Schema-Independent Retrieval from Heterogeneous Structured Text

Charles L. A. Clarke

G. V. Cormack

F. J. Burkowski

Dept. of Computer Science*
University of Waterloo, Waterloo, Canada

Technical Report CS-94-39
November 23, 1994

Abstract

We present a query language for searching collections
of structured text. Documents within the collection
are not required to adhere to a global schema nor
are individual documents required to be structured
according to any defined schema at all. Nonetheless,
queries may directly reference structure across differ-
ently formatted documents. We briefly discuss appli-
cation of the language to multilingual collections, re-
lational databases, text filtering and document anal-
ysis.

1 Introduction

Figure 1, a facsimile of a page from an edition of
Shakespeare’s Tragedie of Macbeth, demonstrates the
complexity of structured text. This single page in-
cludes stage directions, speakers, speeches, the start
of the play’s first act, its entire first scene and the
start of its second. Marginal notations indicate the
act, scene and line numbers. Italics, small capitals,
and two font sizes are used. The lineation of the
spoken verse is consistent with its scansion. A page
number appears at the bottom of the page.
Retrieval from structured text requires the index-
ing of structural elements and a query language able
to directly reference these structural elements. In tra-
ditional commercial text-retrieval systems, the index-
ing of structure is usually limited to pre-defined ele-
ments such as words, sentences and paragraphs. In
small systems or when all documents are simple and

*Email concerning this technical report should be sent to
claclark@plg.uwaterloo.ca.

of a similar type, such as the archival store of articles
for a newspaper or a collection of project documen-
tation, this approach is adequate. In larger text col-
lections or in specialized text collections, documents
have more structure and more types of structure than
can be captured by these simple elements. Various
techniques may be used for specifying the organiza-
tion or schema of such a text collection and queries
may be based on this schema. In a very large text
collection (hundreds of gigabytes or more), particu-
larly when material from a variety of sources is be-
ing continually added to the collection, it may not
be possible to define a schema for the text collection
as a whole. Instead, the structure of each document
should be indexed in the ways that are most appro-
priate for that particular document, with analogous
structural elements in different documents being ei-
ther indexed identically or easily related to one an-
other.

This paper introduces GCL, a query language that
permits schema-independent retrieval from struc-
tured text. GCL is unique in supporting a wide range
of structured text retrieval using a single data type
to express all operands and results. Even the index-
ing of words and markup is an instance of this data
type. The discussion of GCL begins with our model
for indexing document structure and continues with
the language itself. Examples of the language’s use
are given. Following our exposition of GCL we dis-
cuss some of the ideas underlying the language and
its relation to other work in the area. Finally, we
look at some further applications of GCL, including
multilingual collections and document analysis.

GCL is based on an algebra developed by the au-
thors in an earlier paper [5]. That paper presents a



Thunder and lightning. Enter three Witches.
FIRST WITCH
When shall we three meet again?
In thunder, lightning, or in rain?
SECOND WITCH
When the hurly-burly’s done,
When the battle’s lost and won.
THIRD WITCH
That will be ere the set of sun.
FIRST WITCH
Where the place?
SECOND WITCH Upon the heath
THIRD WITCH
There to meet with Macbeth.
FIRST WITCH
I come Grey-Malkin.
SECOND WITCH Paddock calls!
THIRD WITCH Anon!
ALL
Fair is foul and foul is fair,
Hover through the fog and filthy air. Ezeunt

Alarum within.
Enter King Duncan, Malcom, Donalbain, Lennoz,
with Attendants, meeting a bleeding Captain
KING
What bloody man is that? He can report,

53

L1

10

1.2

Figure 1: Text Structure in Macbeth.




formal treatment of the theory behind GCL and in-
cludes an implementation framework under which the
time required to evaluate a query is at worst propor-
tional to the time required to solve the elementary
terms in the query. This work is part of a larger
project on Very Large Multi-User Multi-Server Text
Databases being undertaken at the University of Wa-
terloo. GCL has been implemented in the context
of that project, and acts in the role of client/server
interface language.

2 Document Markup

Partial markup for the opening of Macbeth is shown
in figure 2. Start tags of the form “<name>” and
end tags of the form “</name>” delineate stage di-
rections, speakers, speeches, acts, lines and scenes.
Act and scene numbers appear within similar delim-
iters at the start of each act and scene. Font changes,
pagination and other markup associated with docu-
ment presentation has been omitted. Note that a tag
indicating the start of a line may occur in one speech
with the corresponding tag indicating the end of the
line occurring several speeches later.

We model text as a sequence of words. In the case
of Macbeth we arbitrarily choose the sequence to in-
clude all stage directions, speakers, and speeches; we
ignore case and punctuation; words that occur most
frequently, such as “the” and “of”, are treated as
stop words and are represented in the sequence by
the symbol “_”:

thunder

lightning enter three
witches first witch when shall we
three meet...

Stop words occupy positions in the sequence but will
not be indexed in the database. Any position in the
sequence not occupied by a word is assumed to be
occupied by “_”.

Markup indicating document structure is indexed
at (rational-valued) locations between the words.
This approach recognizes that markup describes the
text but is not part of it. Conceptually, an infinite
amount of description may be indexed between each
pair of words.

Alternate descriptions of the same text may be in-
dependently indexed. Various editions of Macbeth use
differing lineation. The eighth line of the first scene,

in which the witches call to their familiars, is nei-
ther in trochaic tetrameter nor does it rthyme with
the surrounding lines. Its lineation is sometimes

FIRST WITCH I come Grey-Malkin.
SECOND WITCH Paddock calls!

THIRD WITCH Anon!

This alternate lineation could be indicated in
the markup by tags such as <alt-line> and
</alt-line>. If an edition of Macbeth was already
part of a text collection our model allows the indexing
of this alternate lineation to be added at any time.

Suppose we wish to search our text collection for
a remembered quote, contained on single line, spo-
ken by a single speaker: “Something wicked this way
comes.” A query must take into account the alter-
nate lineation and the possibility that several speak-
ers may speak portions of a single line of verse.

3 The Query Language

Each statement in the GCL query language either
specifies a query to be solved or defines a macro. The
simplest query consists of a doubly-quoted string.
Each location in the database where the string oc-
curs is a solution to the query. The query

"toil and trouble fire burn"

produces the five-word segments of the stored text
that match the quote. The match will not necessarily
be exact, since we ignored case and punctuation and
treated “and” as a stop word.

The presence of markup in the text does not affect
the match. If line start and end tags appear in the
marked-up text

<speaker> All </speaker>

<line> Double, double, toil and trouble;
</line>

<line> Fire burn and cauldron bubble.
</line>

the “</1ine>” and “<line> tags are not considered
when testing for a match. This behaviour is consis-
tent with our general principle of keeping the markup
independent of the text.

Markup may be included in a query, in which case
it must be present in the text. The query

"trouble </line> fire"



<act> <act-number> 1 </act-number>
<scene> <scene-number> 1 </scene-number>
<direction> Thunder and lightning. Enter three Witches. </direction>
<speaker> First Witch </speaker>
<speech> <line> When shall we three meet again? </line>
<line> In thunder, lightning, or in rain? </line> </speech>
<speaker> Second Witch </speaker>
<speech> <line> When the hurly-burly’s done, </line>
<line> When the battle’s lost and won. </line> </speech>
<speaker> Third witch </speaker>
<speech> <line> That will be ere the set of sun. </line> </speech>
<speaker> First Witch </speaker>
<speech> <line> Where the place? </speech>
<speaker> Second Witch </speaker>
<speech> Upon the heath </line> </speech>
<speaker> Third witch </speaker>
<speech> <line> There to meet with Macbeth. </line> </speech>
<speaker> First Witch </speaker>
<speech> <line> I come Grey-Malkin. </speech>
<speaker> Second Witch </speaker>
<speech> Paddock calls! </speech>
<speaker> Third witch </speaker>
<speech> Anon! </line> </speech>
<speaker> all </speaker>
<speech> <line> Fair is foul and foul is fair, <line>
<line> Hover through the fog and filthy air. </line> </speech>
<direction> Exeunt </direction>
</scene>
<scene> <scene-number> 2 </scene-number>
<direction> Alarum within. Enter King Duncan, Malcom,
Donalbain, Lennox with Attendants, meeting a bleeding
Captain </direction>
<speaker> king </speaker>
<speech> <line> What bloody man is that? He can report, </line>
<line> As seemth by his plight, of the revolt

Figure 2: Markup for Macbeth.



would match in the fragment of text above.

The result of a query in GCL is a sequence of ez-
tents or ranges in the database. Each extent repre-
sents the occurrence of a solution to the query. Ex-
tents may overlap, but they may not nest.

There are eight GCL query operators, which may
be broken into three categories: one ordering oper-
ator, three combination operators, and four contain-
ment operators. The ordering operator is used to link
textual elements, the combination operators are used
to group textual elements, and the containment op-
erators are used to express structural relationships.

Macros allow symbolic names to be assigned to
frequently-used queries and allow queries to be ex-
pressed in terms of general concepts — lines, verses,
pages or paragraphs — rather than in terms of the
physical characteristics of the document markup. A
particular macro, say for matching lines, might incor-
porate a variety of different physical markup tech-
niques. Depending on the environment, the person
generating a query will often not be aware of the de-
tails of a macro being used. Macros may be param-
eterized; when a parameterized macro is used each
parameter will have a query substituted in its place.

The following subsections cover the details of
macros and the various categories of query operators.
For the convenience of the reader, figure 3 summa-
rizes the syntax of GCL in Backus-Naur Form.

3.1 The Ordering Operator

The ordering operator “...” links textual elements.

The form of a query using the ordering operator is

query ... query

For example, the query

"Macbeth" ... "Thane of Fife"

returns all extents such as “Macbeth! Beware Mac-
duff; Beware the Thane of Fife” that begin with a
solution to the query on the left-hand-side of the op-
erator and are followed-by and end-with a solution to
the query on the right-hand-side of the operator.

An important and common usage of the ordering
operator is to connect the start and end tags of struc-
tural elements, producing extents that correspond to
those structural elements. The result of connecting
the start and end tags for lines with the ordering op-
erator

"<line>" . "</line>

is all the lines in the database.

3.2 Combination Operators
All three combination operators have the basic form
quantity of ( list of queries )

Each solution to a combination operation covers the
solutions to a specific number of the queries in the as-
sociated list. The quantity associated with the combi-
nation operation determines the number of included
solutions. The most general of the combination op-
erators expresses the quantity as an integer (which
must be greater than zero, and less than or equal to
the length of the query list). Solutions to

2 of ("Macbeth", "Birnam", "Dunsinane")

include “Macbeth shall never vanquish’d be until
Great Birnam”, “Birnam wood to high Dunsinane”,
and “Birnam rise, and our high-plac’d Macbeth”.
Each solution begins and ends with a solution to one
of the queries in the list.

For convenience, two special forms of the combina-
tion operator exist: A query of the form

one of ( list of queries )

merges the solutions to the queries in the list into a
single sequence. A query of the form

all of ( list of queries )

combines solutions to the queries into extents that
contain a solution for each of the queries.

3.3 Containment Operators

The four containment operators are central to refer-
encing textual structure:

query
query
query
query

containing query
contained in query
not containing query
not contained in query

A solution to a containment operation is also a so-
lution to the query on the left-hand side of the con-
tainment operation. A containment operation acts
as filter, eliminating solutions to the query on the
left-hand side.

The quote ‘Macbeth! Beware Macduff; Beware the
Thane of Fife” is not a solution to the query



statement ::=
macro-definition
| query

macro-definition ::=
wdentifier = query
| identifier ( parameters ) = query

query =
query containing query

| query contained in query
| query not containing query
| guery not contained in query
| one of ( quertes )
| quantity of ( queries )
| a1l of ( quertes )
| query ... query
| (query)
| quantity words
| identifier ( queries )
| identifier
| quoted-string

queries ::= query | query , queries
parameters ::= identifier | identifier , parameters
quantity ::= positive-integer

Figure 3: Syntax of GCL.



("Macbeth" ... "Thane of Fife")
contained in
("<1line>" ... "</line>")

since the quote stretches over two lines.

3.4 Macros

A macro definition has the form
identifier ( parameters ) = query

where the parameter list is optional. The statements

LINE =
one of (
"<line>"..."</line>",
"<alt-line>"..."</alt-line>"
)
SPEECH = "<speech>"...'"</speech>"

define LINE as a macro representing the lines in the
database (including alternate lineation) and SPEECH
as a macro for the speeches in the database. The
statement

QLINE (quote) =
(quote contained in LINE)
contained in SPEECH

defines QLINE as a parameterized macro that searches
for a quote contained on a single line and spoken by
a single speaker. The query

QLINE ("Something wicked this way comes")

uses this macro to search for the specified quote.

The environment presented by a text retrieval sys-
tem will usually include pre-defined macros to as-
sist query building. A collection including the plays
of Shakespeare might predefine macros for lines,
scenes, acts, speakers, and speeches. These prede-
fined macros can take into account variations in struc-
ture that might not be apparent to a casual user. If
plays by other authors are added to the collection
the macros may be changed to reflect the structure
of these plays without effecting the user’s understand-
ing of the system.

3.5 Proximity Constraints

A query of the form
quantity words

may be used in combination with the containment
operators to place size and distance restrictions on
solutions to queries. A solution to the query

SPEECH contained in 5 words

is a speech of five words length or less.

4 Discussion

4.1 Generalized Concordance Lists

The query operators of GCL operate on elements of
a single data type, generalized concordance lists or
GC-lists, and return elements of this data type as
their result. A GC-list is an ordered list of extents
or ranges from the sequence of words that make up a
collection of text. Extents in a GC-list may overlap,
but they may not nest. This seemingly inconsequen-
tial property is the soul of GCL. We use two examples
to illustrate this point.

Example 1 (nesting)
Consider the line

Fair is foul, and foul is fair,

This line contains four possible solutions to the query
all of ("fair", "foul")

specifically

Fair is foul
Fair is foul, and foul
foul, and foul is fair
foul is fair

Indeed, every extent between every “foul” and every
“fair” in the entire collection is a possible solution to
the query. But because extents in a GC-list cannot
nest, most of these possible solutions are not returned
by GCL. Only solutions such as

Fair is foul
foul is fair



that contain no embedded “foul” or “fair” are re-
turned. Non-nesting of extents also guarantees that
the solution to the query

"<line>" ... "</line>

contains all individual lines and not groups of lines.

Example 2 (overlap)
Consider the line

All hail, Macbeth! Hail to thee, Thane of

Cawdor
This line contains two possible solutions to the query
all of ("hail", "Macbeth")
specifically

hail, Macbeth
Macbeth! Hail

If we do not allow extents to overlap, which do we
choose?

The GCL “all of” operator is the equivalent of
the boolean “AND” operator found in most tradi-
tional commercial text retrieval systems. Usually the
“AND” operator identifies documents that contain
solutions to both its operands. Unlike the “AND”
operator, the “all of” operator does not have any
implied containment associated with it. It is only by
allowing overlapping extents that independence from
implied containment constraints can be achieved.

4.2 Schema Independence

Numerous markup conventions exist for specifying
document structure. These conventions are generally
concerned with specifying the structure necessary for
formatting and display, or for document transmis-
sion from one computer system to another. Mod-
ern markup conventions concentrate on the specifica-
tion of the logical structure of documents and avoid
physical characteristics — fonts, layout, and pagina-
tion — that vary as the formatting style and the dis-
play medium change. The most flexible of the widely-
recognized conventions is the Standard Generalized
Markup Language (SGML) [3, 9]. The markup style
that we have used throughout the paper is similar to
that of SGML.

An SGML document contains a description of its
structure, its document type definition or DTD, in

addition to its text. Although a large group of docu-
ments will generally share a common document struc-
ture through the use of a publically declared DTD,
the structure of an individual document could be
unique. This facility for explicitly describing a doc-
ument’s schema or meta-structure (the structure of
its structure) is central to SGML. Conventions other
than SGML typically mix the specification of logical
and physical structure and are restricted in the vari-
ety of logical structure that can be directly expressed.
The actual structure of these documents often cannot
be inferred from the markup alone.

In specifying document structure for retrieval,
any dependence on document meta-structure is ex-
tremely inhibiting. In a collection of heterogeneously-
formatted documents a query must be formulated
with consideration to the meta-structure of every
document that might potentially be of interest. In a
very large collection, merely grasping the variations
in meta-structure is a difficult task.

The straightforward approach to indexing struc-
ture is to index markup tags. This approach has lim-
itations if a markup tag is treated as a word like any
other. From the viewpoint of a user, a tag is not part
of the text itself but a part of the presentation of the
text. A user incorporating a remembered quote into
a query cannot anticipate the markup that might oc-
cur within the quote in documents where the quote
appears.

It must be possible to incrementally index text
structure. If a particular word processor format does
not explicitly tag section headers, but at a later time
this information is obtained from another source —
perhaps inferred from font sizes or page layout — it
should be possible to add this information to the in-
dex.

It must be possible to index as a group equivalent
structural elements from different document formats.
Across a variety of document formats, a particular
structural element — paragraph boundaries, for ex-
ample — might be indexed using both markup spe-
cific to the document format and markup generic to
the collection as a whole.

Our views on structured text retrieval may be sum-
merized by three schema independence principles:

e Meta-structure Independence. Adherence to a
meta-structure should not be required of doc-
uments. Queries referencing document structure

should not be expressed in terms of document



meta-structure.

e Markup Independence. Markup describes text
but is not part of it. It should be possible to
index the structure of a document in a variety of
differing ways.

e Query Element Independence. Analogous struc-
tural elements from different document formats
should either be indexed as a group or a mech-
anism should be provided for easily relating one
to another.

Our markup indexing approach provides both
markup independence and query element indepen-
dence by indexing words at integral positions and
indexing markup at arbitrary rational positions be-
tween the words. The query operators of GCL pro-
vide meta-structure independence; the macro facil-
ity in combination with predefined environments pro-
vides query element independence.

4.3 Related Work

Work in the area of structured text retrieval gener-
ally either extends the relational algebra with sup-
port for structured text, uses a context-free grammar
to describe text structure and bases queries on this
grammar, or attempts both [1, 2, 6, 7, 8]. This heavy
dependence on relations and /or grammars to describe
text structure and formulate queries is in direct con-
trast to our work.

GCL owes some of its intellectual and cultural her-
itage to two earlier structured text retrieval languages
developed at the University of Waterloo. The Pat
text searching system [10] was developed for use with
the New Oxford English Dictionary. Pat provides
meta-structure independence, and limited query ele-
ment independence through the use of region defini-
tions, which resemble our macros. Query operators in
Pat are similar to those in GCL, but no equivalents to
our combination operators are provided. Pat does not
use a uniform data type for query operands and re-
sults, causing significant semantic problems. Queries
expressible in Pat (with a few superficial exceptions)
are a subset of of those expressible in GCL.

The language of Burkowski [4] is the direct ances-
tor of GCL. That language provides markup indepen-
dence but relies heavily on document meta-structure
for query formulation. The language’s query opera-
tors are similar to those of both Pat and GCL; no

equivalents to our combination operators or ordering
operator are provided. The language uses a single
data type, the concordance list, for query operands
and results. Our GC-list is a generalization of this
data type. Extents in a concordance list are not pre-
mitted to overlap, causing some semantic inconsis-
tencies in the language.

5 Further Applications

We conclude the paper by briefly reviewing a number
of points concerning the application of GCL.

5.1 SQL (with Full-Text Extensions)

GCL is usable for browsing data in a wide variety of
formats. A great deal of on-line data is currently in
the form of SQL relations. A simple representation of
a SQL relation as a marked-up sequence is sufficient
to permit searching of an SQL database using GCL.
This is particularly useful if inclusion of full-text data
in relational databases becomes more prevalent [1, 2].

We treat the data in a table as if loaded sequen-
tially in row-major order. The extent of each ta-
ble is considered to be tagged with “<table>” and
“</table>” tags. The name of the table is indexed
immediately following the table start tag and is delin-
eated with “<table-name>” and “</table-name>”
tags. Each tuple in the relation is delineated with
“<tuple>” and “</tuple>” tags. Each tuple consists
of a sequence of attribute name/value pairs marked-
up as follows:

<name> name <value> value </value>

with the end of the name being implied by the
“<value>” tag.

Assume we have a table named “Reports” that
stores technical papers with a column for each of the
tile, authors, abstract and body. A query for papers
written by “Clarke, Cormack and Burkowski” (a se-
lect operation) would be

CCB = all of ("Clarke", '"Cormack', "Burkowski')
AUTHORS = '<name> Authors <value>"..."'"</value>"
CCB-AUTHORS = CCB contained in AUTHORS

TABLE = '"<table>"...'</table>"

REPORTS = '"<table-name> Reports </table-name>"
REPTABLE = TABLE containing REPORTS

TUPLES = "<tuple>"..."</tuple>"

REPTUPLES = TUPLES contained in TECHTABLE
REPTUPLES containing CCB-AUTHORS



5.2 Text Filtering

Throughout the paper we have been assuming the
use of GCL as a query language for an indexed text
database. GCL may also be used to directly search
un-indexed text in a linear fashion in the manner of
the UNIX grep utility. If our database permits the
on-line addition of text to the collection we may use
this approach to filter incoming text against a set of
stored queries that reflect the ongoing interests of the
database’s users.

5.3 Document Analysis

Document analysis techniques that infer document
structure can take advantage of schema indepen-
dence. If an analysis technique can infer only partial
or inconsistent structure this information may still be
stored in the database and searched using the query
language. The language may be used as a tool to en-
force consistency. For example, if all speakers must
be followed by a speech the query

("</speaker>"..."<speaker>")
not containing SPEECH

must have no solutions.

5.4 Multilingual Collections

Schema independence assists in the creation of col-
lections that include documents written in different
languages and individual documents written in mul-
tiple languages provided that the text can be mapped
into a sequence of words (or ideograms) with markup
indexed at and between the words. Markup inde-
pendence allows tags specific to a particular docu-
ment’s format, which would usually be mnemonic in
the language of that document, to be related to anal-
ogous structural elements in documents written in
other languages.

Acknowledgements

The Multi-User Multi-Server Very Large Text
Database project is funded by the Government of the
Province of Ontario through its Information Technol-
ogy Research Centre. The Natural Sciences and En-
gineering Research Council of Canada and the Uni-
versity of Waterloo provided additional financial sup-
port.

10

References

ir ansport Association. vance elrieva

1] Air Tr A iati Ad d Retrieval
Standard — Structured Fulltezt Query Language
(SFQL). ATA 89-9C.SFQL.

[2] G. E. Blake, M. P. Consens, P. Kilpeldinen, P.-
A. Larson, T. Snider, and
F. W. Tompa. Text/relational database manage-
ment systems — harmonizing SQL and SGML.
In Proc. Applications of Databases, pages 267—

280, Vadstena, Sweden, June 1994.

M. Bryan. SGML — An Author’s Guide
to the Standard Generalized Markup Language.
Addison-Wesley, New York, 1988.

Forbes J. Burkowski. An algebra for hierarchi-
cally organized text-dominated databases. Infor-
mation Processing and Management, 28(3):333-
348, 1992.

Charles L. A. Clarke, G. V. Cormack, and
F. J. Burkowski. An algebra for struc-
tured text search and a framework for its
implementation. Technical Report CS-94-
30, University of Waterloo Computer Sci-
ence Department, Waterloo, Ontario, Canada,
N2L 3G1, September 1994. Available by
anonymous ftp in /cs-archive/CS-94-30 on
cs—archive.uwaterloo.ca

Gaston H. Gonnet and Frank Wm. Tompa. Mind
your grammar — a new approach to modelling
text. In Proc. 13th VLDB Conference, pages
339-346, Brighton, England, 1987.

Ralf Hartmut Guting, Roberto Zicari, and
David M. Choy. An algebra for structured office
documents. ACM Transactions on Office Infor-
mation Systems, 7(4):123-157, April 1989.

Marc Gyssens, Jan Paredaens, and Dirk Van
Gucht. A grammar-based approach towards uni-
fying hierarchical data models. In Proc. ACM
SIGMOD International Conference on Manage-
ment of Data, pages 263-272, Portland, Oregon,
1989.

International Standards Organization. Infor-
mation Processing — Text and Office Sys-
tems — Standard Generalized Markup Lan-
guage (SGML), October 1986. ISO 8879.



[10] Airi Salminen and Frank Wm. Tompa. Pat ex-
pressions — an algebra for text search. Techni-
cal Report OED-92-02, UW Centre for the New
Oxford English Dictionary, Waterloo, Ontario,
CANADA, N2L 3G1, July 1992.

11



