
  

Matrix-Nullspace Wavelet Construction

Subendran Sivalingam

September 30, 1994



  

Abstract

“Wavelets” have been a very popular topic of conversation in many scien-
tific and engineering gatherings these days. Some view wavelets as a new ba-
sis for representing functions, some consider it a technique for time-frequency
analysis, and others think of it as a new mathematical subject. All of them
are right, since “wavelet theory” is a versatile tool with very rich mathemat-
ical content and great potential for applications, such as data compression.
On the other hand polynomial spline functions are among the simplest func-
tions for both computational and implementational purposes. Hence, they
are most attractive for analyzing and constructing wavelets.

This thesis explores a simple, general tool for constructing wavelets from
“box splines,” which are natural generalization of B-splines. This tool in-
volves use of the inner product, a matrix formulation, an associated homo-
geneous system of equations and the determination of null space. This tool
is applicable for both univariate and multivariate settings.
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Chapter 1

Introduction

While spline functions have been used successfully for analyzing and approx-
imating both exact and noisy data, the technique of Fourier transformation
is the standard tool for studying the corresponding spectral behavior in the
frequency domain. Indeed, for many applications, such as image and signal
analyses, only spectral information can be observed. Although the Fourier
techniques are very powerful, there is a serious deficiency in the integral
Fourier representation: time-evolution of frequencies is not reflected. In other
words, the formulation of the Fourier transform requires global information of
the function in the time-domain. This shortcoming was observed by D. Ga-
bor who, in his 1946 paper [19], introduced a time and frequency localization
method by applying the Gaussian function to “window” the Fourier integral.
Other window functions have been studied since then, and this method is
usually called the windowed Fourier transform or short time Fourier trans-
form (STFT). There are still defects in all of the STFT methods, mainly
due to a undesirable computational burden arising from repeatedly having
to narrow the window for good localization and then having to wide the
window for a more global picture.

The integral wavelet transform (IWT), on the other hand, has the ca-
pability of simultaneously “zooming-in” on short-lived high-frequency phe-
nomena and “zooming-out” for low-frequency observations. Hence, the IWT
is suitable for a wide variety of applications such as radar, sonar, acoustics,
edge-detection, etc. This transform has its origin in seismic analysis, and
the first published work was by Grossman and Morlet [21] in 1984. IWT is
based on the idea of analysing a signal with dilations and translations of a
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single window function, known as the basic wavelet. Dilation corresponds to a
change of frequency, while translation localizes time or position. In addition
to being a window function as in STFT, the basic wavelet ψ, must satisfy
a very mild condition: namely it must have zero mean. Since the wavelets
must also have somewhat concentrated mass, it behaves like a “small wave”,
and so the terminology of “wavelet”, or “ondelette” in French, is quite ap-
propriate. The zero-mean property of ψ , or equivalently the vanishing of
its Fourier transform at the origin, ψ̂(0) = 0, can be weakened a little to
ψ̂(w)/ | w |1/2 being in L2. Therefore, the idea and techniques of IWT can
be traced back to the work of Calderon [3] in 1964 on singular integral oper-
ators. In particular, an integral reproducing formula allows us to reconstruct
the function from its IWT.

Such a reconstruction requires global information of the IWT at all dila-
tions and translations. If the basic wavelet ψ is orthonormal ( o.n. ), and by
this we mean that {ψ(·−n) : n ∈ Z} is an orthonormal family, i.e., {ψ(·−n)}
is orthonormal in both dilation and translation. Then under very mild condi-
tions on ψ, a “wavelet series” can also be used to recover the original function.
This observation revolutionizes certain aspects of harmonic analysis in that
instead of Fourier series, which represents periodic functions, we now have
an orthogonal series, which represents functions defined on the real line. The
importance of this representations is that with a good choice of the basic o.n.
wavelet ψ, we have a representation that localizes both time and frequency.

There are many o.n. wavelets in the literature. The oldest one is the
Haar function which unfortunately cannot be used to localize frequency. Or-
thonormal wavelets that are less well known but have been influential to the
development of the subject of wavelets are given by Stromberg [33], Meyer
[27], Lemarie [23] , and Battle [2]. The o.n. wavelets ψ that have had the
greatest impact on this subject are the compactly supported o.n. wavelets
introduced by Daubechies [15] in 1988.

More recently, Chui and Wang [11, 10] gave yet another approach to
construct a function from its IWT, again by a wavelet series. This wavelet
ψ, however, does not have to be orthonormal as described above, but still
gives an orthogonal wavelet decomposition of the function. The idea is to
introduce a dual wavelet ψ̃ of ψ, namely:< ψ, ψ̃ >= 0. The advantage of
this approach is that it gives us more freedom to construct wavelets with
other desirable properties. Perhaps the most important desirable property,
at least in many applications to signal analysis, is the property of linear
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phase. Linear phase requires the wavelet to be symmetric or antisymmetric.
Since compactly supported o.n. wavelets different from the Haar function
can not be symmetric or antisymmetric (an important result established by
Daubechies [15]) we have to give up orthogonality at least within the same
scale levels if a compactly supported continuous wavelet with linear phase
is desired. Such a sacrifice is worthwhile in many situations since the extra
freedom also allows us to give explicit expressions for the wavelets. In fact,
even compactly supported polynomial spline wavelets with linear phase have
very simple expressions (cf. Chui and Wang [11]). However, Daubechie’s
approach for constructing o.n. wavelets and Chui’s and Wang’s approach
for constructing symmetric or antisymmetric wavelets involve us deeply the
rigorous of functional analysis.

The applications of wavelets, whether orthonormal or not, go far beyond
the IWT and the recovery of functions from their IWT. The main reason
is that very efficient algorithms, usually called pyramid algorithms, intro-
duced by Mallet [24] in 1988 yield orthogonal wavelet decompositions and
reconstructions in O(n log n) time. A wavelet decomposition separates and
localizes the spectral information in different frequency bands ( or octaves
), and hence filtering, detection, data reduction, enhancements, etc., can
be easily implemented before applying the wavelet reconstruction algorithm.
Both the decomposition and reconstruction algorithms utilize the formulas
that describe the intimate relationship between the wavelet of interest and
the “spline” function that is used for approximation. This relationship has a
very beautiful mathematical description, called the multiresolution analysis,
introduced by Meyer [29] and Mallet [24] .

Wavelets also have great promises in other areas of mathematics such
as approximation theory, harmonic analysis, operator theory, and numerical
partial differential equations. We will not go into the discussion of these
aspects but refer the interested reader to the literature listed in the refer-
ences. In particular, we would like to mention Meyer’s two volumes [28] and
Daubechies’ CBMS monograph [16] as well as Chui’s introductory text [5].

1.1 Motivation and Related work

In the above section, we briefly discussed the history of wavelets, how the
IWT distinguishes itself from the Fourier transform, the concept of the basic
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wavelet, the o.n. wavelets, Chui’s and Wang’s approach to construct the
wavelets (not orthonormal) and desirable properties of wavelets such as linear
phase. Now we pause and ask the following questions:

• Is there any other simple method, not involving the rigorous of func-
tional analysis, available to construct the compactly supported wavelets?

• Is this method applicable to both the univariate and multivariate set-
tings ?

• Does this method produce the wavelets with the desirable property of
linear
phase ?

• Is it possible to produce the wavelets corresponding to different dilated
scale levels by applying this method ?

All the goals related to above questions are accomplished in our Matrix
Nullspace method. Our method involves only use of the inner product, a
matrix formulation, an associated homogeneous system of equations and the
determination of the null space, in contrast other functional analysis ap-
proaches.

An overview of wavelets, including the integral wavelet transform, mul-
tiresolution analysis and wavelet algorithms for decomposition and recon-
struction of functions, is presented in the second chapter. This thesis is
intended to be self contained. The only prerequisite is a basic knowledge of
box spline theory and elementary numerical linear algebra. For this reason,
an introductory study of box splines is presented in Chapter 3. In Chapter
4, the basic steps of our approach and the construction of cardinal spline
wavelets are discussed and some numerical examples are given. We study
the construction of box spline wavelets and illustrate this construction with
some numerical examples in Chapter 5. In Chapter 6, we summarize our
work and mention possible future research. The writing of this thesis was
greatly influenced by the pioneering work of C.K. Chui, J. Stockler, J.D.
Ward and I. Daubechies in wavelets, as well as the research work of T. Lyche
and M. Daehlen in box splines.



    

Chapter 2

An Overview of Wavelets

This chapter presents the integral wavelet transforms, multiresolution analy-
sis and wavelet algorithms for decomposition and reconstruction of functions.
The objective of this chapter is not to go into any depth but only to convey
a general impression of what wavelet analysis is about. In this chapter, we
have restricted our attention to functions of one variable, although some of
the ideas, techniques and results easily carry over to the multi-dimensional
setting. The material presented in this chapter also includes C. K. Chui’s
key ideas for constructing wavelets. The reader is advised to refer to Chui’s
introductory text [6] for further study.

2.1 The Integral Wavelet Transform

The Fourier transform

f̂(ω) =
∫ ∞

−∞
e−iωtf(t)dt

of a sufficiently well-behaved function f(t) contains a lot of information of
the “rule” governed by the function f(t) . To expedite our discussion, we
will simply assume that f ∈ L1 ⋂L2, where Lp = Lp(R) = The p−integrable
functions of a real variable. If a physical phenomenon is described by f(t)
where t may be thought of as position in space, then f̂(ω) describes the
spectral behavior of this phenomenon in the momentum space with variable
ω. If, on the other hand, f(t) represents a signal in the time variable, then
the spectral information given by f̂(ω) describes both the magnitude and

5
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the phase of the signal at frequency ω. In order to present a unified point
of view, the function f(t) will always be considered as a time signal in the
following discussion.

Observe that to define f̂(ω), we need f(t) for all t ∈ R. This is an inef-
fective way to study the spectral behavior. For instance, the time-evolution
of a signal whose spectrum changes with time in a significant way is certainly
not reflected in the Fourier transform. This motivates the introduction of a
window function to the Fourier integral. In general a function g(t) ∈ L2(R)
is called window function if tg(t) ∈ L2(R) and must have finite width, which
is defined to be 2∆g, where

∆g =

[∫∞
−∞(t− t0) | g(t) |2 dt∫∞

−∞ | g(t) |2 dt

] 1
2

(2.1)

is the standard deviation of g(t) with t0 being the “center” of the window
function, defined by

t0 =

∫∞
−∞ t | g(t) |2 dt∫∞
−∞ | g(t) |2 dt . (2.2)

In order to window both time and frequency, the Fourier transform of a
window function must be a window function also. A perfect example is the
Gaussian function which is “invariant” under the Fourier transform. This
was actually the original window function that Gabor used [19].

It should be remarked that no matter which window function g(t) is used,
the product of the widths of the time-window g(t) and the frequency-window
g(ω) is bounded below by 1

4π
; that is

∆g∆ĝ ≥
1

4π
, (2.3)

and equality is attained only by the Gaussian function. This is the so-called
Heisenberg Uncertainty Principle. Hence, if a desirable window function is
chosen so that the size of the frequency-window is appropriate to localize
certain frequencies (such as high enough frequency for edge-detection), then
the time-window can not be too narrow. Consequently very high-frequency
signals can not be accurately identified. Furthermore, since ∆g and ∆ĝ are
unchanged when g(t) and ĝ(ω) are shifted, the same time-frequency window
is used for both high-frequency and low-frequency signals. In many appli-
cations, such as edge detection, the time-window must be very narrow at a
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very high-frequency band ( the location of an edge ) for accuracy, and very
wide at a low-frequency band for efficiency. The STFT does not have this
property and its performance suffers.

The integral wavelet transform (IWT) introduced by Grossman and Mor-
let [21] has the so-called zoom-in and zoom-out effect. It automatically
zooms in at high-frequencies (with a very narrow time-window) and zooms
out at low-frequencies (with a very wide time-window ). More precisely, let
ψ(t) be a window function such that its Fourier transform ψ̂(ω) is also a
window function (i.e. ∆ψ , ∆ψ̂ are both required to be finite). In addition,

we also assume that ψ̂(0) = 0 and that the center of the frequency-window
ψ̂ is non-zero. The reasons for these two extra conditions will be clear later.
Let us first pause for a moment to observe that ψ̂(0) = 0 is equivalent to the
fact that ψ has zero mean, so that since ψ is a window function, it behaves
like a wave packet. This is why ψ is called a wavelet. The wavelet transform,
with the wavelet ψ as a window function, is defined to be

(Wψf)(b, a) :=
1√
a

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt (2.4)

where a > 0 and b ∈ R. We will assume, without loss of generality, that the
window ψ is centered at the origin (cf. Equation 2.2 for the definition of the
center). By the convolutional duality of Fourier transform , we have

(Wψf)(b, a) =

√
a

2π

∫ ∞

−∞
eibωf̂(ω)ψ̂(aω)dω. (2.5)

If g(ω) := ψ̂(ω + ω0), then g(ω) is a window function with center at 0, and

g (aω − ω0) = ψ̂(aω). (2.6)

That is, with the exception of the multiplicative constant
√
a, the wavelet

transform (Wψf(b, a)) agrees with the window inverse Fourier transform
evaluated at t = b, with the window function given by Equation 2.6, which
is centered at ω = ω0

a
and has width given by 2/a∆ψ̂. Since the wavelet

transform already windows the function f(t) with center at b and width
given by 2a∆ψ, we now have a time-frequency localization, where the time-
frequency window in the t− ω plane is given by

[b− a∆ψ, b + a∆ψ] ×
[
ω0

a
− 1/a∆ψ̂,

ω0

a
+ 1/a∆ψ̂

]
(2.7)
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Now, we see that it is important to center ψ at ω0 �= 0 (and for practical pur-
poses with real signal, since only positive frequency is important, we should
pick ω0 > 0). If we identify 1

a
with a constant multiple of the frequency, it

follows from Equation 2.7 that the time-window narrows at high frequencies
and widens at low frequencies. This is the zoom-in and zoom-out capabil-
ity of the wavelet transform. For more details see the works of Grossmann,
Martinet and Morlet [20] and Chui [5].

Localization of time and frequency of a signal not only makes it possible
for filtering, detection, enhancement, etc., but also facilitates tremendously
the process of reduction of the signal information for the purpose of transmis-
sion or storage. In any case, the modified, enhanced, or reduced signal must
be reconstructed again. That is, we need a formula to recover f(t) from the
wavelet transform (Wψ)f(b, a) in Equation 2.5. Here, the condition ψ̂(0) = 0
is needed, or at least the slightly weaker version of it is needed, namely:

Cψ :=
∫ ∞

0

| ψ̂(ω) |2 dω
| ω | < ∞. (2.8)

Indeed, if Equation 2.8 holds and ψ is real-valued, then for any real-valued
f ∈ L1 ⋂L2, we have

f(t) =
2π

Cψ

∫ ∞

0

[∫ ∞

−∞
(Wψf)(b, a)ψ

(
(t− b)

a

)
db

]
da

a5/2
(2.9)

(cf. Grossmann, Martinet and Morlet [20], Chui [5], and Daubechies [16]).
This elegant formula is not very useful, since the integral has to be approx-

imated by a finite sum. Hence, it is preferable to have a series representation
instead. A series representation, as we will see, not only reconstructs f(t)
via what will be called a reconstruction algorithm, it also decomposes f(t)
into components with the wavelet transforms as coefficients. More precisely,
if a good approximant fN(t) of f(t) is taken, then the wavelet transform
(WψfN)(b, a) at the dyadic values b = j/2k and a = 2−k j, k ∈ Z is eas-
ily determined via what will be called a decomposition algorithm. Both the
decomposition and reconstruction algorithms are very efficient pyramid al-
gorithms introduced by Mallet [24]. They can be easily implemented on
the computer. Since only simple moving-average operations are required, it
should not be difficult to produce computer chips for wavelet decompositions
and reconstructions.
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To give a series representation with the wavelet transform (Wψ)(b, a) at
dyadic values as coefficients, we have to choose the wavelet window function ψ
properly. In particular, the collection of ψk,j, obtained from integer translates
by j and dyadic dilations by 2k of ψ, where j, k ∈ Z, should be dense in L2. If
{2k/2ψk,j}, j, k ∈ Z is also orthonormal, then we obviously have the desirable
result. If ψk,j is only orthogonal to ψl,m, for l �= k, then a “dual” ψ̃ of ψ is
required [10], and if no orthogonality is given, then a “biorthogonal basis” is
needed [13]. A more complete mathematical formulation of these concepts
will be given later by using the notion of multiresolution analysis, introduced
by Meyer [29] and Mallet [24].

2.2 Multiresolution Analysis and Wavelets

We again restrict our attention to the L2 space, although our discussion
applies to a much more general setting.

A nested sequence of closed subspaces

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·

of L2 is said to form a multiresolution analysis of L2 if the following condi-
tions are satisfied:

(i)

closL2

( ⋃
n∈Z

Vn

)
= L2;

(ii) ⋂
n∈Z

Vn = {0} ;

(iii) for each n ∈ Z,

f ∈ Vn ⇔ f(2·) ∈ Vn+1; and

(iv) there exists a φ ∈ V0 such that {φ(·−n) : n ∈ Z} is an unconditional
basis of V0.

We remark that by defining

φk,j(t) = φ(2kt− j); k, j ∈ Z, (2.10)
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it is clear that if (iv) holds, then {φk,j : j ∈ Z} is also an unconditional ba-
sis of Vk; by which we mean, there exist positive constants A and B such that

2kA‖ {cn} ‖2
l2 ≤ ‖

∑
n∈R

cnφk,n‖2
L2 ≤ 2kB‖ {cn} ‖2

l2 , (2.11)

for all {cn} ∈ l2 and k ∈ Z .
The most typical examples are:

1. The mth order B-spline Nm, with integer knots and supp Nm = [0,m],
whose integer translates and dyadic dilations Nm;k,j, as defined by
Equation 2.10 , span the closed spline subspaces Vk, with knots at
2−kZ ; and

2. the compactly supported Nφ, with orthonormal integer translates Nφ(·−
n) : n ∈ Z , constructed by Daubechies [15].

Later, we will refer to these two examples quite frequently.
For each k ∈ Z, let Wk be the orthogonal complementary subspace of

Vk+1 relative to Vk; that is, Vk+1 = Vk + Wk and Wk ⊥ Vk. The notation

Vk+1 = Vk ⊕Wk (2.12)

will be used to denote the orthogonal complement. Then it clear that

Wk ⊥ Wn, all k �= n, (2.13)

and from (i) and (ii), we also have the infinite sum

L2 =
⊕
k∈Z

Wk (2.14)

Hence, every f ∈ L2 has a (unique) orthogonal decomposition into an infinite
number of terms:

f =
∑
k∈Z

gk, gk ∈ Wk (2.15)

Now suppose that a wavelet window function as defined in Section 1 can
be chosen from W0. Then for any k, j ∈ Z, we have

(Wψf)
(
j

2k
, 2−k

)
= 2

k
2 〈f, ψk,j〉 (2.16)
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This allows us to make the following observations on representing any func-
tion f ∈ L2 as a “wavelet series” with coefficients given by the integral
wavelet transform of f at the dyadic values j/2k in Equation 2.16.
(1◦) Suppose that ψ ∈ W0 satisfies:

〈ψk,j, ψn,l〉 = 2−kδk,nδj,l (2.17)

for all k, j, n, l ∈ Z. Then

f =
∑

k,j∈Z
2k〈f, ψk,j〉ψk,j (2.18)

=
∑

k,j∈Z
2

k
2 (Wψf)

(
j

2k
, 2−k

)
ψk,j

for all f ∈ L2 .
(2◦) Suppose that ψ ∈ W0, and ψ̃ ∈ W0 is its “dual” in the sense that

〈ψ, ψ̃(· − n)〉 = δn,0, n ∈ Z (2.19)

Then

f =
∑

k,j∈Z
2k〈f, ψk,j〉ψ̃k,j (2.20)

=
∑

k,j∈Z
2

k
2 (Wψf)

(
j

2k
, 2−k

)
ψ̃k,j,

where it is clear that ψ and ψ̃ can be interchanged.
In view of the above observations, it is natural to call the orthogonal

subspaces Wk wavelet spaces, and since the orthogonal decomposition given
by Equation 2.15 is achieved by using Equation 2.18 or 2.20, with

gk =
∑
j∈Z

2k〈f, ψk,j〉ψk,j

if ψ satisfies Equation 2.17, or

gk =
∑
j∈Z

2k〈f, ψk,j〉ψ̃k,j

if ψ̃ is the dual of ψ in the sense of Equation 2.19, we will call Equation 2.15
a complete wavelet decomposition. If ψ satisfies Equation 2.17, it is called an
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orthonormal (or o.n.) wavelet. Of course, any o.n. wavelet is self-dual in the
sense that ψ̃ = ψ. In general any ψ ∈ W0 that provides a wavelet window
function is called a wavelet. In choosing a wavelet ψ, it is important to have
finite values of both ∆ψ and ∆ψ̂, since ψ is used to localize time and ψ̂ to
localize frequency (cf. Equations 2.4, 2.5 and 2.7), and for optimal efficiency
in time-frequency localization, ψ ∈ W0 should be chosen to attain

∆ψ∆ψ̂ = inf {∆η∆η̂ : η ∈ W0} (2.21)

A characterization of all wavelets for an arbitrary multiresolution analysis
has recently been given by Chui and Wang [10], and so this minimization
problem seems to be solvable, at least numerically.

Dual wavelets ψ were first introduced by Chui and Wang for polynomial
splines [11], and for the general setting [10]. For the polynomial B-splines
Nm of order m as in the above example (1), an “interpolatory” wavelet is
given by Chui and Wang [9] as

ηm = L
(m)
2m (2 · −1) = mth derivative of L2m, (2.22)

where L2m is the (2m)th order fundamental spline with integer knots defined
by L2m(n) = δn,0; and the wavelet with minimum support is given by Chui
and Wang [11] as

ψm =
1

2m−1

2m−2∑
j=0

(−1)jN2m(j + 1)
m∑
l=0

(−1)l
(

m
l

)
Nm(2 · −j − l). (2.23)

Note that the wavelet ψm is an mth order spline with supp ψm = [0, 2m− 1].
The duals η̃m and ψ̃m of ηm and ψm, respectively, can be easily calculated
using the two scale sequence as the decomposition sequence (to be defined
in the next section) as shown in [9] and [10].

2.3 Decomposition and Reconstruction Sequences

The main advantage of a wavelet series representation, such as the wavelet
specified by Equation 2.18 for an o.n. wavelet, or Equation 2.20 for an
arbitrary wavelet ψ with dual ψ̃ over the integral representation given by
Equation 2.9 is that a decomposition algorithm can be applied to find the
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integral wavelet transform in Equation 2.16 at the dyadic values, and a re-
construction algorithm can be used to recover the function from these values
of the integral wavelet transform. For decomposition, we need decomposition
sequences, and for reconstruction, the two scale sequences are required. For
this reason, the two scale sequences are also called reconstruction sequences.
Let us now discuss the significance of these sequences.

Let φ ∈ V0 generate the given multiresolution analysis. Then since V0 ⊂
V1 and W0 ⊂ V1, it follows from (iii) in Section 2 that, for any wavelet
ψ ∈ W0, there exist two l2-sequences {pn} and {qn}, such that φ and ψ
satisfy:

φ(t) =
∑
n∈R

pnφ(2t− n); (2.24)

ψ(t) =
∑
n∈R

qnφ(2t− n); (2.25)

Furthermore, since {φ1,n} is an unconditional basis of V1, these two sequences
are unique. Equations 2.24 and 2.25 are called the two-scale formulas
for φ and ψ, respectively; and the two sequences {pn} and {qn} are called
their corresponding two-scale (or reconstruction) sequences. Next, since V1 =
V0 + W0, we also have two l2-sequences {an} and {bn} such that φ and ψ
satisfy:

φ(2t− l) =
∑
n∈Z

al−2nφ(t− n) +
∑
n∈Z

bl−2nψ(t− n) (2.26)

for all l ∈ Z. The uniqueness of {an} and {bn} follows from the orthogonal-
ity of φ(· − n) with ψ(· −m) and the fact that φ and ψ yield unconditional
bases of V0 and W0, respectively. Equation 2.26 is called the decomposition
formula for φ and ψ, and the sequences {an} and {bn} are called their cor-
responding decomposition sequences. This generalization of the orthonormal
decomposition and reconstruction was first introduced by Chui and Wang
[9] for polynomial splines and wavelets (see also Chui and Wang [10] for the
general setting).

Perhaps the easiest way to characterize these two pairs of sequences ({pn},
{qn}) and ({an}, {bn}) is to consider the Fourier transform formulations of
the two-scale and decomposition formulas. Hence, we need the “symbols”
or Z-transforms of the sequences. For notational convenience (mainly due to
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the two-scale property), let us set{
P (z) = 1

2

∑
n∈Z pnz

n

Q(z) = 1
2

∑
n∈Z qnz

n (2.27)

and {
G(z) =

∑
n∈Z anz

−n

H(z) =
∑

n∈Z bnz
−n.

(2.28)

Then using the Fourier transforms, Equations 2.24 and 2.25 become

{
φ̂(ω) = P (e−iω

2 )φ̂(ω
2
)

ψ̂(ω) = Q(e−iω
2 )ψ̂(ω

2
),

(2.29)

and Equation 2.26 becomes
 φ̂(ω

2
) =

[
G(e−iω

2 ) + G(−e−iω
2 )
]
φ̂(ω) +

[
H(e−iω

2 ) + H(−e−iω
2 )
]
ψ̂(ω)

φ̂(ω
2
) =

[
G(e−iω

2 ) −G(−e−iω
2 )
]
φ̂(ω)] +

[
H(e−iω

2 ) −H(−e−iω
2 )
]
ψ̂(ω)

(2.30)

In particular, Equations 2.29 and 2.30 give the pair of identities:{
P (z)G(z) + Q(z)H(z) = 1, |z| = 1;

P (z)G(−z) + Q(z)H(−z) = 0, |z| = 1,
(2.31)

which must be satisfied by {P,Q} and {G,H} (cf. Chui and Wang [11, 10]).
For orthonormal φ and ψ (with appropriate shift of ψ), it can be shown

that, for |z| = 1,




Q(z) = zP (−z);

G(z) = P (z);
H(z) = z̄P (−z),

(2.32)

(cf. Chui and Wang [10]), so that Equation 2.31 becomes a single identity

|P (z)|2 + |P (−z)|2 = 1, |z| = 1. (2.33)
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From Equation 2.32, we can write down all other sequences in terms of {pn},
namely: 


qn = (−1)np̄1−n

an = 1/2p̄n
bn = 1/2(−1)np1−n

(2.34)

(cf. Mallet [25] and Daubechies [15]). For orthonormal φ and ψ, all we
need is to find {pn} .

Let us now return to the general setting where φ and ψ are not required
to be orthonormal, and recall that to compute the sequences ({pn}, {qn})
and ({an}, {bn}), it is sufficient to determine the functions (P,Q) and (G,H),
defined in Equations 2.27 and 2.28 respectively. We are only interested in
φ with finite two-scale sequences, namely:

φ(t) =
Nφ∑
n=0

pnφ(2t− n); p0, pNφ
�= 0.

Hence, it is not difficult to see that supp φ = [0, Nφ+1] (cf. Daubechies [15]).
Again the two typical examples are:

1. For the mth order B-spline Nm, the two-scale (or reconstruction) se-
quence pn is given by

pn = 2−m+1

(
m
n

)
, 0 ≤ n ≤ m

and pn = 0 otherwise: and

2. for the orthonormal 2φ of Daubechies, we have

p0 = 1/4(1 +
√

3)

p1 = 1/4(3 +
√

3)

p2 = 1/4(3 −
√

3)

p3 = 1/4(1 −
√

3)

and pn = 0 otherwise. (The sequences {pn} for Nφ, N = 2, · · · , 10, are
listed in Daubechies [ [15]; p.980]. Here, a multiplicative factor of

√
2

is used since we have a different normalization than Daubauchies.)
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The key idea to constructing the other three sequences {qn}, {an} and {bn}
from {pn} is the generalized Euler-Frobenius polynomial Πφ introduced by
Chui and Wang [10]. To define Πφ, we need the correllation sequence

γφ(n) =
∫ ∞

−∞
φ(n + x)φ(x)dx

which clearly satisfies γφ(−n) = γφ(n) and supp γφ ⊆ [−Nφ, Nφ]. Note that
γφ(n) = δn,0 if φ is orthonormal ; otherwise, there is a positive integer kφ such
that supp γφ = [−kφ, kφ]. Then the generalized Euler-Frobenius polynomial
is defined by

Πφ(z) =
2kφ∑
n=0

γφ(n− kφ)z
n.

Let us again consider the two typical examples:

1. For φ = Nm, we have kφ = m− 1, and Πφ becomes

Πφ(z) =
2m−2∑
n=0

N2m(n + 1)zn

which is a 1/(2m− 1)! multiple of the classical Euler-Frobenious poly-
nomial of degree 2m− 2 (cf. Schoenberg [32]); and

2. for any orthonormal φ, since kφ = 0, Πφ(z) is the constant 1.

Corresponding to an arbitrary φ, there is still a lot of freedom for choosing
a desirable wavelet. It was shown by Chui and Wang [10], however, that,
with the exception of an arbitrary shift, there is a unique wavelet ψ with
minimum support, and the two-scale sequence {qn} for this wavelet has the
symbol (defined by Equation 2.27 with a factor of 1/2), given by

Q(z)µφ(−z), (2.35)

where µφ(−z) is the highest-degree polynomial factor of zNφ−kφ−1Πφ(z)P̌ (z)
without any symmetric zeros. Here, P̌ denotes the reciprocal polynomial of
P and z0 is called a symmetric zero of a polynomial f if f(z0) = f(−z0) = 0
for z0 �= 0, and f(0) = f ′(0) = 0 for z0 = 0. Note that the wavelet ψ has
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compact support and the size of its support is dictated by the degree of the
polynomial Q.

For example if φ = Nm, since the two-scale symbol is given by

P (z) = 1/2
m∑

n=0

2−m+1

(
m
n

)
zn, (2.36)

and since the classical Euler-Frobenius polynomial does not vanish at 1 and
has no symmetric roots, then we have

Q(z) = Πφ(−z)P̌ (−z) =
(

1 − z

2

)m

Πφ(−z). (2.37)

Once the polynomials P and Q are determined, the two decomposition
sequences {an} and {bn} can be computed by using Equation 2.31 . They
are given by


 G(z) = z−Nφ+kφ Πφ(z)P̌ (z)

Πφ(z2)
;

H(z) = −z−Nφ+kφ Πφ(z)P̌ (z)P (−z)

µ(z)Πφ(z2)
.

(2.38)

Here, we remark that the generalized Euler-Frobenius polynomial Πφ never
vanishes on the unit circle (cf. Chui and Wang [10]). Hence, both the
decomposition sequences {an}, {bn} have exponential decay, and are actually
finite sequences, if and only if φ and ψ are both orthonormal. So, although
φ and ψ both have compact supports and their two-scale (or reconstruction)
sequences are finite, their decomposition sequences are necessarily infinite
unless they are both orthonormal.

To obtain finite decomposition sequences, we may use their duals φ̃ ∈ V0

and ψ̃ ∈ W0 defined (uniquely) by

{
〈φ(· −m), φ̃(· − n)〉 = δm,n;

〈ψ(· −m), ψ̃(· − n)〉 = δm,n,
(2.39)

for all m,n ∈ Z. The two-scale relations of φ̃ and ψ̃ are given by


ˆ̃φ(ω) = G(e−iω/2)ˆ̃φ(ω/2);
ˆ̃ψ(ω) = H(e−iω/2)ˆ̃φ(ω/2);

(2.40)
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Hence, the decomposition formulas for φ̃ and ψ̃ are determined by the finite
sequences {pn} and {qn}, namely:

φ̃(2t− l) = 1/2
∑
n

p̃l−2nφ̃(t− n) + 1/2
∑
n

q̃l−2nψ̃(t− n) (2.41)

for all l ∈ Z. For more details, the reader is referred to Chui and Wang [11],
[10] .

2.4 Pyramid Algorithms and Linear Phase

Filters

We have already seen the relationship between the two pairs of sequences
({pn}, {qn}) and ({an}, {bn}), and how they relate φ and ψ in Equations
2.24 - 2.26. Of course, for orthonormal φ and ψ, they are simply related by
Equation 2.34. Now, with the notation φk,j defined in Equation 2.10 and the
analogous notation for ψk,j, we see that {φk,j : j ∈ Z} and {ψk,j : j ∈ Z} are
unconditional bases of Vk and Wk, respectively; and furthermore, Equations
2.24 - 2.26 become: {

φk,l =
∑

n pn−2lφk+1,n

ψk,l =
∑

n qn−2lφk+1,n
(2.42)

and
φk,l =

∑
n

al−2nφk,n +
∑
n

bl−2nψk,n (2.43)

for all k, l ∈ Z.
Now, for any f ∈ L2, in view of the first condition (i) on the multiresolu-

tion analysis, there exist sufficiently large values of N , such that ‖f − fN‖L2

is arbitrarily small, where fN ∈ VN . Here, if some knowledge of φ is known
(such as the B-spline Nm), we can even determine fN by interpolation or
quasi-interpolation using discrete data information of F (see Chui [12] and
the references therein ). Since the space VN has the orthogonal decomposi-
tion:

VN = VN−1

⊕
WN−1

= WN−1

⊕
VN−2

⊕
WN−2
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= · · ·
= · · ·

VN = WN−1

⊕
· · ·

⊕
WN−M

⊕
VN−M

for an arbitrarily positive integer M , the approximant fN ∈ VN has the
(unique) orthogonal decomposition:

fN =
N−1∑

j=N−M

gj + fN−M , gj ∈ Wj, fN−M ∈ VN−M . (2.44)

This is called a wavelet decomposition of fN as opposed to the notion of
complete wavelet decomposition in Equation 2.15. Set

{
fk =

∑
j c

k
jφk,j

gk =
∑

j d
k
jψk,j.

(2.45)

Then by using l2-linear independence and the orthogonality between φk,j and
ψk,l, we see that the relation fk+1 = fk + gk is equivalent to{

ckj =
∑

n an−2jc
k+1
n , j ∈ Z;

dkj =
∑

n bn−2jc
k+1
n , j ∈ Z,

(2.46)

by applying Equation 2.43, and to

ck+1
j =

∑
n

pj−2nc
k
n +

∑
n

aj−2nd
k
n, j ∈ Z, (2.47)

by applying Equation 2.42. By introducing the notations ck = {ckj} and
dk = {dkj}, we can diagram the pyramid algorithms for wavelet decomposition
(using Equation 2.46), and wavelet reconstruction (using Equation 2.47):

dN−1 dN−2 dN−M

↗ ↗ ↗ ↗
cN → cN−1 → cN−2 → · · · → cN−M

dN−M dN−M+1 dN−1

↘ ↘ ↘
cN−M → cN−M+1 → · · · cN−1 → cN
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For more details, see Mallet [25], Daubechies [15], and Chui and Wang [9].

The decomposition of the approximant fN into the wavelet components
gk, k = N−M, ..., N−1, and the blurred component fN−M (where ‖fN−M‖L2 →
0 as M → +∞), separates and localizes the frequencies of the signal fN by
means of the IWT at dyadic time-intervals, and this information is reflected
by the wavelet coefficients dkj . Recall from Equation 2.20 that, indeed, dkj is

precisely a 2
k
2 multiple of the IWT of fN at the time-scale location (j/2k, 2−k),

using the wavelet window function ψ̃, the dual of ψ. (Here, scale is inversely
proportional to frequency; and we have interchanged ψ with its dual ψ̃ in
Equation 2.20 ). Hence, we have a perfectly nice filtering tool to reduce,
enhance, and even eliminate unwanted frequencies at certain time locations.
The filtered signal can later be reconstructed by applying the above wavelet
reconstruction algorithm. In many filtering applications, in order to avoid
distortion, the filter must have at least approximate linear phase. Let us be
more precise on the notion of generalized linear phase and linear phase as
follows.

A real-valued function f in L1 is said to have generalized linear phase if
its Fourier transform has the representation:

f̂(ω) = A(ω)ei(aω+b), (2.48)

where A(w) is real-valued, and a and b are real constants. It is said to have
linear phase if, in addition,

A(ω) = |f̂(ω)| and eib = ±1. (2.49)

Similarly, a real-valued l1-sequence fn is said to have generalized linear phase
if its discrete Fourier transform (or Fourier series) F (w) has the formulation
( 2.48) (with f̂(w) replaced by F (w)); and is said to have linear phase if
A(w) = | F (w) | and eib = ±1. It is well known that f has generalized linear
phase if and only if it is symmetric or antisymmetric. Hence, by a result
of Daubechies [15], any non-trivial orthonormal Nφ or wavelet Nψ does not
have generalized linear phase. It was shown in Chui and Wang [10], however,
that if the two-scale sequence {pn} is real and has generalized linear phase,
then both φ and ψ have generalized linear phase; and if this real sequence
pn has linear phase, so do φ and ψ. Typical examples include B-splines Nm
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and their corresponding B-wavelets ψm, defined by Equation 2.23, as well as
their duals, all have generalized linear phases for all m, and they have linear
phases if and only if m is even.

We have seen in this chapter that one of the basic methods for construct-
ing univariate wavelets involves the use of B-spline functions. Since we are
interested in constructing multivariate wavelets, we choose Box splines which
are natural generalization of B-splines. The box splines are probably the sim-
plest multivariate spline functions with small supports that are efficient for
both software and hardware implementations. The next chapter is devoted
to a study of basic theory of box splines with emphasis on the properties that
are crucial to construction of wavelets.



      

Chapter 3

Box Splines

This chapter is intended to cover some basic theory of bivariate box splines
and the extension of this theory to the multivariate setting. Since we will
restrict our attention to the essential topics that are somewhat related to
the material discussed in the next chapters, much of the extensive theory of
multivariate splines is not going to be covered. We refer the reader to the text
by M.Daehlen and T.Lyche [14] for further study of the box spline theory.
A good understanding of univariate spline theory is obviously important
for learning this rapidly developing subject of multivariate box splines. We
encourage the reader to refer the text by R.H Bartels [1] to get a good
understanding of univariate spline theory.

3.1 Bivariate Box Splines

A natural generalization of the univariate B-spline on a uniform mesh to
the multivariate setting is the so-called box spline. We can define general
bivariate box spline as follows:

Definition 3.1 Suppose Ξµ = (ξ1, ξ2, . . . , ξµ) with ξi = (xi, yi) are µ ≥ 2
vectors in R2 which span R2. The ordering of these vectors is unimportant
in the construction of box splines, so assume, without loss of generality, that
ξ1 and ξ2 are linearly independent. A bivariate box spline with direction
vectors Ξµ, is the function N(u, v|Xµ) : R2 → R defined recursively by

N(u, v|Ξµ) =
∫ 1

0
N(u− txµ, v − tyµ|Ξµ−1)dt, (3.1)

22
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with

N(u, v|Ξ2) =

{
1/|det(Ξ2)|, if (u, v) ∈ [Ξ2[,
0, otherwise,

(3.2)

and where

[Ξµ[=
{
t1ξ

1 + . . . + tµξ
µ : 0 ≤ tj < 1, 1 ≤ j ≤ µ

}
. (3.3)

Note the orientation of square brackets in [Ξµ[ . This orientation is used to
denote which ends of the 0, 1 interval are open or closed.

Example 3.1 The function N(u, v|Ξ2) is a constant C times the indicator
function χ[Ξ2[ on the half open parallelogram [Ξ2[ with sides parallel to ξ1 and
ξ2, where C is the reciprocal of the area of the parallelogram and χ[Ξ2[ is
defined as in Equation 3.6. If for positive integers k1 and k2 we set µ1 =
k1 + k2 and Ξµ consists of the unit vectors e1 and e2 repeated k1 and k2

times, we obtain the tensor product B-splines. In this case [Ξµ[ is a semi-
open rectangle with sides k1 and k2.

In Theorem 3.2 below we note that N(u, v|Ξµ) = 0 if (u, v) does not belong
to [Ξµ[.

Definition 3.2 The set

[Ξµ] =
{
t1ξ

1 + . . . + tµξ
µ : 0 ≤ tj ≤ 1, 1 ≤ j ≤ µ

}
.

is called the support of N(u, v|Ξµ).

Example 3.2 The Courant finite element N(u, v) = N(u, v|Ξ3) with Ξ3 =
(ξ1, ξ2, ξ3) where ξ1 = (1, 0)T , ξ2 = (0, 1)T , and ξ3 = (1, 1)T . From Equation
3.1 we have

N(u, v) =
∫ 1

0
N(u− t, v − t|

(
(1, 0)T , (0, 1)T

)
)dt. (3.4)

By Equation 3.2 the integrand is the indicator function of the half open
unit square. Therefore, N(u, v) can only be nonzero if (u, v) belongs to the
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interior of the hexagonal support set [Ξ3] looking as in Figure 3.1 . After
some calculation we find

N(u, v) = uχA +vχB +(u+1−v)χC +(v+1−u)χD +(2−v)χE +(2−u)χF .
(3.5)

where for any region G ⊂ R2 we have the indicator function

χG(u, v) =

{
1, (u, v) ∈ G
0, otherwise

(3.6)

The graph of N is shaped like a hexagonal pyramid and is known as the
Courant finite element .

We will now take a closer look at the situation where the direction vectors
of a box spline consists of repetitions of a few nonparallel directions.

Definition 3.3 Suppose for an integer r ≥ 2, that

Ξµ = (

k1times︷ ︸︸ ︷
ξ1, . . . , ξ1,

k2times︷ ︸︸ ︷
ξ2, . . . , ξ2, . . . ,

krtimes︷ ︸︸ ︷
ξr, . . . , ξr), (3.7)

where E = (ξ1, ξ2, . . . , ξr) are pairwise nonparallel vectors in R2, and k1, k2, . . . , kr
are positive integers with µ =

∑
i ki. We write

Ξµ = Ek = E(k1,...,kr)

and call N(u, v|Ek) an r directional box spline. If for r ≤ 4 we have the
standard directions


ξ1 = d1 = (1, 0)T = →,
ξ2 = d2 = (0, 1)T = ↑,
ξ3 = d3 = (1, 1)T = ↗,
ξ4 = d4 = (1,−1)T = ↘,

(3.8)

then we denote = N(u, v|Ek) by Nk(u, v). We define the value of Nk or one
of its derivatives on a grid line by taking limits from the right and/or above.
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We see that the Courant finite element N(1,1,1) is a three directional box
spline. The standard directions generate regular r directional grids Gr, r =
2, 3, 4. To obtain Gr we draw straight lines through each integer grid point
in the r first standard directions. These grids are shown in Figure 3.2.
In the literature the regular three and four directional grids are sometimes
called type-1 and type-2 triangulations. The terms unidiagonal and crisscross
partitions are also used by Chui [12].

When r = 3 the support of the box spline Nk = N(k1,k2,k3) is

[Ek1,k2,k3 ] = {(t1 + t3, t2 + t3) : 0 ≤ ti ≤ ki, 1 ≤ i ≤ 3}

A sequence of such hexagonal sets and corresponding grids are shown from
left to right in the second and third rows of Figure 3.3. At the left of second
row in Figure 3.3 we find the unit square which is the support of N(1,1). To
the right of the unit square we see the support of N(1,1,1). Continuing towards
the right we see support of N(1,1,2). The supports of N(1,2,2) and N(2,2,2) are
shown from left to right in the third row of Figure 3.3.

The proofs for all the theorems given in this section and the next section
are found in Daehlen and Lyche [14].

Theorem 3.1 Nk is a piecewise polynomial of degree at most µ − 2 =∑r
i=1 ki − 2 on Gr, r = 2, 3, 4. Moreover, Nk ∈ Cµ−2−ki across a direction

di.

In order to construct a C0 quadratic box spline we have µ− 2 = 2, k1 =
k2 = 1, k3 = 2. Therefore, according to Theorem 3.1 we have C1 continuity
across the u and v axes, and C0 continuity across diagonals as asserted.

Other three directional box splines of practical interest are the three C1

cubics with direction multiplities (2,2,1), (2,1,2), and the C2 quartic (2, 2,
2). The support of the functions N(1,2,2) and N(2,2,2) are shown in the third
row of Figure 3.3. By using four directions we can obtain more smoothness
with lower degree. The function N(1,1,1,1)(u, v) is called the Zwartz-Powell
Element. It is a piecewise quadratic of smoothness C1. The support of this
function is shown in the top left position in Figure 3.3. Definition 3.1 gives
rise to the construction of box splines defined on a variety of different grids.
So far in this section we have considered the important standard grids given
by the standard directions d1, d2, d3, and d4 (Equation 3.8). The grids Gr,
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r = 2, 3, 4 shown in Figure 3.2 are the most well known because of their
regularity and behavior. However, by introducing the four extra directions

d5 =

(
1/2
1

)
, d6 =

(
1

1/2

)
, d7 =

(
1

−1/2

)
, d8 =

(
1/2
−1

)

we can build a group of fairly well behaved grids. Figure 3.4(a)-(d) show
four grids that are constructed by selecting vectors among (d1, . . . d8),

d1, d2, d3, d4, d5, F igure 3.4(a),
d1, d2, d4, d5, d6, F igure 3.4(b),
d1, d2, d5, d6, d7, d8 Figure 3.4(c),
d1, d2, d3, d4, d5, d6, d7, d8, F igure 3.4(d).

We now list some useful properties of box splines:

Theorem 3.2 For N(u, v) = N(u, v|Ξµ) we have
(i) N(u, v) ≡ 0 for (u, v) /∈ [Ξµ[. (Local support)
(ii) N(u, v) > 0 for (u, v) ∈ [Ξµ[. (Positivity)
(iii)

∫ ∫
[Ξµ] N(u, v) du dv = 1. (Normalization)

Here
]Ξµ[=

{
t1x

1 + . . . + tµx
µ : 0 < tj < 1, 1 ≤ j ≤ µ

}
. (3.9)

The next result shows that under the mild restrictions on the direction vectors
the translates of box splines form a partition of unity.

Theorem 3.3 Suppose that ξi and ξ2 in addition to being linearly indepen-
dent have integer components. Then for each (u, v) ∈ R2 we have

(iv)
∑

(i,j)∈Z2

N(u− i, v − j|Ξµ) ≡ 1, (Partition of Unity)

We next turn to differentiation of box splines.

Definition 3.4 For a sufficiently smooth function f we let

Dxf(u, v) = lim
h→0, h>0

f(u + hx, v + hy) − f(u, v)

h
(3.10)

denote the one sided derivative in the direction ξ = (x, y).
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If f ∈ C1 then Dxf = x∂f/∂u+y∂f/∂v is the usual directional derivative
of f . To state a differentiation formula we need the reduced direction vectors.

Ξi
µ = Ξµ \

{
ξi
}

= (ξ1, . . . , ξi−1, ξi+1, . . . , ξµ)

If ξ1 and ξ2 are linearly independent then N(u, v|Ξi
µ) is well defined

for i = 3, . . . , µ. However, it is possible that N(u, v|Ξ1
µ) and N(u, v|Ξ2

µ)
are not well defined. For example, if Ξ3 = ((1, 0)T , (0, 1)T , (0, 1)T ) then
Ξ1

3 = ((0, 1)T , (0, 1)T )) and these vectors are not linearly independent.

Theorem 3.4 If Ξi
µ contains at least two linearly independent vectors then

DξiN(u, v|Ξµ) = N(u, v|Ξi
µ) −N(u− xi, v − yi|Ξi

µ). (3.11)

If ξ =
∑µ

i=1 ωiξ
i then

DξN(u, v|Ξµ) =
µ∑

i=1

ωi[N(u, v|Ξi
µ) −N(u− xi, v − yi|Ξi

µ)], (3.12)

provided N(u, v|Ξi
µ) is well defined for all i with ωi �= 0.

3.2 Multivariate Box Splines

We will now give a number of useful results on multivariate box splines. We
start by stating the general definition.

Definition 3.5 Suppose for positive integers µ and d that Ξµ = (ξ1, ξ2, . . . , ξµ)
where ξi = (xi

1, x
i
2, . . . , x

i
d) are µ ≥ d vectors in Rd with det(Ξd) �= 0. A d-

variate box spline with direction vectors Ξµ, is a function N(u | Ξµ) : Rd → R
defined recursively by

N(u|Ξµ) =
∫ 1

0
N(u− tξµ|Ξµ−1)dt, (3.13)

N(u|Ξd) =

{
1/|det(Ξd)|, if u ∈ [Ξd[,
0, otherwise

(3.14)

and where

[Ξµ[=
{
t1ξ

1 + . . . tµξ
µ : 0 ≤ tj < 1, 1 ≤ j ≤ µ

}
. (3.15)
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By induction we see that N(u | Ξµ) is positive on

[Ξµ] =
{
t1ξ

1 + . . . tµξ
µ : 0 < tj < 1, 1 ≤ j ≤ µ

}
and zero for any u not in the set

[Ξµ]
{
t1ξ

1 + . . . tµξ
µ : 0 ≤ tj ≤ 1, 1 ≤ j ≤ µ

}
The set [Ξµ] is called the support of N(u | Ξµ).

de Boor and Hollig proved that box splines are piecewise polynomials of
degree µ− d in [17]. Moreover, N(u | Ξµ) ∈ Cξ−1(Rd) where

ξ = max{r : all selections Y of r elements from

Ξµ are such that Ξµ\Y spans Rd }.

The proof of these properties are quite complicated. For proofs refer [14].
It is useful to have criteria for conditions under which translates of box

splines are linearly independent. The following theorem states the necessary
and sufficient conditions to ensure global linear independence.

Theorem 3.5 The set

{
N(u− j | Ξµ), j ∈ Zd

}
is linearly independent on Rd if and only if all selections Y of d vectors from
Ξµ are such that det Y takes one of the three values -1, 0, or 1.

It is also useful to have criteria for local linear independence of box splines.

Theorem 3.6 Suppose Ω is any region on which all translates of a box spline
are polynomials. Then the set of box splines that are nonzero on Ω is linearly
independent on Ω if and only if the condition in Theorem 3.5 holds.

The formula given in the following theorem is basic and it is often used
as the definition of box splines. It defines a box spline as a distribution, or
generalized functions.
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Theorem 3.7 Suppose det(Ξd) �= 0. For any function f that is continuous
on [Ξµ] ∫

[Ξµ]
N(u|Ξµ)f(u)du =

∫
[0,1]µ

f(Ξµt)dt (3.16)

where t = (t1, . . . , tµ), [0, 1]µ is the unit cube in Rµ, and

Ξµt =
µ∑

i=1

tiξ
i

Corollary 1 We have
N(u|Ξµ) = N(u|Yµ)

for any permutation Yµ = (y1, y2, . . . , yµ) of Ξµ.

The Fourier transform of a box spline is given next.

Corollary 2 Suppose Ξµ contains a basis for Rd. Then

N̂(z|Ξµ) =
∫
Rd

ei(u·z)N(u|Ξµ)du = Πµ
j=1

eiz·x
j − 1

iz · xj

where x · y =
∑d

j=1 xiyi for any vectors x = (x1, . . . , xµ) and y = (y1, . . . , yµ)
in Rd.

Theorem 3.7 can also be used to give a geometric interpretation of a box
spline.

Corollary 3 Let Yµ = (y1, y2, . . . , yµ) with yi = (xi, zi) ∈ Rµ and zi ∈
Rµ−d, be a lifting of Ξµ from Rd to Rµ such that det(Yµ) �= 0. Then

N(u | Ξµ) =
1

det(Yµ)

∫
Rµ−d

χ[Yµ](u,w)dw, for u ∈ Rd, (3.17)

where χ[Yµ] is the indicator function of the parallelepiped

[Yµ] =
{
t1y

1 + t2y
2 + . . . + tµy

µ : 0 ≤ ti ≤ 1, i = 1, 2, . . . , n
}
.



      

CHAPTER 3. BOX SPLINES 30

Geometrically we can construct N(u|Ξµ) as follows. We first lift the
vectors x1, x2, . . . , xµ in Rd to vectors Yµ = (y1, y2, . . . , yµ) in Rµ. A possible
lifting is given by yi = (xi, 0), i = 1, 2, . . . , d and yi = (xi, ei−d), i = d +
1, . . . , n, where the ei−d are the unit vectors in Rµ−d. Now for each u ∈ Rd

we obtain the value N(u|Ξµ) as the µ−d dimensional volume of those points
in [Yµ] that project to u. In symbols

N(u|Ξµ) =
voln−d(

{
w ∈ Rµ−d : (u,w) ∈ [Yµ]

}
)

volµ([Yµ])
, u ∈ Rd, (3.18)

where volµ([Yµ]) = det([Yµ]) �= 0.

Example 3.3 For the N(1,1,1) bivariate box spline and the lifting Y3 = (1, 0, 0)T , (1, 1, 1)T

Equation 3.17 takes the form

N(1,1,1)(u, v) =
1

|det(Y3)|
∫
R
χ[Y3](u, v, w)dw, for (u,w) ∈ R2.

[Y3] is a parallelepiped obtained form the unit cube in R3 by moving the top
facet horizontally in the (1,1) direction. At (u, v) the value of the box spline
is given by the length of that part of the vertical line through (u, v, 0) that lies
in [Y3].

Corollary 2 can be used to derive knot line refinement algorithms for box
splines. The following is a result of Cavaretta and Micchelli [4].

Theorem 3.8 For ν ∈ N (≡ set of positive integers) and ξl ∈ Zd, l =
1, 2, . . . , µ

N(u|Ξµ) =
∑
j∈Zd

β(j|Ξµ)N(νu− j|Ξµ), u ∈ Rd, (3.19)

where the generating function for the β(j|Ξµ) is

q(z|Ξµ) =
∑
j

β(j|Ξµ)z
j = νd−µΠµ

l=1(1 + zξ
l

+ z2ξl + . . . + z(ν−1)ξl), (3.20)

z = (z1, z2, · · · , zd) and zy = z1
y1 · z2

y2 · · · zdyd for any y = (y1, · · · , yd)

We can also give a recurrence relation for the β’s. We define β(j|Ξµ) by
Equation 3.20 also for µ = 1, 2, . . . , d− 1.
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Theorem 3.9 For µ > 1 and xl ∈ Zd, l = 1, 2, . . . , µ we have

β(j|ν,Ξµ) =
1

ν

ν−1∑
l=0

β(j − lxµ|ν,Ξµ−1). (3.21)

The following transformation formula for box splines is sometimes useful.
For a d×d matrix A we let AΞµ denote the direction vectors Aξ1, Aξ2, . . . , Aξµ

.

Theorem 3.10 Suppose A is a nonsingular d× d matrix. Then
N(u|Ξµ) = |detA|N(Au|AΞµ) (Transformation Formula)

Next we state a symmetry property of box splines. We need the left
continuous versions Ñ of box splines. To define Ñ we use Equation 3.13
and replace [Ξd[ by ]Ξd] =

{
t1ξ

1 + . . . + tdξ
d : 0 < ti ≤ 1, i = 1, 2, . . . , d

}
in

Equation 3.14.

Theorem 3.11 For any Ξµ we have

N(u|Ξµ) = Ñ(
µ∑

i=1

ξi − u|Ξµ). (3.22)

It is also of interest to see what happens if we change sign, or flip one of
the direction vectors.

Theorem 3.12 For u ∈ Rd and i = 1, . . . , n we have

N(u|x1, . . . , xµ) = N(u− xi|x1, . . . , xi−1,−xd, xi+1, . . . , xµ). (3.23)

Next we will give a formula for the easy calculation of the inner product
of two translated box splines.

Theorem 3.13

N(u + 2cµ2|Ξµ1

⋃
Ξµ2) =

∫
N(v|Ξµ1) ·N(v − u|Ξµ2)dv (3.24)

Where cµ2 is the center of N(u|Ξµ2)

Proof of this theorem is found in Diamond, Raphel and Williams [18]. In
particular, if u is an integer then inner product of

∫
N(v|Ξµ1)·N(v−u|Ξµ2)dv

is simply the value of the box spline N(·|Ξµ1

⋃
Ξµ2) at an integer. These

values can be easily calculated. See for instance, Chui and Diamond [7].
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Figure 3.1: The support of the Courant finite element

Figure 3.2: Two, three and four directional grids
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- Origin 

Figure 3.3: The support of some box splines
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(a) (b)

(c) (d)

Figure 3.4: Various box spline grids



    

Chapter 4

Compactly Supported Box
Spline Wavelets

The procedure for constructing multivariate non-tensor-product wavelets that
generate a decomposition of L2(Rs), s ≥ 1 is described in this chapter and ap-
plied to yield explicit formulas for compactly supported spline wavelets based
on the multiresolution analysis (MRA) of L2(Rs), 1 ≤ s ≤ 2, generated by
any box spline whose direction set constitutes a unimodular matrix.

4.1 Box Splines and Multiresolution Analysis

It is well known that if φ generates a MRA of L2(R) in the sense of Mallat [26]
and Meyer [27], and if ψ is a corresponding wavelet, then there are wavelets
in L2(Rs) s ≥ 1, given by Ψ(x1, ..., xs) = ψ1(x1)....ψs(xs), where all possible
choices of ψ1...ψs from φ, ψ are included with exception of ψ1 = ... = ψs = φ.
The wavelets Ψ so constructed are called wavelets of tensor-product type.
For example, for s = 2 the wavelets of tensor-product type corresponding
to φ, ψ are φ(x1)ψ(x2), φ(x2)ψ(x1), and ψ(x1)ψ(x2). This chapter gives a
procedure for constructing non-tensor-product wavelets in L2(Rs), s ≥ 1. To
demonstrate this procedure, box splines with unimodular direction set Rs,
s= 1 and 2 are considered, yielding compactly supported non-tensor-product
wavelets. In particular, since box splines are cardinal B-splines on R1, then
minimally supported spline wavelets of Chui and Wang [11] are recovered for
s = 1. Further the wavelets produced will be symmetric or antisymmetric.

35
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Recall that in filtering theory, generalized linear phase filtering is achieved
if and only if the filter function is symmetric or antisymmetric. In data
compression if the filter does not have linear phase, then reconstructed images
can be distorted . That is why symmetric (or antisymmetric) wavelets are
essential for applications to data compression.That is why symmetric (or
antisymmetric) wavelets are essential for applications to data

To facilitate the presentation, we must agree on certain notation. The
symbol f̂ will represent the Fourier transform of f ∈ L2(Rs) generated by

f̂(ω) =
∫
Rs

f(x)e−iωx dx ω ∈ Rs

For an integer matrix Ξ = (ξ1, ..., ξn) whose columns ξ1, ..., ξn span Rs, we
denote by

φΞ(x) = N(x | Ξ)

the associated box spline on Rs, whose Fourier transform is given by

φ̂Ξ(ω) =
n∏

k=1

(1 − ei·ξ
k·ω)/(i · ξk · ω). (4.1)

It is well known that φΞ has compact support [Ξ], is a piecewise polynomial
of degree n− s, and lies in Cρ−1 (Rs) with

ρ = max{r | rank(Ξ\Y ) = s for all Y = (y1, .., yn) ⊆ Ξ}

Dilations and translates of φΞ generate the spaces

Vm(Ξ) := closL2 span{φΞ(2m · −j) : j ∈ Zs},m ∈ Z. (4.2)

There is a crucial condition on matrix Ξ that is both necessary and sufficient
for these spaces to form a MRA is in the sense of Mallat [26] and Meyer [27].
This property is defined by the requirement that any selection of s columns
from Ξ that span Rs builds a unimodular matrix; i.e.,

| det Y |= 1 for any basis Y ⊂ Ξ of Rs (4.3)

If condition 4.3 is satisfied, then the spaces Vm(Ξ) enjoy all the properties of
a MRA, namely
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(i) Vm ⊂ Vm+1, m ∈ Z;
(ii)

⋂
m∈Z Vm = {0}, ⋃

m∈Z Vm = L2(Rs);
(iii)f ∈ Vm ⇐⇒ f(2·) ∈ Vm+1;
(iv) for some φ ∈ V0, say φ := φΞ, Vm(Ξ) := closL2 span { φΞ(2m ·

−j)};
(v) There exist constants A,B > 0 , such that for φ in (iv) and any

sequence
{cj}j∈Zs ∈ l2

A‖{cj}‖l2 ≤
∥∥∥∑ cjφ(· − j)

∥∥∥
L2

≤ B‖{cj}‖l2 (4.4)

Definition 4.1 Let ψ ∈ L2(Rs)and ψm,j(x) := 2m/2ψ(2mx−j), x ∈ Rs, j ∈
Zs, m ∈ Z. Then the spaces generated by ψ are denoted by

Wm := closL2span{ψ(2m · −j) : j ∈ Zs}, m ∈ Z (4.5)

This family of subspaces of L2(Rs) gives a direct-sum decomposition of
L2(Rs) :

L2(Rs) :=
∑
m∈Z

Wm (4.6)

if {ψ(·−j) : j ∈ Zs} is an unconditional basis of W0 in the sense of Equation
4.4.

In general, the decomposition in Equation 4.6 means that for every f ∈
L2(Rs), we know that f =

∑
m∈Z fm and fm ∈ Wm. Properties (i) to (v)

were proved for the spaces Vm(Ξ) by Riemenschneider and Shen [31] and by
Jia and Micchelli [22]. Here, we further explain properties (iii) and (v). We
refer the reader to Chui, Stockler and Ward [8] for a detailed explanation.
From Equation 4.1 we immediately have

φ̂Ξ(ω) = 2−sPΞ(z)φ̂Ξ(ω/2)

with

PΞ(z) = 2−n+s
n∏

k=1

(1 + zξ
k

) (4.7)

and
z = (z1, ...., zs) = (e−iω1/2, ..., e−iωs/2) ∈ T s, (4.8)
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where T s denotes the s − torus in Cs. We will assume that the relation
between z ∈ Cs and ω ∈ Rs is the one given by Equation 4.8. Equivalent
to the above Fourier transform formulation is the two-scale relation

φΞ(x) =
∑
j∈Zs

pjφΞ(2x− j) (4.9)

with {pj} being the coefficient sequence in the finite Taylor expansion of PΞ

in Equation 4.7, namely

PΞ(z) =
∑
j∈Zs

pjz
j.

Property(iii) above is a consequence of Equation 4.9. Moreover, by con-
dition 4.3 which we impose on Ξ, it follows that

∑
j∈Zs

∣∣∣φ̂Ξ(ω/2 + 2πj)
∣∣∣2 > 0 for all z ∈ T s. (4.10)

This is equivalent to property(v) for φ = φΞ.

4.2 Construction of Wavelet Decompositions

In this section, a general method for constructing non-tensor-product wavelet
decompositions relative to a certain class of functions φ in L2(Rs) is given.
We assume the existence of a MRA of the spaces Vm generated by such
functions φ as discussed in Section 4.2. We also have a nested sequence of
subspaces Vm, m ∈ Z, of L2(Rs) defined by

Vm = · · · + Wm−2 + Wm−1. (4.11)

This leads to Vm+1 = Vm + Wm, m ∈ Z.
In what follows, we will describe a general construction process based on

the knowledge of an initial decomposition of V1, which need not be orthog-
onal. Finding an initial decomposition seems to be a central part of any
wavelet construction. The construction of ψ(x) will be uniquely determined
by the construction of certain sequences {qj}j∈Zs ∈ l1 such that

ψ(x) :=
∑
j∈Zs

qj φ(2x− j). (4.12)
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This function ψ also generates a closed subspace W0 ( ⊂ V1) in the same
manner that φ generates V0. Of course the relation between the two sub-
spaces V0 and W0 of V1 must depend on the relation between two sequences
{qj}j∈Zs ∈ l1 and {pj}j∈Zs ∈ l1. Some conditions on these sequences have
to be imposed to assure that V0 and W0 are direct-sum decompositions of
V1 (see Chui [6], Chui, Stockler and Ward [8]). These sequences {p}, {q}
are called reconstruction sequences. Also central to our discussion are the
decomposition sequences {gj}j∈Zs , {hj}j∈Zs ∈ l1 where

φ(2x− l) = 2−s
∑
j∈Zs

(g2j−lφ(x− j) + h2j−lψ(x− j)) , l ∈ Zs. (4.13)

Equation 4.13 holds for all x ∈ Rs and describes the decomposition of V1.
Equation 4.13 is called as “decomposition relation”. This relation can be
easily proved for L2(Rs) in a manner similar to the proof for L2(R) of Chui
[6].

Our approach for determining reconstruction and decomposition sequences
involves use of the inner product, a matrix formulation, an associated homo-
geneous system of equations and the determination of a null space. This
requires only knowledge of linear algebra, in contrast to other functional
analysis approaches. The basic steps in the approach are as follows:

• Select a consistent complementary subspace Wj ⊥ Vj for all j ∈ Zs

and take an inner product of ψ(x) and φ(x − l). Since W0 ⊥ V0, we
know that < ψ(x), φ(x− l) > = 0.

• Derive the governing equation for a matrix formulation:
Substitute for ψ(x) and φ(x− l) in < ψ(x), φ(x− l) > = 0 with Equa-
tions 4.12 and 4.9 respectively. This yields the equations∑
k∈Zs

∑
r∈Zs

qk pr−2l < φ(2x−k), φ(2x−r) > = 0, x ∈ Rs, l ∈ Zs. (4.14)

Note that index j in Equations 4.12 and 4.9 are replaced by indices r
and k respectively to distinguish them.

• Fix the summation’s indices for a particular l

• Find the number of nonzero qk by analyzing a geometric representation
of Equation 4.14 when indices vary for a fixed l.
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• Produce the homogeneous system of equations using Equation 4.14 for
those l for which φ(x− l) has support intersecting that of ψ(x).

• Solve the homogeneous system of equations to find qk.
We can find a parametric solution for a homogeneous system of equa-
tions using the symbolic mathematical package MAPLE.

• Take the inner product of φ(x) and decomposition relation to find gk
and hk

Since the symmetry (or antisymmetry) of the wavelet is an important
property for practical applications, we can supply additional equations to
the original homogeneous system of equations by imposing symmetry (or
antisymmetry) conditions on the qk. Our approach does not give orthonormal
wavelets. In the next section, we illustrate this approach by considering box
splines on R1 (Cardinal splines) and using a general scale relation instead
of the two scale relation.

4.3 Construction of Wavelets from Cardinal

Splines

In this section, we construct a wavelet decomposition based on the mth order
cardinal splines φΞ = N(·|Ξ), where the direction matrix Ξ = (ξ1, · · · , ξm),
with ξj = 1 for all 1 ≤ j ≤ m satisfies condition 4.3. The center of the
support of φΞ is

CΞ = 1/2
m∑
k=1

ξk. (4.15)

Some equations given in previous sections in this chapter can be extended to
general scale λ without loss of generality. Extending

Vj(Ξ) := closL2 span{φΞ(λj · −k) : k ∈ Z1}, for j, λ ∈ Z, λ ≥ 2,

Wj := closL2 span{ψ(λj · −r) : r ∈ Z1}, for j, λ ∈ Z λ ≥ 2,

Then the general scale relation becomes,

φΞ(x) =
∑
r∈Z1

prφΞ(λx− r) (4.16)
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where
∑

r∈Z prz
r = λ1−m(1 + z + z2 + · · · + zλ−1)m.

The corresponding reconstruction sequences are given by

ψΞ(x) =
∑
k∈Z1

qkφΞ(λx− k). (4.17)

The mathematical derivations of our approach can be broken down into the
following steps.
Step 1: Select W0 ⊥ V0 and take an inner product of ψ(x) and φ(x − l).
Since W0 ⊥ V0, we know < ψ(x), φΞ(x− l) > = 0.
Step 2: To derive the governing equation, substitute for ψ(x) and φΞ(x− l)
in < ψ(x), φΞ(x − l) > = 0 from Equations 4.16 and 4.17. Then replace r
with r − λl without loss of generality. This leads to equation∑

k∈Z1

∑
r∈Z1

qk pr−λl < φΞ(λx− k), φΞ(λx− r) > = 0, x ∈ R1, l ∈ Z1. (4.18)

By the definition of inner prodct,

< φΞ(λx− k), φΞ(λx− r) > = λ−1
∫

N(y|Ξ) N(y − r + k|Ξ) dy,

where y = λx− r.
Recall the inner product formula 3.24 for box splines, namely

N(x + 2CV |U ∪ V ) =
∫

N(y|U) N(y − x|V ) dy,

where CV is center of N(·|V ).
Applying this formula to compute < φΞ(λx− k), φΞ(λx− r) > gives,∫

N(y|Ξ) N(y − r + k|Ξ) dy = N(r − k + 2CΞ|Ξ ∪ Ξ),

where the center of N(·|Ξ ∪ Ξ) = CΞ∪Ξ = 2CΞ = m.
Then Equation 4.18 becomes,∑

k∈Z1

∑
r∈Z1

qk pr−λlN(r − k + m|Ξ ∪ Ξ) = 0, l ∈ Z1. (4.19)

Step 3: Let us find the summation’s indices in Equation 4.19 for a fixed l
(i) Since

∑
prz

r = λ1−m(1 + z + z2 + · · · + zλ−1)m, pr−λl’s index-range is
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0 −→ (λ− 1)m. Then r varies over the range λl −→ λl + (λ− 1)m.
(ii) It follows from the local support of the cardinal spline that N(u|Ξ∪Ξ) ≡
0, for u �∈ [0, 2m), u ∈ R1, and that N(r − k + m|Ξ ∪ Ξ) > 0 for 1 ≤
r − k + m ≤ 2m − 1, r, k, m ∈ Z1. Therefore r −m + 1 ≤ k ≤ r + m − 1
for fixed r.
(iii) From (i),(ii) we conclude that index k varies over the range λl−m+1 −→
λl + λm− 1.
By substituting (i),(ii) and (iii) into Equation 4.19, we get

λl+λm−1∑
k=λl−m+1

λl+(λ−1)m∑
r=λl

qk pr−λlN(r − k + m|Ξ ∪ Ξ) = 0, l ∈ Z1. (4.20)

Step 4: Here we will determine the number of nonzero qk.
Equation 4.20 is easily transformed into the following homogeneous matrix
form.

[Q̃]1×K [A]K×R [P ]R×1 = 0 (4.21)

where
K = (λ + 1)m− 1, R = (λ− 1)m + 1,
[Q̃] = [qλl−m+1, · · · , qλl+λm−1],
ai,j, = N(r − k + m|Ξ ∪ Ξ) > 0, ai,j ∈ [A], i = k − λl + m, j = r − λl + 1,
and [P ] = [p0, · · · , p(λ−1)m]T .
Let us observe some interesting features of Equation 4.21, such as invariance
under l, by analyzing Equation 4.20:

• Consider what happens when indices k, r vary within their bounds in
Equation 4.20

k = λl −m + 1 + θk, θk : 0 −→ (λ + 1)m− 2, θk ∈ Z,

r = λl + θr, θr : 0 −→ (λ− 1)m, θr ∈ Z.

Therefore r − k + m = θr − θk + 2m − 1, r − λl = θr which implies
N(r−k−m|Ξ∪Ξ) and pr−λl do not depend on l, and thus [A] and [P ]
are independent of l.

• From index k’s bounds in Equation 4.20, it is obvious that size of vector
[Q̃] is independent of l.



    

CHAPTER 4. COMPACTLY SUPPORTED BOX SPLINE WAVELETS43

• Let [A] [P ] = [B]K×1 = [b0, · · · , bθk , · · · , b(λ+1)m−2]. Then from Equa-
tion 4.21, we have

b0qλl−m+1+b1qλl−m+2+· · ·+bθkqλl−m+1+θk +· · ·+b(λ+1)m−2qλl+λm−1 = 0
(4.22)

From the above observations, we deduce that bθk remains unchanged
and qk associated with bθk will change when we vary l to produce linear
equations.

Further we assume that
(i) qk = 0 if 0 �≤ k �≤ (λ + 1)m− 2
(ii) qk = 0 if bθk = 0 and θk = k
(iii) Otherwise qk �= 0.

We have to find out how many qk satisfy assumption (ii) in order to com-
pute the actual number of nonzero qk. Now our main task is to determine
whether bθk is nonzero or zero. Since [B] = [A][P], this task is accomplished
by analyzing the geometric representation of [A][P]. We analyze the geometric
representation shown in Figure 4.1.

• Figure 4.1(a): The range of θr such that pθr > 0, θr ∈ Z. (θr−Range)

• Figure 4.1(b): The range of u such that N(u|Ξ ∪ Ξ) > 0, u ∈ Z.
(N-support)

• Figure 4.1(c): A P-Window is a (λ−1)m length line segment. Its lower
and upper ends are denoted by Wl and Wu.

• Figure 4.1(d): To compute the bθk ,

– (i) Place the P-Window over the one dimensional integer axis
(where N-support lies) such that Wl ≡ −θk + 2m− 1,

– (ii) Find S ≡ Overlapping region between P-Window and N-
Support,

– (iii) Compute bθk =
∑

N(j|Ξ ∪ Ξ)pi for all i, j ∈ S
⋂Z, where

point i in P-window lies exactly over point j in N-Support within
S.
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• Figure 4.1(e): Compute [B] = [b0, · · · , b(λ+1)m−2] by placing P-Window
over N-Support at integer points between point X = 2m− 1 and point
Y = −(λ− 1)m + 1.

It is important to note that we do not actually compute the value of
bθk by analyzing the geometric representation, we just determine whether
bθk is nonzero or zero. It follows from Figure 4.1(e) that there is at least
one overlapping point at any instant of computation of [B]. Then there is
no bθk = 0 which implies that no qk satisfies assumption (ii). Therefore the
number of nonzero qk is given by (λ + 1)m − 1 and these qk are denoted as
[Q]TK×1 = [q0, · · · , q(λ+1)m−2].

Step 5: Now we analyze how many equations can be produced to deter-
mine [q0, · · · , q(λ+1)m−2].
The homogeneous system of equations can be produced by computing Equa-
tion 4.22 for different values of l. Some conditions are imposed on l to assure
that these equations consist of at least some of the elements of {q0, · · · , q(λ+1)m−2},
namely

λl + λm− 1 ≥ 0 and λl −m + 1 ≤ (λ + 1)m− 2

which can be rewritten as

1 − λm ≤ λl ≤ (λ + 2)m− 3.

Since l ∈ Z, we have 1−m ≤ l ≤ m+div{(2m−3)/λ}. It is worth noting that
when λ = 2, we can produce 3m− 2 equations to determine {q0, · · · , q3m−2}.

Step 6: It follows from Step 5 that we have a homogeneous system of
equations in the form of [H]L×K [Q]K×1 = 0 where K = (λ + 1)m − 1 and
L = 2m+div{(2m−3)/λ}. We can automatically find a parametric solution
to this system using MAPLE.

The mathematical derivations given in above steps and the symmetry or
antisymmetry condition of the wavelets lead to the following theorem.

Theorem 4.1 The recontruction sequences {q} that are constructed from
mth order cardinal splines, are determined by solving homogeneous system of
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equations with L̃ number of equations and M number of unknowns, namely
[H̃]L̃×M [Q]M×1 = 0. The equations are generated by using Equation 4.22 and

imposing the symmetry or antisymmetry condition. The rank of matrix [H̃]
is less than M . M and L̃ are given by following equations.

M = (λ + 1)m− 1

and

L̃ = 2m + div{(2m− 3)/λ} + div{M/2}.

Where λ ≥ 2, m ≥ 1 and λ,m ∈ Z.

We will look at some numerical examples now. At end of this chapter,
the qk for these examples are tabulated.

EXAMPLE 1 :- Consider the 4th order cardinal spline under the two scale
relation (λ = 2).
See Appendix A for MAPLE codes, matrices, condition for wavelet decom-
positions and parameters in this example. We have a homogeneous system
of equations with [H]10×11 and [Q]11×1, i.e., ten equations and eleven un-
knowns. The qk in parametric form are symmetric, depend on parameter t1
and they satisfy the necessary condition for wavelet decompositions, namely

∑
k∈Z

qkφ̂Ξ(0) = 0 =⇒
10∑
k=0

qk = 0

regardless of the value of parameter t1. This implies that we can produce an
infinite variety of wavelets by varying the value of parameter t1. In particular,
when t1 = 1/40320 we get the minimally supported wavelets of Chui and
Wang [11], i.e.,

qk = (−1)k
m∑
l=0

plN(k + 1 − l|Ξ ∪ Ξ) (4.23)

where k = 0, · · · , 3m − 2,
∑

prz
r = 21−m(1 + z)m, N(·|Ξ ∪ Ξ) = 2mth order

cardinal spline and m = 4.
EXAMPLE 2 :- Consider the 4th order cardinal spline under the four scale

relation (λ = 4).
See Appendix B for MAPLE codes, matrices, condition for wavelet decom-
positions and parameters in this example. We have a homogeneous system
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of equations with [H]9×19 and [Q]19×1, i.e., nine equations and nineteen un-
knowns. The qk in parametric form satisfy the necessary condition for wavelet
decompositions, namely

∑
k∈Z

qkφ̂Ξ(0) = 0 =⇒
19∑
k=0

qk = 0

regardless of the values of parameters. We need more equations in order to
have a desirable solution with few parameters. As mentioned earlier, the
symmetry (or antisymmetry) of the wavelet is an important property for
practical applications such as data compression. We can get nine additional
equations by imposing a symmetry condition on the qk. Now we get a new
homogeneous system of equations with [H1]18×19 and [Q1]19×1, i.e., eighteen
equations and nineteen unknowns. Although there are eighteen equations
in [H1], the rank of [H1] is sixteen. By substituting t1=25196v, t2=1681v,
t3=v we will get a new solution [Q2]. Surprisingly the new solution [Q2]
(when v=1/322560) is generated by the equation

qk = (−1)k
(λ−1)m∑

l=0

plN(k + 1 − l|Ξ ∪ Ξ) (4.24)

where k = 0, · · · , (λ + 1)m − 2,
∑

prz
r = λ1−m(1 + z + z2 + · · · + zλ−1))m,

N(·|Ξ ∪ Ξ) = 2mthorder cardinal spline, λ = 4 and m = 4. The Equation
4.24 is a generalized version of Equation 4.23 (see Chui [11]).

EXAMPLE 3 :- Consider the 4th order cardinal spline under the eight
scale relation (λ = 8).
Here we will create [Q]35×1 using Equation 4.24 with λ = 8 and test whether
[Q] will satisfy [H]8×35[Q]35×1 = [0] . Further it is shown that [Q] satisfies
the necessary condition for wavelet decompositions, namely

∑35
k=0 qk = 0 and

[H][Q] = [0]. See Appendix C for MAPLE codes.

Now we return to the steps of our algorithm.
Step 7: Here we will give an approach for determining the decomposition

sequences .
The decomposition relation 4.13 (related to the two scale relation) for cardi-
nal splines

φΞ(2x− l) = 2−1
∑
j∈Z1

g2j−lφΞ(x− j) + h2j−lψΞ(x− j), l ∈ Z1, (4.25)
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holds for all x ∈ R1.
Taking the inner product of the φΞ(x) and Equation 4.25 yields

< φΞ(2x− l), φΞ(x) > = 1/2
∑
j∈Z1

g2j−l < φΞ(x− j), φΞ(x) > (4.26)

because V0 ⊥ W0. Further applying the inner product formula 3.24 and
Equation 4.9 to Equation 4.26 gives

m∑
r=0

prN(r − l + m|Ξ ∪ Ξ) =
∑
j∈Z1

g2j−lN(j + m|Ξ ∪ Ξ). (4.27)

This produces a linear system of equations to determine gk by varying l in
Equation 4.27. The number of equations and the number of unknowns de-
pend on truncation of the infinite decomposition sequences. The decomposi-
tion sequences must be truncated in order to apply the Pyramid algorithm.
When the finite decomposition sequences are used instead of the original in-
finite decomposition sequences, there will be some discrepancy. We refer the
reader to the text by C. Chui [6] for more details.

Similarly, taking the inner product of ψΞ(x) and Equation 4.25 and then
applying the inner product formula 3.24 and (4.12) gives

2
3m−2∑
k=0

qkN(k− l+m|Ξ∪Ξ) =
∑
j∈Z1

3m−2∑
k=0

3m−2∑
r=0

qkqrh2j−lN(j + r− k|Ξ∪Ξ).

(4.28)
Again, we can produce a linear system of equations from Equation 4.28 to
find hk.

We have presented all the steps of our approach. If λ = 2 and s = 1,
we always produce a number of equations equal to one less than number of
qk and get the solution in one parameter. By assigning an appropriate value
for this parameter, we recover the minimally supported wavelets of Chui and
Wang [11]. If λ > 2, we produce fewer equations than the number of qk .
In this case we can supply some additional equations by imposing symmetry
(or antisymmetry) conditions on the qk. However, for all cases of λ, the qk
can be generated by

qk = (−1)k
(λ−1)m∑

l=0

plN(k + 1 − l|Ξ ∪ Ξ), λ ≥ 2 and λ ∈ Z
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where k = 0, · · · , (λ + 1)m − 2,
∑

prz
r = λ1−m(1 + z + z2 + · · · + zλ−1))m,

N(·|Ξ ∪ Ξ) = 2mthorder cardinal spline.
We conclude that the construction of cardinal splines wavelets would be

implemented by performing following steps:

• Choose W0 ⊥ V0.

• Select scale λ and order of the cardnial spline m.

• Create matrix [H̃] from Equation 4.22 by increasing l from 1−m to m+
div{(2m− 3)/λ} and from the symmetry or antisymmetry conditions.

• Solve the homogeneous system of equations [H̃][Q] = 0 to determine
the reconstruction sequences {qk}.

In the next chapter we will apply our approach to bivariate three direction
box splines.
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Figure 4.1: The geometric representation for computation of [B]
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Cardinal Spline Wavelets For Two Scale & Four Scale Relations

The fourth order cardinal spline is considered.

Q =




q0 = 1
q1 = −124
q2 = 1677
q3 = −7904
q4 = 18482
q5 = −24264
q6 = −18482
q7 = −7904
q8 = 1677
q9 = −124
q10 = 1




Q =




q0 = 1
q1 = −124
q2 = 1681
q3 = −8400
q4 = 25196
q5 = −56624
q6 = 102476
q7 = −152880
q8 = 193206
q9 = −209064
q10 = 193206
q11 = −152880
q12 = 102476
q13 = −56624
q14 = 25196
q15 = −8400
q16 = 1681
q17 = −124
q18 = 1




Two Scale q’s Four Scale q’s

Table 4.1: Results of Examples 1 and 2
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Cardinal Spline Wavelets For Eight Scale Relation

The fourth order cardinal spline is considered.

Q =




q0 = 1
q1 = −124
q2 = 1681
q3 = −8400
q4 = 25200
q5 = −57120
q6 = 109200
q7 = −186480
q8 = 293996
q9 = −436304
q10 = 613196
q11 = −814800
q12 = 1026480
q13 = −1233120
q14 = 1419600
q15 = −1570800
q16 = 1671606
q17 = −1707624
q18 = 1671606
q19 = −1570800
q20 = 1419600
q21 = −1233120
q22 = 1026480
q23 = −814800
q24 = 613196
q25 = −436304
q26 = 293996
q27 = −186480
q28 = 109200
q29 = −57120
q30 = 25200
q31 = −8400
q32 = 1681
q33 = −124
q34 = 1




Table 4.2: Result of Example 3



     

Chapter 5

Construction of Wavelets from
Box Splines

Box spline wavelets can be constructed by applying our approach as pre-
sented in Chapter 4. Each step of our extended multivariate approach is
explained in detail. However, we will report some of the results without a
detailed explanation, because these results are just an extension of the work
done in Section 4.3.

5.1 Bivariate Three Directional Box splines

Wavelets

In this section, we wish to apply our approach to the bivariate three direction
box splines. More specifically, let Ξ = (ξ1 : m1, ξ

2 : m2, ξ
3 : m3) be the direc-

tion matrix with m1,m2,m3 denoting multiplicities of the direction vectors
ξ1 = (1, 0)T , ξ2 = (0, 1)T and ξ3 = (1, 1)T . Thus, φΞ = N(·|Ξ) is a bivariate
function satisfying condition 4.3, and its support is a hexagonal subset of the
rectangle [0,m1 + m3] × [0,m2 + m3]. The center of the support of φΞ is

CΞ = 1/2
m1+m2+m3∑

k=1

ξk = (m1 + m3,m2 + m3)
T/2. (5.1)

Some equations given in construction of univariate cardinal spline wavelet
(Section 4.3) can be extended these to bivariate three direction box splines

52
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without loss of generality:

Vj(Ξ) := closL2 span{φΞ(λj · −k) : k ∈ Z2}, for j, λ ∈ Z, λ ≥ 2.

Wj := closL2 span{ψ(λj · −r) : r ∈ Z2}, for j, λ ∈ Z λ ≥ 2.

The general scale relation is,

φΞ(x1, x2) =
∑

r1,r2∈Z1

pr1,r2φΞ(λx1 − r1, λx2 − r2), (5.2)

where∑
r1,r2∈Z

pr1,r2w
r1zr2 =

λ2−m(1 + w + · · · + wλ−1)m1(1 + z + · · · + zλ−1)m2(1 + wz + · · · + wλ−1zλ−1)m3

and m = m1 + m2 + m3.
Reconstruction sequences are given by

ψΞ(x1, x2) =
∑

k1,k2∈Z1

qk1,k2φΞ(λx1 − k1, λx2 − k2). (5.3)

Now we apply our approach.
Step 1: Select W0 ⊥ V0. Since W0 ⊥ V0, < ψ(x1, x2), φΞ(x1−l1, x2−l2) > = 0
for l1, l2 ∈ Z1.
Step 2: The governing equation is just an extension of the governing equa-
tion of a cardinal spline wavelet Equation 4.19:∑

k1,k2∈Z1

∑
r1,r2∈Z1

qk1,k2 pr1−λl1,r2−λl2N(u, v|Ξ ∪ Ξ) = 0, (5.4)

where u = r1 − k1 + m1 + m3 and v = r2 − k2 + m2 + m3.
Step 3: Let us find the summation’s indices in Equation 5.4 for a fixed l

• (i) Since∑
pr1,r2w

r1zr2 =

λ2−m(1 + w + · · · + wλ−1)m1(1 + z + · · · + zλ−1)m2(1 + wz + · · · + wλ−1zλ−1)m3

pr1−λl1,r2−λl2 ’s index-range is 0 −→ (λ−1)(m1+m3), 0 −→ (λ−1)(m2+
m3). Then r1 varies over the range λl1 −→ λl1 + (λ− 1)(m1 +m3) and
r2 varies over the range λl2 −→ λl2 + (λ− 1)(m2 + m3).
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• (ii) It follows from the local support of the box spline that

N(U1, U2|Ξ ∪ Ξ) ≡ 0,

for U1 �∈ [0, 2(m1 + m3), U2 �∈ [0, 2(m2 + m3), U1, U2 ∈ R1.
It also follows that

N(r1 − k1 + m1 + m3, r2 − k2 + m2 + m3|Ξ ∪ Ξ) > 0,

for 1 ≤ r1 − k1 + m1 + m3 ≤ 2(m1 + m3) − 1,
1 ≤ r2 − k2 + m2 + m3 ≤ 2(m2 + m3) − 1,
r1, r2, k1, k2, m1,m2,m3 ∈ Z1.
Therefore

r1 −m1 −m3 + 1 ≤ k1 ≤ r1 + m1 + m3 − 1

r2 −m2 −m3 + 1 ≤ k2 ≤ r2 + m2 + m3 − 1

for fixed r1, r2.

• (iii) From (i) and (ii) we conclude that index k1 varies over the range

λl1 −m1 −m3 + 1 −→ λl1 + λ(m1 + m3) − 1

and index k2varies over the range

λl2 −m2 −m3 + 1 −→ λl2 + λ(m2 + m3) − 1.

By substituting (i),(ii),(iii) into Equation 5.4, we get

Uk1∑
k1=Lk1

Uk2∑
k2=Lk2

Ur1∑
r1=Lr1

Ur2∑
r2=Lr2

qk1,k2 pr1−λl1,r2−λl2N(u, v|Ξ ∪ Ξ) = 0 (5.5)

where u = r1 − k1 + m1 + m3, v = r2 − k2 + m2 + m3,
Lk1 = λl1 −m1 −m3 + 1, Uk1 = λl1 + λ(m1 + m3) − 1,
Lk2 = λl2 −m2 −m3 + 1, Uk2 = λl2 + λ(m2 + m3) − 1,
Lr1 = λl1, Ur1 = λl1 + (λ− 1)(m1 + m3),
Lr2 = λl2, Ur2 = λl2 + (λ− 1)(m2 + m3).
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Step 4: Here we will determine the number of nonzero qk.
Equation 5.5 can be transformed into following matrix form.

[Q̃]1×K [A]K×R [P ]R×1 = 0 (5.6)

where K = (Uk1−Lk1+1)×(Uk2−Lk2+1), R = (Ur1−Lr1+1)×(Ur2−Lr2+1),
[Q̃] = [qLk1,Lk2

, · · · , qUk1,Uk2
],

ai,j = N(r1 − k1 + m1 + m3, r2 − k2 + m2 + m3|Ξ ∪ Ξ), ai,j ∈ [A],
i = (k1 − Lk1)K + (k2 − Lk2 + 1), j = (r1 − Lr1)R + (r2 − Lr2 + 1),
and [P ] = [p0,0, · · · , p(Ur1−Lr1),(Ur2−Lr2)]

T .

As we analyzed Equation 4.21, it can be shown that matrices [A], [P ] and
the size of vector [Q̃] are independent of l1, l2. Let

[A] [P ] = [B]K×1 = [b0,0, · · · , bθk1,k2
, · · · , b(Uk1−Lk1),(Uk2−Lk2)].

Then from Equation 5.6 we have that

b0,0qLk1,Lk2
+ · · ·+ bθk1

,θk2
qLk1+θk1

,Lk2+θk2
+ · · ·+ b(Uk1−Lk1),(Uk2−Lk2)qUk1,Uk2

= 0
(5.7)

where θk1 : 0 −→ Uk1 − Lk1, θk2 : 0 −→ Uk2 − Lk2

Further we assume that
(i) qk1,k2 = 0 if 0 �≤ k1 �≤ Uk1 − Lk1, 0 �≤ k2 �≤ Uk2 − Lk2

(ii) qk1,k2 = 0 if bθk1
,θk2

= 0 and θk1 = k1, θk2 = k2

(iii) Otherwise qk1,k2 �= 0.
We have to find out how many qk1,k2 satisfy assumption (ii) in order to

compute the actual number of nonzero qk1,k2 . The qk1,k2 satisfying assumption
(ii) are determined by analyzing the geometric representation of [A][P ]. Here
we will give the results and defer the analysis until the next section.

• Result 1: Index r1, r2 of pr1,r2 is a hexagonal subset of the integer lattice
(Figure 5.1(a))

• Result 2: Index θk1 , θk2 of bθk1
,θk2

is a hexagonal subset of the integer
lattice (Figure 5.1(b))

• Result 3: Since we know the indices of [B] and [P ], we can reformulate
the Equation 5.6 by introducing permutation matrices [X] and [Y ] (see
subsection 5.21).

[Q̃]1×K [X][X]T [A]K×R [Y ][Y ]T [P ]R×1 = 0 (5.8)
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where [Y ] = [I1,f(1)][[I2,f(2)][I3,f(3)] · · · [IR,f(R)], [X] = [I1,f̂(1)][[I2,f̂(2)] · · · [IK,f̂(K)],

[Ii,f(i)] = columns i and fi are interchanged in identity matrix [I]R×R,

[Ij,f̂(j)] = columns j and f̂j are interchanged in identity matrix [I]K×K ,

f(i) = i + 1/2N1(N1 − 2(λ− 1)m3 − 1) − 1/2N2(N2 + 1),
f̂(j) = j + 1/2N̂1(N̂1 − 2(λ + 1)m3 + 1) − 1/2N̂2(N̂2 + 1),
N1 = min(l, (λ− 1)m3 − 1), N̂1 = min(l̂, (λ + 1)m3 − 2),
N2 = max(l − (λ− 1)m1, 0), N̂2 = max(l̂ − (λ + 1)m1 + 1, 0),
l = div{(i− 1)/((λ− 1)(m1 + m3) + 1)} + 1,
l̂ = div{(j − 1)/((λ + 1)(m1 + m3) − 1)} + 1.

• Result 4: From assumption (ii) and Result 2, index k1, k2 of qk1,k2 is the
same as index θk1 , θk2 of bθk1

,θk2
(Figure 5.1(a)). After some calculation

we find that number of nonzero qk1,k2 = M is given by

M = (λ + 1)2(m1m2 + m2m3 + m3m1) − (λ + 1)(m1 + m2 + m3) + 1.

These nonzero qk1,k2 are denoted as [Q]TM×1 = [q0,0, · · · , qUk1−Lk1,Uk2−Lk2
].

Now we return to the next step of our approach.
Step 5: We analyze how many equations can be produced to determine

[Q]. The homogeneous system of equations can be produced by computing
Equation 5.7 for different values of l1, l2. Some conditions are imposed on
l1, l2 so as to assure that all the equations consisting of some elements of [Q]
will be produced by varying l1, l2, namely
Uk1 ≥ 0 and Lk1 ≤ Uk1−Lk1 =⇒ 1−λ(m1+m3) ≤ λl1 ≤ (λ+2)(m1+m3)−3
Uk2 ≥ 0 and Lk2 ≤ Uk2−Lk2 =⇒ 1−λ(m2+m3) ≤ λl2 ≤ (λ+2)(m2+m3)−3
Since l1, l2 ∈ Z, we know that
lmin
1 = 1 −m1 + m3 ≤ l1 ≤ m1 + m3 + div{(2(m1 + m3) − 3)/λ} = lmax

1 ,
lmin
2 = 1 −m2 + m3 ≤ l2 ≤ m2 + m3 + div{(2(m2 + m3) − 3)/λ} = lmax

2 .

Step 6: It follows from Step 5 that we have a homogeneous system of equa-
tions in the form of [H]L×M [Q]M×1 = 0 where L = (lmax

1 − lmin
1 + 1)(lmax

2 −
lmin
2 +1) and M = (λ+1)2(m1m2+m2m3+m3m1)−(λ+1)(m1+m2+m3)+1.
We can find a parametric solution to this system using MAPLE.

The mathematical derivations given in above steps and the symmetry or
antisymmetry condition of the wavelets lead to the following theorem.
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Theorem 5.1 The recontruction sequences {q} that are constructed from a
bivariate three direction box spline box with direction vectors ξ1 = (1, 0)T ,
ξ2 = (0, 1)T , ξ3 = (1, 1)T having multiplicities m1, m2 and m3, are deter-
mined by solving homogeneous system of equations with L̃ number of equa-
tions and M number of unknowns, namely [H̃]L̃×M [Q]M×1 = 0. The equa-
tions are generated by using Equation 5.7 and imposing the symmetry or
antisymmetry condition. The rank of matrix [H̃] is less than M . M and L̃
are given by following equations.

M = (λ + 1)2(m1m2 + m2m3 + m3m1) − (λ + 1)(m1 + m2 + m3) + 1

and

L̃ = (lmax
1 − lmin

1 + 1)(lmax
2 − lmin

2 + 1) + div{M/2}.

Where
lmin
1 = 1 −m1 + m3, lmax

1 = m1 + m3 + div{(2(m1 + m3) − 3)/λ},
lmin
2 = 1 −m2 + m3, lmax

2 = m2 + m3 + div{(2(m2 + m3) − 3)/λ},
λ ≥ 2, m1 ≥ 1, m2 ≥ 1, m3 ≥ 1 and λ,m1,m2,m3 ∈ Z.

We look at some numerical examples now. At end of this chapter, the
qk1,k2 for these examples are tabulated.

EXAMPLE 1 :- Consider the two scale relation (λ = 2) and the box spline
with direction vectors ξ1 = (1, 0)T , ξ2 = (0, 1)T , ξ3 = (1, 1)T . We set the
multiplicities of direction vectors to be 1, 1 and 2 respectively. See Appendix
D for MAPLE codes, matrices, condition for wavelet decompositions and
parameters in this example. We will have a homogeneous system of equations
with [H]29×34and [Q]34×1 after eliminating trivial equations from the original
forty nine (L = 49) equations. The qk1,k2 in parametric form satisfy the
necessary condition for wavelet decompositions, namely

∑
k1,k2∈Z

qk1,k2φ̂Ξ(0, 0) = 0 =⇒
7∑

k1=0

7∑
k2=0

qk1,k2 = 0,

regardless of the values of parameters. We need more equations in order
to have a desirable solution with few parameters. As mentioned earlier the
symmetry (or antisymmetry) of the wavelet is an important property for
practical applications such as data compression. We can get seventeen ad-
ditional equations by imposing a condition of antisymmetry on qk1,k2 . The
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qk1,k2 are antisymmetric about the center of their hexagonal support. Now
we get a new homogeneous system of equations with [H1]46×34 and [Q1]34×1.
Although there are forty six equations in [H1], the rank of [H1] is thirty
one. By substituting v1= -2v, v2= -3v, v3= -v we will get a new solution
[Q2]. Surprisingly the new solution [Q2] (when v=1/5760) is generated by
the equation

qk1,k2 = (−1)k1

(λ−1)(m1+m3)∑
l1=0

(λ−1)(m2+m3)∑
l2=0

pl1,l2N(k1 + 1 − l1, k2 + 1 − l2|Ξ ∪ Ξ)

(5.9)
where k1 = 0, · · · , (λ + 1)(m1 + m3) − 2, k2 = 0, · · · , (λ + 1)(m2 + m3) − 2,
m1 = 1, m2 = 1, m3 = 2, λ = 2, pl1,l2 is as given in Equation 5.2,
and N(·|Ξ∪Ξ) is a box spline with direction vectors ξ1 = (1, 0)T , ξ2 = (0, 1)T ,
ξ3 = (1, 1)T with multiplicities 2m1, 2m2 and 2m3.
We recognize Equation 5.9 as an extended version of Equation 4.24 given in
Chapter 4.

EXAMPLE 2 :- Consider the same box spline as in Example 1 and the
four scale relation (λ = 4). Here we will create [Q]106×1 using Equation 5.9
with λ = 4 and test whether [Q] will satisfy [H]8×106[Q]106×1 = [0] . It is
shown in Appendix E that [Q] satisfies [H][Q] = [0] and the necessary condi-
tion for wavelet decompositions, namely

∑13
k1=0

∑13
k2=0 qk1,k2 = 0. See Appendix

E for MAPLE codes.

Now we return to the steps of our approach.
Step 7: Here we will give an approach for determining the decomposition

sequences. As we did in the Step 7 for the cardinal spline, we take the inner
product of φΞ(x1, x2) and the decomposition relation 4.13 (related to two
scale relation) and then apply the inner product formula 3.24 and Equation
5.2. This gives

n1∑
r1=0

n2∑
r2=0

pr1,r2N(r1 − l1 + n1, r1 − l2 + n2|Ξ ∪ Ξ) = (5.10)

∑
j1,j2∈Z1

g2j1−l1,2j2−l2N(j1 + n1, j2 + n2|Ξ ∪ Ξ),

where n1 = m1 + m3, n2 = m2 + m3.
Similarly taking the inner product of ψΞ(x1, x2) and Equation 4.13 and then
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applying the inner product formula 3.24 and Equation 5.3 gives

2
s1,s2∑

k1,k2=0,0

qk1,k2N(u1, v1|Ξ ∪ Ξ) = (5.11)

∑
j1,j2∈Z1

s1,s2∑
k1,k2=0,0

s1,s2∑
r1,r2=0

qk1,k2qr1,r2h2j1−l1,2j2−l2N(u2, v2|Ξ ∪ Ξ),

where
s1 = 3(m1 + m3) − 2, s2 = 3(m2 + m3) − 2,
u1 = k1 − l1 + m1 + m3, v1 = k2 − l2 + m2 + m3,
u2 = j1 + r1 − k1, v2 = j2 + r2 − k2.
Equations 5.10 and 5.11 produce linear equations to determine gk1,k2 and
hk1,k2 by varying l1, l2. The number of equations and the number of unknowns
depend on truncation of the infinite decomposition sequences. As mentioned
in Section 4.3, the truncation will cause some discrepency. For more details,
refer the text by C. Chui [6].

We have presented all the steps of our approach for the bivariate three
direction box splines. We observed that we always produce fewer equations
than the number of qk1,k2 for all cases of λ. We can supply some additional
equations by imposing a condition of symmetry (or antisymmetry) on qk1,k2

and then solve the associated homogeneous system of equations [H][Q] by
assigning appropriate values for parameters. The support of qk1,k2 is a hexag-
onal subset of the rectangular grid and qk1,k2 is symmetric about the center
of its support. However for all cases of λ, the qk1,k2 are generated by

qk1,k2 = (−1)k1

(λ−1)(m1+m3)∑
l1=0

(λ−1)(m2+m3)∑
l2=0

pl1,l2N(k1 + 1 − l1, k2 + 1 − l2|Ξ ∪ Ξ),

(5.12)
where k1 = 0, · · · , (λ + 1)(m1 + m3) − 2, k2 = 0, · · · , (λ + 1)(m2 + m3) − 2),
the values of pl1,l2 are as given in Equation 5.2 and N(·|Ξ∪Ξ) is a box spline
with direction vectors ξ1 = (1, 0)T , ξ2 = (0, 1)T , ξ3 = (1, 1)T with multiplici-
ties 2m1, 2m2 and 2m3.

We conclude that the construction of the bivariate three direction box
splines wavelets would be implemented by performing following steps:
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• Choose W0 ⊥ V0.

• Select scale λ and multiplicites m1, m2, m3 direction vectors ξ1 =
(1, 0)T , ξ2 = (0, 1)T , ξ3 = (1, 1)T .

• Create matrix [H̃] from Equation 5.7 by increasing l1 from lmin
1 to

lmax
1 and increasing l2 from lmin

2 to lmax
2 and from the symmetry or

antisymmetry conditions. lmin
1 , lmax

1 , lmin
2 , lmax

2 are given by Theorem
5.1.

• Solve the homogeneous system of equations [H̃][Q] = 0 to determine
the reconstruction sequences {qk}.

5.2 Analysis of The Geometric Representa-

tion of Matrix [B]

We analyze the geometric representation shown in Figure 5.2 and Figure
5.3.

• Figure 5.2(a): The range of θr1 , θr2 for pθr1 ,θr2 > 0, θr1 , θr2 ∈ Z.
(θr1 , θr2 − Range).
It was shown by Daehlen and Lyche [14] that the range of θr1 , θr2 is
a hexagonal subset of rectangular integer grid [0, (λ − 1)(m1 + m3] ×
[0, (λ− 1)(m2 + m3]. This gives Result 1 in Section 5.1.

• Figure 5.2(b): The range of i, j such that N(i, j|Ξ ∪ Ξ) > 0, i, j ∈ Z.
(N-Support)
This is a hexagonal subset of the rectangular integer grid [0, 2(m1 +
m3)]× [0, 2(m2+m3)]. N(i, j|Ξ∪Ξ) can only be nonzero if (i, j) belongs
to the interior of the hexagonal support. Therefore N(i, j|Ξ∪Ξ) is zero
along the boundaries of the hexagon OJKLMN and nonzero within
the hexagon QRSTUV (including the boundaries).

• Figure 5.3(a): A P-Window is a just a hexagon with same dimension
as the range of θr1 , θr2 . Its lowest and highest vertices are denoted by
W1 and W4.
We have drawn a line W1W7 in the direction (1, 1)T to facilitate our
analysis.
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• Figure 5.3(b): To compute the bθk1
,θk2

,

1. Place the P-Window over a rectangular integer grid such that
W1 ≡ i = −θk1 + 2(m1 + m3) − 1, j = −θk2 + 2(m2 + m3) − 1).

2. Find S ≡ Overlapping region between P-Window and N-Support.

3. Compute bθk1
,θk2

=
∑

N(i1, j1|Ξ ∪ Ξ)pi2,j2 for all i1, i2, j1, j2 ∈
S
⋂Z. where the point (i2, j2) in the P-window lies exactly over

the point (i1, j1) in N-Support within S.

4. Compute [B] = [b0,0, · · · , b(λ+1)(m1+m3)−2,(λ+1)(m2+m3)−2] by placing
the P-Window at integer points within rectangular integer grid
WXY Z ≡ [−(λ−1)(m1+m3)+1,−(λ−1)(m2+m3)+1]×[2(m1+
m3)−1, 2(m2+m3)−1]. For example b0,0 and b(λ+1)(m1+m3)−2,(λ+1)(m2+m3)−2

are computed by placing the P-Window such that W1 ≡ Z and W1 ≡
X respectively.

If there is no overlap between the P-Window and the N-Support when we
place the P-Window at integer points within rectangular integer grid WXY Z
then bθk1

,θk2
= 0. The P-Window moves down (↓) while θk2 increases from

zero and θk1 remains constant and to left (←) while θk1 increases from zero
and θk2 remains constant. This type of movement is inconvenient for finding
the overlap. We can easily determine the overlap by moving the P-Window
in the direction (−1,−1)T (↙) within WXY Z while θk1 and θk2 increase.

Let us analyze the Figure 5.4 .

• WXY Z is split into two regions by drawing the line ZB in the direction
(1, 1)T . The region RI is below the line ZB and the region RII is above
the line ZB.

• Consider the movement of the P-Window along the line ZB. Place
the P-Window at position P1 (Z ≡ W1), then drag the P-Window
such that W1W7 moves along the line ZB and stop dragging when
W1 reaches B(W1 ≡ B). When W1 reaches B, the edge W3W4 of
the P-Window lies over the edge QV . Therefore, if we drag the P-
Window one point further along ZB, the edge W3W4 lies over the edge
ON. This overlapping situation does not interest us because N(i, j|Ξ∪
Ξ) is zero along the boundaries of the hexagon OJKLMN. We are
only interested in the overlap between the P-Window and the interior
hexagon QRSTUV of N-Support.
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• In the region RI , the P-Window moves along the lines that start from
points in the line ZY, end at points in the line WX and are parallel
to the line ZB until the P-Window comes to the position P2 since
W4W5 lies over QR. After passing the line XE (corresponding to
P2), P-Window moves along the lines that start from points in the line
ZY, end at points in the line XY and are parallel to the line ZB. It
is clear from the position P3 (W6W5 lies over RS) that there is no
overlap below the line CD.

• In the region RII , the P-Window moves along the lines that start from
points in the line ZW , end at points in the line WX and are parallel
to the line ZB. It is clear from the position P4 (W2W3 lies over UV )
that there is no overlap above the line AF .

From the analysis of Figure 5.4, we conclude that S (≡ Overlapping
region between the P-Window and the N-Support) is a hexagon XCDZFA.
A simple calculation gives the dimension of the XCDZFA
AX = ZD = ZS + SD = 2m1 − 1 + (λ− 1)m1 = (λ + 1)m1 − 1.
XC = ZF = ZU + UF = 2m2 − 1 + (λ− 1)m2 = (λ + 1)m2 − 1.
WF = WA = CY = Y D = ZY −ZD = (λ+1)(m2 +m3)−2− ((λ+1)m2−
1) = (λ + 1)m3 − 1
Since i = −θk1 + 2(m1 + m3) − 1, j = −θk2 + 2(m2 + m3) − 1), the index
(θk1 , θk2) is just a integer translation of the hexagon XCDZFA (see Figure
5.1(b)). This gives Result 2 and Results 4 in Section 5.1. A similar analysis
can be done for Figure 5.5. Both analyses give the same results.

It is worth noting that since the support of [B] is a geometric convolu-
tions of support of the sequence {p} (≡ [P ]) and the support of the box
spline N(·|Ξ⋃

Ξ) (≡ [A]) the same results can be derived directly by using
Minkowski Sum. The algorithm for computing this sum is given by A.E.
Middleditch [30].

5.2.1 Derivation of Permutation Matrices [X] and [Y ]

If we find a transformation T such that it transforms the points from a
hexagonal subset of the rectangular integer grid to linearly ordered points in
the integer line, then we can determine the permutation matrices [X], [Y ] in
Equation 5.8. Consider the Figure 5.6 and following steps for finding the T .
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• First assume that point H is a grid point of the rectangular integer
grid OQSU, and transformation F transforms H to an integer point h
in the integer line. h= F (x, y). If F transforms

(0, 0), (0, 1), (0, 2) · · · −→ 0, 1, 2 · · ·

then F (x, y) = x(s1 + s3 + 1) + y.

• Remove Np (= number of the points in the region APQB) from F .
Since the number of points in the line AB is in arithmetic series when
x increases, Np is calculated easily. Np increases as x increases from 0
to s3 − 1 and remains constant when x > s3 − 1 .

• Remove also Mp (= number of the points in the region CV D) from F .
Since the number of points in the line CD is in arithmetic series when
x increases, Mp is calculated easily. Mp increases as x increases from
s3 + 1 to s3 + s2 and remains constant when x < s3 + 1 .

• From the above observations, we conclude that T = F (x, y)−Np−Mp

, where Np = 1/2N1(2s3 − N1 + 1), Mp = 1/2N2(N2 + 1), N1 =
min(x, s3 − 1), N2 = max(x− s3, 0).

• From this transformation T , we can easily deduce Result 3 in the Sec-
tion 5.1
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Box Spline Wavelets For Two Scale Relation

Direction vectors ξ1 = (1, 0)T , ξ2 = (0, 1)T , ξ3 = (1, 1)T with multiplicities
1, 1, 2 are considered.

Q =




q0,0 = 1
q0,1 = 3
q0,2 = 2
q1,0 = −3
q1,1 = −55
q1,2 = −84
q1,3 = −32
q2,0 = 2
q2,1 = 84
q2,2 = 353
q2,3 = 357
q2,4 = 86
q3,1 = −32
q3,2 = −357
q3,3 = −791
q3,4 = −552
q3,5 = −86
q4,2 = 86
q4,3 = 552
q4,4 = 791
q4,5 = 357
q4,6 = 32
q5,3 = −86
q5,4 = −357
q5,5 = −353
q5,6 = −84
q5,7 = −2
q6,4 = 32
q6,5 = 84
q6,6 = 55
q6,7 = 3
q7,5 = −2
q7,6 = −3
q7,7 = −1




All other qi,j = 0 Where 0 ≤ i, j ≤ 7

Table 5.1: Result of Example 1
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Box Spline Wavelets For Four Scale Relation

Direction vectors ξ1 = (1, 0)T , ξ2 = (0, 1)T , ξ3 = (1, 1)T with multiplicities
1, 1, 2 are considered.

Q =




q0,0 = 1
q0,1 = 3
q0,2 = 3
q0,3 = 3
q0,4 = 2
q1,0 = −3
q1,1 = −5
q1,2 = −87
q1,3 = −87
q1,4 = −84
q1,5 = −32
q2,0 = 3
q2,1 = 87
q2,2 = 360
q2,3 = 450
q2,4 = 447
q2,5 = 363
q2,6 = 90
q3,0 = −3
q3,1 = −87
q3,2 = −450
q3,3 = −1020
q3,4 = −1167
q3,5 = −1083
q3,6 = −720
q3,7 = −150
q4,0 = 2
q4,1 = 84
q4,2 = 447
q4,3 = 1167
q4,4 = 2033
q4,5 = 2157
q4,6 = 1794
q4,7 = 1074
q4,8 = 206

.

.

.




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

.

.
q5,1 = −32
q5,2 = −363
q5,3 = −1083
q5,4 = −2157
q5,5 = −3191
q5,6 = −3066
q5,7 = −2346
q5,8 = −1272
q5,9 = −206
q6,2 = 90
q6,3 = 720
q6,4 = 1794
q6,5 = 3066
q6,6 = 3900
q6,7 = 3420
q6,8 = 2346
q6,9 = 1074
q6,10 = 150
q7,3 = −150
q7,4 = −1074
q7,5 = −2346
q7,6 = −3420
q7,7 = −3900
q7,8 = −3066
q7,9 = −1794
q7,10 = −720
q7,11 = −90
q8,4 = 206
q8,5 = 1272
q8,6 = 2346
q8,7 = 3066
q8,8 = 3191
q8,9 = 2157
q8,10 = 1083
q8,11 = 363
q8,12 = 32

.

.

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



.

.

.
q9,5 = −206
q9,6 = −1074
q9,7 = −1794
q9,8 = −2157
q9,9 = −2033
q9,10 = −1167
q9,11 = −447
q9,12 = −84
q9,13 = −2
q10,6 = 150
q10,7 = 720
q10,8 = 1083
q10,9 = 1167
q10,10 = 1020
q10,11 = 450
q10,12 = 87
q10,13 = 3
q11,7 = −90
q11,8 = −363
q11,9 = −447
q11,10 = −450
q11,11 = −360
q11,12 = −87
q11,13 = −3
q12,8 = 32
q12,9 = 84
q12,10 = 87
q12,11 = 87
q12,12 = 5
q12,13 = 3
q13,9 = −2
q13,10 = −3
q13,11 = −3
q13,12 = −3
q13,13 = −1



All other qi,j = 0 Where 0 ≤ i, j ≤ 13

Table 5.2: Result of Example 2
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Conclusion

Our Matrix-Nullspace method for constructing multivariate non-tensor-product
wavelets that generate an orthogonal decomposition of L2(Rs), s ≥ 1, in-
volves the use of an inner product, a matrix formulation, an associated homo-
geneous system of equations and the determination of a null space, and can
be applied to yield explicit formulas for compactly supported spline-wavelets
based on the multiresolution analysis of L2(Rs), 1 ≤ s ≤ 2, generated by
any box spline whose direction set constitutes a unimodular matrix. We have
demonstrated the validity of our method by applying our approach to the
univariate cardinal splines in Chapter 4 and to the bivariate three directional
box splines in Chapter 5. In particular, when univariate cardinal B-splines
and the two scale relation are considered, the minimally supported cardinal
spline wavlets of Chui and Wang [11] are recovered.

Since the most important property of the wavelet, at least in many ap-
plications to data compression, is the property of generalized linear phase, a
condition on the symmetry or antisymmetry of the wavelet can be imposed
to yield symmetric or antisymmetric box spline wavelets. The reconstruc-
tion sequence {qk1,k2} is symmetric or antisymmetric about the center of its
support. Further, we have observed that supports of the reconstruction se-
quences {qk1,k2} and {pk1,k2} have similar geometrical shapes. For example,
for the univariate cardinal spline {qk} and {pk} are segments of the integer
line and for bivariate box spline, {qk1,k2} and {pk1,k2} are hexagonal subsets
of rectangular integer grids.

We tested our approach with two, four and eight scale relations. For all
tested scales, the reconstruction sequences, {q}, are generated by Equation
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4.24 for the cardinal spline and by Equation 5.12 for box splines. We strongly
believe that Equations 4.24 and 5.12 can generate reconstruction sequences
for all different scales.

At present, there are no special provisions for constructing the wavelets
from the box spline with unimodular direction sets in R3, the orthonormal
wavelets and polyhedral wavelets. We hope our approach can be extended
to construction of box spline wavelets in R3. It may also be possible to
construct orthonormal wavelets and polyhedral wavelets by modifying the
notion of the multiresolution analysis.



   

Appendix A

Example 1 in Chapter 4

This appendix consists MAPLE files for driver, routine of creating vector [B]
and routine of creating matrix [H] and ouputs for matricies [H], [Q] and nec-
essary condition for wavlet decompositions. Here we consider fourth order
cardinal spline under a two scale relation.

MAPLE code for driver file:

with(linalg);

# Read the routine for creating the vector [B]

read(‘create_vecB‘);

# Read the routine for creating the matrix [H] by using Equation 4.22.

read(‘create_mtxH‘);

# Read necessary input parameters for the routine create_vecB

# Input parameters are scale (lambda=2), order of the cardinal spline (m=4),

# support of the 2m order cardinal spline (Bindex),

# values of 2m order cardinal spline within its support (Bvalue)

# values of sequence p_{r}, given by Equation 4.16 (p).

read(‘allvarC1‘);

# Call the routine create_vecB

B:=create_vecB(lambda,m,Bindex,p,Bvalue);
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# Call the routine create_mtxH

H:= create_mtxH(B,lambda,m);

# Display the matrix [H]

print(H);

# Solve the homogeneous system of equations [H][Q]=0

t:=rowdim(H);

b:=array(1..t,1..1,sparse);

Q:=linsolve(H,b,’r’,v);

# Display the vector [Q] (reconstruction sequence)

print(Q);

# NECESSARY CONDITION FOR WAVELET DECOMPOSITIONS

sum:=0;

for i from 1 to rowdim(Q) do

sum:= sum + Q[i,1];

od;

MAPLE code for routine create vecB:

create_vecB:=proc(lambda,m,Bindex,p, Bvalue)

# lambda = Scale

# m = Order of the cardinal spline

# Bindex = array(1..2m+1,1..1,sparse). We marked this array such that

# Bindex[i+1,1]:=C if the value of 2m order cardinal spline (N_{2m})

# is nonzero at an integer point i within its support, otherwise

# Bindex[i+1,1]:=0, where i is the C^th nonzero integer point

# within support of N_{2m}.

# Bvalue = The nonzero values of N_{2m} at integer points within its support,

# i.e, Bvalue[C,1]= value of N_{2m} at the intger point j.

# p = array(1..(lambda-1)m+1,1..1,sparse). We assigned such that

# p[r+1,1]:= the value of sequence p_{r}. The sequence p_{r} is given by

# Equation 4.16.
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local i,al,c1,t1,t2,ak,ar,col_ele,count_ele,x,y,index,N,Lk,Lr,Uk,Ur;

N:=(lambda+1)*m-1 # Size of vector [B]

c1:=array(1..1,1..N,sparse);

t1:=rowdim(Bindex);

t2:=coldim(Bindex);

col_ele:=0;

count_ele:=0;

# It follows from Step 4 in Sectiin 4.3 that vector [B] is independant of l.

# Therefore select an arbitary value for l.

al:=m-1; # Value of l

# Indices k and r in Equation 4.20.

Lk:=lambda*al-m+1; # Lower bound of index k of q_{k}

Uk:=lambda*al+(lambda*m)-1; # Upper bound of index k of q_{k}

Lr:=lambda*al; # Lower bound of index r of p_{r}

Ur:=lambda*al+(lambda-1)*m # Upper bound of index r of p_{r}

# Create vector [B] by using Equations 4.20 and 4.21.

for ak from Lk by 1 to Uk do

for ar from Lr by 1 to Ur do

x:= ar-ak+m+1; y:=br-bk+m+1;

if((x>=1 and x<=t1) and (y>=1 and y<=t2)) then

index:=Bindex[x,y];

if(index>0) then

col_ele:=col_ele+ Bvalue[index,1]*p[ar-lambda*al+1,1];

fi;

fi;

od;

count_ele:=count_ele+1;

c1[1,count_ele]:=col_ele;

col_ele:=0;

od;
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c1;

end;

MAPLE code for routine create mtxH:

create_mtxH:=proc(B,lambda,m)

# B = Vector [B] in Equation 4.22

# lambda = Scale

# m = Order of the cardinal spline

local i,al,mtx1,,Q,ak,col_ele,count_ele,row,index1,t1,t,r,v,alL,alU;

r:=lambda+1;

t1:=r*m-2; # Largest index of q_{k}

t:=t1+1; # Size of vector [B]

alL:=trunc((1-lambda*m)/lambda); # Lower bound of l

alU:= trunc(((lambda+2)*m-3)/lambda); # Upper bound of l

v:=alU-alL+1; # Number of equations produced from Equation 4.22 by varying l

col_ele:=0;

count_ele:=0;

row:=0;

mtx1:=array(1..v,1..t,sparse);

Q:=array(0..t1,1..1,sparse);

# Mark the nonzero q_{k}. It follows from Step 4 in Section 4.3 that there

# is no q_{k}=0 when 0 =< k =< (lambda+1)m-1. Therefore mark the nonzero q_{k}

by its count within range of k .

for i from 0 to t1 do

count_ele:= count_ele +1;

Q[i,1]:=count_ele;

od;

# Produce equations from Equation 4.22 by varying l within its bounds.

for al from alL to alU do

row:=row+1;

for ak from (lambda*al-m+1) by 1 to (lambda*m+(lambda*al)-1) do

col_ele:=col_ele+1;

if((ak>=0 and ak<=t1) then
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index1:=Q[ak,bk];

mtx1[row,index1]:= B[1,col_ele];

fi;

od;

od;

mtx1;

end;

OUTPUTS:

[H] :=

31

[-----, 1/80640, 0, 0, 0, 0, 0, 0, 0, 0, 0]

20160

247 559 31

[----, -----, -----, 1/80640, 0, 0, 0, 0, 0, 0, 0]

2520 26880 20160

337 9241 247 559 31

[----, -----, ----, -----, -----, 1/80640, 0, 0, 0, 0, 0]

1120 40320 2520 26880 20160

247 9241 337 9241 247 559 31

[----, -----, ----, -----, ----, -----, -----, 1/80640, 0, 0, 0]

2520 40320 1120 40320 2520 26880 20160

31 559 247 9241 337 9241 247 559 31

[-----, -----, ----, -----, ----, -----, ----, -----, -----, 1/80640, 0]

20160 26880 2520 40320 1120 40320 2520 26880 20160

31 559 247 9241 337 9241 247 559 31

[0, 1/80640, -----, -----, ----, -----, ----, -----, ----, -----, -----]

20160 26880 2520 40320 1120 40320 2520 26880 20160

31 559 247 9241 337 9241 247
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[0, 0, 0, 1/80640, -----, -----, ----, -----, ----, -----, ----]

20160 26880 2520 40320 1120 40320 2520

31 559 247 9241 337

[0, 0, 0, 0, 0, 1/80640, -----, -----, ----, -----, ----]

20160 26880 2520 40320 1120

31 559 247

[0, 0, 0, 0, 0, 0, 0, 1/80640, -----, -----, ----]

20160 26880 2520

31

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1/80640, -----]

20160

[ _t[1] ]

[ ]

[ - 124 _t[1] ]

[ ]

[ 1677 _t[1] ]

[ ]

[ - 7904 _t[1] ]

[ ]

[ 18482 _t[1] ]

[ ]

[Q] := [ - 24264 _t[1] ]

[ ]

[ 18482 _t[1] ]

[ ]

[ - 7904 _t[1] ]

[ ]

[ 1677 _t[1] ]

[ ]

[ - 124 _t[1] ]

[ ]

[ _t[1] ]
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NECESSARY CONDITION FOR WAVELET DECOMPOSITION:

sum := 0

sum := _t[1]

sum := - 123 _t[1]

sum := 1554 _t[1]

sum := - 6350 _t[1]

sum := 12132 _t[1]

sum := - 12132 _t[1]

sum := 6350 _t[1]

sum := - 1554 _t[1]

sum := 123 _t[1]

sum := - _t[1]

sum := 0
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Example 2 in Chapter 4

This appendix consists MAPLE files for driver, routine of creating matrix
[H1] and ouputs only for matricies [Q1], [Q2] and rank of matrix [H1] (=r).
Here we consider fourth order cardinal spline under a four scale relation.

MAPLE code for driver file:

with(linalg);

# Read the routine for creating the vector [B]

read(‘create_vecB‘);

# Read the routine for creating the matrix [H] by using Equation 4.22.

read(‘create_mtxH‘);

# Read the routine for creating the matrix [H1] by imposing a symmetry

# or antisymmetry condition.

read(‘Symmetry_create_mtxH1‘);

# Read necessary input parameters for the routine create_vecB

# Input parameters are scale (lambda=4), order of the cardinal spline (m=4),

# support of the 2m order cardinal spline (Bindex),

# values of 2m order cardinal spline within its support (Bvalue)

# values of sequence p_{r}, given by Equation 4.16 (p).

read(‘allvarC2‘);
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# Call the routine create_vecB

B:=create_vecB(lambda,m,Bindex,p,Bvalue);

# Call the routine create_mtxH

H:= create_mtxH(B,lambda,m);

# Solve the homogeneous system of equations [H][Q]=0

t:=rowdim(H);

b:=array(1..t,1..1,sparse);

Q:=linsolve(H,b,’r’,v);

# NECESSARY CONDITION FOR WAVELET DECOMPOSITIONS

sum:=0;

for i from 1 to rowdim(Q) do

sum:= sum + Q[i,1];

od;

# Call the routine Symmetry_create_mtxH1. There is no need for calling this

# if there are enough equations.

H1:=Symmetry_create_mtxH1(H,lambda,m);

# Display the matrix [H1]

print(H1);

# Check the rank of matrix [H1] (= r)

r:=rank(H1);

# Solve the homogeneous system of equations [H1][Q1]=0

t1:=rowdim(H1);

b1:=array(1..t1,1..1,sparse);

Q1:=linsolve(H1,b1,’r’,v);

# Display the vector [Q1] (reconstruction sequence)

print(Q1);

MAPLE code for routine create mtxH1:

Symmetry_create_mtxH1:=proc(H,lambda,m)
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# H = matrix [H], created by usinf the routine create_mtxH

# lambda = Scale

# m = order of the cardinal spline

local i,j,col_ele,D,d,t,v,;

D:=1;

if (lambda=2) then

D=0;

fi;

v:=rowdim(H);

t:=coldim(H);

# Additional equations from symmetry or antisymmetry condition. No need for

# additional equations if lambda=2.

d:=D*trunc(((lambda+1)*m -1)/2) # Number of additional equations

mtx1:=array(1..v+d,1..t,sparse);

# Copy the rows of matrix [H] to matrix [mtx1]

for i from 1 to v do

for j from 1 to t do

mtx1[i,j]:=H[i,j];

od;

od;

# Get additional equations by imposing a condition of symmetry or antisymmetry

# on q_{k}. No need for additional equations if lambda =2.

col_ele := 0;

if ( lambda > 2 ) then

for i from v+1 to v+d do

col_ele:=col_ele+1;

mtx1[i,col_ele]:=1;

mtx1[i,t-col_ele+1]:= (-1)^(t);

od;

fi;

mtx1;

end;
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MAPLE codes for routines create vecB and create mtxH are same codes
as in Appendix A.

OUTPUTS:

r := 16

[ _t[3] ]

[ ]

[ - 124 _t[3] ]

[ ]

[ _t[2] ]

[ ]

[ 200044 _t[3] - 124 _t[2] ]

[ ]

[ _t[1] ]

[ ]

[ - 124 _t[1] - 333206284 _t[3] + 200044 _t[2] ]

[ ]

[ 1677 _t[1] + 4654303910 _t[3] - 2793846 _t[2] ]

[ ]

[ - 22041675916 _t[3] + 13230620 _t[2] - 7904 _t[1] ]

[ ]

[ 51602075289 _t[3] - 30974155 _t[2] + 18482 _t[1] ]

[ ]

[ Q1] := [ - 67763393840 _t[3] + 40674920 _t[2] - 24264 _t[1] ]

[ ]

[ 51602075289 _t[3] - 30974155 _t[2] + 18482 _t[1] ]

[ ]

[ - 22041675916 _t[3] + 13230620 _t[2] - 7904 _t[1] ]

[ ]

[ 1677 _t[1] + 4654303910 _t[3] - 2793846 _t[2] ]

[ ]
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[ - 124 _t[1] - 333206284 _t[3] + 200044 _t[2] ]

[ ]

[ _t[1] ]

[ ]

[ 200044 _t[3] - 124 _t[2] ]

[ ]

[ _t[2] ]

[ ]

[ - 124 _t[3] ]

[ ]

[ _t[3] ]

> Q2:=subs( _t[1]=25196*v, _t[2]=1681*v, _t[3]=v, op(Q1));

[ v ]

[ ]

[ - 124 v ]

[ ]

[ 1681 v ]

[ ]

[ - 8400 v ]

[ ]

[ 25196 v ]

[ ]

[ - 56624 v ]

[ ]

[ 102476 v ]

[ ]

[ - 152880 v ]

[ ]

[ 193206 v ]

[ ]

Q2 := [ - 209064 v ]

[ ]

[ 193206 v ]
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[ ]

[ - 152880 v ]

[ ]

[ 102476 v ]

[ ]

[ - 56624 v ]

[ ]

[ 25196 v ]

[ ]

[ - 8400 v ]

[ ]

[ 1681 v ]

[ ]

[ - 124 v ]

[ ]

[ v ]
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Example 3 in Chapter 4

This appendix consists MAPLE files for driver and routine of creating vector
[Q]. Here we consider fourth order cardinal spline under a eight scale relation.

MAPLE code for driver file:

with(linalg);

# Read the routine for creating the vector [B]

read(‘create_vecB‘);

# Read the routine for creating the matrix [H]

read(‘create_mtxH‘);

# Read the routine for creating the vector [Q]

read(‘create_vecQ‘);

# Read necessary input parameters for the routine create_vecB

# Input parameters are scale (lambda=8), order of the cardinal spline (m=4),

# support of the 2m order cardinal spline (Bindex),

# values of 2m order cardinal spline within its support (Bvalue)

# values of sequence p_{r}, given by equation 4.16 (p).

read(‘allvarC3);

# Call the the routine create_vecB

B:=create_vecB(lambda,m,Bindex,p,Bvalue);
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# Call the the routine create_mtxH

H:= create_mtxH(B,lambda,m);

# Call the the routine create_vecQ

Q:=create_vecQ(lambda,m,Bindex,p,Bvalue);

# NECESSARY CONDITION FOR WAVELET DECOMPOSITIONS

sum:=0;

for i from 1 to rowdim(Q) do

sum1:= sum1 + Q[i,1];

od;

# TEST [H][Q]=0

z:=multiply(H,Q);

MAPLE code for routine create vecQ

create_Q:= proc(lambda,m,Bindex,p,Bvalue)

# lambda = Scale

# m = Order of the cardinal spline

# Bindex = array(1..2m+1,1..1,sparse). We marked this array such that

# Bindex[i+1,1]:=C if the value of 2m order cardinal spline (N_{2m})

# is nonzero at an integer point i within its support, otherwise

# Bindex[i+1,1]:=0, where i is the C^th nonzero integer point

# within support of N_{2m}.

# Bvalue = The nonzero values of N_{2m} at integer points within its support,

# i.e, Bvalue[C,1]= value of N_{2m} at the intger point j.

# p = array(1..(lambda-1)m+1,1..1,sparse). We assigned such that

# p[r+1,1]:= the value of sequence p_{r}. The sequence p_{r} is given by

# Equation 4.16.

local i,j,al,c1,t1,t2,t,ak,col_ele,count_ele,x,index1,index2,row,r,Nu,Q;

Nu:=(lambda+1)*m-2; # Largest index k of q_{k}

# The number of nonzero q_{k}
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t:=Nu+1;

c1 := array(1 .. t,1 .. 1,sparse);

Q:=array(0..Nu,1..1,sparse);

t1 := rowdim(Bindex);

t2 := coldim(Bindex);

count_ele:=0;

col_ele:= 0;

row:= 0;

# Mark the nonzero q_{k}. It follows from Step 4 in Section 4.3 that there

# is no q_{k}=0 when 0 =< k =< (lambda+1)m-1. Therefore mark the nonzero q_{k}

by its count within range of k .

for i from 0 to Nu do

count_ele:= count_ele +1;

Q[i,j]:=count_ele;

od;

# Create q_{k} by using Equation 4.24

for ak from 0 to Nu do

row:=row+1;

for al from 0 to (lambda-1)*m do

x := ak-al+2;

if (1 <= x) and (x <= t1) then

index2 := Bindex[x,1];

if (0 < index2) then

col_ele := (col_ele+Bvalue[index2,1]*p[al+1,1]);

fi;

fi;

od;

c1[row,1] := col_ele*((-1)^ak);

col_ele := 0;

od;

c1;

end;



  

APPENDIX C. EXAMPLE 3 IN CHAPTER 4 90

MAPLE code for routine create mtxH is same codes as in Appendix A.



    

Appendix D

Example 1 in Chapter 5

This appendix consists MAPLE files for driver, routines of creating matrix
[H], [H1] and vector [B] and ouputs only for matricies [Q1], [Q2] and rank
of matrix [H1] (=r). Here we consider the box spline with direction vectors
ξ1 = (1, 0)T , ξ2 = (0, 1)T , ξ3 = (1, 1)T under the two scale relation. The
multiplicities of direction vectors are 1, 1 and 2.

MAPLE code for driver file:

with(linalg);

# Read the routine for creating the vector [B]

read(‘create_vecB‘);

# Read the routine for creating the matrix [H] by using Equation 4.22.

read(‘create_mtxH‘);

# Read the routine for creating the matrix [H1] by imposing a symmetry

# or antisymmetry condition.

read(‘Symmetry_create_mtxH1‘);

# Read necessary input parameters for the routine create_vecB

# Input parameters are scale (lambda=2),

# multiplicities of direction vectors (m1=1, m2=1 ,m3=2)

# support of box spline (N_{2m1, 2m2, 2m3}) whose direction vectors have

# multiplicites 2m1, 2m2, 2m3 (Bindex),
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# values of N_{2m1, 2m2, 2m3} within its support (Bvalue)

# values of sequence p_{r1,r2}, given by Equation 5.2 (p).

read(‘allvarB1‘);

# Call the routine create_vecB

B:=create_vecB(lambda,m1,m2,m3,Bindex,p,Bvalue);

# Call the routine create_mtxH

H:= create_mtxH(B,lambda,m1,m2,m3);

# Solve the homogeneous system of equations [H][Q]=0

t:=rowdim(H);

b:=array(1..t,1..1,sparse);

Q:=linsolve(H,b,’r’,v);

# NECESSARY CONDITION FOR WAVELET DECOMPOSITIONS

sum:=0;

for i from 1 to rowdim(Q) do

sum:= sum + Q[i,1];

od;

# Call the routine Symmetry_create_mtxH1. There is no need for calling this

# if there are enough equations.

H1:=Symmetry_create_mtxH1(H,lambda,m1,m2,m3);

# Check the rank of matrix [H1] (= r)

r:=rank(H1);

# Solve the homogeneous system of equations [H1][Q1]=0

t1:=rowdim(H1);

b1:=array(1..t1,1..1,sparse);

Q1:=linsolve(H1,b1,’r’,v);

# Display the vector [Q1] (reconstruction sequence)

print(Q1);

MAPLE code for routine create vecB:
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create_vecB1:=proc(lambda,m1,m2,m3,Bindex,p,Bvalue)

# lambda = Scale

# m1,m2,m3 = Multiplicities of box spline’s direction vectors.

# The corresponding box spline is denoted as N_{m1,m2,m3}

# Bindex = array(1..2m1+2m3+1,1..2m2+2m3+1,sparse). We marked this array such

# that Bindex[i+1,j+1]=C if the value of box spline N_{2m1,2m2,2m3}

# is nonzero at an integer point (i,j) witin its support, otherwise

# Bindex[i+1,j+1]=0, where point (i,j) is the C^th nonzero integer

# point within the support of N_{2m1,2m2,2m3}.

# Bvalue = The nonzero values of N_{2m1,2m2,2m3} at integer points within its

# support, i.e, Bvalue[C,1]= value of N_{2m1,2m2,2m3} at the intger

# point (i,j).

# p = array(1..(lambda-1)(m1+m3)+1,1..(lambda-1)(m2+m3)+1,sparse). We assigned

# such that p[r1+1,r2+1]:= the value of sequence p_{r1,r2}. The sequence

# p_{r1,r2} is given by Equation 5.2.

local i,j,al,bl,c1,t1,t2,ak,bk,ar,br,col_ele,count_ele,x,y,index;

N:=((lambda+1)*(m1+m3)-1)*((lambda+1)*(m2+m3)-1); # Size of vector [B]

c1:=array(1..1,1..N,sparse);

t1:=rowdim(Bindex);

t2:=coldim(Bindex);

col_ele:=0;

count_ele:=0;

# It follows from Step 4 in Sectiin 5.1 that vector [B] is independant of

# l_{1} and l_{2}. Therefore select arbitary values for l_{1} and l_{2}.

al:=m1+m3-1; # Value of l_{1}

bl:=m2+m3-1; # Value of l_{2}

# Indices k_{1}, k_{2}, r_{1} and r_{2} in Equation 5.5.

Lk1:=lambda*al-(m1+m3)+1; # Lower bound of index k1 of q_{k1,k2}

Uk1:=lambda*al+(lambda*(m1+m3))-1; # Upper bound of index k1 of q_{k1,k2}

Lk2:=lambda*bl-(m2+m3)+1; # Lower bound of index k2 of q_{k1,k2}
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Uk2:=lambda*bl+(lambda*(m2+m3))-1; # Upper bound of index k2 of q_{k1,k2}

Lr1:=lambda*al; # Lower bound of index r1 of p_{r1,r2}

Ur1:=lambda*al+(lambda-1)*(m1+m3) # Upper bound of index r1 of p_{r1,r2}

Lr2:=lambda*bl; # Lower bound of index r2 of p_{r1,r2}

Ur2:=lambda*bl+(lambda-1)*(m2+m3) # Upper bound of index r2 of p_{r1,r2}

# Create vector [B] by using Equations 5.5 and 5.6.

for ak from Lk1 by 1 to Uk1 do

for bk from Lk2 by 1 to Uk2 do

for ar from Lr1 by 1 to Ur1 do

for br from Lr2 by 1 to Ur2 do

x:= ar-ak+m1+m3+1; y:=br-bk+m2+m3+1;

if((x>=1 and x<=t1) and (y>=1 and y<=t2)) then

index:=Bindex[x,y];

if( index>0) then

col_ele:=col_ele+ Bvalue[index,1]*p[ar-lambda*al+1,br-lambda*bl+1];

fi;

fi;

od;

od;

count_ele:=count_ele+1;

c1[1,count_ele]:=col_ele;

col_ele:=0;

od;

od;

c1;

end;

MAPLE code for routine create mtxH:

create_mtxH:=proc(B,lambda,m1,m2,m3)

# B = Vector [B] in Equation 5.7

# lambda = Scale

# m1,m2,m3 = Multiplicites of direction vectors

local i,j,al,bl,mtx1,mtx2,Q,ak,bk,col_ele,count_ele,row,row2,D,index1,index2,

t1,t2,t,r,u,v1,v2,v,alL,alU,blL,blU,;

r:=lambda+1;
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t1:=r*(m1+m3)-2; # Largest index k_{1} of q_{k1,k2}

t2:=r*(m2+m3)-2; # Largest index k_{2} of q_{k1,k2}

t:=(t1+1)*(t2+1); # Size of vector [B]

u:=t-(r*m3)*(r*m3-1); # The number of nonzero q_{k1,k2}. This is a Result 4 of

# Step 4 in Section 5.1.

alL:=trunc((1-lambda*(m1+m3))/lambda); # Lower bound of l_{1}

alU:= trunc(((lambda+2)*(m1+m3)-3)/lambda); # Upper bound of l_{1}

blL:= trunc((1-lambda*(m2+m3))/lambda); # Lower bound of l_{2}

blU:= trunc(((lambda+2)*(m2+m3)-3)/lambda); # Upper bound of l_{2}

v1:=alU-alL+1;

v2:=blU-blL+1;

v:=v1*v2; # Number of equations produced from Equation 5.7 by varying

# l_{1} and l_{2}

col_ele:=0;

count_ele:=0;

row:=0; row2:=0;

ok:=0;

mtx1:=array(1..v,1..t,sparse);

mtx2:=array(1..v,1..u,sparse);

Q:=array(0..t1,0..t2,sparse);

# Mark the nonzero q_{k1,k2}. It follows from Results 2 and 4 of Step 4 in

# Section 5.1 that the support of q_{k1,k2} is a hexogonal subset of

# rectangular integer grid [0,0]x[(lambda+1)(m1+m3)-2,(lambda+1)(m2+m3)-2].

# Therefore mark Q[k1,k2]=0 if q_{k1,k2}=0, otherwise Q[k1,k2]= count of

# q_{k1,k2} within the rectangular integer grid.

for i from 0 to t1 do

for j from 0 to t2 do

count_ele:= count_ele +1;

Q[i,j]:=count_ele;

if (i>=0 and i<=r*m3-2) and (j >=i+r*m2 and j<= (r*(m2+m3)-2)) then

Q[i,j]:=0 ;

fi;

if (i>=r*m1 and i<=r*(m1+m3)-2 ) and (j >=0 and j<= i-r*m1 ) then

Q[i,j]:=0 ;

fi;

od;
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od;

# Produce equations from Equation 5.7 by varying l_{1},l_{2} within the bounds.

for al from alL to alU do

for bl from blL to blU do

row:=row+1;

for ak from (lambda*al-m1-m3+1) by 1 to (lambda*(m1+m3)+lambda*al-1) do

for bk from (lambda*bl-m2-m3+1) by 1 to (lambda*(m2+m3)+lambda*bl-1) do

col_ele:=col_ele+1;

if((ak>=0 and ak<=t1) and (bk>=0 and bk<=t2)) then

index1:=Q[ak,bk];

if( index1>0) then

mtx1[row,index1]:= B[1,col_ele];

fi;

fi;

od;

od;

col_ele:=0;

count_ele:=0;

for i from 0 to t1 do

for j from 0 to t2 do

if (Q[i,j]>0) then

count_ele:= count_ele +1;

index2:=Q[i,j];

if ( mtx1[row,index2]>0) then

mtx2[row,count_ele]:= mtx1[row,index2];

fi;

fi;

od;

od;

od;

od;

mtx2;

end;

MAPLE code for routine create mtxH1:
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Symmetry_create_mtxH1:=proc(H,lambda,m1,m2,m3)

# H = matrix [H], created by usinf the routine create_mtxH

# lambda = Scale

# m1,m2,m3 = Multiplicities of direction vectors

local i,j,col_ele,d,t,v,D;

v:=rowdim(H);

t:=coldim(H);

D:=(lambda+1)*(m1+m3)-1;

# Additional equations from symmetry or antisymmetry condition.

# Number of additional equations is d

d:=trunc(((lambda+1)^(2)*(m1*m2+m2*m3+m3*m1)-(lambda+1)*(m1+m2+m3) +1)/2);

mtx1:=array(1..v+d,1..t,sparse);

# Copy the rows of matrix [H] to matrix [mtx1]

for i from 1 to v do

for j from 1 to t do

mtx1[i,j]:=H[i,j];

od;

od;

# Get additional equations by imposing a condition of symmetry or antisymmetry

# on q_{k1,k2}.

col_ele := 0;

for i from v+1 to v+d do

col_ele:=col_ele+1;

mtx1[i,col_ele]:=1;

mtx1[i,t-col_ele+1]:= (-1)^(D);

od;

mtx1;

end;

OUTPUTS:

r:=31
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[ - v[3] ]

[ ]

[ - v[2] ]

[ ]

[ - v[1] ]

[ ]

[ 221 442 ]

[ --- v[1] + v[2] - --- v[3] ]

[ 59 59 ]

[ ]

[ 663 4571 ]

[ - --- v[1] + ---- v[3] ]

[ 59 59 ]

[ ]

[ 2418 1209 ]

[ - ---- v[3] + 28 v[2] + ---- v[1] ]

[ 59 59 ]

[ ]

[ 16 v[1] ]

[ ]

[ - v[1] ]

[ ]

[ 4979 9958 ]

[ - ---- v[1] - 28 v[2] + ---- v[3] ]

[ 59 59 ]

[ ]

[ 8613 38053 ]

[ ---- v[1] - ----- v[3] ]

[ 59 59 ]

[ ]

[ 9711 19422 ]

[ - ---- v[1] - 119 v[2] + ----- v[3] ]

[ 59 59 ]

[ ]

[ - 43 v[1] ]

[ ]
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[ 16 v[1] ]

[ ]

[ 16588 33176 ]

[ ----- v[1] + 119 v[2] - ----- v[3] ]

[ 59 59 ]

[ ]

[ 91717 22524 ]

[ ----- v[3] - ----- v[1] ]

[ 59 59 ]

[ ]

[ 20332 40664 ]

[ ----- v[1] + 184 v[2] - ----- v[3] ]

[ 59 59 ]

[ ]

[ 43 v[1] ]

Q1 := [ ]

[ - 43 v[1] ]

[ ]

[ 20332 40664 ]

[ - ----- v[1] - 184 v[2] + ----- v[3] ]

[ 59 59 ]

[ ]

[ 91717 22524 ]

[ - ----- v[3] + ----- v[1] ]

[ 59 59 ]

[ ]

[ 16588 33176 ]

[ - ----- v[1] - 119 v[2] + ----- v[3] ]

[ 59 59 ]

[ ]

[ - 16 v[1] ]

[ ]

[ 43 v[1] ]

[ ]

[ 9711 19422 ]

[ ---- v[1] + 119 v[2] - ----- v[3] ]

[ 59 59 ]
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[ ]

[ 8613 38053 ]

[ - ---- v[1] + ----- v[3] ]

[ 59 59 ]

[ ]

[ 4979 9958 ]

[ ---- v[1] + 28 v[2] - ---- v[3] ]

[ 59 59 ]

[ ]

[ v[1] ]

[ ]

[ - 16 v[1] ]

[ ]

[ 2418 1209 ]

[ ---- v[3] - 28 v[2] - ---- v[1] ]

[ 59 59 ]

[ ]

[ 663 4571 ]

[ --- v[1] - ---- v[3] ]

[ 59 59 ]

[ ]

[ 221 442 ]

[ - --- v[1] - v[2] + --- v[3] ]

[ 59 59 ]

[ ]

[ v[1] ]

[ ]

[ v[2] ]

[ ]

[ v[3] ]

> Q2:=subs(v[3]=-v, v[2]=-3*v, v[1]=-2*v, op(Q1));

[ v ]



  

APPENDIX D. EXAMPLE 1 IN CHAPTER 5 101

[ ]

[ 3 v ]

[ ]

[ 2 v ]

[ ]

[ - 3 v ]

[ ]

[ - 55 v ]

[ ]

[ - 84 v ]

[ ]

[ - 32 v ]

[ ]

[ 2 v ]

[ ]

[ 84 v ]

[ ]

[ 353 v ]

[ ]

[ 357 v ]

[ ]

[ 86 v ]

[ ]

[ - 32 v ]

[ ]

[ - 357 v ]

[ ]

[ - 791 v ]

[ ]

[ - 552 v ]

[ ]

[ - 86 v ]

[Q2] := [ ]

[ 86 v ]

[ ]

[ 552 v ]

[ ]
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[ 791 v ]

[ ]

[ 357 v ]

[ ]

[ 32 v ]

[ ]

[ - 86 v ]

[ ]

[ - 357 v ]

[ ]

[ - 353 v ]

[ ]

[ - 84 v ]

[ ]

[ - 2 v ]

[ ]

[ 32 v ]

[ ]

[ 84 v ]

[ ]

[ 55 v ]

[ ]

[ 3 v ]

[ ]

[ - 2 v ]

[ ]

[ - 3 v ]

[ ]

[ - v ]



    

Appendix E

Example 2 in Chapter 5

This appendix consists MAPLE files for driver and routines of creating vec-
tor [Q] . Here we consider the box spline with direction vectors ξ1 = (1, 0)T ,
ξ2 = (0, 1)T , ξ3 = (1, 1)T under the four scale relation. The multiplicities of
direction vectors are 1, 1 and 2.

MAPLE code for driver file:

with(linalg);

# Read the routine for creating the vector [B]

read(‘create_vecB‘);

# Read the routine for creating the matrix [H]

read(‘create_mtxH‘);

# Read the routine for creating the vector [Q]

read(‘create_vecQ‘);

# Read necessary input parameters for the routine create_vecB

# Input parameters are scale (lambda=4),

# multiplicities of direction vectors (m1=1, m2=1 ,m3=2)

# support of box spline (N_{2m1, 2m2, 2m3}) whose direction vectors have

# multiplicites 2m1, 2m2, 2m3 (Bindex),

# values of N_{2m1, 2m2, 2m3} within its support (Bvalue)

# values of sequence p_{r1,r2}, given by equation 5.2 (p).

103
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read(‘allvarB2‘);

# Call the the routine create_vecB

B:=create_vecB(lambda,m1,m2,m3,Bindex,p,Bvalue);

# Call the the routine create_mtxH

H:= create_mtxH(B,lambda,m1,m2,m3);

# Call the the routine create_vecQ

Q:=create_vecQ(lambda,m1,m2,m3,Bindex,p,Bvalue);

# NECESSARY CONDITION FOR WAVELET DECOMPOSITIONS

sum:=0;

for i from 1 to rowdim(Q) do

sum1:= sum1 + Q[i,1];

od;

# TEST [H][Q]=0

z:=multiply(H,Q);

MAPLE code for routine create vecQ

create_Q:= proc(lambda,m1,m2,m3,Bindex,p,Bvalue)

# lambda = Scale

# m1,m2,m3 = Multiplicities of box spline’s direction vectors.

# The corresponding box spline is denoted as N_{m1,m2,m3}

# Bindex = array(1..2m1+2m3+1,1..2m2+2m3+1,sparse). We marked this array such

# that Bindex[i+1,j+1]=C if the value of box spline N_{2m1,2m2,2m3}

# is nonzero at an integer point (i,j) witin its support, otherwise

# Bindex[i+1,j+1]=0, where point (i,j) is the C^th nonzero integer

# point within the support of N_{2m1,2m2,2m3}.

# Bvalue = The nonzero values of N_{2m1,2m2,2m3} at integer points within its

# support, i.e, Bvalue[C,1]= value of N_{2m1,2m2,2m3} at the intger

# point (i,j).

# p = array(1..(lambda-1)(m1+m3)+1,1..(lambda-1)(m2+m3)+1,sparse). We assigned
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# such that p[r1+1,r2+1]:= the value of sequence p_{r1,r2}. The sequence

# p_{r1,r2} is given by Equation 5.2.

local i,j,al,bl,c1,c2,t1,t2,t,ak,bk,col_ele,count_ele,x,y,index1,index2,row,

r,Nu,Mu,Q,v ;

r:=lambda+1;

Nu:=(lambda+1)*(m1+m3)-2; # Largest index k_{1} of q_{k1,k2}

Mu:=(lambda+1)*(m2+m3)-2; # Largest index k_{2} of q_{k1,k2}

# The number of integer points within the ranges of k_{1} and k_{2}

v:=(Nu+1)*(Mu+1);

# The number of nonzero q_{k1,k2}

t:=r^(2}*(m1*m2+m2*m3+m3*m1)-r*(m1+m2+m3)+1;

c1 := array(1 .. v,1 .. 1,sparse);

c2:=array(1..t,1..1,sparse);

Q:=array(0..Nu,0..Mu,sparse);

t1 := rowdim(Bindex);

t2 := coldim(Bindex);

count_ele:=0;

col_ele:= 0;

row:= 0;

# Mark the nonzero q_{k1,k2}. It follows from Results 2 and 4 of Step 4 in

# Section 5.1 that the support of q_{k1,k2} is a hexogonal subset of

# rectangular integer grid [0,0]x[(lambda+1)(m1+m3)-2,(lambda+1)(m2+m3)-2].

# Therefore mark Q[k1,k2]=0 if q_{k1,k2}=0, otherwise Q[k1,k2]= count of

# q_{k1,k2} within the rectangular integer grid.

for i from 0 to Nu do

for j from 0 to Mu do

count_ele:= count_ele +1;

Q[i,j]:=count_ele;

if (i>=0 and i<=r*m3-2) and (j >=i+r*m2 and j<= (r*(m2+m3)-2)) then

Q[i,j]:= 0;

fi;

if (i>=r*m1 and i<=r*(m1+m3)-2 ) and (j >=0 and j<= i-r*m1 ) then

Q[i,j]:= 0;

fi;
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od;

od;

# Create q_{k1,k2} by using Equation 5.12

for ak from 0 to Nu do

for bk from 0 to Mu do

row:=row+1;

for al from 0 to (lambda-1)*(m1+m3) do

for bl from 0 to (lambda-1)*(m2+m3) do

x := ak-al+2;

y := bk-bl+2;

if (1 <= x) and (x <= t1) and (1 <= y) and (y <= t2) then

index2 := Bindex[x,y];

if (0 < index2) then

col_ele := (col_ele+Bvalue[index2,1]*p[al+1,bl+1]);

fi;

fi;

od;

od;

c1[row,1] := col_ele*((-1)^ak);

col_ele := 0;

od;

od;

# Select only nonzero q_{k1,k2}

row:=0;

count_ele:=0;

for i from 0 to Nu do

for j from 0 to Mu do

count_ele:=count_ele+1;

index1:=Q[i,j];

if (0 < index1) then

row:=row+1;

c2[row,1]:=c1[count_ele,1];

fi;

od;
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od;

c2;

end;

MAPLE code for routine create mtxH is same codes as in Appendix D.
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