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Abstract

A Las Vegas probabilistic algorithm is presented that �nds the
Smith normal form S � Q	x
n�n of a nonsingular input matrix A �
ZZ 	x
n�n� The algorithm requires an expected number of O�
n�d
d �
n� log jjAjj�� bit operations 
where jjAjj bounds the magnitude of all
integer coe�cients appearing in A and d bounds the degrees of entries
of A�� In practice� the main cost of the computation is obtaining a
non�unimodular triangularization of a polynomial matrix of same di�
mension and with similar size entries as the input matrix� We show
how to accomplish this in O�
n�d
d� log jjAjj� log jjAjj� bit operations
using standard integer� polynomial and matrix arithmetic� These com�
plexity results improve signi�cantly on previous algorithms in both a
theoretical and practical sense�

� Introduction

The Smith normal form is a diagonalization of a matrix over a principal
ideal domain� The concept originated with the work of Smith ���� in ����
for the special case of integer matrices� Applications of the Smith normal
form include� for example� solving systems of Diophantine equations over
the domain of entries �	�� integer programming �
�� determining the canon�
ical decomposition of �nitely generated abelian groups ���� determining the
similarity of two matrices and computing additional normal forms such as
Frobenius and Jordan normal forms �
� ���� A close variant of the Smith
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normal form� the Smith�MacMillan form for rational functions� plays an
important role in linear systems theory �����
The Smith normal form is well known theoretically but can be di�cult to

compute in practice because of the potential for rapid growth in the size of
intermediate expressions� In a computational setting� the domain of matrix
entries is typically the integers ZZ or the ring F�x� of univariate polynomials
with coe�cients from a �eld F� In this paper we consider the problem
of computing the Smith normal form of a square nonsingular matrix over
Q�x�� Computing normal forms for matrices over F�x� where F is a �eld of
characteristic zero �e�g� F � Q� poses a double challenge� The size in bits of
intermediate expressions � polynomials in Q�x� � will depend not only on
the polynomial degrees but also on the lengths of individual rational number
coe�cients�
Formally� a matrix S is said to be the Smith normal form of a nonsingular

A � F�x�n�n if there exist unimodular matricesU and V such that UAV � S
with S being diagonal� each diagonal entry monic� and where si�i divides
si���i�� for � � i � n��� �An n�n matrixU is said to be unimodular if U is
invertible over the domain of entries� if U is over F�x�� then U is unimodular
if and only if det�U� is a nonzero element of F�� The Smith normal form
S always exists and is unique� The unimodular matrices U and V �called
pre� and post�multipliers respectively� are not unique� The diagonal entries
si�i of S are called the invariant factors of A� The invariant factors are
also given by si�i � s�i �s

�
i�� where s

�
i is the i�th determinantal divisor of

A� that is� the gcd of the determinants of all i � i submatrices of A �with
s�� � ��� One can also triangularize rather than diagonalize a polynomial
matrix and obtain a related form � the Hermite normal form� A matrix H
is said to be the Hermite normal form of a nonsingular A � F�x�n�n if there
exists a unimodular matrix U such that UA � H with H upper triangular�
each diagonal entry monic� and where o��diagonal entries in each column
have smaller degree than the diagonal entry� Proofs for the existence and
uniqueness of the Hermite and Smith normal forms can be found in Newman
��	� Chapter II� for matrices over any principal ideal domain�
In our work we make a distinction between the problem of computing

the Smith normal form S from that of computing the Smith normal form
S along with candidates for the pre� and post�multipliers U and V � When
working over the domain Q�x� the problem of computing the Smith normal
form with multipliers is fundamentally more di�cult �computationally� than
only computing the Smith normal form� One can think of the analogy of a
related problem� that of solving a Diophantine equation� given polynomials
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u�x� and v�x� in Q�x�� solve

��x�u�x� � ��x�v�x� � g�x�

for ��x�� ��x� and g�x� � gcd�u�x�� v�x��� There are a number of algorithms
that compute g�x� much more e�ciently in the cases when ��x�� ��x� are
not required �see� for example� ��� �
� for a detailed discussions of this issue��
Note that such a distinction is not true when computing the Hermite normal
form� Given a nonsingular input matrix A and its Hermite normal form H �
we can compute the transition matrix U by U � HAadj� det�A� where Aadj�
the adjoint of A� can be found using standard methods�
The main result of this paper is a fast sequential algorithm for computing

the Smith normal form of a square nonsingular matrix over Q�x�� The algo�
rithm is probabilistic in the Las Vegas sense � an incorrect result will never
be returned but with small probability the algorithm may fail and require
repetition� The algorithm is signi�cantly faster than existing algorithms�
The majority of algorithms found in the literature for computing Smith

normal forms over Q�x� are based on �rst computing the Hermite normal
form of amatrix and as such solve the more di�cult problem of Smith normal
form with multipliers �cf� ���� ��� ����� Speci�cally� these algorithms can be
used to produce candidates for pre� and post�multipliers U and V such that
UAV � S is in Smith normal formwithin the same asymptotic complexity as
they require to produce S alone� One reason for producing multipliers is to
verify correctness� In particular� Kaltofen� Krishnamoorthy and Saunders
have given a Monte Carlo probabilistic algorithm in ���� that computes
the Smith normal form but does not produce pre� and post�multipliers�
The drawback of the KKS Monte Carlo algorithm is that it may return an
incorrect result which cannot be detected easily�
The only other algorithm that we are aware of that solves for the Smith

normal form without multipliers is also given by Kaltofen� Krishnamoor�
thy and Saunders in ����� Here� the authors give a proof that computing
the Smith normal form over Q�x� is in P � the class of polynomial time al�
gorithms� Their algorithm uses the fact� a consequence of Kannan �����
that computing the Smith normal form over GF�p��x� is in the computa�
tional class P � Given a nonsingular A � ZZ �x�n�n� the algorithm computes
the Smith normal form of A mod p for various primes p and uses Chinese
remaindering to reconstruct the Smith normal form of A overQ�x�� This ap�
proach is impractical because of the large number of image solutions needed
to guarantee correctness�
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Our method is based on a similar preconditioning method as used by
Kaltofen� Krishnamoorthy and Saunders� followed by a fast non�unimodular
triangularization combined with a veri�cation step� Our algorithm is straight�
forward to implement in a computer algebra system and practical in the
sense that the main cost of the computation is obtaining a non�unimodular
triangularization of a polynomial matrix of same dimension and with similar
size entries as the input matrix
The rest of this paper is organized as follows� In the next section we

give the details of non�unimodular matrix triangularization� Since obtain�
ing such a triangularization is the main cost in our algorithm� we show how
to accomplish this step in practice using a homomorphic image scheme to
avoid computation with large integers and polynomials� Section � gives the
probabilistic algorithm� Correctness is proved in Section 	 and the complex�
ity of the algorithm is analyzed in Section 
� The last section summarizes
our results and provides directions for future research�
To simplify the presentation of complexity results� we sometimes use

�soft�O� notation� for f� g�R�� � R��� f � O��g� if and only if there exists
a constant k � � such that f � O�g � �log g�k��

� Non�Unimodular Matrix Triangularization

Let R be a principal ideal domain� A key step in the algorithm of the next
section is to compute� for a given A � Rn�n � a lower triangular matrix
F � Rn�n such that the matrix T � FA is upper triangular with i�th
diagonal entry the determinant of the principal i�th submatrix of A for
� � i � n� The purpose of this section is to give an explicit de�nition of
the matrices F and T and show how they can be computed e�ciently over
the domain R � ZZ �x�� For our complexity analysis we assume standard
polynomial and integer arithmetic� Using standard arithmetic� the cost
of multiplying two degree d polynomials from F�x� is bounded by O�d��
�eld operations from F� this also bounds the cost of evaluating a degree d
polynomial at d�� distinct points and of interpolating a degree d polynomial
through d�� points� Similarly� two dte bit integers can be multiplied inO�t��
bit operations� this also bounds the cost of computing either direction of the
isomorphism implied by the Chinese remainder theorem where t bounds the
total length in bits of the moduli�
First recall some basic de�nitions and facts from linear algebra� For a

matrixA � Rn�n� the minorMij of entry aij is de�ned to be the determinant

	



of the submatrix obtained by deleting the i�th row and j�th column of A
and the cofactor Cij is given by Cij � ����i�jMij � In general� an i� i minor
of a A is the determinant of an i� i submatrix of A�

Fact ��� Let A be an n�n matrix over R with adjoint Aadj� The entries in
Aadj are given by A

adj
ij � Cji for � � i � n and � � j � n� The determinant

of A can be written according to the j�th column expansion as

det�A� � a�jC�j � a�jC�j � � � �� anjCnj �

Lemma ��� Let A � Rn�n be nonsingular and let F � Rn�n be the lower
triangular matrix with Fij equal to the cofactor of the element in the j�th
row� i�th column of the i�th principal submatrix of A for � � j � i � n�
Then� the matrix T � FA will be upper triangular with Tij equal to the
determinant of the i � i submatrix of A formed from rows ��� �� � � � � i� and
columns ��� �� � � � � i� �� j� for � � i � j � n�

Proof Follows from Fact ��� by noting that the entries of FA are the
claimed entries for T � which are minors of A � written according accord�
ing to their cofactor column expansion�
Given an A � Rn�n � we write A����i�����j to denote the submatrix com�

prised of the �rst i rows and �rst j columns of A� FF�A� to denote the
matrix F of Lemma ���� and row�A� k� to denote the k�th row of A� For
� � k � n� note that the �rst k entries in row�FF�A�� k� are precisely those
in the last row of the adjoint of the principal k�th submatrix of A�
We now show how FF�A� can be computed in O�n�� ring operations

using a simple variation of fraction�free Gaussian elimination� If fraction�
free Gaussian elimination is used to reduce an A � Rn�n with rank n or
n�� to upper echelon form� and row operations are recorded in a matrix F �
initially set to be the identity matrix� then row�F� n� � s row�Aadj� n� where
s is � if the number of row switches performed during the reduction was
even and �� otherwise� �For a thorough discussion of fraction�free Gaussian
elimination� see ��� or the original articles by Bareiss ��� ���� Similarly�
if fraction�free Gaussian elimination is used to zero out entries below the
diagonal in the �rst k � � columns of A� and submatrix A����k�����k�� has
rank k� �� then row�F� k� � s row�FF�A�� k��� The key point here is that if
the rank of A����k�����k�� is equal to k � �� then the reduction up to column
k� � can be completed with row switches limited to the �rst k rows� If the
rank of A����k�����k�� is less then k � �� then this will be detected during the
reduction of the �rst k� � columns because a pivot row will have to chosen






with index larger than k� In the latter case� all entries in the last row of the
adjoint of A����k�����k � which are �k� ��� �k � �� minors of A����k�����k�� �
will be zero� Algorithm ��� is a simple variation of fraction�free Gaussian
elimination which implements this idea�

Algorithm ��� Triangularize

Input� An n� n matrix over R�
Output� The matrices F � FF�A� and T � FA�

��� �Initialize�	
d� �

s� �

p� �


B �
h
A In

i



C � the n � �n zero matrix

��� �Triangularize�	

for k � � to n do
if p � k then row�C� k�� s row�B� k�

for r � k to n while Trk � � do od

if r � n then break

if r � k then

switch rows k and r of B

s� �s

p� max�p� r�


for i � k � � to n do
row�B� i�� �Bkk row�B� i��Bik row�B� k���d


d� Bkk


��� �Output�	 C �
h
T F

i



Now consider the problem of computing F � FF�A� for an A � F�x�n�n

that has degrees of entries bounded by d � �� Entries of F and T are de�
terminants of submatrices of A �up to sign� which are polynomials bounded
in degree by nd� We need to assume that �F � nd so that we can choose
a set fx�� x�� � � � � xndg of distinct evaluation points in F� Let Ajx�xi denote
the matrix obtained from A by evaluating each polynomial entry at x � xi�
The procedure can now be described as follows� ��� �nd the matrices Ajx�i
for i � �� � � � � nd at a cost of O�n� �n �d�� �eld operations� ��� �nd F jx�i and
T jx�i for i � �� � � � � nd at a cost of O�nd �n�� �eld operations� ��� interpolate
the n� � n � O�n�� degree nd polynomial entries in matrices F and T at
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a cost of O�n��nd��� �eld operations� This leads to a cost of O�n�d�� �eld
operations for computing FF�A� over F�x��
We can extend this homomorphic imaging scheme to compute FF�A� for

A � F�x�n�n when F � Q� We start with an input matrixA � ZZ �x�n�n with
degrees bounded by d� �� For p a prime� let Ap � A mod p be the matrix
in ZZ p�x�

n�n obtained from A by replacing each integer coe�cient with its
image mod p� To compute F � FF�A� and T � FA over ZZ �x�� we �nd Fp
and Tp � FpAp over ZZ p�x� for su�ciently many primes p to allow recovery
of the integer coe�cient appearing in F and T via the Chinese remainder
algorithm� Let jjAjj denote the largest integer coe�cient appearing in A�
Coe�cients of entries of F and T will be integers having magnitude less than
� � �

p
ndjjAjj�n��� these have length about log� � O��n�logd�log jjAjj��

bits� The following lemma from Giesbrecht shows that we can choose all our
primes to be l � � � log log� bits in length�

Lemma ��� ��� Let x � � and l � � � log logx� Then there exist at least
�ddlog���x�e��l� ��e primes p such that �l�� � p � �l�

It follows from this lemma that we can choose a list of s � �dd�log ���e��l�
��e � ���log���l� distinct primes �pi���i�s that are bounded in length by l
bits and that satisfy

Q
��i�s pi � �� The non�unimodular triangularization

algorithm can be described as follows� ��� Find the images �Api���i�s� ���
For � � i � s� compute �Fpi � Tpi� at a cost of O�s � n�d� � l�� bit operations
using the homomorphic imaging scheme given earlier� ��� Apply Chinese
remaindering to recover the O�n�d� integer coe�cients of F and T at a cost
of O�n�d � �log���� bit operations� Note that the complexity of step ���
will be bounded by that of step ���� Combining these complexity results we
obtain the following�

Theorem ��� Let A � ZZ �x�n�n with degrees bounded by d � � be given�
The matrices F � FF�A� and T � FA can be found in in O��n�d�d �
log jjAjj� log jjAjj� bit operations using standard integer and polynomial arith�
metic�

� An Algorithm For Smith Normal Form Over

F�x�

In this section we give a fast Las Vegas probabilistic algorithm for computing
the Smith normal form of a nonsingular input matrix A � F�x�n�n for
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the case where pre� and post�multipliers are not also required� Since the
diagonal entries of S� the Smith normal form of A� are given by si�i � s�i �s

�
i��

where s�i is the i�th determinantal divisor of A� it is enough to compute the
determinantal divisors of A� One possible method to �nd s�i is to compute
all i� i minors of A and set s�i to be their gcd� Unfortunately� the number of
minors increases exponentially with respect to the matrix dimension� The
KKS Monte Carlo Smith Form algorithm of ���� overcomes this problem by
preconditioning the input matrix using random unimodular pre� and post�
multipliers with entries chosen from a subset of the coe�cient �eld� With
high probability� each s�i can be determined by taking the gcd of only two
minors� The drawback of the KKS Monte Carlo Smith Form algorithm is
that an incorrect result may be returned�
Our algorithm can be described as follows� Following ���� we �rst pre�

condition A with random pre� and post�multipliers to obtain a new matrix
A� that has the same Smith normal form as A� Using the non�unimodular
matrix triangularization algorithm of the previous section� we compute a
lower triangular matrix F in F�x�n�n such that T � FA� is upper triangular
with diagonal entry Ti�i being the determinant of the i�th principal subma�
trix of A�� The algorithm then sets g�i to be the gcd of �Tn�n�

� and the
determinant of the i�th principal submatrix of A�� With high probability�
g�i will equal s

�
i � the i�th determinantal divisor of A� The remainder of the

algorithm performs O�n�� divisibility checks which all hold if and only if all
the g�i are indeed the desired determinantal divisors�
To bound the probability of failure by a constant 	� where � � 	 � �� we

require that the coe�cient �eld F has at least d�n�d�	e elements� Since our
main motivation is the case when the coe�cient �eld F has characteristic
zero� for example F � Q� this will pose no restriction� In any case� if the
cardinality of F is too small we can work over an algebraic extension of F
having the required number of elements� Since the Smith normal form is
an entirely rational form� computing over an extension �eld of F will not
change the result�
In what follows� recall that s��A� i� denotes the i�th determinantal divisor

of A� that is� the gcd of all i� i minors of A� Similarly� h��A� i� will denote
the gcd of all i� i minors of the �rst i columns of A�

Algorithm ��� SmithForm

Input� A nonsingular matrix A � F�x�n�n�
Output� �s��� s

�
�� � � � � s

�
n�� the determinantal divisors of A�

Constant� An upper bound � � 	 � � on the probability of failing�
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��� �Randomize�	
Let d� � bound the degrees of entries of A and let C be a subset of F
with cardinality d�n�d�	e�
�U � a unit upper triangular matrix with o
 diagonal elements chosen
at random from C

�V � a unit lower triangular matrix with o
 diagonal elements chosen
at random from C

A� � �UA �V 


��� �Triangularize�	
F � FF�A��

T � FA�


��� �Find probable determinantal divisors of A�	

d� � �Tn�n�
�


for i � � to n do
g�i � an associate of gcd�d�� Ti�i�


��� �Check divisibility properties of g�i �s�	

g�� � ��
for i � � to n � � do

if g�i
� does not divide g�i��g

�
i�� then FAIL


��� �Ensure that g�i � h��A�� i� for � � i � n�	

for i � � to n do
for j � � to i� � do

if g�i�� does not divide Fi�j then FAIL


��� �Ensure that g�i � s��A�� i� for � � i � n�	

for i � � to n � � do
for j � i� � to n do

if g�i does not divides Ti�j then FAIL


��� �Output�	
�s��� s

�
�� � � � � s

�
n� with s�i the monic associate of g�i for � � i � n


� Algorithm Correctness

In this section we prove that the algorithm SmithForm is a correct Las Vegas
algorithm for computing a Smith normal form over F�x�� We will prove this






using a number of intermediate lemmas that hold for matrices over any
principal ideal domain� In what follows� R will denote a principal ideal
domain and we write a 	 b to mean that a and b are associates over R�
Our approach requires us to determine a matrix triangularization that

has the same diagonal entries as the Hermite normal form of an A � Rn�n �
We note that the i�th diagonal entry hi � h�A� i� of the �unique� Hermite
normal form of A is given by hi � h�i �h

�
i�� where h

�
i � h��A� i� is the gcd of

all i� i minors in the �rst i columns of A �with h��A� �� � ���

Lemma ��� Let A and U in Rn�n be nonsingular with T � UA upper
triangular� The following statements are equivalent�

��� U is unimodular


��� det�T � 	 det�A�

��� Ti�i 	 h�A� i� for � � i � n�

Proof It follows from the identity det�T � � det�U� det�A� that ��� and
��� are equivalent� To see that ��� implies ��� note that

Q
��i�n h�A� i� �

j detAj� Now assume that ��� holds� The matrix T can be reduced to a
matrix HT in Hermite normal form using unimodular row operations that
keep the diagonal entries in the same associate class �see� for example� ���
proof of Corollary ���� or ��	� proof of Theorem II����� In particular� there
exists a unimodular matrix UT such that UTT � HT � Since the Hermite
normal form of A is unique� HT must be the Hermite normal form of A since
HT � �UTU�A where �UTU� is unimodular� This shows that ��� implies ����

Lemma ��� Let T � Rn�n be nonsingular and upper triangular with i�th
diagonal entry ti� If ti divides all o
�diagonal entries of row i of T for
� � i � n� then there exists a unimodular matrix V � Rn�n such that
TV � D where D is the diagonal matrix in Rn�n with i�th diagonal entry
ti for � � i � n�

Proof The matrix D��T will be unit upper triangular over R� so V �
�D��T ��� is unimodular over R with TV � TT��D � D�
The divisibility properties of the invariant factors and determinantal di�

visors provides a necessary �but not su�cient� condition for the correctness
of an algorithm that returns a list of candidates for the determinantal divi�
sors of an input matrix� This is made precise by the following lemma�
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Lemma ��� For a principal ideal domain R� let g��� g
�
�� � � � � g

�
n be nonzero

elements from R with g�� � �� Then� there exists a matrix in Rn�n having�
for � � i � n� the i�th determinantal divisor an associate of g�i � if and only
if

g�i
� j g�i��g�i��� � � i � n� ��

Proof �If�� Assume that g�i
� j g�i��g�i�� for � � i � n � �� First we show

that g�i�� j g�i for i � �� �� � � � � n� For i � �� g�� � � implies g�� j g��� By
induction on i� assume g�i�� j g�i for i � �� � � � � k� Then g�k

� j g�k��g�k�� 

�g�k�g

�
k���g

�
k j g�k�� 
 g�k j g�k��� Next� let gi be the monic associate of

g�i �g
�
i�� for � � i � n� Then� for � � i � n � �� g�i � j g�i��g�i�� 
 g�i �g

�
i�� j

g�i���g
�
i 
 gi j gi��� This shows that the n � n diagonal matrix S with

i�th diagonal entry gi is in Smith normal form� Furthermore� S has i�th
determinantal divisor an associate of g�i �
�Only If�� See� for example� Newman ��	� x�� of Chapter II��

Lemma ��� Let A� U 	�
 and U 	�
 be matrices in Rn�n with A nonsingular
and let g��� g

�
�� � � � � g

�
n be entries of R� If

��� T 	�
 � U 	�
A and T 	�
 � U 	�
A are upper triangular matrices


��� g�� 	 � and g�i 	 gcd�T 	�

i�i � T

	�

i�i � for � � i � n


��� g�n 	 det�A�

��� g�i divides each entry in row i� � of U 	�
 and U 	�
 for � � i � n� ��

then g�i 	 h��A� i� for � � i � n�

Proof Let A� U 	�
� U 	�
 be matrices and g��� g
�
�� � � � � g

�
n polynomials that

satisfy the conditions of the lemma� Condition �	� implies g�i�� j gcd��U 	�
A�i�i� �U 	�
A�i�i� �

gcd�T
	�

i�i � T

	�

i�i � 	 g�i for � � i � n so g�� j g�� j � � � j g�n� where g�n �� � since

A is nonsingular� This implies that g�i �� � for all � � i � n� We show by
construction that there exists a matrix U � Rn�n such that UA has i�th
diagonal entry g�i �g

�
i��� The desired result will then follows by Lemma 	��

and the fact the det�UA� �
Qn

i�� g
�
i �g

�
i�� � g�n 	 det�A��

Condition ��� implies that there exists a solution �ai� bi� to the diophan�
tine equation

aiT
	�

i�i � biT

	�

i�i � g�i �

��



Let E	�
 and E	�
 be diagonal matrices in Rn�n such that for � � i � n�

�E
	�

i�i � E

	�

i�i � is such solution for �ai� bi�� Let G � Rn�n be diagonal with

Gi�i � g�i�� for � � i � n� Now consider the matrix

U � E	�
G��U 	�
 �E	�
G��U 	�
�

Condition �	� implies that U is over R �i�e� not just over the quotient �eld
of R�� so that UA also has all entries from R� Also�

UA � �E	�
G��U 	�
 �E	�
G��U 	�
�A

� G���E	�
T 	�
 � E	�
T 	�
�A

� G��

�
��������������������

g�� a�T
���
��� � b�T

���
��� a�T

���
��� � b�T

���
��� � � � a�T

���
��n � b�T

���
��n

� g�� a�T
���
��� � b�T

���
��� � � � a�T

���
��n � b�T

���
��n

� �
�� �

���

���

� � � � � � g�
n

�
��������������������

Thus UA is upper triangular with �UA�i�i � g�i �g
�
i���

We are now in a position to prove that algorithm SmithForm never pro�
duces an incorrect list for the determinantal divisors of the input matrix�

Theorem ��� Given an input matrix A� algorithm SmithForm does not re�
turn FAIL if and only if the �g�i ���i�n found in step ��� satisfy g�i 	 s��A� i�
for � � i � n�

Proof In what follows� takeA�� F � T � d� and �g�i ���i�n to be the quantities
computed during one pass of algorithmSmithFormwith input A� The matrix
A� is unimodularly equivalent toA and thus has the same Smith normal form
and determinantal divisors as A� Thus� it is su�cient to prove that FAIL is
not returned if and only if g�i 	 s��A�� i� for � � i � n�
�If�� Assume that g�i 	 s��A�� i� for � � i � n� By Lemma 	��� step �	�

will not produce a FAIL� By construction we have that the entries of F will
satisfy that Fi�j is an associate of an �i� ��� �i� �� minor of A� for i � �
and � � j � i� Similarly� Ti�j is an i � i minor of A� for � � i � j � n�

��



Since� by assumption� g�i is the gcd of all i � i minors of A�� neither steps
�
� nor ��� will produce a FAIL�
�Only if�� Assume that the algorithm does not return FAIL� Set U 	�
 �

det�A���A��adj and U 	�
 � F � Then� the success of step �
� ensures that the
matricesU 	�
� U 	�
� A� and polynomials g��� g

�
�� � � � � g

�
n satisfy the conditions of

Lemma 	�	� In particular� the matrixT 	�
 � U 	�
A� will be the n�n diagonal
matrix with diagonal entries equal to d� �which is equal to det�A����� and
the matrix T 	�
 � U 	�
A� will be the n�n upper triangular matrix T � Thus
there exists a unimodular matrix U in Rn�n such that

UA� � �E	�
G��U 	�
 �E	�
G��U 	�
�A�

� G���E	�
T 	�
 � E	�
T 	�
�A�

� G��

�
��������

g�� b�T��� b�T��� � � � b�T��n
� g�� b�T��� � � � b�T��n

� �
�� �

���
���
� � � � � � g�n

�
��������

where E	�
� E	�
� G and the �bi���i�n are as in Lemma 	�	� Note that UA�

has i�th diagonal entry g�i �g
�
i��� The success of step ��� implies that UA

�

satis�es the conditions of Lemma 	��� Therefore there exists a unimodular
matrix V such that UA�V is diagonal with i�th diagonal entry g�i �g

�
i�� for

� � i � n� Finally� the success of step �	� together with Lemma 	�� gives
the desired result�
It remains to derive a bound on the probability that algorithmSmithForm

returns FAIL� It is worth noting that all the results of this section up until
this point have been proven for matrices over any principal ideal domain
R� In particular� a modi�cation of algorithm SmithForm that performed
all computations over the ring ZZ instead of F�x� would provide a correct
algorithm� in the sense of Theorem 	��� for computing the determinantal
divisors of a square nonsingular integer input matrix� However� to properly
bound the probability of failure we require some results that are speci�c to
polynomial domains� The technique follows the same approach used in �����
which shows that the probability of failure is equivalent to the probability
that a certain quantity is the root of a multivariate polynomial� For this we
make use of three lemmas� the �rst two from ����� In what follows� we write
minor�A� i� to denote the i�th principal minor of A�

��



Lemma ��� ���� Lemma ��
� Let f�� � � � � ft be polynomials in F�
� x�� �
 is
a list of new variables� with deg fi � e� Then for some �e � �e� there exists
an �e � �e determinant  in F��
�� whose entries are coe�cients of fi� such
that for any evaluation �
� �r a list of corresponding �eld elements that are
not a root of  � gcd�f���
�� � � � � ft��
�� � �gcd�f�� � � � � ft����
��

Lemma ��� ���� Lemma���� Let A be a matrix in F�x�n�m of rank r whose
entries have degrees at most d� and let i � f�� � � � � r � �g� Then there is a
polynomial �i in m�m� ���� variables such that if

��� �V in F�x�m�m is unit lower triangular�

��� �A is the submatrix of A �V comprised of the �rst r columns�

then �A has rank r� and s�� �A� i� � h�� �A� i�� unless the m�m � ���� entries
below the diagonal in �V form a root of �i� The degree of �i is not more than
�i�d� i�

Lemma ��� Let A be a matrix in F�x�n�m of rank m and with the degrees
of the entries bounded by d� and let i � f�� � � � � m � �g� Then there is a
polynomial �i in n�n� ���� variables such that if

��� �U � F�x�n�n is unit upper triangular�

��� d� is a polynomial with degree less than �md and such that h��A� i�
divides d��

then h��A� i� � gcd�d��minor� �UA� i��� unless the n�n � ���� entries above
the diagonal in �U together with the �md coe�cients of d� form a root of �i�
The degree of �i is bounded by 	mdi�

Proof First consider that case where the matrix �U contains indetermi�
nants as entries� say � �U�i�j � 
i�j for j � i where �
 � �
i�j���i�n�j�i is a
list of indeterminants� From ���� Lemma ����� we have that minor� �UA� i� �
h��A� i�p� where p is an irreducible polynomial in F�x� �
� n F�x� or is ��
Since d� is independent of the indeterminants �
� we must have h��A� i� �
gcd�d��minor� �UA� i�� as required� An application of Lemma 	�
 yields
the existence of a 	md � 	md determinant  � whose entries are coe��
cients of x of minor� �UA� i� and d� such that for any evaluation �
 � �r�
where �r is a list of corresponding �eld elements that are not a root of  �
gcd�d��minor� �UA� i�� � h��A� i�� It remains to establish a degree bound

�	



for  � Coe�cients of x of �UA are of degree � whence coe�cients of x of
minor� �UA� i� will have total degrees bounded by i� This leads to a bound
on the total degree of  of 	mdi� To complete the proof we set �i �  �
Finally� we are in a position to show that our algorithm computes the

Smith form correctly with desired probability�

Theorem ��� Algorithm SmithForm is correct and fails with probability less
than 	� The expected cost of �nding the Smith normal form of a nonsingular
input matrix A over F�x� is the cost of one pass of algorithm SmithForm�

To show that the probability of failure is less than 	 we show that g�i 	 s�i
for � � i � n provided the entries of �U above the diagonal and �V below the
diagonal do not form the root of a certain polynomial � with degree bounded
by �n�d� By a result of Schwartz ����� the probability of this happening is
bounded by deg�����C� which by our choice of C is less than 	�
The matrix A �V will be such that h��A �V � i� � s��A� i� for � � i � n

unless the entries of �V below the diagonal form a root of a polynomial
�S � ���� � � ��n�� where each �i� bounded in degree by �i

�d � i� is as in
Lemma 	��� Similarly� gcd�minor�A�� i�� det�A��� � h��A �V � i� for � � i � n

if the entries of �U above the diagonal do not form a root of a polynomial
�H � ���� � � ��n�� where each �i� bounded in degree by 	ndi� is as in Lemma
	��� The polynomial �H will be bounded in degree by 	n�d and �S by �n�d�
Let � � �S�H � Then � is bounded in degree by �n

�d�
The probability that k iterations will be required to return a non FAIL

result is 	k����� 	�� The expected number of iterations required to return a
non FAIL result is given by

P
��k�� k	k�����	�� which is equal to �����	��

a constant�

� Algorithm Complexity

Notice �rst that the entries of F and T found in step ��� are associates of
minors of A�� These have degrees bounded by nd� leading to a bound of �nd
on degrees of all intermediate polynomials occurring during the algorithm�
Using the evaluation!interpolation scheme discussed in Section �� the matri�
ces F and T can be found in O�n�d�� �eld operations from F� This bounds
the cost of the matrix multiplications in step ���� the n gcd computations
in step ���� and the remaining n multiplications and n�� � trial divisions in
steps �	�� �
� and ���� and leads leads to a bound of O�n�d�� �eld operations
for one pass of algorithm SmithForm�

�




Now consider the case when F � Q� We assume without loss of gener�
ality� and as done in ���� and ����� that the input matrix A has been pre�
conditioned to have all coe�cients of polynomial entries integral� Although
we are implicitly computing over Q�x�� beginning with input A � ZZ �x�n�n

allows all intermediate computations in steps ��� through ��� to be accom�
plished over the simpler domain ZZ �x�� In practice� the dominant cost of
the algorithm will almost certainly be �nding the triangularization T and
transition matrix F in step ���� The integer coe�cients appearing in A� will
be only slightly larger than those of A� In particular� in step ��� we can
choose C � f�� � � � � d�n�d�	eg so that jjA�jj � n � d�n�d�	e � jjAjj� Asymp�
totically� the length of integer coe�cients in F � FF�A�� and T � FA� will
be bounded by O��n�logd � log jjAjj�� bits� By employing the homomor�
phic imaging scheme developed in Section � we have the the following result
which follows directly from Theorem ����

Theorem ��� The cost of a one pass of algorithm SmithForm with input
A � ZZ �x�n�n is O��n�d�d� log jjAjj� log jjAjj� bit operations using standard
integer and polynomial arithmetic plus no more than O�n�� trial divisions�
multiplications and gcd computations involving polynomials that are factors
of entries in the matrices F and T found in step ���� Entries of F and T

will be polynomials with degrees bounded by nd and with integer coe�cients
bounded in length by O��n�logd� log jjAjj�� bits�

Next� we derive an asymptotic complexity result for one pass of algorithm
SmithForm� Let M�t� be an upper bound on the number of bit operations
required to multiply two dte bit integers� Using fast integer multiplica�
tion �the Sch"onhage�Strassen algorithm� we can takeM�t� � t log t log log t�
There is a natural duality between the integers and univariate polynomials
with integer coe�cients� The integer coe�cients �represented in binary� of a
degree d� � polynomial f � ZZ �x� having coe�cients bounded in magnitude
by �k�� � � �k � ZZ � can be written as a binary lineup to obtain the dk
bit integer f jx��k � This corresponds to the B�adic expansion of an integer�
choosing B a power of � allows the conversion to and from polynomial rep�
resentation to be accomplished in linear time� Thus� we can �nd F and T in
O�n�M�ndk�� bit operations by applying fraction�free Gaussian elimination
to the n�n integer matrix A�jx��k where k � d�� log������e� By a result
of Sch"onhage ��
�� the n gcd computations in step ��� require an expected
number of O��n � nd�nd� n log jjAjj�� bit operations� The remaining O�n��
trial divisions in steps �	�� �
� and ��� and the O�n� multiplications in step

��



��� will require at most O�n�M�nd � �nd � n logndjjAjj��� bit operations�
Overall this yields O��n�d�d � n� log jjAjj�� bit operations for one pass of
algorithm SmithForm using fast integer arithmetic�

� Conclusions

We have given a Las Vegas algorithm to compute the Smith normal form of
a nonsingular polynomial matrix A � F�x�n�n where F is a �eld� We have
taken a new approach that completely avoids the usual technique of diago�
nalizing the input matrix with a succession of unimodular row and column
operations � this has allowed us to derive very good bounds on the size of
intermediate expressions occurring during the algorithm for the case F � Q�
The algorithm is both fast and practical with the main computation being
the �non�unimodular� triangularization of a polynomial matrix� The algo�
rithm also works well for matrices over more general polynomial domains�
for example extensions of the form Q�
��x� where the algebraic number 

has a monic minimal polynomial from ZZ �x��
A key step in our algorithm� �rst used in ���� � is to obtain a precon�

ditioning A� of the input matrix A � F�x�n�n� A drawback of this technique
is that preconditioned matrix A� will be dense even if the input matrix A
is sparse� A possible solution to this problem is use sparse preconditioning
matrices although we have not investigated this approach�
More recently� though� we have discovered a sequential deterministic

version of our probabilistic Smith normal form algorithm that� as well as
giving an improved complexity result� may be useful in the case of sparse
input� The deterministic version constructs a correct premultiplication of
the input matrix during the non�unimodular triangularization phase of the
algorithm� This will be presented in a future paper�
The algorithm we have presented for computing Smith normal forms

over F�x� works only for square nonsingular input matrices� In the future�
we will give a generalization that works for both singular and!or rectangular
input �see ���� for details�� In particular� the generalization to nonsquare
matrices depends on a result presented in ��
� where we give a fast Las
Vegas algorithm for reducing the problem of computing the Hermite normal
form of a rectangular polynomial matrix to that of computing the Hermite
normal form of a nearly square matrix with similar size entries�
The algorithm we have presented takes advantage of the fact that we

did not need to compute candidates for pre� and post�multipliers for the

��



Smith normal form� We also plan to present asymptotically fast algorithms
for computing Hermite normal forms over various domains� In particular�
the probabilistic algorithm given in ���� for computing the Smith normal
form �with multipliers� of a polynomial matrix has as its dominant cost
computing Hermite normal forms�
In the case of computing the Smith normal form with multipliers� the

multiplier matrices are highly non�unique� An remains an open problem
whether this computation can be done to produce �nice� multipliers� that
is� multipliers having small coe�cients �when possible�� For certain applica�
tions it is enough to know that one of the multipliermatrices can be nice� For
example� in order to determine if two integer matrices A�B are similar over
the rationals� one can compute the Smith normal form of the characteristic
polynomial matrices xI�A� xI�B� If these normal forms are equal then the
matrices are similar� In addition� if UA�x�� VA�x� and UB�x�� VB�x� are the
multiplier matrices for these Smith forms then a similarity transformmatrix
T can be computed via T � �VAV

��
B �jx�B and will satisfy B � TAT�� �see

�
� Chapter VI��� For such an application it is enough to require that the
column multiplier matrix have coe�cients as small as possible�
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