
Fast Inverted Indexes with On�Line Update

Charles L� A� Clarke� Gordon V� Cormack Forbes J� Burkowski

Dept� of Computer Science

University of Waterloo� Waterloo� Canada� N�L �G�

Technical Report CS�����	
November ��� ����

Abstract

We describe data structures and an update strategy for

the practical implementation of inverted indexes� The

context of our discussion is the construction of a dedi�

cated index engine for a distributed full�text information

retrieval system� but the results have wider application�

Retrieval operations require a single disk access per query

term� The on�line update strategy guarantees the con�

sistency of on�disk data structures� Index compression

integrates smoothly�

� Introduction

��� Environment

Our general concern is the construction of a dis�
tributed full�text information retrieval system� The
basic architecture consists of a group of LAN�
connected processors� each managing its own sepa�
rate disk and memory� Individual processors act as
either text servers� storing documents and servicing
requests for portions of these documents� or as index
engines� identifying the portions of documents that
match client�generated search criteria� To external
clients� the group of machines appears to be a single
large information retrieval system� A front�end pro�
cessor� the Marshaller�Dispatcher� coordinates the
activities of the group of processors� interacting with
client applications� dispatching queries to the index
engines and text servers� marshalling query results
and returning the results to clients� Figure � pro�
vides a schematic overview of the architecture�

�Email� claclark�plg�uwaterloo�ca

Marshaller/

 Dispatcher
Text

Server

Text

Server

Client Applications

Engine

Engine

Engine

Index

Index

Index

Figure �� Architecture of the retrieval system�

�

Design aspects of distributed full�text information
retrieval systems have been the subject of earlier re�
search� Burkowski ��� studied the division of pro�
cessors into text servers and index engines� with
the conclusion that such a split can implement a
system which provides better overall response time
than a system in which each processor acts as both
text server and index engine� Tomasic and Garcia�
Molina ���� examine the allocation of index terms
from a set of documents to index engines� They con�
clude that all indexing of terms for an individual doc�
ument is best allocated to a single processor�

��� Inverted Indexes

Our speci	c concern is the data structure design and
update strategy used by the index engines� The ba�
sic data abstraction implemented by an index engine
is an inverted index �
�� File structures based on in�
verted indexes are standard for implementing infor�
mation retrieval systems ��� �� ��� �
�� An inverted
index is a function that maps index terms into po�
sitions in documents where the terms occur� Index
terms are typically words� but may include document
markup tags and other structural information of im�
portance to database clients�
Figure � presents a simple �but widely used� real�

ization of the inverted index data abstraction� The
dictionary maps terms into a pair of o�sets into the
postings �le� Between these start and end o�sets in
the postings 	le is a sorted list of postings� positions
within the database where the term occurs� Both the
postings 	le and the dictionary are large enough to re�
quire disk storage� Using this realization� a mapping
of a given index term into its postings list consists of
a binary search of the dictionary �requiring O�logw�
disk accesses� where w is the number of index terms
in the dictionary� followed by a single access into the
postings 	le�

��� Practical Issues

In an operational environment there are a number of
practical issues to be considered when implementing
inverted lists�

Retrieval Response Retrieval operations far out�
number update operations� Querying the retrieval
system is the primary operation used by external

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

end ptrstart ptr

Dictionary

. .

. .

Database

Positions

birnam

</speaker>

index term

Postings File

Figure �� Simple realization of an inverted index�

clients and response time is of utmost importance�
The mapping of an index term into its postings list
must require as few disk accesses as possible� Ideally�
a single disk access would be su�cient to translate
any term� independent of the size of the dictionary
and postings 	le� and independent of the size of the
postings list for the particular word�

Update Throughput Updates are usually addi�
tions of new documents� Occasionally� deletion of
documents� and addition and modi	cation of index�
ing may be required� Since update is primarily a
maintenance function rather than an external client
service� update throughput� not response time� is of
importance� The simple 	le structures of 	gure � re�
quire a complete rebuild to apply updates�

Index Compression Compression will increase
the amount of dictionary and postings data that can
be stored on available disk ����� Since compression
and decompression techniques operate by linearly
processing a range of data� this property creates a
potential decrease in retrieval response time if ran�
dom access into the data is limited�

Consistency The database must be maintained in
a consistent state at all times� For example� if a fail�
ure occurs during update of the postings 	le� the dic�
tionary must not be left pointing to an incorrect range
of postings�

�

��� Existing approaches

Most discussions of inverted indexes for information
retrieval assume that the 	le structures are static �
created by an initial database load operation and not
modi	ed thereafter� These 	le structures generally
require multiple disk accesses for term translation ���
�
��
Discussions of updatable inverted indexes gener�

ally adopt an append�only model of update� Tries�
hashing and the ubiquitous B�Tree can all be used
to implement an updatable dictionary� An updatable
postings 	le can be implemented using a variety of
free space management techniques� The postings for
a particular term may be maintained in chained buck�
ets� A new bucket is added to the chain each time a
document append causes a bucket to over�ow� Alter�
nately� postings may be stored in contiguous extents
with free space left after each extent� If the extent
over�ows� the postings list is copied to a larger extent�
Cutting and Pedersen ��� examine in detail the use

of B�Trees to implement an e�ciently updatable in�
verted index� Using their optimizations to the basic
B�Tree 	le structure� a retrieval operation can require
as little as one disk access� but may require more� de�
pending on the caching strategy used and the branch�
ing factor of the B�Tree� Updates are bu�ered in
main memory and applied in large batches� Postings
may be compressed� but the ability to do delete op�
erations is then sacri	ced� Maintenance of database
consistency during block pointer updates is not dis�
cussed�
Burkowski ��� discusses free space management for

the postings 	le and proposes an organization that
groups postings into subsets and leaves free space
for appending new postings at the end of each sub�
set� Postings for several di�erent index terms may be
combined in a single subset� Postings for di�erent in�
dex terms are identi	ed by unique markers assigned
at build time� An append that over�ows available
free space triggers a complete rebuild of the postings
	le� Retrieval operations cannot be processed while
a rebuild is taking place� During a rebuild� free space
usage since the last rebuild is used as a predictive
model for free space allocation in the rebuilt postings
	le� Translating an index term requires at least two
disk accesses� one �or more� into the dictionary� and
one into the postings 	le to retrieve the appropriate
subset� Update operations other than append can
only be performed during a rebuild�

��� Our approach

In the remainder of the paper we present data struc�
tures that e�ciently realize the inverted index data
abstraction and permit the continuous on�line appli�
cation of updates without signi	cantly disrupting re�
trieval performance� Accessing the inverted index for
a term requires a single disk access� Update is an
on�going background process� re�writing the database
on an on�going basis� Updates are maintained in
main�memory data structures until they can be ap�
plied to disk� The update process is occasionally
checkpointed� If a processor failure occurs� the up�
date process may be restarted at the last checkpoint�
The integration of caching and index compression is
straightforward�

The work described in this paper is part of the
Waterloo Multi�User Multi�Server Very Large Text
Database Project �the MultiText Project�� The pri�
mary goal of this project is the creation of a pro�
totype distributed full�text information retrieval sys�
tem� Where exposition is simpli	ed and no general�
ity is lost� we use the concrete data structures of the
MultiText Project in our discourse�

� Interfaces

The index engine ignores document boundaries�
treating the text in the database as one continuous se�
quence� Document boundaries are treated the same
as any other structural element� A position in the
database is a single positive integer� The granular�
ity of this position � whether it refers to a charac�
ter� word or to an entire document � depends on
the needs of the query language used by the retrieval
system� The text structure model used by the Mul�
tiText project allows multiple terms to be indexed
at a particular location� This property is crucial to
schema�independent retrieval ����

An index engine is responsible for implementing
two classes of operations� retrieval operations and
update operations�

A retrieval operation is a request to solve a query�
expressed in some query language� Inverted in�
dexes easily implement the boolean�algebra�based
languages used by most commercial text retrieval sys�
tems ���� ���� Inverted indexes are also appropriate
for implementing the schema�independent heteroge�
neous structured text query language used by the

�

MultiText project ����
Each query solution is a pair �start� end� indi�

cating a range in the database that satis	es the query�
Each retrieval operation may result in one or more
solutions of this form�
An update operation is a request to add or remove

indexing� An add indexing operation has the form�

Add �position� term�

Which indicates that the speci	ed term occurs at the
speci	ed position in the database� A remove indexing
operation can take one of three forms�

�� Remove �start� end� term�

Removes indexing of the speci	ed occurrence of
the term in the range speci	ed by the start and
end positions�

�� Remove ��� �� term�

Removes all indexing of the speci	ed term�

�� Remove �start� end� ��

Removes all indexing in the speci	ed range� This
operation may be used to remove an entire doc�
ument from the index engine�

The add operation and the 	rst two remove opera�
tions change the postings list for a single index term
and are referred to as local update operations� The
third remove operation may a�ect many postings lists
and is referred to as a global update operation� It is
worth noting here that all the update operations are
idempotent� they may be applied one or more times
with the same e�ect� As an aside� the retrieval oper�
ation implemented by the text server is�

lookup �start� end�

which returns the text associated with the range�

� Resources

A primary concern is the management of the index
engine�s memory resources� disk storage and main
memory RAM�

MD � Quantity of disk storage �words�
MR � Quantity of main memory �words�

We have MR �MD where the size di�erence is typ�
ically a factor in the range �� to ����

The quantity MR does not include the memory re�
quired for the operating system and its internal data
structures� or for the index engine application soft�
ware� To permit control over these resources� we dis�
able all operating system paging� swapping and other
memory management� The operating system is used
only to provide address translation� physical I�O to
the disk� network access and multiprocessing� Disk
storage may consist of several physical disks� We as�
sume striping if this is the case�
A word must be big enough to hold�

� any database position�

� any index term

� any integer in the range �
�MD�

A ���bit word size is su�cient to index approximately
�
GB of �uncompressed� English�language text� A
���bit word is su�cient for all currently conceivable
applications� A index term is represented by a word�
sized term symbol� This mapping of index terms to
term symbols is a global function implemented by the
Marshaller�Dispatcher� Ordering of the term sym�
bols corresponds to the lexical ordering of the index
terms�

� Data Structures

Before examining the on�line update algorithm� we
examine the static organization of the index engine
data structures as they appear between cycles of the
update process�
The vast majority of disk storage is allocated for

index blocks� Together� the index blocks make up the
index� which combines the functions of the dictionary
and postings 	le of 	gure �� The index contains both
index terms and postings� An index block is of 	xed
size B� The size of the index is MDIdx� The total
disk storage allocated for the index is MDIdxS� Both
MDIdx and MDIdxS are multiples of B�
When in use� each index block contains one or

more index entries� Each index entry consists of a
term symbol followed by an occurrence count fol�
lowed by an occurrence list� indicating positions in
the database where the term occurs �see 	gure ���
The occurrence count is never bigger than the space
remaining in the index block� Since an entry is al�
ways at least three words� up to two words at the

�

end of an index block may be unused� By using the
occurrence counts as relative pointers� we may treat
an index block as a linked list of entries� The length
of this linked list is at most bB��c�
Overall� the index is ordered 	rst by term symbol

and then by database position� and divided into index
blocks as appropriate� If an entry for a particular
term symbol would not 	t in a single index block� it
is divided into multiple entries and stored in a range
of index blocks�
Disk space allocated for index blocks is treated as

a circular array� The index may start at any point
in the circular array and does not completely 	ll it�
The dynamic update algorithm operates by modify�
ing the index according to an update list and writing
the modi	ed index into the unused portion of the ar�
ray� releasing storage used by the unmodi	ed index
as it is modi	ed and written back �	gure ���
Main memory is used for three purposes�

�� Working storage for retrieval
operations �MRCache�� This storage is largely a
cache of index blocks for solving queries� but also
includes memory for queries and partial results�

�� Storage for the index map �MRMapS�� Each entry
in the index map describes a block in the index
storage�

�� Working storage for the update algorithm
�MRUpdate�� This storage bu�ers updates until
they are applied to disk�

The index map contains
a two�word description of each block in the index�
giving MRMapS � �MDIdxS�B� The index map itself
has size MRMap� with the relation

MDIdx

MDIdxS

�
MRMap

MRMapS

The 	rst word of each index map entry contains the
	rst term symbol indexed in the block� and the second
word contains the 	rst posting for this term symbol
indexed by the block� A binary search of the index
map allows the determination of the range of index
blocks containing the postings list for any particular
term� This postings list may then be read with a sin�
gle disk access� If we are interested only in postings
within a limited range of values� either because of re�
strictions placed by the client or because of earlier
partial query results� keeping the 	rst posting in the

index map assists in applying this restriction� partic�
ularly if the indexing for the term is divided across
multiple index blocks�

Space must be allocated on the disk for the stor�
age of a non�volatile copy of the index map� A small
amount of additional space must be allocated for a
con�guration block containing parameters describing
the disk layout� the start and end locations of the up�
dated and yet�to�be�updated segments of the index�
Consistency of the 	le structures requires that a write
of the con	guration block be atomic� This space is
allocated to a single physical block on the assumption
that a write of a physical block will either correctly
overwrite the block or will not change the block�

� Update Application

Updates are bu�ered in main memory until they can
be applied to disk� A background process continu�
ously cycles through index storage applying updates
and re�writing the index� Update throughput is thus
a function of the size of the main memory bu�er and
the period of an update cycle�

The organization of the index makes update ap�
plication a simple process� Modi	ed index blocks
are written into the free portion of the index storage
without a�ecting the consistency of the index itself�
The free portion of the main memory index map is
modi	ed in parallel�

At any point in time� the index blocks are grouped
into two segments� an updated segment and a yet�to�
be�updated segment� The index map parallels this
structure� During a retrieval operation the appropri�
ate segment is selected before performing the binary
search to determine the actual blocks to retrieve� In
the rare case of an access to the term that stretches
across the segments� two accesses to disk are required�

When all available free space is consumed with up�
dated index blocks� or at any other time deemed ap�
propriate� the index is checkpointed and a range of
index blocks is freed� Checkpointing consists of 	ve
steps�

�� Update the non�volatile copy of the index map�
This involves changes only to portions of the map
that are currently free�

�� Disable query access�

�

banquo

birnam

�

��
��

��

�

�

�

�

�

�

Index Terms

Occurrence

Counts

Database
Positions

Figure �� Index block organization�

�� Invalidate cached indexed blocks that are about
to be freed�

�� Re�write the con	guration block with new 	le
structure parameters�

�� Enable query access�

Steps � and �� which are performed with query access
disabled� proceed quickly as they involve only minor
modi	cations to main memory data structures and
a single write to disk� A failure before step � leaves
the index in a consistent state corresponding to the
previous checkpoint� A failure after step � leaves the
index in a consistent state encorporating the updates�

� Update Management

We assume that update operations are used by an
external maintenance agent responsible for maintain�
ing the overall state of the database� The mainte�
nance agent may run on the Marshaller�Dispatcher
and may multiplex many sources of updates into a
single source� For the purpose of query operations�
updates should take e�ect as soon as they are received

from the maintenance agent� but latency in applying
the updates to disk is acceptable� The maintenance
agent is acknowledged when outstanding updates are
applied to disk�
Updates are bu�ered in main memory until they

are applied to disk� During this time� we use the col�
lection of unapplied updates as an auxiliary database�
modifying the results of retrieval accesses into the
main index� When bu�ered in memory� we assume
that information relating to the update will occupy
four words� three words for the update parameters
and one word to encode the operator type and the
information necessary for acknowledging the update�
Global operations and local operations are main�

tained in separate data structures� the global update
list and the local update list respectively� We require
identical properties for both data structures�

� Sequential access to updates in sorted order� The
global list is sorted by start range and scanned
once per index term during an update cycle� The
local list is sorted by index term and then by
database position and scanned once per update
cycle�

� Insertion and deletion�

�

Circular Disk Array

Index Before Update

Free Space

Before Update Cycle

During Update Cycle

Free Space

Updated Portion

of Index

Un−Updated Portion

of Index

After Update Cycle

Updated Index

Free Space

Figure �� Overview of an update cycle�

� Search� Results from querying the main index
will be modi	ed by searches in the local and
global update lists�

It must be possible to perform these operations con�
currently � sequential scan is an on�going process�
updates are continuously arriving from the mainte�
nance agent� retrieval requests are constantly being
processed for clients�

The update process acknowledges and deletes up�
dates at each checkpoint� It is possible that a failure
after a checkpoint but before updates are acknowl�
edged might result in the maintenance agent having
an incorrect view of the index engine�s 	le structures�
Idempotency of the update operations ensures that
these updates could be re�applied without harm�

Skip lists ��� �� provide a simple and nearly ideal
implementation for the update lists� For the purposes
of sequential access� skip lists are e�ectively linked
lists� Insertion� deletion and search are all O�log n�
operations in the average case� Concurrent access to
skip lists is simple and e�cient� Overhead for point�
ers is in the range of one to two words per bu�ered up�
date �depending on an implementation parameter��
Total storage overhead for a bu�ered update is thus
at most six words� Data structures other than skip
lists may be used� but Pugh�s discussion of concurrent
maintenance of data structures ��� provides a strong
argument for skip lists�

Global operations represent deletions of ranges of
text� local operations represent changes to individ�
ual postings lists� Adding a document requires many
local operations� but deleting the same document re�
quires only a single global operation� For these rea�
sons� global operations tend to be few in number
and local operations tend to be relatively many in
number� Global operations must be bu�ered in main
memory� but if there is no requirement for updates to
take immediate e�ect there is no need to bu�er local
updates in main memory� Instead� the local updates
may be sorted by the maintenance agent and pre�
sented in mulitple batches to the index engine over
the course of an update cycle� If this technique is
used� disk access is no longer a factor limiting maxi�
mum update throughput�

Word Size �� bits

MD ��� GB

MR �� MB

MDIdx � GB

MDIdxS � GB

MB ��K

MRIdx ��� KB

MRIdxS ��� KB

MRUpdate �� MB

MRCache 	� MB

Figure �� Retrieval system parameters�

� Implementation

Measurements

The update strategy described in this paper has been
implemented as part of the MultiText project� How�
ever� we do not at this time have experience with the
strategy on a large scale under production loads�

The most unusual aspect of our approach is the
continuous re�organizational cycle through the index�
In order to convince ourselves that this strategy is
feasible for use in a production environment� we have
performed experiments to understand the possible
performance impact of continuous update under a
heavy retrieval load� We assumed the worst case�
continuous random query accesses with no hits in the
cache� Each query access reads a single index block�
We varied the update cycle time and examined its
e�ects on the sustainable query access rate� To pro�
vide baselines for the measurements we determined
the maximum sustainable access rate that could be
achieved with no concurrent update and the mini�
mum possible update cycle time with no concurrent
query access� Parameters of the retrieval system for
the experiments are given in 	gure �� Not all of
these parameters are strictly relevant to the exper�
iment� the values for MRCache and MRUpdate should
be taken as nominal� The experiments were run on a
dedicated DEC Alpha �

��

 running OSF�� V���
with a ��� GB Seagate ST���

N SCSI disk�

The results of the experiment are shown in 	gure ��
The irregular spacing of data points along the hori�
zontal dimension is a result of our inability to 	nely
control the update cycle period in the current imple�
mentation� With an update cycle time of as little

�

as �� minutes� query performance degrades by only
���� With an update cycle time of � hours� query
performance degrades by only
��
We use the nominal value of �� MB for MRUpdate�

Of this quantity� � MB is used for merging updates �
index blocks are read and written by the update pro�
cess in groups � MB in size� The remaining �� MB is
used for bu�ering updates� Since each update re�
quires six words �and each word is � bytes�� this
�� MB allows ��� K of updates to be bu�ered� Apply�
ing ��� K of updates over a � hour update cycle gives
an update throughput of �� updates�sec�� if applied
over a �� minute update cycle the update throughput
is �
 updates�sec� For comparison� the reader should
consider the maximum query access rate and consider
the throughput of applying each update individually
to a B�Tree 	le structure�

� Further Issues

��� Index Compression

Index compression integrates smoothly into the
scheme� Each index block is individually compressed
to a variable�length segment� The index map refer�
ences compressed blocks rather than 	xed�size blocks�
We add a word to each entry in the index map that
indicates the o�set of the compressed block in the in�
dex� Blocks are decompressed as they are brought
into the cache or read by the update process� Since
all blocks are cyclically re�written� compression does
not hamper update�

��� System Considerations

This paper has concentrated on the design of the in�
dex engine� We look brie�y at a few relevant aspects
of the remainder of the system�
The text server translates a range in the database

into the associated text� While the details di�er� we
organize the text server using data structuring prin�
ciples similar to those used in the index engine�
While our data structures e�ciently implement

the inverted index data abstraction� they do not ef�
	ciently implement queries that are based only on
the dictionary� Generally� these queries consist of
identifying terms that match speci	ed patterns� In
systems that separate the dictionary from the in�
dex� this type of query can be satis	ed by a dic�

tionary search� Besides its other duties� the Mar�
shaller�Dispatcher is responsible for handling these
dictionary�based queries by maintaining a separate
dictionary database of all words in the system� In
addition� the Marshaller�Dispatcher is responsible for
implementing a term thesaurus�

��� Wider Application

While our exposition has been in the context of a dis�
tributed information retrieval system the data struc�
tures and update strategy have wider applicability�
Inverted indexes are used in applications other than
information retrieval� Even if 	le structures are static
and update is not a requirement �in the case of a
CD ROM� for example� our data structures provide
an e�cient realization of inverted lists� The update
strategy has applicability to other databases with
similar update characteristics� with the text server
being a ready example�

	 Conclusions

The data structures presented in this paper e�ciently
realize the inverted index data abstraction� A re�
trieval operation requires a single disk access in all
but rare cases� The update strategy provides high
throughput with little impact on retrieval perfor�
mance� The 	le structures may be compressed to
increase the size of index that can be stored on avail�
able disk� Although discussed in the context of a
distributed full�text information retrieval system� the
results of this paper have applicability to any use of
inverted indexes and any database with similar up�
date characteristics�

Acknowledgements

The Multi�User Multi�Server Very Large Text
Database project is funded by the Government of the
Province of Ontario through its Information Technol�
ogy Research Centre� The Natural Sciences and En�
gineering Research Council of Canada and the Uni�
versity of Waterloo provided additional 	nancial sup�
port�

�

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

Q
ue

ry
 a

cc
es

s
ra

te
 (

in
de

x
bl

oc
ks

/s
ec

.)

Update cycle time (min.)

Query access rate with concurrent update
Maximum query access rate (no concurrent update)

Minimum update cycle time (no queries)

Figure �� Performance impact of continuous update cycles�

References

��� Forbes J� Burkowski� Retrieval performance of
a distributed text database utilizing a parallel
processor document server� In Proc� �nd Inter�
Symp� on Databases in Parallel and Distributed
Systems� pages
��
�� ���
�

��� Forbes J� Burkowski� Surrogate subsets� A free
space management strategy for the index of a
text retrieval system� In Proc� ��th ACM�SIGIR
Conference� pages �������� Brussels� ���
�

��� Charles L� A� Clarke� G� V� Cormack� and
F� J� Burkowski� An algebra for struc�
tured text search and a framework for its
implementation� Technical Report CS����
�
� University of Waterloo Computer Sci�
ence Department� Waterloo� Ontario� Canada�
N�L �G�� September ����� Available by

anonymous ftp in �cs�archive�CS����	
 on
cs�archive�uwaterloo�ca�

��� Doug Cutting and Jan Pedersen� Optimiza�
tions for dynamic inverted index maintenance�
In Proc� ��th ACM�SIGIR Conference� Brussels�
���
�

��� Christos Faloutsos� Access methods for text�
Computing Surveys� �
���� March �����

��� Donna Harmon� Edward Fox� R� Baeza�Yates�
and W� Lee� Inverted 	les� In William B�
Frakes and Ricardo Baeza�Yates� editors� In�
formation Retrieval� Data Structures and Algo�
rithms� chapter �� pages ������ Prentice Hall�
Englewood Cli�s� NJ� �����

�
� Donald E� Knuth� The Art of Computer Pro�
gramming� volume �� Addison�Wesley� Reading�
Massachusetts� ��
��

�

��� William Pugh� Concurrent maintenance of skip
lists� Technical Report TR�CS������ Dept� of
Computer Science� University of Maryland� Col�
lege Park� Maryland� April �����

��� William Pugh� Skip lists� A probabilistic alter�
native to balanced trees� CACM� �����������
��
June ���
�

��
� Gerard Salton� Automatic Text Processing� The
Transformation	 Analysis and Retrieval of Infor�
mation by Computer� Addison�Wesley� Reading�
MA� �����

���� Gerard Salton and Michael J� McGill� Introduc�
tion to Modern Information Retrieval� chapter ��
pages ������ McGraw�Hill Computer Science Se�
ries� McGraw�Hill� New York� �����

���� Anthony Tomasic and Hector Garcia�Molina�
Performance of inverted indices in shared�
nothing distributed text document information
retrieval systems� In �nd Inter� Conf� on Paral�
lel and Distributed Information Systems� pages
���
� San Diego� January �����

���� Steven Wartik� Boolean operations� In
William B� Frakes and Ricardo Baeza�Yates� edi�
tors� Information Retrieval� Data Structures and
Algorithms� chapter ��� pages �������� Prentice
Hall� Englewood Cli�s� NJ� �����

���� P� Weiss� Size Reduction of Inverted Files Using
Data Compression and Data Structure Reorga�
nization� PhD thesis� George Washington Uni�
versity� ���
�

��

