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Abstract

It is generally accepted that rule-based query optimization is a more flexible approach

to supporting high-level query languages. However, current practice involves very

limited consideration of the issue of rule validity (or correctness). Consequently,

the reliability of rule-based query optimization will tend to diminish as both the

expressiveness of query languages and complexity of the underlying data models

increase.

This has motivated members of the Advanced Database Systems Laboratory at

our institution to develop a refinement calculus that enables a formal specification of

rewrite rules used in current relational and object-oriented optimization technology.

This essay reports on an experiment to apply this calculus to capture the intentions

underlying a rule used in an optimizer for an experimental object-oriented database

system, also developed in our laboratory, and then to attempt proving the validity

of this rule. Perhaps most significantly, we learned from this experiment:

(1) that our original informal understanding of the intentions underlying the rule

was incorrect, and

(2) that our first few attempts at a formal specification of this rule were not valid.

We believe that this constitutes clear evidence that the issue of rewrite rule valid-

ity for existing query optimization technology has now become crucial in achieving

essential levels of reliability in database systems.
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1 INTRODUCTION 1

1 Introduction

Query optimization continues to be one of the great challenges in post-relational

database systems. Since an ad hoc query facility is still one of the mandatory fea-

tures in next generation of database systems [ABD+89], lots of research effort has

been devoted to it, among which is work on query rewriting techniques using rule-

based query optimization models [BG92, FG91, FG86, Fre87, GD87, GM93, PHH92].

However, unfortunately, two important issues adhering to the rule-based systems -

rule formalization (logic) and rule control - are rarely considered in these works.

In the paper [CW93], two leading members of the Advanced Database Systems

Laboratory at our institution presented the development of a wide-spectrum algebra

and a refinement calculus that enable a formal specification of rewrite rules used in

current relational and object-oriented optimization technology. In this essay, I am

reporting an experiment to apply this calculus to capture the intentions underlying a

rule (see Table 1) used in the optimizer for an experimental object-oriented database

system, also developed in our laboratory, and then to prove the validity of this rule.

The motivation for the work is as follows: complex semantic query rewrite rules,

instead of simple syntax query rewrite rules, are playing the central role in rule-based

query optimizers, and the correctness of semantic rewrite rules are not trivial .

In the following sections, I will briefly review the wide-spectrum algebra and the

refinement calculus over it, introduce some basic concepts on the correctness of the

query rewrite rules, prove some basic axioms for the refinement calculus, and finally

derive the correctness of the real-world query rewrite rule.
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Table 1: A Real-World Query Rewrite Rule (in its original form)

(SelectCondSpecialize
(Find > QInfo > Type
> ∗ FEList1
(AndHeap > ∗ PList1)
(Scan > V > ScanSpec)
(AndHeap > ∗ PList2 > Pred

where (Free <q Pred ’(< V)) > ∗ PList3)
> ∗ FEList2)

(Find < QInfo < Type
<< FEList1
(AndHeap < Pred << PList1)
(Scan < V < ScanSpec)
(AndHeap << PList2 << PList3)
<< FEList2))

2 Preliminary

A query language is called wide-spectrum if it can be used uniformly to express both

user level queries as well as low-level evaluation strategies or physical access plans. A

wide-spectrum query language would uniformly express a query in any stage during

query optimization and evaluation, so it provides a logical basis for the query rewrite

rule formalization. In the paper [CW93], Dr. Weddell and Dr. Coburn defined such

a language (algebra), and further formally defined a refinement calculus over the

language. The following is a brief summary of the paper.

In the syntax aspect, the algebra and the calculus are defined in terms of an

indexed non-terminal grammer, a context-free grammer with indexed non-terminals

(refer to Table 2), which allows high-order logic behaviors. In the semantics aspect,

they are based on a simple graph-based data model, following a general trend [Bee89,
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Table 2: A Grammar for the Wide-Spectrum Algebra (modified version)

productions description

R → “(” Clause R R* “)” Inference constraint.
| “(” Ref E E “)” Refinement constraint.
| “(” Neq S S “)” Syntactic inequality constraint.
| “(” Empty F “)” Syntactic empty set constraint.
| · · ·

E → S Object quantification.
| S “:=” Pd Navigation.
| S “:=” S “{” S* “}” Index scan.
| S “:=” S “(” S* “)” Method call.
| S “:” S Type checking predicate.
| S “=” S Equality predicate.
| S “<” S Ordering predicate.
| “(” Keep S* E “)” Keep.
| “(” Filter S* E “)” Filter.
| “(” Not E “)” Simple compliment.
| “(” Cross E* “)” Cross product.
| “(” Perm E “)” Permutation.
| “(” Nest E E “)” Nested cross product.
| “(” Inter E* “)” Interleave.
| “(” Cat E E “)” Concatenation.
| “(” Sort O* E “)” Sort.
| · · ·

F → “(” Bound E “)” Bounded variable set.
| “(” Var E “)” All variable set.
| “(” Union F F “)” Set union operation.
| “(” Intersect F F “)” Set intersection.
| . . .

Pd → S | Pd “.” S Path description.
O → S D Sort condition.
D → asc | desc Sort direction.
S → (a symbol in S) A class, attribute, function or variable name.

X* → ε | X | X* X* (where X is one of {R, S, E, O})
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Day89, GPvG90], and a possible result semantics in terms of a list of tuples is

proposed to the algebra, and further extended to the calculus.

Based on the possible results semantics, a set of possible results is defined for

each of the operators in the algebra with respect to the underlying database and a

complete tuple. For a query expression E, the interpretation is denoted as: [[E]]tdb.

For example, the interpretation for the Nest operator is defined as follows:

[[(Nest E1 E2)]]
t

db

def
=

⋃

l∈[[E1]]
t

db

J (db, E2, l)

where

J (db, E, l1)
def
=



























{()}, if len(l1) = 0,

{app(l2, l3)|l2 ∈ [[E]]hd(l1)
db and l3 ∈ J (db, E, tl(l1))},

otherwise

For better expressing the query, we have modified the Cross operator by splitting

it into two operators: one is still called Cross, and the other one is called Perm. Here

we give semantics of the new Cross and Perm operators as follows:

Cross Product “(Cross E1, . . . , En)” adds to its output the union of all the lists

of tuples. Each tuple in a given list consists of each possible combination of a tuple

from the ith argument list with tuples from the remaining argument lists.

[[(Cross E1, . . . , E2)]]
t

db

def
=



























{(t)}, if n = 0,
⋃n

i=1 [[(Nest Ei (Cross E1, . . . , Ei−1, Ei+1, En))]]
t

db,

otherwise.

Perm “(Perm E)” returns all permutation of lists of tuples from its arguments.
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[[(Perm E)]]tdb

def
= {l′ ∈ perm(l)|l ∈ [[E]]tdb}

Further, the semantics of the refinement calculus is defined through the model

theory and the proof theory:

Model Theory A database db is a model for a ground rule R, written db |= R, if

and only if one of the three conditions holds.

1. If R is the syntactic constraint “(Neq S1 S2)”, then S1 and S2 are distinct

symbols.

2. If R is the refinement constraint “(Ref E1 E2)”, then [[E2]]
t

db ⊆ [[E1]]
t

db for

any complete tuple t over Vdb.

3. If R is the inference constraint “(Clause R R1, . . . , Rn)”, then db |= R if

db |= Ri for each 1 ≤ i ≤ n.

A database db is a model for a non-ground rule R, also written db |= R, if and

only if db |= R′ for each ground rule R′ where R
∗
⇒ R′ (substitution). R is a

logical consequence of rules R1, . . . , Rn, written {R1, . . . , Rn} |= R, if and only

if, for any database db, db |= R if db |= Ri for each 1 ≤ i ≤ n. If {} |= R, R is

called an axiom in the calculus.

Proof Theory Let {R,R1, . . . , Rn} denote an arbitrary collection of rules. There

is a derivation of R from {R1, . . . , Rn}, written

{R1, . . . , Rn} ` R

if and only if R = Ri for some 1 ≤ i ≤ n, or can be derived from {R1, . . . , Rn}

using the inference axioms in Table 3.
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Table 3: Inference Axioms for the Refinement Calculus

name definition

(substitution)
R
Rψ

(modus ponens)
R1, . . . , Rn, (Clause R R1, . . . , Rn)
R

(known axiom)
There exists a proof that {} |= R
R

Although the semantics given by the proof theory is sound, but not complete,

the calculus could be used in storage definition, generic optimization, database de-

pendency, etc..

For better expressing the rewrite rule, we extend the calculus with an Empty Set

Constraints , which is:

“(” Empty F “)”

where F denotes a set of symbols, and the semantics for the empty set constraint is

straight-forward and simple: a database db is a model for an empty set constraint

“(Empty F )” if and only if F is an empty set. The union and intersection of sets are

defined as usual, and in the next section, I will discuss the two special symbol sets

generated by (Bound E) and (Var E).

In general, the definition of the semantics of the refinement calculus provides two

ways to prove whether or not a given rule is an axiom: One way is to use the model

theory to prove an axiom by referring to the semantics of the wide-spectrum algebra,

and the other way is to use the proof theory to derive an axiom from a set of known
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axioms. The first way is mandatory to prove the basic axioms, however is not the

proper way to prove a complex axiom, since it seldom use existing axioms, and the

proof principle is irregular, which results that the proof is out of control in both size

and complexity. On the other hand, although the proof theory is not complete, the

second way is more preferable if we could classify a set of basic axioms, because the

proof process could be done in a mechanical manner. In this essay, I will use the

first way to prove some basic axioms, and then show the second way by deriving the

correctness of a real-world rewrite rule.

3 Read/Write Sets for A Query

In order to explore the proof process of the axioms in the refinement calculus, it

is necessary to define some basic concepts for the wide-spectrum algebra, and to

examine the related properties.

Given a ground query, we are interested in two kinds of symbol sets, as defined

below.

definition 3.1 A set of variables {S1, . . . , Sn} is called a write set for a ground

query E if and only if for any database db and any complete tuple t over Vdb, for

each l ∈ [[E]]tdb

nth(l, i)[α(t)− {S1, . . . , Sn}] = t[α(t)− {S1, . . . , Sn}],

for 1 ≤ i ≤ len(l).

2
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Table 4: Bound Set and Var Set for the Wide-Spectrum Algebra

E (Bound E) (Var E)

S {S} {S}
S := Pd {S} {S} ∪ head(Pd)∗

S := S ′{S1, . . . , Sn} {S} {S, S ′, S1, . . . , Sn}
S := S ′(S1, . . . , Sn) {S} {S, S ′, S1, . . . , Sn}
Pd : {S1, . . . , Sn} {} {S1, . . . , Sn} ∪ head(Pd)
Pd = Pd′ {} head(Pd) ∪ head(Pd′)
Pd < Pd′ {} head(Pd) ∪ head(Pd′)
(Keep S1, . . . , Sn E) (Bound E) ∩ {S1, . . . , Sn} (Var E) ∪ {S1, . . . , Sn}
(Filter S1, . . . , Sn E) (Bound E) (Var E) ∪ {S1, . . . , Sn}
(Not E) (Bound E) (Var E)
(Cross E1, . . . , En)

⋃

1≤i≤n(Bound Ei)
⋃

1≤i≤n(Var Ei)
(Nest E1 E2) (Bound E1) ∪ (Bound E2) (Var E1) ∪ (Var E2)
(Inter E1, . . . , En)

⋃

1≤i≤n(Bound Ei)
⋃

1≤i≤n(Var Ei)
(Cat E1 E2) (Bound E1) ∪ (Bound E2) (Var E1) ∪ (Var E2)
(Sort S1 D1, . . . , Sn Dn E) (Bound E) (Var E) ∪ {S1, . . . , Sn}

definition 3.2 A set of variables {S1, . . . , Sn} is called a read set for a ground

query E if and only if for any database db and any pair of complete tuples t1 and

t2 over Vdb, for which t1[{S1, . . . , Sn}] = t2[{S1, . . . , Sn}], the following statement

holds:

{l1[{S1, . . . , Sn}]|l1 ∈ [[E]]t1db} = {l2[{S1, . . . , Sn}]|l2 ∈ [[E]]t2db}.

2

∗Only the first symbol in the path sequence is bounded to a vertex. Here head(Pd) denotes the

singleton set of the first symbol in Pd.
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Also, for a given ground query, there are two syntax symbol sets associated with

it, which are the Bound set and the Var set, respectively.

definition 3.3 Given a ground query E, (Bound E) and (Var E) are defined re-

cursively in Table 4, respectively.

2

The following theorem shows that the two special sets fall into the two interesting

catalogs, respectively.

Theorem 3.1 For any ground query E, (Bound E) is a write set, and (Var E) is

both a write set and a read set.

Proof:

First, we prove that (Bound E) and (Var E) are a write set and a read set,

respectively, by the induction on the depth of the query (tree).

basis. The depth of the query tree is 1, and from the definition table, it is easy

to see there are seven kinds of queries falling into this category. Due to the space

limit, we only take one kind of query as an example to prove. The others can be

proved similarly.

Suppose that the query is S := Pd, then according to the definition, for any

database db and any complete tuple t over Vdb,

[[S := Pd]]tdb = perm(F(S, list({v ∈ Vdb|(db, t, Pd) ; v})) ≺ t).

So, for each l ∈ [[S := Pd]]tdb, by definition of F and ≺,

nth(l, i)[α(t)− {S}] = t[α(t)− {S}],

for 1 ≤ i ≤ len(l). Because (Bound S := Pd) = {S}, it is a write set.
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For any database db and any pair of complete tuples t1 and t2 over Vdb, if

t1[head(Pd)] = t2[head(Pd)],

then

{v1 ∈ Vdb|(db, t1, Pd) ; v1} = {v2 ∈ Vdb|(db, t2, Pd) ; v2}.

So, according to the definition,

F(S, list({v1 ∈ Vdb|(db, t1, Pd) ; v1})) = F(S, list({v2 ∈ Vdb|(db, t2, Pd) ; v2}))

{l1[{S}]|l1 ∈ [[S := Pd]]t1db} = {l2[{S}]|l2 ∈ [[S := Pd]]t2db}.

Now, let’s consider the projection on the head(Pd) set. If head(Pd) = {S},

(Var S := Pd) = {S}. Therefore, (Var S := Pd) is a read set by definition. Other-

wise, head(Pd) ∩ (Bound S := Pd) = ∅, so head(Pd) ⊆ (α(t) − (Bound S := Pd)).

For any complete tuple t over Vdb, and for each l ∈ [[S := Pd]]tdb,

nth(l, i)[head(Pd)] = t[head(Pd)], for all 1 ≤ i ≤ len(l).

Therefore,

{l1[{S} ∪ head(Pd)]|l1 ∈ [[S := Pd]]t1db} = {l2[{S} ∪ head(Pd)]|l2 ∈ [[S := Pd]]t2db}.

Because t1[(Var S := Pd)] = t2[(Var S := Pd)] implies t1[head(Pd)] = t2[head(Pd)],

and (Var S := Pd) = {S} ∪ head(Pd), therefore,

{l1[(Var S := Pd)]|l1 ∈ [[S := Pd]]t1db} = {l2[(Var S := Pd)]|l2 ∈ [[S := Pd]]t2db}.

The basis holds.

Induction. Assume the conclusion is true for all the query trees whose depth are

less than n, and now we consider the case that the query tree has depth of n, n > 1.

Now, the query tree may be one of eight kinds. Due to the space limit, we also

only prove one kind as an example, and leave others to interested readers. Here, we

consider the Keep operator as the root of the query tree, i.e., the query E ′ is of form:

(Keep S1, . . . , Sn E),

and the corresponding Bound and Var sets are,

(Bound E ′) = (Bound E) ∩{S1, . . . , Sn},
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(Var E ′) = (Var E) ∪{S1, . . . , Sn}.

According to the definition, for any database db and any complete tuple t over

Vdb,

[[(Keep S1, . . . , Sn E)]]tdb = {l
′|∃l ∈ [[E]]tdb such that l′ = (l[S1, . . . , Sn] ≺ t)},

therefore, for each l′ ∈ [[(Keep S1, . . . , Sn E)]]tdb,

nth(l′, i)[α(t)− {S1, . . . , Sn}] = t[α(t)− {S1, . . . , Sn}].

Because the depth of E is less than n, by assumption, (Bound E) is a write set,

i.e., for any database db and any complete tuple t over Vdb, for each l ∈ [[E]]tdb,

nth(l, i)[α(t)− (Bound E)] = t[α(t)− (Bound E)].

For each l′ ∈ [[(Keep S1, . . . , Sn E)]]tdb, there exists l ∈ [[E]]tdb such that

l′ = (l[S1, . . . , Sn] ≺ t),

therefore,

nth(l′, i)[α(t)− (Bound E)] = t[α(t)− (Bound E)].

Thus, by set theory,

nth(l′, i)[α(t)− (Bound E) ∩ {S1, . . . , Sn}] = t[α(t)− (Bound E) ∩ {S1, . . . , Sn}],

i.e., (Bound E ′) is a write set.

Now, we try to prove that (Var E ′) is a read set. For any database db, let t1 and

t2 are two complete tuples over Vdb such that t1[(Var E
′)] = t2[(Var E

′)], i.e.,

t1[(Var E) ∪ {S1, . . . , Sn}] = t2[(Var E) ∪ {S1, . . . , Sn}],

which implies

t1[(Var E)] = t2[(Var E)].

By assumption,

{l1[(Var E)]|l1 ∈ [[E]]t1db} = {l2[(Var E)]|l2 ∈ [[E]]t2db}.

Further,

{l1[(Var E) ∪ {S1, . . . , Sn}]|l1 ∈ [[E]]t1db} = {l2[(Var E) ∪ {S1, . . . , Sn}]|l2 ∈ [[E]]t2db}.
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By the definition of the Keep operator,

[[E ′]]t1db = [[E ′]]t2db,

so,

{l1[(Var E) ∪ {S1, . . . , Sn}]|l1 ∈ [[E ′]]t1db} = {l2[(Var E) ∪ {S1, . . . , Sn}]|l2 ∈ [[E ′]]t2db},

which means that (Var E ′) is a read set.

By the basis and induction part, we can draw the conclusion that for a ground

query E, (Bound E) and (Var E) are a write set and a read set, respectively.

Now, we prove that (Var E) is a write set, too.

By the definition of the Bound and Var set, for any ground query E,

(Bound E) ⊆ (Var E),

so, for any database db and any complete tuple t over Vdb,

(α(t)− (Var E)) ⊆ (α(t)− (Bound E)).

(Bound E) is a write set, so for any database db and any complete tuple t over

Vdb, for each l ∈ [[E]]tdb,

nth(l, i)[α(t)− (Bound E)] = t[α(t)− (Bound E)],

for each 1 ≤ i ≤ len(l), which implies

nth(l, i)[α(t)− (Var E)] = t[α(t)− (Var E)],

for each 1 ≤ i ≤ len(l).

Thus, (Var E) is a write set, too.

2
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4 Two Important Axioms for the Nest Operator

Since the query algebra is operator-oriented, to explore the axioms for the refinement

calculus, and finally to analyze the correctness for rule-based query optimization, it is

beneficial to examine the basic properties of each operator. In this section, we focus

on one important operator, Nest, and examine its associativity and commutativity.

4.1 Associativity for the Nest Operator

Lemma 4.1 For any database db, any query E, and any pair of lists l1 and l2,

J (db, E, app(l1, l2)) = {app(l
′
1, l

′
2)|l

′
1 ∈ J (db, E, l1) and l

′
2 ∈ J (db, E, l2)}.

Proof: By induction of length of list l1.

basis. Trivial for len(l1) = 0.

induction. True for len(l1) < n. Consider when len(l1) = n.

By definition,

J (db, E, app(l1, l2)) = {app(l3, l4)|l3 ∈ [[E]]hd(l1)
db and l4 ∈ J (db, E, app(tl(l1), l2)}.

Applying the assumption,

l4 ∈ {app(l5, l
′
2)|l5 ∈ J (db, E, tl(l1)) and l

′
2 ∈ J (db, E, l2)},

therefore,

app(l3, l4) = app(l3, app(l5, l
′
2)) = app(app(l3, l5), l

′
2).

Also by definition,

app(l3, l5) ∈ J (db, E, l1).

Let it be l′1, then the lemma is true for len(l) = n. 2

Lemma 4.2 For any database db, any pair of queries E1 and E2, and any list l,
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J (db, (Nest E1 E2), l) =
⋃

l′∈J (db,E1,l) J (db, E2, l
′).

Proof: By induction of length of list l.

basis. Trivial for len(l) = 0.

induction. True for len(l) < n. Consider when len(l) = n.

By definition,

J (db, (Nest E1 E2), l)

= {app(l1, l2)|l1 ∈ [[(Nest E1 E2)]]
hd(l)
db and l2 ∈ J (db, (Nest E1 E2), tl(l))}.

Further by definition,

[[(Nest E1 E2)]]
hd(l)
db =

⋃

l3∈[[E1]]
hd(l)

db

J (db, E2, l3).

Applying the assumption,

J (db, (Nest E1 E2), tl(l)) =
⋃

l4∈J (db,E1,tl(l)) J (db, E2, l4).

So, by set theory,

J (db, (Nest E1 E2), l) =
⋃

l3∈[[E1]]
hd(l)

db
and l4∈J (db,E1,tl(l))

{app(l1, l2)|l1 ∈ J (db, E2, l3) and l2 ∈ J (db, E2, l4)}.

By Lemma 4.1,

J (db, (Nest E1 E2), l) =
⋃

l3∈[[E1]]
hd(l)

db
and l4∈J (db,E1,tl(l))

J (db, E2, app(l3, l4)).

Let l′ be app(l3, l4), then we get

J (db, (Nest E1 E2), l) =
⋃

l′∈J (db,E1,l) J (db, E2, l
′)).

Therefore, the lemma is true for len(l) = n. 2

Theorem 4.1 Associativity holds for the operator Nest, i.e.,

(Ref (Nest (Nest E1 E2) E3) (Nest E1 (Nest E2 E3)))

(Ref (Nest E1 (Nest E2 E3)) (Nest (Nest E1 E2) E3))
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both are axioms.

Proof: By the definition of axiom.

For any database db and any complete tuple t over Vdb, by definition,

[[(Nest (Nest E1 E2) E3)]]
t

db =
⋃

l∈[[(Nest E1 E2)]]
t

db

J (db, E3, l)

=
⋃

l∈
⋃

l′∈[[E1]]
t

db

J (db,E2,l′)(db, E3, l)

=
⋃

l′∈[[E1]]
t

db

(
⋃

l∈J (db,E2,l′)(db, E3, l))

[[(Nest E1 (Nest E2 E3))]]
t

db =
⋃

l′∈[[E1]]
t

db

J (db, (Nest E2 E3), l
′)

By Lemma 4.2,

[[(Nest (Nest E1 E2) E3)]]
t

db = [[(Nest E1 (Nest E2 E3))]]
t

db

Therefore, the two reference rules are axioms.

2

4.2 Commutativity for the Nest Operator

Unlike associativity, in general, commutativity does not hold for the Nest operator.

However, a nice property holds under certain conditions.

Lemma 4.3 Given two expressions E1 and E2 such that

(Bound E1) ∩ (Var E2) = ∅ ,

then for any database db and any complete tuple t over Vdb, for each l ∈ [[E1]]
t

db,
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{l′[(Var E2)] ≺ t|l′ ∈ [[E2]]
nth(l,i)
db } = [[E2]]

t

db

for 1 ≤ i ≤ len(l).

Proof: According to Theorem 3.1, for each l ∈ [[E1]]
t

db, for any 1 ≤ i ≤ len(l),

nth(l, i)[α(t)− (Bound E1)] = t[α(t)− (Bound E1)].

Because E1 and E2 satisfy the emptyset condition

(Bound E1) ∩ (Var E2) = ∅,

we have

(Var E2) ⊆ α(t)− (Bound E1),

so,

nth(l, i)[(Var E2)] = t[(Var E2)].

Also by Theorem 3.1,

{l′[(Var E2)] ≺ t|l′ ∈ [[E2]]
nth(l,i)
db } = {l′′[(Var E2)] ≺ t|l′′ ∈ [[E2]]

t

db}.

Because l′′ ∈ [[E2]]
t

db, we know that

l′′[(Var E2)] ≺ t = l′′,

thus

{l′[(Var E2)] ≺ t|l′ ∈ [[E2]]
nth(l,i)
db } = [[E2]]

t

db.

2

Lemma 4.4 Given two ground queries E1 and E2 such that

(Bound E1) ∩ (Var E2) = ∅,

for any database db and any complete tuple t over Vdb, for a list l satisfying that

there exists l′ and app(l′, l) ∈ [[E1]]
t

db,

J (db, E2, l) 6= {()} if and only if [[E2]]
nth(l,i)
db 6= {()},

for each 1 ≤ i ≤ len(l).
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Proof:

if. For each 1 ≤ i ≤ len(l), [[E2]]
nth(l,i)
db 6= {()}.

And by the definition of J ,

J (db, E2, l) =











{()} if len(l) = 0

{app(l1, l2)|l1 ∈ [[E2]]
hd(l)
db and l2 ∈ J (db, E2, tl(l))} otherwise

so, it is trivial to conclude J (db, E2, l) 6= {()}.

only if. J (db, E2, l) 6= {()}.

By definition, there must exist a tuple in l, say nth(l, j) for some 1 ≤ j ≤ len(l),

which satisfies

[[E2]]
nth(l,j)
db 6= {()}.

By Theorem 3.1, and the condition for l, there exists l′ such that app(l′, l) ∈

[[E1]]
t

db,

nth(l, i)[α(t)− (Bound E1)] = t[α(t)− (Bound E1)],

for 1 ≤ i ≤ len(l).

Because of the empty condition,

(Bound E1) ∩ (Var E2) = ∅,

the above statement can be written as,

nth(l, i)[(Var E2)] = t[(Var E2)],

for 1 ≤ i ≤ len(l). Further, by Lemma 4.3,

{l′[(Var E2)] ≺ t|l′ ∈ [[E2]]
nth(l,i)
db } = [[E2]]

t

db,

for 1 ≤ i ≤ len(l).

Therefore, [[E2]]
nth(l,j)
db 6= {()}, implies [[E2]]

nth(l,i)
db 6= {()}, for for 1 ≤ i ≤ len(l).

2
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Lemma 4.5 Let E1, E2, db, t and l1 denote a pair of ground queries, a database, a

complete tuple and a list of tuples, respectively, which satisfy the following conditions:

C1. (Bound E1) ∩ (Var E2) = ∅,

C2. db |= (Ref E2 (Filter E2)),

C3. l1 ∈ {l
′
1|∃l

′′
1 s.t. app(l′′1 , l

′
1) ∈ [[E1]]

t

db},

If J (db, E2, l1) 6= {()}, then for any non-empty l2 ∈ [[E2]]
t

db, there exists l ∈ J (db, E2, l1)

such that

C4. l[α(t)− (Bound E2)] ≺ t = l1,

C5. nth(l, i)[(Var E2)] = hd(l2)[(Var E2)], for all 1 ≤ i ≤ len(l).

Proof: By induction on the length of l1.

basis. There are two basic cases here. len(l1) = 0 and len(l1) = 1. If len(l1) = 0,

the lemma is trivial by the definition of the J function. Now, consider len(l1) = 1,

i.e., l1 consists of a single tuple, and we have tl(l1) = ().

By definition,

J (db, E2, l1) = [[E2]]
hd(l1)
db .

Based on C2, we have, for any complete tuple t over Vdb, for each l2 ∈ [[E2]]
t

db,

len(l2) = 0, or len(l2) = 1,

which means that if J (db, E2, l1) 6= {()}, there exists at least a non-empty list

l ∈ J (db, E2, l1), and for any non-empty list l ∈ J (db, E2, l1), len(l) = 1.

By Theorem 3.1 and C3, for any complete tuple t over Vdb,

hd(l1)[α(t)− (Bound E1)] = t[α(t)− (Bound E1)],
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and adding C1,

hd(l1)[(Var E2)] = t[(Var E2)],

then by Lemma 4.3,

{l[(Var E2)] ≺ t|l ∈ [[E2]]
hd(l1)
db } = [[E2]]

t

db.

Now, for any non-empty list l2 ∈ [[E2]]
t

db, there exists a non-empty list l ∈ [[E2]]
hd(l1)
db

such that

hd(l)[(Var E2)] = hd(l2)[(Var E2)],

and by Theorem 3.1,

hd(l)[α(t)− (Bound E2)] ≺ t = hd(l1).

Because len(l) = 1, conclusions C4 and C5 hold.

So, the basis is true.

Induction. Assume the lemma is true for len(l1) < n, and now consider the

case when len(l1) = n.

If J (db, E2, l1) 6= {()}, by Lemma 4.4,

[[E2]]
hd(l1)
db 6= {()}, and J (db, E2, tl(l1)) 6= {()}.

Because tl(l1) still satisfies C3, by the assumption, if J (db, E2, tl(l1)) 6= {()},

then for any non-empty l2 ∈ [[E2]]
t

db, there exists l′′ ∈ J (db, E2, tl(l1)) such that

l′′[α(t)− (Bound E2)] ≺ t = tl(l1),

nth(l′′, i)[(Var E2)] = hd(l2)[(Var E2)],

for all 1 ≤ i ≤ len(l′′).

And similar to the basis for len(l) = 1, if [[E2]]
hd(l1)
db 6= {()}, then

{l′[(Var E2)] ≺ t|l′ ∈ [[E2]]
hd(l1)
db } = [[E2]]

t

db.

Now, for any non-empty list l2 ∈ [[E2]]
t

db, there exists a non-empty list l′ ∈ [[E2]]
hd(l1)
db

such that

len(l′) = 1,
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hd(l′)[(Var E2)] = hd(l2)[(Var E2)],

and by Theorem 3.1,

hd(l′)[α(t)− (Bound E2)] ≺ t = hd(l1).

Now, we fix l2, and let l = app(l′, l′′). By the definition of J , l ∈ J (db, E2, l1),

and len(l) 6= 0. Further, it is easy to see that l satisfies C4 and C5. So, the induction

is true.

By the basis and the induction, we can draw the conclusion that the lemma is

true.

2

Now, it is time to state and prove the commutative property for the Nest operator.

Theorem 4.2 The inference rule

( Clause (Ref (Nest E1 E2) (Nest E2 E1))

(Ref E2 (Filter E2))

(Empty (Intersect (Bound E1) (Var E2)))

(Empty (Intersect (Var E1) (Bound E2))))

is an axiom.

Proof: By contradiction.

If the rewrite rule is not an axiom, there exist a database db and a ground rule

R, which is of the form:

(Clause (Ref (Nest E1 E2) (Nest E2 E1))

(Ref E2 (Filter E2))

(Empty (Intersect (Bound E1) (Var E2)))

(Empty (Intersect (Var E1) (Bound E2)))),
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such that for some complete tuple t,

1. db |= (Ref E2 (Filter E2))

2. db |= (Empty (Intersect (Bound E1) (Var E2)))

3. db |= (Empty (Intersect (Var E1) (Bound E2))), and

4. [[(Nest E2 E1)]]
t

db 6⊆ [[(Nest E1 E2)]]
t

db.

Now, we try to contradict condition 4, based on condition 1, 2 and 3. Here, the

empty list and the non-empty lists are considered separately.

Empty list. For any database db and any complete tuple t over Vdb, if there

exists an empty list in [[(Nest E2 E1)]]
t

db, according to the definition of operator Nest,

[[(Nest E2 E1)]]
t

db =
⋃

l2∈[[E2]]
t

db

J (db, E1, l2),

there must exist l2 ∈ [[E2]]
t

db such that () ∈ J (db, E1, l2). Further, by function J , l2

could be an empty list or a non-empty list.

l2 is an empty list. By Lemma 4.3, there exists a list l1 ∈ [[E1]]
t

db,

{l′[(Var E2)] ≺ t|l′ ∈ [[E2]]
nth(l1,i)
db } = [[E2]]

t

db,

which implies

() ∈ [[E2]]
nth(l,i)
db ,

for 1 ≤ i ≤ len(l1), so, by the definition of function J , () ∈ J (db, E2, l1), which

indicates that () ∈ [[(Nest E1 E2)]]
t

db.

l2 is a non-empty list. By the key condition, we know that len(l2) = 1, i.e., l2 is

a list consisting of a single tuple hd(l2), so

J (db, E1, l2) = [[E1]]
hd(l2)
db .

By Lemma 4.3 (with condition 3),
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{l′[(Var E1)] ≺ t|l′ ∈ [[E1]]
hd(l2)
db } = [[E1]]

t

db,

so we have () ∈ [[E1]]
t

db, which means () ∈ [[(Nest E1 E2)]]
t

db.

Non-empty list. For any database db and any complete tuple t over Vdb, if

there exists a non-empty list l ∈ [[(Nest E2 E1)]]
t

db, there must be a non-empty list

l′ ∈ [[E2]]
t

db such that l ∈ J (db, E1, l
′). By the key condition, l ∈ [[E1]]

hd(l′)
db .

According to Theorem 3.1,

hd(l′)[(Var E1)] = t[(Var E1)],

and further by Lemma 4.3 (with condition 3),

{l[(Var E1)] ≺ t|l ∈ [[E1]]
hd(l′)
db } = [[E1]]

t

db,

so, there exists a corresponding list l1 ∈ [[E1]]
t

db such that

l[(Var E1)] = l1[(Var E1)].

Two possibilities are considered here.

Empty possibility . J (db, E2, l1) = {()}. By definition

[[E2]]
hd(l1)
db = {()},

and by Theorem 3.1,

hd(l1)[(Var E2)] = t[(Var E2)],

so, finally by Lemma 4.3,

[[E2]]
t

db = {()}.

By definitions,

[[(Nest E2 E1)]]
t

db = {()}.

Because we have l is a non-empty list in [[(Nest E2 E1)]]
t

db, so there is no such a

possibility.

Non-empty possibility . J (db, E2, l1) 6= {()}. By Lemma 4.5, there is l2 ∈

J (db, E2, l1) such that

l2[α(t)− (Bound E2)] ≺ t = l1,
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nth(l2, i)[(Var E2)] = hd(l′)[(Var E2)],

which implies

l2[(Var E1)] = l[(Var E1)],

nth(l2, i)[(Var E2)] = nth(l, i)[(Var E2)],

for all 1 ≤ i ≤ len(l2). So, we have

l[(Var E1) ∪ (Var E2)] = l2[(Var E1) ∪ (Var E2)].

Finally, by Theorem 3.1, l = l2, which means

l ∈ [[(Nest E1 E2)]]
t

db.

Because of the generality of l, we can say

[[(Nest E2 E1)]]
t

db ⊆ [[(Nest E1 E2)]]
t

db,

which contradicts to the assumption, therefore the rewrite rule is an axiom.

2

From this theorem, an interesting axiom could be drawn directly.

Corollary 4.2.1 The inference rule

( Clause (Ref (Nest E1 E2) (Cross E1 E2))

(Ref E2 (Filter E2))

(Empty (Intersect (Bound E1) (Var E2)))

(Empty (Intersect (Var E1) (Bound E2))))

is an axiom.

Proof: The proof is conducted by contradiction. Let’s assume that the given rule

is not an axiom, so there must exist a database db and a ground rule R (generated

from the given rule by substitution), which is of the form:
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(Clause (Ref (Nest E1 E2) (Cross E1 E2))

(Ref E2 (Filter E2))

(Empty (Intersect (Bound E1) (Var E2)))

(Empty (Intersect (Var E1) (Bound E2)))),

such that for some complete tuple t,

1. db |= (Ref E2 (Filter E2))

2. db |= (Empty (Intersect (Bound E1) (Var E2)))

3. db |= (Empty (Intersect (Var E1) (Bound E2))), and

4. [[(Cross E1 E2)]]
t

db 6⊆ [[(Nest E1 E2)]]
t

db.

However, by the theorem 4.2, under the condition 1, 2 and 3, we have

[[(Nest E2 E1)]]
t

db ⊆ [[(Nest E1 E2)]]
t

db.

and by the definition of the Cross operator,

[[(Cross E1 E2)]]tdb = [[(Nest E1 E2)]]tdb ∪ [[(Nest E2 E1)]]tdb

so for any database db and complete tuple t,

[[(Cross E1 E2)]]
t

db ⊆ [[(Nest E1 E2)]]
t

db.

which is contradictory to the assumption.

Therefore, the given rule is an axiom.

2

5 Correctness of A Real-World Rewrite Rule

A query rewrite rule is an inference rule defined in the refinement calculus with the

following fixed format:
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(Clause (Ref E1 E2) R1, . . . , Rn)

We say a query rewrite rule is correct if and only if it is an axiom.

In this section, we use the refinement calculus inference axioms (given in Table

3) to derive the correctness of a real-world rewrite rule from a set of axioms in the

refinement calculus. This derivation shows the proof theory for the calculus, although

the theory is not complete.

5.1 More Related Axioms

Before we get into the derivation of the correctness of the real-world rewrite rule, we

need to prove four more related basic axioms to be used in the derivation.

Theorem 5.1 The following rules are axioms.

1. (Ref (Cross E*1 E1 E*2) (Nest E1 (Cross E*1 E*2)))

2. (Clause
(Ref (Nest E1 (Cross E*1)) (Cross E1 E*1))
(Ref E1 (Filter E1))
(Empty (Intersect (Var (Cross E*1)) (Bound E1)))
(Empty (Intersect (Bound (Cross E*1)) (Var E1))))

3. (Clause
(Clause (Ref (Nest E1 E2) (Nest E3 E4)) R*1)
(Clause (Ref E1 E2) R*1)
(Clause (Ref E3 E4) R*1))
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4. (Clause
(Clause (Ref E1 E2) R*1)
(Clause (Ref E1 E3) R*1)
(Clause (Ref E3 E2) R*1))

Proof: We prove them one by one, based on the model theory of the refinement

calculus.

Rule 1. It is trivial by the definition of the Cross operator.

Rule 2. As usual, the proof is by contradiction. If the rule is not an axiom, then

for some ground rule substituted from the rule, which is of the form

(Clause

(Ref (Nest E1 (Cross E2, . . . , En)) (Cross E1 E2, . . . , En))

(Ref E1 (Filter E1))

(Empty (Intersect (Var (Cross E2, . . . , En)) (Bound E1)))

(Empty (Intersect (Bound (Cross E2, . . . , En)) (Var E1)))),

there must exist a database db, which satisfies,

1. db |= (Ref E1 (Filter E1)),

2. db |= (Empty (Intersect (Var (Cross E2, . . . , En)) (Bound E1))),

3. db |= (Empty (Intersect (Bound (Cross E2, . . . , En)) (Var E1))), and

4. [[(Cross E1, E2, . . . , En)]]
t

db 6⊆ [[(Nest E1 (Cross E2, . . . , En))]]
t

db, for some

complete tuple t.

However, by the definition of the Cross operator,

[[(Cross E1, . . . , En)]]
t

db

=
⋃

1≤i≤n [[(Nest Ei (Cross E1, . . . , Ei−1, Ei+1, . . . , En))]]
t

db

=
⋃

1≤q1≤n,...,1≤qn≤n [[(Nest Eq1 (Nest . . . (Nest Eqn
)))]]tdb
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where q1, . . . , qn is a permutation of the number 1, . . . , n, therefore every list

l ∈ [[(Cross E1, . . . , En)]]
t

db must belong to some

[[(Nest Eq1 (Nest . . . (Nest Eqn
)))]]tdb .

Without losing generality, let’s assume qt be 1 (1/leqt/leqn). By the commu-

tativity and the associativity of the Nest operator (Theorem 4.1 and 4.2), we

can exchange subexpressions Eq1 and Eqt
inside the last expression, and have

the equation below:

[[(Nest Eq1 (Nest . . . (Nest Eqn
)))]]tdb =

[[(Nest Eqt
(Nest . . . (Nest Eqt−1 (Nest Eq1 (Nest Eqt+1 . . . (Nest Eqn

)))))]]tdb.

It is easy to see that q1, . . . , qt−1, qt+1, . . . , qn is a permutation of 2, . . . , n, and

also by the definition of the Cross operator, any list l′ in

[[(Nest Eq2 (Nest . . . (Nest Eqt−1 (Nest Eq1 (Nest Eqt+1 . . . (Nest Eqn
)))))]]tdb,

belongs to [[(Cross E2, . . . , En)]]
t

db. Therefore, back to the definition of the Nest

operator, we have

l ∈ [[(Nest E1 (Cross E2, . . . , En))]]
t

db.

Since the arbitrariness of l, the assumption is wrong, so Rule 2 is an axiom.

Rule 3. By contradiction. If the rule is not an axiom, there exists a ground rule of

the form:

(Clause

(Clause (Ref (Nest E1 E2) (Nest E3 E4)) R1, . . . , Rn)

(Clause (Ref E1 E3) R1, . . . , Rn)

(Clause (Ref E2 E4) R1, . . . , Rn))

which satisfies:

1. db |= (Clause (Ref E1 E3) R1, . . . , Rn),
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2. db |= (Clause (Ref E2 E4) R1, . . . , Rn), and

3. db 6|= (Clause (Ref (Nest E1 E2) (Nest E3 E4)) R1, . . . , Rn)

db |= (Clause (Ref E1 E3) R1, . . . , Rn) means:

db |= (Ref E1 E3)) if db |= Ri, for 1 ≤ i ≤ n.

db |= (Clause (Ref E2 E4) R1, . . . , Rn) means:

db |= (Ref E2 E4)) if db |= Ri, for 1 ≤ i ≤ n.

Since (Clause (Ref (Nest E1 E2) (Nest E3 E4)) (Ref E1 E3) (Ref E2 E4)) is

an axiom (refer to [CW93]), we have

db |= (Ref (Nest E1 E2) (Nest E3E4)) if











db |= (Ref E1 E3)

db |= (Ref E2 E4)

Therefore,

db |= (Ref (Nest E1 E2) (Nest E3 E4)) if if db |= Ri, for 1 ≤ i ≤ n.

which implies

db |= (Clause (Ref (Nest E1 E2) (Nest E3 E4)) R1, . . . , Rn),

so the assumption is wrong, and Rule 3 is an axiom.

Rule 4. Can be proved in the same way as the last one. We leave the proof for the

interested readers.

2

5.2 The Derivation of the Correctness

In general, the real-world rewrite rules are much more complex than the axioms that

have been proved so far. Although the rewrite rules can be proved from the model
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Table 5: A Real-World Query Rewrite Rule (in the refinement calculus)

(Clause
(Ref

(Nest E1
(Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4))))
(Nest E1

(Nest (Cross E3 E*1)
(Nest E2 (Nest (Cross E*2 E*3) E4)))))

(Ref E3 (Filter E3))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3)))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3))))

theory (like the proofs we have gone through so far), it would be much easier to

derive them from a set of basic and simple axioms. Actually, we are very interested

in proving (i.e., derivation) from the proof theory because of its mechanical nature.

Due to the incompleteness of the proof theory, one of future work is to find out a base

set of axioms which could be used in general to prove the correctness of a rule-based

query optimizer.

With the power of the refinement calculus, we apply it to capture the intentions

underlying a real-world rule. In Table 5, we shows a formal specification in the

refinement calculus for the real-world rewrite rule mentioned earlier (referring to

Table 1). The rewrite rule was originally represented in a Lisp-like language, and

is translated into the refinement calculus for the analysis of its correctness. The

function of this rewrite rule is to generate a canonical form of a query expression by

moving all the predicates together, so that more semantic query optimizations would

be applied to the canonical form later on.
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Now, let’s prove the correctness of the real-world rewrite rule by derivation (the

proof theory).

1. known axiom, refer to Theorem 5.1

(Ref (Cross E*1 E1 E*2)
(Nest E1 (Cross E*1 E*2)))

2. known axiom, Associativity of Nest, refer to Theorem 4.1

(Ref (Nest (Nest E1 E2) E3)
(Nest E1 (Nest E2 E3)))

3. substitution of 2 by { E1/E3, E2/(Cross E*2 E*3), E3/E4 }

(Ref (Nest (Nest E3 (Cross E*2 E*3)) E4)
(Nest E3 (Nest (Cross E*2 E*3) E4)))

4. known axiom, refer to the paper [CW93]

(Clause
(Ref (Nest E1 E2) (Nest E3 E4))
(Ref E1 E3)
(Ref E2 E4))

5. substitution of 1 by { E*1/E*2, E1/E3, E*2/E*3 }

(Ref (Cross E*2 E3 E*3)
(Nest E3 (Cross E*2 E*3)))

6. substitution of 4 by
{ E1/(Cross E*2 E3 E*3), E2/E4, E3/(Nest E3 (Cross E*2 E*3)) }

(Clause
(Ref (Nest (Cross E*2 E3 E*3) E4)

(Nest (Nest E3 (Cross E*2 E*3)) E4))
(Ref (Cross E*2 E3 E*3) (Nest E3 (Cross E*2 E*3))))†

7. modus ponens 5 and 6

(Ref (Nest (Cross E*2 E3 E*3) E4)
(Nest (Nest E3 (Cross E*2 E*3)) E4))



5 CORRECTNESS OF A REAL-WORLD REWRITE RULE 31

8. substitution of 4 by { E1/E2, E2/(Nest (Cross E*2 E3 E*3) E4), E3/E2,
E4/(Nest (Nest E3 (Cross E*2 E*3)) E4) }

(Clause
(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4))

(Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4)))
(Ref (Nest (Cross E*2 E3 E*3) E4)

(Nest (Nest E3 (Cross E*2 E*3)) E4)))

9. modus ponens 7 and 8

(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4))
(Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4)))

10. substitution of 4 by
{ E1/E2, E2/(Nest (Nest E3 (Cross E*2 E*3)) E4),
E3/E2, E4/(Nest E3 (Nest (Cross E*2 E*3) E4)) }

(Clause
(Ref (Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4))

(Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4))))
(Ref (Nest (Nest E3 (Cross E*2 E*3)) E4)

(Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4))))

11. modus ponens 3 and 10

(Ref (Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4))
(Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4))))

12. known axiom, Associativity of Nest, refer to Theorem 4.1

(Ref (Nest E1 (Nest E2 E3))
(Nest (Nest E1 E2) E3))

13. substitution of 12 by
{ E1/E2, E2/E3, E3/(Nest (Cross E*2 E*3) E4) }

(Ref (Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4)))
(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)))
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14. known axiom, refer to the paper [CW93]

(Clause
(Ref E1 E2)
(Ref E1 E3)
(Ref E3 E2))

15. substitution of 14 by
{ E1/(Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4)),
E2/(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)),
E3/(Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4))) }

(Clause
(Ref (Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4))

(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)))
(Ref (Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4))

(Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4))))
(Ref (Nest E2 (Nest E3 (Nest (Cross E*2 E*3) E4)))

(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4))))

16. modus ponens 11, 13 and 15

(Ref (Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4))
(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)))

17. substitution of 14 by
{ E1/(Nest E2 (Nest (Cross E*2 E3 E*3) E4))),
E2/(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)),
E3/(Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4)) }

(Clause
(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)))
(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4)))
(Ref (Nest E2 (Nest (Nest E3 (Cross E*2 E*3)) E4))

(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4))))

18. modus ponens 9, 16 and 17

(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)))
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19. known axiom, Commutativity of Nest, refer to Theorem 4.2

(Clause
(Ref (Nest E1 E2) (Nest E2 E1))
(Ref E2 (Filter E2))
(Empty (Intersect (Var E1) (Bound E2)))
(Empty (Intersect (Bound E1) (Var E2))))

20. substitution of 19 by { E1/E2, E2/E3 }

(Clause
(Ref (Nest E2 E3) (Nest E3 E2))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

21. known axiom, refer to Theorem 5.1

(Clause
(Clause (Ref (Nest E1 E2) (Nest E3 E4)) R*1)
(Clause (Ref E1 E2) R*1)
(Clause (Ref E3 E4) R*1))

22. substitution of 21 by
{ E1/(Nest E2 E3), E2/(Nest (Cross E*2 E*3) E4), E3/(Nest E3 E2),
E4/(Nest (Cross E*2 E*3) E4)), R*1/R1 R2 R3 }
where R1 represents (Ref E3 (Filter E3)), R2 indicates (Empty (Intersect (Var
E2) (Bound E3))), and R3 means (Empty (Intersect (Bound E2) (Var E3)))‡

‡For simplicity, we use these symbols in the following substitutions.
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(Clause
(Clause

(Ref (Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4))
(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause
(Ref (Nest E2 E3) (Nest E3 E2))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))))

23. modus ponens 20 and 22

(Clause
(Ref (Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4))

(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

24. known axiom, refer to Theorem 5.1

(Clause
(Clause (Ref E1 E2) R*1)
(Clause (Ref E1 E3) R*1)
(Clause (Ref E3 E2) R*1))

25. substitution of 24 by
{ E1/(Nest E2 (Nest (Cross E*2 E3 E*3) E4))),
E2/(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)),
E3/(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)),
R*1/R1 R2 R3 }
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(Clause
(Clause (Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause (Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4)))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause (Ref (Nest (Nest E2 E3) (Nest (Cross E*2 E*3) E4))
(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))))

26. modus ponens 18, 23 and 25

(Clause
(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

27. substitution of 2 by { E1/E2, E3/(Nest (Cross E*2 E*3) E4) }

(Ref (Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4))
(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))

28. substitution of 24 by
{ E1/(Nest E2 (Nest (Cross E*2 E3 E*3) E4))),
E2/(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))),
E3/(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)),
R*1/R1 R2 R3 }
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(Clause
(Clause (Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause (Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4)))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause (Ref (Nest (Nest E3 E2) (Nest (Cross E*2 E*3) E4))
(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))))

29. modus ponens 26, 27 and 28

(Clause
(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

30. substitution of 21 by
{ E1/(Cross E*1), E2/(Nest E2 (Nest (Cross E*2 E3 E*3) E4)),
E3/(Cross E*1), E4/(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))),
R*1/R1 R2 R3 }
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(Clause
(Clause

(Ref (Nest (Cross E*1)
(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest (Cross E*1)
(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4)))))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause
(Ref (Nest E2 (Nest (Cross E*2 E3 E*3) E4))

(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))))

31. modus ponens 29 and 30

(Clause
(Ref (Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Cross E*1)

(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4)))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

32. substitution of 12 by
{ E1/(Cross E*1), E2/E3, E3/(Nest E2 (Nest (Cross E*2 E*3) E4)) }

(Ref (Nest (Cross E*1)
(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))

(Nest (Nest (Cross E*1) E3)
(Nest E2 (Nest (Cross E*2 E*3) E4))))

33. substitution of 24 by
{ E1/(Nest (Cross E*1) (Nest E2 (Nest (Cross E*2 E3 E*3) E4))),
E2/(Nest (Nest (Cross E*1) E3) (Nest E2 (Nest (Cross E*2 E*3) E4))),
E3/(Nest (Cross E*1) (Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4)))),
R*1/R1 R2 R3 }
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(Clause
(Clause

(Ref (Nest (Cross E*1)
(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest (Nest (Cross E*1) E3)
(Nest E2 (Nest (Cross E*2 E*3) E4))))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause
(Ref (Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Cross E*1)

(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4)))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))

(Clause
(Ref (Nest (Cross E*1)

(Nest E3 (Nest E2 (Nest (Cross E*2 E*3) E4))))
(Nest (Nest (Cross E*1) E3)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))))

34. modus ponens 31, 32 and 33

(Clause
(Ref (Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Nest (Cross E*1) E3)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3))))
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35. known axiom, refer to Theorem 5.1

(Clause
(Ref (Nest (Cross E*1) E1) (Cross E1 E*1)))
(Ref E1 (Filter E1))
(Empty (Intersect (Var (Cross E*1)) (Bound E1)))
(Empty (Intersect (Bound (Cross E*1)) (Var E1))))

36. substitution of 35 by { E1/E3 }

(Clause
(Ref (Nest (Cross E*1) E3) (Cross E3 E*1)))
(Ref E3 (Filter E3))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

37. substitution of 21 by
{E1/(Nest (Cross E*1) E3), E2/(Nest E2 (Nest (Cross E*2 E*3) E4)),
E3/(Cross E3 E*1), E4/(Nest E2 (Nest (Cross E*2 E*3) E4))),
R*1/R1 R4 R5 }
where R4 indicates (Empty (Intersect (Var (Cross E*1)) (Bound E3))), and R5

means (Empty (Intersect (Bound (Cross E*1)) (Var E3)))

(Clause
(Clause

(Ref (Nest (Nest (Cross E*1) E3)
(Nest E2 (Nest (Cross E*2 E*3) E4)))

(Nest (Cross E3 E*1)
(Nest E2 (Nest (Cross E*2 E*3) E4))))

(Ref E3 (Filter E3))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

(Clause
(Ref (Nest (Cross E*1) E3) (Cross E3 E*1)))
(Ref E3 (Filter E3))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3)))))
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38. modus ponens 36 and 37

(Clause
(Ref (Nest (Nest (Cross E*1) E3)

(Nest E2 (Nest (Cross E*2 E*3) E4)))
(Nest (Cross E3 E*1)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

39. substitution of 24 by
{ E1/(Nest (Cross E*1) (Nest E2 (Nest (Cross E*2 E3 E*3) E4))),
E2/(Nest (Cross E3 E*1) (Nest E2 (Nest (Cross E*2 E*3) E4))),
E3/(Nest (Nest (Cross E*1) E3) (Nest E2 (Nest (Cross E*2 E*3) E4))),
R*1/R1 R2 R3 R4 R5 }
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(Clause
(Clause

(Ref (Nest (Cross E*1)
(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))

(Nest (Cross E3 E*1)
(Nest E2 (Nest (Cross E*2 E*3) E4))))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

(Clause
(Ref (Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Nest (Cross E*1) E3)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

(Clause
(Ref (Nest (Nest (Cross E*1) E3)

(Nest E2 (Nest (Cross E*2 E*3) E4)))
(Nest (Cross E3 E*1)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3)))))
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40. modus ponens 34, 38 and 39

(Clause
(Ref (Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Cross E3 E*1)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

41. substitution of 21 by
{ E2/(Nest (Cross E*1) (Nest E2 (Nest (Cross E*2 E3 E*3) E4))),
E3/E1,
E4/(Nest (Cross E3 E*1) (Nest E2 (Nest (Cross E*2 E*3) E4))),
R*1/R1 R2 R3 R4 R5 }
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(Clause
(Clause

(Ref (Nest E1
(Nest (Cross E*1)

(Nest E2
(Nest (Cross E*2 E3 E*3) E4))))

(Nest E1
(Nest (Cross E3 E*1)

(Nest E2 (Nest (Cross E*2 E*3) E4)))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3))))

(Clause
(Ref (Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4)))
(Nest (Cross E3 E*1)

(Nest E2 (Nest (Cross E*2 E*3) E4))))
(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E3)))
(Empty (Intersect (Bound (Cross E*1)) (Var E3)))))

42. modus ponens 40 and 41

(Clause
(Ref (Nest E1

(Nest (Cross E*1)
(Nest E2

(Nest (Cross E*2 E3 E*3) E4))))
(Nest E1

(Nest (Cross E3 E*1)
(Nest E2 (Nest (Cross E*2 E*3) E4)))))

(Ref E3 (Filter E3))
(Empty (Intersect (Var E2) (Bound E3)))
(Empty (Intersect (Bound E2) (Var E3)))
(Empty (Intersect (Var (Cross E*1)) (Bound E1)))
(Empty (Intersect (Bound (Cross E*1)) (Var E1))))
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6 Conclusion

It is generally accepted that rule-based query optimization is a more flexible approach

to supporting high-level query languages. However, current practice involves very

limited consideration of the issue of rule validity (or correctness). Consequently,

the reliability of rule-based query optimization will tend to diminish as both the

expressiveness of query languages and complexity of the underlying data models

increase.

In the Advanced Database Systems Laboratory at our institution, with the desire

of increasing the expressive power of query languages and with the need of coping

with the complex objects, a wide-spectrum query algebra and a refinement calculus

over it was proposed [CW93]. In this essay, based on the calculus, I look into the

issue of the analysis of the correctness of query rewrite rules for rule-based query

optimizers.

In my work, I extended the calculus to better express query rewrite rules, proved

additional basic axioms for the calculus in its model theory, and exhibited a derivation

of a real-world query rewrite rule in its proof theory. Most significantly, we learned

from this work:

(1) that our original informal understanding of the intentions underlying the rule

was incorrect,

(2) that our first few attempts at a formal specification of this rule were not valid,

(3) that proofs in the model theory are sometimes needed for basic axioms (but

that knowledge of existing axioms can simplify this),

(4) that there is reasonable prospect that the proof theory will suffice to establish

the correctness of the real-world query rewrite rules, and
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(5) that the nature of our derivations in the proof theory suggests that the process

can be automated.

Future directions in this line of research include:

(1) establishing correctness for the remaining rewrite rules that comprises the rule-

based query optimizer in our research database system, and

(2) further extending and refining the algebra and the calculus to facilitate ex-

pressing other queries and rewrite rules.

In regard to the first direction, we anticipate that completing this process will

produce a base set of axioms that are likely to be sufficient for deriving rewrite rules

used in other existing and future query optimizers.

In regard to the second direction, the following shows an example: by introducing

a new syntactic constraint “(Pred E*)” with the semantics that a database is a model

for it if and only if each query in E* is a predicate, the real-world rewrite rule (refer

to Table 1) would be translated to a more readable (albeit less general) form:

(Clause
(Ref

(Nest E1
(Nest (Cross E*1)

(Nest E2 (Nest (Cross E*2 E3 E*3) E4))))
(Nest E1

(Nest (Cross E3 E*1)
(Nest E2 (Nest (Cross E*2 E*3) E4)))))

(Pred E*1)
(Pred E3)
(Empty (Intersect (Bound E2) (Var E3))
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