list

classes are template classes� they and xfa were our �rst attempt to

rely on C���s ability to support code reuse� In addition to rewriting

our existing code in C��� we also added more functionality�the

number of �lters jumped from �� to ��� Version ��
 introduced an

automatic testing facility that was used to check that changes to code

still resulted in working �lters� Version ��� introduced an automatic

pro�ling facility that was used to test that purported improvements

actually did lead to more e�cient code� Version ��� was subjected to

quality checks� both through the use of Purify and through correcting

the bugs and inconsistencies that were discovered by compiling the

code with two C�� compilers that are more strict than cfront�

The most recent version of Grail is Version ���� The main di�er�

ence between Version � and previous versions is the added support for

parameterizable machines and expressions� Parameterizable �nite�

state machines can take any type as instruction label� and param�

eterizable regular expressions can take any type as a symbol class�

Version � thus dispenses with the distinction between xfa and fa

�each is an instance of the new parameterizable machine class fm��

and has extended the reach of the regexp class �now called re� be�

yond strings of ASCII alphabetic characters� Version � also dispenses

with the class tset and makes string a parameterized class� De�

spite its increased functionality� the source code for Version ��� is

much smaller than the source code of Version ����a nice example

of how it is sometimes simpler to solve more general problems�

related software systems

Recently� several systems for computing with machines have ap�

peared in the literature or have been made available over the In�

��

ternet�

Bruce Watson has written a C�� toolkit for �nite�state machines

and regular expressions called the FIRE Engine �Watson ��a� ��b��

This package has the goals of e�ciency and modularity� and imple�

ments more algorithms than does Grail � The FIRE Engine does not

come with a non�programmer interface� such as Grail �s �lters�

Champarnaud�s AUTOMATE system� written in C� supports

�nite�state machines and �nite semigroups �Champarnaud and Hansel

���� It can compute deterministic minimal machines� syntactic monoids�

and transition monoids of regular languages�

The AMORE system� written in C� supports �nite�state ma�

chines� regular expressions� and syntactic monoids �Jansen et al� �
��

It can produce minimal DFAs� handle ��NFAs� and perform various

tests on syntactic monoids �for example� star�freeness� �niteness� and

co�niteness�� AMORE can also display its machines graphically�

Both AMORE and AUTOMATE have goals similar to those of

Grail�to serve as a research environment� to facilitate the study

of machine implementations� and to provide a package for execut�

ing machines for other purposes �such as validating concurrent pro�

grams�� Where Grail di�ers is in its emphasis on providing a full

symbolic computing environment� in its provision of both �lters and

a class library� and in the fact that Grail does not attempt to provide

its own graphical user interface or programming language� AMORE

and AUTOMATE appear to be monolithic programs that attempt

to provide a single interface to the user�

One use of machines is for hardware veri�cation and protocol

checking� FANCY� the Finite AutomatoN Checker of nancY� is

Stefan Krischer�s tool for formal hardware veri�cation� It provides

equivalence and inclusion checking for �nite�state machines and is

accessible through a graphical user interface�

FADELA� the Finite Automaton DEbugging LAnguage� is a project

directed by Gjalt de Jong �van der Zanden �
�� FADELA is designed

to investigate ��regular languages �that is� regular languages whose

words are of in�nite length�� FADELA supports the production of

deterministic M�uller machines� and can convert these machines into

regular expressions� FADELA also supports other operations on ma�

chines including minimization and complement�

An interesting experience is the development of machine tools in

��

Nuprl� a proof language based on the lambda calculus �Kreitz
���

De�nitions were constructed in Nuprl for �nite sets� strings� tuples�

and deterministic machines� Nuprl was then able to construct a

proof of the pumping lemma� The main point of this work was not

the development of an environment for manipulating machines� but

an illustration of the utility of the Nuprl proof development system�

We know of several other systems whose motivation is primarily

pedagogical� An early e�ort was GRAMPA� which was only par�

tially implemented �Barnes 	��� More recently� Hannay has built a

Hypercard�based system for simulating machines �Hannay ���� This

program appears to be useful for introductory teaching purposes�

and for simulating small machines� FLAP� the Formal Languages

and Automata Package� comes from Rensselaer Polytechnic Insti�

tute� FLAP supports the drawing and execution of �nite�state ma�

chines� pushdown machines and Turing machines� FLAP can handle

nondeterministic machines� provides the ability to step through the

execution of a machine� and supports paper output �LoSacco and

Rodger ���� Finally� Turing�s World is a program for teaching the

basics of �nite�state machines and Turing machines �Barwise and

Etchemendy ���� This program�s strength is a nice graphical inter�

face to the machines�

In addition to these systems� there is a vast amount of work

on using grammars and machines in applications� Many operat�

ing system utilities understand a limited form of regular expression�

for example� and almost every text editor provides general�purpose

search�and�replace capabilities� The machines used in such tools are

generally custom built� or perhaps adapted from custom code� op�

erating systems have yet to o�er a standard machine package for

handling parameterizable machines and expressions in the same way

that they o�er parameterizable sorting and searching routines�

some empirical lessons

Developing Grail has taught us much about implementing algorithms

for �nite�state machines� C�� is an important contributor to the

robustness of the code� mainly because of strict type checking� The

C�� compiler has resisted many questionable constructs that were

unquestioningly accepted by C� Consequently� programming bugs

��

and errors less frequently show up in low�level operations� When

bugs do appear� they are now almost always incorrect speci�cations

of algorithms�

Grail has also taught us some lessons that apply to the construc�

tion of mathematical libraries in general� One lesson is that a library

of routines is only half the battle� the other half is in developing a li�

brary of test data� and in the provision of a mechanism for automatic

testing and performance evaluation� In the early stages of develop�

ment� Grail �s �lters were tested with simple machines and the results

were checked by hand� As the pace of development increased� how�

ever� this was no longer su�cient� one cannot very well test tens of

programs on each of several test cases by hand� and one cannot test

very large machines or expressions by hand at all� since the proba�

bility of a manual error in checking soon becomes higher than the

probability of an error in the code� Thus� it becomes necessary to

automate testing� Automation is also essential in performance evalu�

ation� which relies on large inputs in order to thoroughly exercise the

code� One approach to generating large test cases is to apply �lters

that generate non�isomorphic machines that are language equivalent�

Repeatedly converting between machine and regular expression� for

example� will result in a large machine that accepts a known lan�

guage� Hence� the result of processing such a machine can be tested

by minimizing and comparing it to the known minimal machine�

Another related tactic is to repeatedly take the cross product of a

nondeterministic machine with itself� there will be an exponential

blowup in the size of the result� which is still language equivalent

with the original�

A second important lesson is that a sound theoretical understand�

ing of an algorithm is not the same as a sound implementation� To

paraphrase a popular saying� a little knowledge of worst�case per�

formance is a dangerous thing� Algorithms that have bad worst

case performance may be quite acceptable for most practical uses�

Subset construction� in particular� is exponential in the worst case�

but empirical study shows that the number of machines that exhibit

this behaviour is small �Leslie ���� Moreover� it appears to be pre�

dictable from the input whether an exponential result is likely to

occur� Since most users do not want to store or further use exponen�

tial output� predicting this result may be su�cient� Another example

�	

is the empirical evidence reported by Bruce Watson� suggesting that

Brzozowski�s algorithm for minimization �applying reversal and sub�

set construction twice� performs better than Hopcroft�s algorithm

in practice� even though worst�case analysis of the two algorithms

suggests the opposite�

On the other hand� a sloppy implementation of a well�known al�

gorithm with reasonable average case performance may be unaccept�

able for every large input� Linear�time algorithms can easily become

quadratic�time if careful attention is not paid to problems such as

the proper management of sets�

how do i obtain Grail�

Grail is available without charge to researchers and students� or

anyone who wishes to use the software for their own private edu�

cation� Version ��� of Grail can be obtained by anonymous ftp at

daisy�uwaterloo�ca ������	���
��
� in directory pub�grail� you

should download grail���src�tar�Z for source code and documen�

tation� and grail���bin�tar�Z for binaries�

Grail is not in the public domain� It cannot be sold� used for

commercial purposes� or included as part of a commercial product

without our permission�

acknowledgements

This research was supported by grants from the Natural Sciences

and Engineering Research Council of Canada� and the Information

Technology Research Centre of Ontario� The �rst author was also

supported by an IBM Canada Research Fellowship� We would like

to thank Howard Johnson for his assistance and encouragement�

Darrell Raymond can be reached at drraymon�daisy�uwaterloo�ca�

Derick Wood can be reached at dwood�cs�ust�hk�

�

references

Barnes �� K�R� Barnes� Exploratory Steps Towards a Grammatical

Manipulation Package �GRAMPA� M�Sc� Thesis� McMaster

University� Hamilton� Canada ���	���

Barwise and Etchemendy �� J� Barwise� J� Etchemendy� Tur�

ing�s World ���� An Introduction to Computability Theory�

Center for the Study of Language and Information� Stanford�

California �������

Champarnaud and Hansel �� J�M� Champarnaud� G� Hansel�

 AUTOMATE� A Computing Package for Automata and Fi�

nite Semigroups!� Journal of Symbolic Computation �� p� ��	�

��
 �������

Hannay �� D�G� Hannay� Hypercard Automata Simulation� Finite�

State� Pushdown� and Turing Machines!� SIGSCE Bulletin

����� p� ����
 �June ������

Jansen et al� �� V� Jansen� A� Pottho�� W� Thomas� U� Wermuth�

 A Short Guide to the AMORE System!� Aachener Informatik�

Berichte ���
��� Lehrstuhl f�ur Informatik II� Universit�at Aachen�

Aachen� Germany �January ���
��

Johnson �	 J�H� Johnson� INR� A Program for Computing Finite

Automata! unpublished manuscript� Department of Computer

Science� University of Waterloo� Waterloo� Canada �January

��
���

Johnson �� J�H� Johnson� Formal Models for String Similarity!�

CS�
���� Department of Computer Science� University of Wa�

terloo� Waterloo� Canada �November ��
���

Kazman �	 R� Kazman� Structuring the Text of the Oxford En�

glish Dictionary Through Finite State Transduction!� CS�
��

�
� Department of Computer Science� University of Waterloo�

Waterloo� Canada �June ��
���

Kreitz �	 C� Kreitz� Constructive Automata Theory Implemented

with the Nuprl Proof Development System!� TR�
��		�� De�

��

partment of Computer Science� Cornell University� Ithaca� New

York �September ��
���

Leiss �� E� Leiss� REGPACK� An Interactive Package for Regular

Languages and Finite Automata!� CS�		���� Department of

Computer Science� University of Waterloo� Waterloo� Canada

�October ��		��

Leslie �� T�K�S� Leslie� E�cient Approaches to Subset Construc�

tion!� CS������� Department of Computer Science� University

of Waterloo� Waterloo� Canada �April ������

LoSacco and Rodger �� M� LoSacco� S� Rodger� FLAP� A Tool

for Drawing and Simulating Automata! ED�MEDIA 	�
 World

Conference on Educational Multimedia and Hypermedia p� ��
�

��	 �June ������

van der Zanden �� J�G�N�M� van der Zanden� FADELA� Finite

Automata DEbugging LAnguage� Master�s thesis� Department

of Electrical Engineering� Eindhoven University of Technology�

Eindhoven� The Netherlands �August ���
��

Watson ��a B�W� Watson� An Introduction to the FIRE Engine�

A C�� Toolkit for Finite Automata and Regular Expressions!�

Computing Science Note ������ Department of Mathematics

and Computing Science� Eindhoven University of Technology�

Eindhoven� The Netherlands �April ������

Watson ��b B�W� Watson� The Design and Implementation of

the FIRE Engine� A C�� Toolkit for Finite Automata and

Regular Expressions!� Computing Science Note ������ Depart�

ment of Mathematics and Computing Science� Eindhoven Uni�

versity of Technology� Eindhoven� The Netherlands �April ������

�

