
Fitting Data of Arbitrary Dimension with

B�Splines and Applications to Colour Calibration

by

Bruce Hickey

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo� Ontario� Canada� ����

c�Bruce Hickey ����

I hereby declare that I am the sole author of this thesis�

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research�

I further authorize the University of Waterloo to reproduce this thesis by pho�

tocopying or by other means� in total or in part� at the request of other institutions

or individuals for the purpose of scholarly research�

ii

The University of Waterloo requires the signatures of all persons using or pho�

tocopying this thesis� Please sign below� and give address and date�

iii

Abstract

A �tting system for multidimensional printer gamut data was produced� The re�

sultant B�Spline hyper�volume provides a functional de�nition of a printer�s output

capabilities� Additional system features determine the closest point on a �tted

hyper�surface to a point on its exterior� This permits optimal reproduction of all

colours� including those not precisely obtainable by an output device� Visualization

is used to determine �t quality based on characteristics such as shape and point

interpolation� The �t provides a solution to the problem of producing the best

printer output of a screen image�

iv

Acknowledgments

Many thanks are due to my supervisor� Richard Bartels� for his support� both

in terms of monies and knowledge� Through countless meetings he made me feel

like mine was the only project he had to be concerned with� though myriad other

obligations bided for his attention� The result of these meetings was not only this

thesis but also a respect and admiration of his abilities as a mentor�

My faculty readers Steve Mann and Wei�Pai Tang also are deserving of grati�

tude for the time spent perusing what I believed to be my �nal draft� This �nal

manuscript re	ects their attention to detail�

Serving as both student reader and provider of the colour theory expertise and

data used in this work� Ian Bell�s contributions deserve acknowledgment and thanks�

Financial support for this thesis was provided by the Natural Sciences and

Engineering Research Council of Canada and the Computer Science Department

of the University of Waterloo through research and teaching assistant positions

respectively�

The environment within the Computer Graphics Lab cannot go unmentioned�

It is the domain of people like Frank Henigman� who provided the programs to

automatically generate the postscript pages for Appendix B and numerous other

non�academic diversions� Steve Mann� owner of countless ice cream recipe books

and the enthusiasm to try them all� and Al Vermeulen� who got me interested in

the world of objects�

Having completed this work outside the CGL I�m thankful for the e
orts of Fab�

rice Jaubert and Anne Jenson in getting drafts printed� distributed and approved�

v

Contents

� Introduction �

� Preliminaries �

��� Data Sets �

��� Colour Spaces �

��
 Linear Algebra for Least�Squares Approximation � � � � � � � � � � � ��

��
�� Solving the Linear System ��

��
�� Determining a Least�Squares Solution � � � � � � � � � � � � � ��

��
�
 Matrix Factorization ��

��� Splines ��

� Spline Fitting in One Variable ��

�� Motivation ��

�� Notation ��

�
 The Underlying Curve �
�

�� Solving the Linear System �

vi

�� Factorization �
�

���� Methodology �
�

���� Solving systems with Householder Transformations � � � � � ��

���
 Optimizing the Process ��

�� Fitting to Multidimensional Data ��

� Fitting in Arbitrary Dimensions ��

��� Motivation ��

��� Notation ��

��
 Fitting Algorithm ��

��� Multidimensional data ��

� Visualization ��

��� Data Views ��

��� Fitting Surfaces ��

��
 Direct Comparison ��

��� Residual Display ��

� The Minimization Process �	

��� The Minimization Engine ��

��� Conversion to B�ezier form ��

��
 Seeding the Minimizer ��

��
�� The Minimization Method ��

vii

� Implementation
�

��� Indexing Schemes ��

��� Multidimensional Arrays ��

��
 Multivariable Splines ��

��� Multidimensional Fitters �

��� Linear Algebra Classes ��

��� Minimization Classes ��

��� Data Input�Output ��

��� Application Prototyping ��

����� Data Fitting ��

����� The Minimization Process ���

����
 Post�Processing ���

 Future Work ���

A Summary of Notation ���

B C�� Class Manual ���

Bibliography ���

viii

List of Figures

��� The RGB colour space� �

��� Printer and Monitor Gamuts Within CIE Chromaticity Space� with

X and O representing the white point for the printer and monitor

gamuts respectively� ��

�� Uniform knot spacing� with an order four spline� � � � � � � � � � � �
�

�� Uniform knot spacing� with an order �ve spline� � � � � � � � � � � �
�

�
 End knots having order multiplicity� with order four spline� � � � � �
�

�� The e
ect of adding extra segments to an order four spline� � � � � �
�

��� Cut planes for the �� coe�cient� ��

��� Cut planes for the �� coe�cient� ��

��
 Cut planes for the �� coe�cient� ��

��� Two segment �t of the the �� coe�cient� � � � � � � � � � � � � � � � ��

��� Two segment �t of the the �� coe�cient� � � � � � � � � � � � � � � � ��

��� Two segment �t of the the �� coe�cient� � � � � � � � � � � � � � � � ��

��� Cut planes and �tted surface for the �� coe�cient� � � � � � � � � � �

ix

��� Cut planes and �tted surface for the �� coe�cient� � � � � � � � � � ��

��� Cut planes and �tted surface for the �� coe�cient� � � � � � � � � � ��

���� Residual values for a two segment �t of the �� coe�cient� � � � � � � ��

���� Change in residual values after the addition of a third segment to

the �� �t� ��

��� Indexing Classes ��

��� Data Classes ��

��
 Multivariable Spline Classes ��

��� Fitting Classes ��

��� Linear Algebra Classes ��

��� Miminimization Classes ��

x

Chapter �

Introduction

A fundamental aspect of all science is the collection of observational data� Deter�

mining a compact mathematical representation that approximates such data is a

frequent task in a variety of domains such as signal processing� geometric model�

ing and statistical analysis� In any of the these �elds the �tting process may be

motivated by several goals� including parameter estimation ����� which derives pa�

rameter values from the original data� Fitting also serves the need to remove noise

from data via smoothing ����� Extracting the essence of large quantities of data is

accomplished via data reduction ����� The last objective� determining a functional

representation� is the goal of this work� Finding such a representation involves the

approximation of an unknown function from sampling at discrete points� which are

scattered throughout the unknown�s domain�

Colour reproduction is a fundamental problem that has been known to graphic

artists for some time� With the widespread availability of colour digital printers the

problem is being faced by an increasing percentage of computer users� Currently�

high quality colour reproduction is performed by a printing expert whose familiarity

�

CHAPTER �� INTRODUCTION �

with speci�c pigments and papers permit the selection of printer inks to reproduce

select monitor colours� This is not a complete solution as even the widely used

Pantone system has problems when the highly controlled environment of its special

papers and dyes is expanded to include video devices� Ensuring that the colours seen

on a monitor will be faithfully reproduced by a digital printer has been termed �cross

rendering� �

�� Few people are exempt from the problem� as the forward to both ���

and ���� provide anecdotal evidence of the pains su
ered by even knowledgeable

graphics researchers when tackling this problem�

Given that printers do not produce the exact colours requested of them� an

obvious solution is to �rst determine which colour to ask for� to get the desired

colour� An additional hurdle is presented by those colours obtainable in only one of

two media� What approximation techniques ��
� can be used to obtain reasonable

substitutes for these unobtainable colours�

Spline mathematics represent a powerful tool �
� in the computation of formula�

tions that are both continuous and proximate to observational data� Spline curves

underlie the �tting process in all the preceding references and are used in this work

to describe the characteristics of colour printers�

This work has dealt with three problems� First� how to extend existing data

�tting schemes to handle data of arbitrary dimensions� Second� the application

of this process to the problem of colour reproduction� The third problem was the

design and implementation of tools using existing spline based classes to acceler�

ate the completion of applications providing solutions to the �rst two problems�

These goals were accomplished by building on existing C�� classes to allow future

research to continue without the overhead of an expensive learning process� Both

experienced and novice users were envisioned when implementation design was un�

dertaken� A high level interface was designed to allow continued use of these C��

CHAPTER �� INTRODUCTION

tools by researchers not concerned with their implementation details�

The work presented here unites the two problems of data �tting and colour

reproduction within the framework of the Splines Project at the University of Wa�

terloo� Empirical data was collected� representing the exact colours produced by a

printer� based on controlled inputs� This data was �t using a combination of exist�

ing tools and custom built libraries� The ability to build on existing tools is further

proof that the motivation for creating the Splines Project was well conceived�

Chapter � provides a comprehensive overview of the vocabulary� notation and

mathematics used throughout the remainder of the work�

The treatment of the curve �tting process in Chapter
 provides the opportunity

to detail the approximation method in a simple context� The use of the curve

�tting technique on data sets containing an arbitrary number of variables provides

background for the multi�variable �tting process in the next chapter�

With all the groundwork laid� Chapter � describes the generalized �tting method�

Optimizations to the method are also presented to permit the e�cient computation

of a multi�variable spline formulation�

The approximation criterion supplies a numerical estimate of the quality of

the �tting spline� These distilled values are supported by the visualization of the

computed formulations� This further examination provides insights about both the

�t and the original data far beyond the simple numeric measure� Types of data

visualization and results are presented in Chapter � �

Once a satisfactory functional approximation has been found for the observa�

tional data� the task of �nding its inverse must be addressed� Since splines do not

have a general formula describing their inverse� a minimization process must be

used� Additional details on the need for this process as well as the method used

CHAPTER �� INTRODUCTION �

are given in Chapter ��

Chapter � recounts the development of the supporting C�� classes� Examples

are provided to demonstrate the usage of each individual tool� An outline of the

procedure used to develop prototype applications is also given� Details of how the

existing Splines libraries were leveraged to speed up the development process are

given throughout this chapter�

This project has only begun to explore the usefulness of prototyping tools�

Chapter � provides a discussion of potential future directions based on the experi�

ences garnered from this development�

Due to the complex nature of the notation in this work a summary is presented

in Appendix A�

Manual pages for the all the tools developed are in Appendix B� Other collateral

work is cited as appropriate throughout this thesis�

Chapter �

Preliminaries

It is essential to have a �rm foundation on which to present the details of the work

completed� Given the extensive use of multidimensional data� an overview of the

structure is presented �rst� followed by a description of the spaces in which these

data sets lie� The essential linear algebra is then laid out to allow for the presenta�

tion of the spline mathematics required to complete the entire �tting process�

The notational conventions outlined here will be used consistently throughout

this work and are summarized in Appendix A�

�

CHAPTER �� PRELIMINARIES �

��� Data Sets

This investigation focuses on the approximation of a mapping � �� � by a spline

function C� that is C��� � �� A data set provides the given representation of the

mapping from the sampling variable� �� to the result value� �� A data set will

consist of the selected values ��� � � � � �s in a chosen range low � � � high� together

with corresponding result values ��� � � � � �s�

Example ��� A monochrome printer is to demonstrate its abilities by producing

�ve swatches with various intensities of gray� measured as percentages of black� The

shades of gray to be printed are measured by generating the input samples

f��� ��� ��� ��� ��g � f���� ���� ���� ���� ����g�

Printers� being fallible physical devices� will not respond exactly to their input� The

grey levels actually printed are measured to be

f��� ��� ��� ��� ��g � f����
��� ���� ���� ���g�

Together these samples and results form the data set

ff���� ���g� f����
��g� f���� ���g� f���� ���g� f����� ���gg�

where s � �� low � ���� high � �����

To approximate the input�output mapping of this printer we might choose a

spline that is� for example� composed of the four basis functions B����� B����� B�����

B�����

C��� �
�X

j��

�jBj����

CHAPTER �� PRELIMINARIES �

In the approximation of the mapping � �� � the values of ��� ��� ��� �� must be

selected so that

C��i� �
�X

j��

�jBj��i� � �i �i � �� � � � � ���

This is a classical curve �tting problem� whose solution is computed by solving

the linear system�
�������������

B����� B����� B����� B�����

B����� B����� B����� B�����

B����� B����� B����� B�����

B����� B����� B����� B�����

B����� B����� B����� B�����

�
�������������

�
���������

��

��

��

��

�
���������
�

�
�������������

��

��

��

��

��

�
�������������

in a least squares sense�

To handle colour reproduction in devices such as a printer or monitor� a data

set must be multidimensional� Each dimension in the data set re	ects one of several

input values� such as a percentage of certain dyes or phosphor excitation� These

inputs will produce an output colour that may require speci�cation in terms of

several spectral components�

Example ��� A printer uses three types of toner� �� � cyan� �� � magenta�

�� � yellow� Input commands are given in terms of a percentage of maximum con�

centration� so that each input might be sampled at selected values� In this example

the values of �� are low� � �� � �� � high� � ���

f���� �
�
�� �

�
�� �

�
�� �

�
�g � f��� ���� ���� ���� ���g

�� are low� � ��� � �� � high� � ����

f���� �
�
�� �

�
�� �

�
�g � f���� ���� ���� ����g

CHAPTER �� PRELIMINARIES �

and �nally �� are low� � ��� � �� � high� � ���

f���� �
�
�� �

�
�� �

�
��

�
�� �

�
	� g � f���� ����
��� ���� ���� ���g�

The colour outputs of the device are typically measured as linear combinations�

where the � operator multiplies each of the vector elements by the given co�e�cient�

of some primary spectra� consisting of a vector of discrete wavelengths� for example�

�� � spectrum� � �� � spectrum� � �� � spectrum� � �� � spectrum��

This means that for each selected input value

���� ��� ���

a measured spectral decomposition

���� ��� ��� ���

would result� yielding the data set�������	
�����

f����� �
�
�� �

�
��� ��

�
������ �

�
������ �

�
������ �

�
������g

���

f����� �
�
�� �

�
	�� ��

�
����	� �

�
����	� �

�
����	� �

�
����	�g

�������
�����

�

Now� the approximating spline becomes more complicated� If a tensor product

spline is used� as in this work� a number of basic splines for each input variable

��� ��� �� are individually chosen� As an example� for ���

B

��
� ��

��� B
��
� ��

��� B
��
� ��

��� B
��
� ��

��

for ���

B

��
� ��

��� B

��
� ��

��

�The subscripts on the ��s re�ect the fact that each � depends on each of the three � values�

CHAPTER �� PRELIMINARIES �

and for ���

B

��
� ��

��� B

��
� ��

��� B

��
� ��

���

The spline itself takes the form

C���� ��� ��� �
�X

j���

�X
j���

�X
j���

�j��j��j�Bj���
��Bj���

��Bj���
��

with each of the ��s having the same number of components as there are ��s

�j��j��j� � ��
�
j��j��j�

� ��j��j��j�� �
�
j��j��j�

� ��j��j��j���

This allows the precise restatement of the multidimensional �tting problem as the

solution to

C���i�� �
�
i�
� ��i�� � ��

�
i��i��i�

� ��
i��i��i�

� ��
i��i��i�

� ��
i��i��i�

��

In a multidimensional environment it is easy for the various constituents �the

number of indices� the range of these indices� the number of input components and

the number of output components� to blend together and overwhelm the reader�

This leads to the de�nitions and notational conventions that follow�

The attributes measured by the result values� ��� � � � �t are termed the result

components� with their number denoted by t� This number of result components is

independent of the sampling dimension� represented by n� which is the dimension

of the space spanned by the sampling variables ��� � � � � �n� A sampling set� �� has

a total of s elements� In the multidimensional case� where several sampling sets

exist� the i�th set� �i� is considered to have si elements�

Example ��� outlined a situation where t � �� n � � and s � �� Expanding this

example� by measuring not only the intensities� but also the thicknesses of toner

on the page� would demonstrate the independence of sampling and the number of

CHAPTER �� PRELIMINARIES ��

result components� This new measurement would give t � � result components�

while maintaining n � ��

Example ��� demonstrates the case where n � �� Here� t � �� n �
� while

s� � �� s� � � and s� � �� To represent such data the concept of a multidimensional

data set is introduced�

De
nition ��� A multidimensional data set� Dn� consists of the rectangular

lattice with �n�t��tuples as entries� The structure of the lattice is de�ned by Carte�

sian product of the n sampling sets� �� � �� � � � �� �n� implying Dn is an element

of IRs��s������sn�
n�t�� The entries at each lattice point contain both a sampling

point� �� and the result values� �� Therefore� a typical entry would have the form

���� � � � � �n� ��� � � � � �t��

De
nition ��� A data set� Dn� based on n sampling sets has a data dimension

of n�

To simplify future notation the symbol ILn�t will be used to represent the indi�

vidual lattice elements� which are �n�t��tuples� When the tuple size is implied the

subscript is omitted� The bene�t of this concept is demonstrated in the condensed

representation of data sets� i�e Dn 	 ILs��s������sn �

As a tensor product� Dn has several properties�

 Any entry of Dn� or component thereof� in the lattice can be addressed by

the indices that combine to form it�

 Dn has
Qn

j�� sj elements�

 For any data dimension� i� there are �
Qn

j�� sj��si ��variable vectors of elements

from IL in the set Dn�

CHAPTER �� PRELIMINARIES ��

Example ��� The entry ���i�� �
�
i�
� ��i���

�
i��i��i�

� ��
i��i��i�

� ��
i��i��i�

� ��
i��i��i�

� in the data set

from Example 	�	 would have the indices i�� i�� i� and the components ��� ��� ���

��� ��� ��� ���

These properties are used to determine the number of slices contained within a

lattice�

De
nition ��� A slice� �i� is a vector of �n�t��tuples extracted from a multidi�

mensional data set by holding all indices constant except the one given by i�

Example ��� Given the data set D 	 IL����	
� from Example 	�	

�� � fd��i���g
�
i���

speci�es a slice of data in the second data dimension� whose elements are

d����� � f���� �
�
�
� �����

�
������ �

�
������ �

�
������ �

�
�����g

d����� � f���� �
�
�
� �����

�
������ �

�
������ �

�
������ �

�
�����g

d����� � f���� �
�
�
� �����

�
������ �

�
������ �

�
������ �

�
�����g

d����� � f���� �
�
�
� �����

�
������ �

�
������ �

�
������ �

�
�����g

�

Since �� is being examined� the second index is in bold type to highlight the sequence�

Typically� we are interested in the set of all slices available in a given data

dimension� de�ned by�

De
nition ��� A slice set� i� is the set of all the slices of a multidimensional

data set� in the i�th dimension�

In the following example note that �dimension� implies the data dimension�

CHAPTER �� PRELIMINARIES ��

Example ��� The data set D 	 IL����	 can be visualized as a rectangular volume�

or a set of matrices stacked one upon another� In the �rst dimension the set of

slices would be �ve matrices from IL��	� Those matrices can be visualized as slicing

the volume from front to back� In the second dimension� slicing from left to right

would provide four matrices from IL��	� Finally� in the third dimension� which

slices from top to bottom� there would be six matrices from IL����

The slice set notation permits the compact representation of arbitrary views

into data sets�

Example ��� Given the data set D 	 IL����	�

 � � f��g
��	
i����i��� � ffdi��i��i�g

�
i���g

��	
i����i���

speci�es the set of slices in the second data dimension�

Each slice set consists of all the elements in the data set� It is simply their

ordering that is being manipulated� As such� and given space restrictions� the

s�s�s� � � � � � � � ��� elements of the slice set in Example ��� are not expanded

here�

CHAPTER �� PRELIMINARIES �

��� Colour Spaces

The data used during this project came from various sources� including collaborative

research at the Computer Graphics Lab at the University of Waterloo and industrial

labs� all pursuing similar goals in colour reproduction� Understanding these data

sets involves some knowledge of the colour spaces in which the measurements were

taken�

RGB

This Red� Green� Blue model is used by colour monitors and is an additive model

based in a Cartesian system� It is shown here as in ����

Black = (0,0,0)

White = (1,1,1)

Red = (1,0,0)

Yellow = (1,1,0)

Green = (0,1,0)

Cyan = (0,1,1)
Blue = (0,0,1)

Magenta (1,0,1)

Figure ���� The RGB colour space�

CHAPTER �� PRELIMINARIES ��

CMY

Cyan� Magenta� Yellow is a subtractive colour model used by hardcopy devices�

Its components are de�ned to be

�C�M� Y � � ��� �� ��� �R�G�B��

meaning that they are found on complementary corners of the RGB cube� as shown

in Figure ����

CMYK

The addition of black� represented by K� to the CMY model accommodates the

physical limitations of most colour printers� Ideally� the application of equal levels

of CMY inks at a speci�ed pixel will produce black at that location� True black is

seldom the result of this process and the new model is able to avoid this situation�

Given a point in CMY space its counterpart in CMYK space is de�ned by

K � min�C�M� Y � �����

C � C �K

M � M �K

Y � Y �K

CIELAB

In an attempt to de�ne a model in which the distance between two colours� mea�

sured by the Euclidean distance� would be proportional to the relative perceptual

CHAPTER �� PRELIMINARIES ��

distance of those colours the CIELAB space was developed� As noted by �
�� L�

is a measure of lightness and a� and b�� which do not correspond to any known

properties of visual perception� can be considered to indicate changes in red�green

and green�blue balance respectively�

CIELAB describes the entire space of visible light and therefore contains typical

monitor and printer gamuts within its boundaries� The following diagram� adapted

from ����� demonstrates how some colours cannot be obtained by both devices�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

o
x

Printer Gamut

Monitor Gamut

Figure ���� Printer and Monitor Gamuts Within CIE Chromaticity Space� with X
and O representing the white point for the printer and monitor gamuts respectively�

CHAPTER �� PRELIMINARIES ��

Alpha�bases

The Alpha basis functions are computed from Singular Value Decompositions� or

SVDs� of spectroradiometric data� These orthogonal bases span the entire re�

	ectance space� providing means to describe any colour as a linear combination�

as mentioned in Example ���� The exact shape of these basis spectra are beyond

the scope of this work� details are presented in ����� The use of ��� � � � � �t� as out�

put components serves to remind the reader that these are coe�cients to the alpha

bases�

Additional colour spaces such as YIQ� used as an NTSC broadcast standard� and

HSV� which uses perceptual properties of colour� do exist� The reader is referred

to �
�� ���� for complete treatments of colour spaces for which data sets were not

available�

CHAPTER �� PRELIMINARIES ��

��� Linear Algebra for Least�Squares Approxi�

mation

As will be shown later� the task of �tting a spline to a set of data collapses to the

problem of solving a linear system of the form

CV � A�

The solution� V � f�ig
m
i��� to such a system is computed from the known data

vector� A � f�igsi��� and the matrix� C � fCi�jg
s�m
i���j��� No restriction is placed

on A� while C must have linear independence amongst its columns� The variable

s continues to represent the number of entries in the sampling set� while m is used

only as a placeholder� The variable m will be associated with a characteristic of

the �tting problem in Section ����

If an exact solution cannot be found� the goal is to compute values for V that

minimize the Euclidean norm of CV�A� Complete treatments of this topic can be

found as a discussion of numerical techniques in ��� and more directly as a spline

�tting problem in �
�� ���

The problems de�ned by such linear systems can be separated into three types�

 s � m� de�nes a system with a unique solution� satisfying ������

 s � m� yields an overdetermined system whose unique solution provides a

residual of minimal Euclidean norm�

 s 	 m� describes a problem with a subspace of solutions in V 	 IRm�

Only the �rst two cases are of interest� As will be shown in Section ��
��� the last

case cannot underlie a curve �tting problem�

CHAPTER �� PRELIMINARIES ��

����� Solving the Linear System

The ensuing discussion is modeled after the work presented by Sre�ckovi�c �
��� At

this time� assume that C is in triangular form� Finding the solution V to those

systems where s � m� and whose components are

�
���������

C��� C��� � � � C��m

� C��� � � � C��m

���
� � � � � �

���

� � � � � Cm�m

�
���������

�
���������

��

��
���

�m

�
���������
�

�
���������

��

��

���

�s

�
���������
� �����

involves the application of two substitutions�

�m �
�s

Cm�m

� ���
�

and

�i �
�

Ci�i

�
��i �

sX
j�i��

Ci�j�j

�
A � �����

for i � s��� � � � � �� There is no possibility for division by zero with any of the

elements fCi�igmi��� as the linear independence of the columns ensures that all the

diagonal elements are non�zero�

When s � m the system will have the form�

�
��������������������

C��� C��� � � � C��m

� C��� � � � C��m

���
� � � � � �

���

� � � � � Cm�m

� � � � � �
��� � � �

���
���

� � � � � �

�
��������������������

�
���������

��

��
���

�m

�
���������
�

�
��������������������

��

��

���

�m

�m��

���

�s

�
��������������������

�

CHAPTER �� PRELIMINARIES ��

The solution vector V is again found through the substitutions of ���
� and ������

Diagonal elements are� as before� non�zero by linear independence�

Those elements of A directly in	uencing the solution� V � are now extracted to

form

Au �
�
�� � � � �m � � � � �

�T
�

The data contained in the complement to Au

Al �
�
� � � � � �m�� � � � �s

�T

is not used during the solution process� However� this does not imply that Al is

without meaning� The interpretation of these vectors is presented in the following

section�

����� Determining a Least�Squares Solution

Focusing on the least�squares solution to the problem CV � A implies a goal of

minimizing

kCV �Ak���

The vector A can be expressed as a vector sum�
�
����������������

��

���

�m

�m��

���

�s

�
����������������

�

�
����������������

��

���

�m

�
���

�

�
����������������

�

�
����������������

�
���

�

�m��

���

�s

�
����������������

� �����

in which case

kCV �Ak�� � kCV �Au �Alk
�
��

CHAPTER �� PRELIMINARIES ��

Since the inner products AT
l Au and V TCTAl are both zero� Equation ����� can be

simpli�ed�

kCV �Au �Alk
�
� � �CV �Au �Al�

T �CV �Au �Al�

� V TCTCV � V TCTAu � V TCTAl �AT
uAu �AT

uAl �AT
l Al

� �CV �Au�
T �CV �Au� �AT

l Al

� kCV �Auk
�
� � kAlk

�
� �����

With an exact solution to the system CV � Au� the �rst component of Equa�

tion ����� is eliminated by the fact that CV �Au � �� The least�squares residual

can now be found within the entries of the hereto unused subvector� Al�

kCV �Ak�� � kAlk
�
�

����� Matrix Factorization

To this point� only those systems having C in triangular form have been consid�

ered� In practice� however� this ideal structure rarely presents itself� An orthogonal

factorization process� such as QR�factorization� may be used to provide the desired

triangular structure within C�

De
nition ��� The QR�factorization of a matrix C 	 IRs�m yields an orthog�

onal matrix� QC 	 IRs�s and an upper triangular� matrix RC 	 IRs�m such that

QCRC � C

�The matrix QC can be computed numerically provided that the columns of C provide su�cient

linear independence in relation to the precision of calculation� see �����
�While normally used to describe square matrices� upper triangular is used here for rectangular

matrices having Ci�j 	
 whenever i � j�

CHAPTER �� PRELIMINARIES ��

The factorization is accomplished through a series of orthogonal decomposition

matrices fHigmi��� whose form will be detailed in Section
���

De
nition ��� A QR�factorization of a matrix C 	 IRs�m can be expressed in

product form as�

HmHm�� � � �H�C � RC�

Since each Hi is orthogonal� this expression can be rewritten as�

HT
� � � �H

T
m��H

T
mRC � C�

The reader is referred to ���� for proof that such a decomposition can always be

computed and that the following theorem is true�

Theorem ��� If H is an orthogonal transformation then

kH�CV �A�k�� � kHAlk
�
��

With a QR�factorization it is possible to transform the general system CV � A

into one which has the desired upper triangular matrix form� This transformation

is applied as follows�

CV � A

QCRCV � A

QT
CQCRCV � QT

CA

RCV � QT
CA� �����

CHAPTER �� PRELIMINARIES ��

��� Splines

For reasons detailed in Section
��� the �tting process uses the nonuniform B�

spline formulation to approximate the sampled colour data� A brief overview of the

fundamental properties and attributes of these splines is presented here� Exhaustive

treatments of spline theory and proofs can be found in ��� ���

Splines are piecewise polynomials that may be built as linear combinations of

basis splines and coe�cients taken from IR� The B�splines are basis splines intro�

duced by Schoenberg ����

De
nition ��� A knot sequence is a non�decreasing set of numbers�

The symbol
 is used to denote elements of the knot vector� The knot vector

helps determine the shape and de�ne the continuity of the spline by providing a

sequence of intervals and a set of multiplicities�

De
nition ��
 The multiplicity of a knot
 is the number of occurrences of

in the knot sequence�

The multiplicity of a speci�c knot will be denoted by q� For any point within

the knot sequence the notion of its interval is de�ned as follows�

De
nition ��	 The interval of a point u is a left�open range of values �
l�
l���

that contains u�
l 	 u �
l���

De
nition ���� The interval index of a point u is the l satisfying De�nition

	�
�

CHAPTER �� PRELIMINARIES �

De
nition ���� The order of a B�spline basis is de�ned to be one plus the degree

of the polynomials that comprise the basis functions�

The order of a B�spline is referred to as r� Together� the knot sequence and the

order de�ne a set of basis functions fBr
i g

m
i��� This value for m is the same value

given in Section ��
� the value and meaning of m will be described later� Returning

to the de�nition of the basis functions�

De
nition ���� The i�th B�spline of order r over a knot sequence f
ig
m�r
i�
 is

de�ned as

B�
i

def
�

��	
�

��
i 	 u �
i��

�� otherwise
�

Br
i �u�

def
�

u�
i

i�r�� �
i

Br��
i �u� �

i�r � u

i�r �
i��
Br��

i�� �u��

for r � ��
� � � � �m and i � �� �� � � � �m�

with the provision that no knot has multiplicity greater than r� that

u�
i

i�r�� �
i

is interpreted as zero whenever
i�r�� �
i � �� and that

i�r � u

i�r �
i��

is interpreted as zero whenever
i�r �
i�� � ��

The unde�ned termm in De�nition ��� and Equation ��� is actually the number

of B�splines that are produced by De�nition ����� Each of the B�splines are linearly

independent and they span a space that has a spline space dimension of m�

CHAPTER �� PRELIMINARIES ��

De
nition ���� The spline space dimension of a set of B�splines� de�ned by

De�nition 	��	� is the dimension of the space spanned by those basis functions�

It follows that the spline space dimension of the B�spline is the number of knots

in the basis� minus the order of the basis�

It can be shown from the de�nition that Br
i �u� is zero if u 	
i or u �
i�r�

This means that within the �rst r�� knot intervals there are fewer than r non�zero

basis functions� leading to the notion of an interval being fully covered�

De
nition ���� An interval �
l�
l��� is said to be fully covered if each of its

basis functions fBr
i g

l�r��
i�l are non�zero� The r B�splines� when restricted to this

interval� are all linearly independent polynomials of order r�

Similarly� the last r � � intervals are not fully covered either�

De
nition ���� The control vertices V � f�igmi��� where �i 	 ILt
�� are the

coe�cients used in linear combination with the B�splines to form a B�spline curve�

The number of control vertices is given by the spline space dimension� m� while

each control vertex is a point in the space ILt�

De
nition ���� A B�spline curve C�u� is a linear combination of the B�spline

functions Br
i �u� and control vertices V � f�igmi�� de�ned by�

C�u� �
mX
i��

�iB
r
i �u�

�Recall that in the single variable case ILt � IRt

CHAPTER �� PRELIMINARIES ��

The space of the control vertices determines the space in which the curve exists�

For example� a planar curve would have �i 	 IL�� while a curve in
�space would

have control vertices in IL��

A curve can also be referred to as a single�variable spline� as it has only one

parameter� Later� multi�variable tensor product splines will be described� however�

it is worthwhile to note here that the number of variables is independent of all other

spline attributes� The number of variables used in a speci�c problem is determined

by the number of inputs that produce the data set being approximated�

Chapter �

Spline Fitting in One Variable

The advent of splines provided new formulations for the problem of determining

functional approximations to empirical data ���� This chapter begins with a jus�

ti�cation of the types of splines chosen to underlie the �tting process� A review

of the details of the spline �tting algorithm follows� Finally� special characteristics

exhibited by the chosen splines and colour data will be examined to optimize an

existing least squares implementation�

��� Motivation

While the basis of this work is the �tting of multidimensional data� an explana�

tion of the simplest case will make later results more tractable� This permits the

introduction of notation that will necessarily be quite complex with splines of an

arbitrary number of variables�

Hand in hand with a linear increase in the dimension of data domain� given

by the sampling points� comes an exponential increase in the size of data sets�

��

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

Optimizations of the basic curve �tting algorithm were needed in the face of this

increased computational workload� Close examination of the linear systems that

need to be solved provides some simple� but e
ective� ways of streamlining the

algorithm�

Before examining the details of the least squares �tting process� a discussion of

the type of curve used to perform the �t is required� Three criteria were estab�

lished for the type of spline used to �t the printer data� it should provide useful

approximations and it should exhibit smoothness� in the form of continuous second

derivatives and local control� To allow for quick implementation� only formulations

currently implemented by the Splines project were considered� These already had

tested evaluation and manipulation tools� Finally� as shown in Chapter �� a spline

that can be re�ned was required�

The derivative discontinuities that occur in B�ezier splines� unless the appropri�

ate restrictions are enforced� would not provide the desired smoothness� Rational

splines were inappropriate for several reasons� The complexity of �tting algorithms

using rationals was much higher� while the best algorithm is still being debated�

More importantly� it is not apparent that the increased control provided by ra�

tionals could be e
ectively utilized with the given data� Uniform B�splines were

implemented but would su
er from a dramatic increase in the size of the control

mesh if re�nement was required� The nonuniform B�spline� or NUB�spline� satis�ed

all of the stated criteria and was selected as the curve to underlie the �tting process�

The actual approximation process is comprised of two steps� First� the basic

parameters of a �tting curve had to be set� Then the linear system generated from

the chosen parameters and given data sets had to be solved� using least squares

methods� A more in depth discussion of this entire process requires the introduction

of some mathematical concepts�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

��� Notation

Eliminating all but one candidate for the job of �tting the data provides the fol�

lowing de�nition�

De
nition ��� A
tting spline C��� is the NUB�spline of order r and dimension

m given by

C��� �
mX
i��

�iB
r
i ���

The goal is to determine the values for the control structure V that provides a

curve to best �t the data� This is subject to an approximation criterion� which is

computed via a residual function�

De
nition ��� A residual function res�C�D� computes a numeric result that

describes the di�erence between the known result components f�igsi�� of the data

set D and a �tting spline C����

This numeric measure of success may use all the information present in its ar�

guments at once� or it may� as in this work� compute a value based on the di
erence

between the individual data points and the curve values at a predetermined set of

evaluation points� In either case� one evaluation point is required for each of the

result values� Parametric curve �tters compute the evaluation points based on the

data set while traditional curve �tting problems� such as those used in this work�

simply use the sampling points provided in the data sets�

Despite having chosen the evaluation points to be exactly the sampling points�

there is still a need to distinguish between them� Not all �tters share the same set

for both purposes� To avoid confusion� future discussion will refer to the shared

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

set of points in the context in which they are used� be it as sampling or evaluation

points

It is now possible to provide a more precise de�nition of the residual� This

function incorporates the �tting curve� evaluated at each of the evaluation points�

and the data points themselves� The approximation criterion used in this work

is based on the Euclidean distance� or l� norm� It seeks to minimize the sum

of distances between the data points and the �tting curve values at each of the

evaluation points�

De
nition ��� The Least Squares Residual Norm of a �tting curve C��� and

a set of data points D � f�i��igsi�� where �i � ���
i � � � � � �

t
i� is de�ned as

res�C�D� �
sX

i��

kC��i�� �ik �
���

The �nal requirement is a formal de�nition of the notion of a curve �t that

minimizes the residual function in �
����

De
nition ��� A curve �t seeks to �nd control vertices f�igmi�� that will provide a

minimum value for
sX

i��

kC��i�� �ik

where C��i� is the spline curve of order r� spline space dimension� m� and knot

sequence f
ig
m�r��
i�
 � and where f�igsi�� are the result components being approxi�

mated�

�This is the dimension of the spline� not to be confused with the dimension of the space in
which the spline lives� the latter is dictated by the control vertices�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

��� The Underlying Curve

The exact shape of the �tting curve is not known until the linear system is solved�

Before setting up such a system� the basic attributes of the spline need to be

determined�

To begin� the order of the �tting spline must be chosen� Any positive value is

possible� as will be shown in Chapter �� but is subject to two restrictions� The

order is bounded by the number of data points� since the linear system it helps to

de�ne must be overdetermined� The second consideration is the evaluation of the

computed �tting spline� Higher orders are signi�cantly harder to evaluate� orders

higher than �ve are usually avoided�

Figure
�� demonstrates the approximation of a data set by a curve with order

four� In raising the order of the spline to �ve a better �t is achieved� Figure
���

Data

Fitting Curve

Y

X
340.00

345.00

350.00

355.00

360.00

365.00

370.00

375.00

380.00

385.00

390.00

395.00

300.00 350.00 400.00 450.00

Figure
��� Uniform knot spacing� with an order four spline�

The second component is the knot vector� The placement of knots over the

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

Data

Fitting Curve

Y

X
340.00

345.00

350.00

355.00

360.00

365.00

370.00

375.00

380.00

385.00

390.00

395.00

300.00 350.00 400.00 450.00

Figure
��� Uniform knot spacing� with an order �ve spline�

domain of the �tting spline determines the amount of control the curve will have

in each of the intervals that comprise the curve� There are two distinct regions of

interest for these values� those that control the behavior of the curve at the ends of

the valid interval and those that exert control between those endpoints� Returning

to a curve of order four� the the knots are arranged to force interpolation at the

end points� Figure
�
�

The increase in order is only one means of achieving a better approximation�

By adding more knots the curve is better able to follow the shape of the data�

The number of segments must be carefully chosen to not be excessively in	u�

enced by noise in the data� For example� the tiny leftmost loop in data sets used in

this section may only be noise in the data� Introducing too many segments would

allow the �tting curve to mimic that loop� This is seen in Figure
�� which shows

a curve with two more segments than the curve in Figure
���

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

Data

Fitting Curve

Y

X
340.00

345.00

350.00

355.00

360.00

365.00

370.00

375.00

380.00

385.00

390.00

395.00

300.00 350.00 400.00 450.00

Figure
�
� End knots having order multiplicity� with order four spline�

Data

Fitting Curve

Y

X
340.00

345.00

350.00

355.00

360.00

365.00

370.00

375.00

380.00

385.00

390.00

395.00

300.00 350.00 400.00 450.00

Figure
��� The e
ect of adding extra segments to an order four spline�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE

��� Solving the Linear System

The approach used to compute a �tting curve involves �nding the control structure

of a spline curve by solving the linear system CV � A� Section ��
 outlined the

need to have an overdetermined linear system� An examination of what that implies

in the realm of �tting with B�splines follows�

To be overdetermined� the vector of data points� f�igsi��� must contain more

elements than the solution vector f�ig
m
i��� That is to say� there must be more data

points available than control points desired� Obtaining the �rst fully de�ned interval

requires r control points� Additional intervals are introduced with each subsequent

control point� There is no easy method to determine the appropriate number of

intervals for the �tting spline� Allowing too few intervals results in poor �tting

accuracy� as given by the residual function� Conversely� too many intervals will see

the �tting spline a
ected by noise in the data� The optimal number of intervals� in

general� cannot be given� though at this point the subjective restriction of having

only one or two evaluation points per interval is proposed� Speci�c case results are

presented later�

Ensuring that the linear system is overdetermined becomes a matter of satisfying

s � m�

This provides m� r�� intervals� The constraint of having the number of intervals

as a whole number yields m� r � � � �� thus

m
 r�

Example ��� A data set with s
� values has been collected� This data is to be �t

with a cubic B�spline� r
�� giving � � m
 �� Since m can be either � or �� the

�tting spline can have either � or 	 intervals�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

Care must also be taken to ensure that the columns of C are linearly inde�

pendent� This independence can be compromised when the evaluation points are

located too near one another� resulting in basis values that are practically equal� or

it can result in data that is too widely scattered� resulting in basis functions that

are not evaluated at any position for which they have a nonzero value ���� ���

Taking a closer look at the components of the system returns to the basic

equation� CV � A� The matrix C 	 IRs�m contains the spline basis function

evaluations at each of the parameter points� Each of the s rows� Ci� contain the

values of the m basis functions evaluated at the point ui� Additionally� every basis

function is evaluated at least once� meaning that for every interval �
j �
j�r�� where

j
 r � � � see De�nition ���� �� there is always an evaluation point u such that

j 	 u �
j�r� Thus� one row of the matrix is given by

Ci � �B��ui�� B��ui�� � � � � Bm�ui��

yielding the complete matrix

C �

�
���������

B��u�� B��u�� � � � Bm�u��

B��u�� B��u�� � � � Bm�u��
���

���
� � �

���

B��us� B��us� � � � Bm�us�

�
���������
�

The vector A 	 IRs are the result components

A �

�
���������

��

��

���

�s

�
���������
�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

The solution vector� V 	 IRm� is the control net of the �tting curve

V �

�
���������

��

��
���

�m

�
���������
�

The goal is not only to �nd a solution to this system� but also to do so as

e�ciently as possible� It is impossible to reduce the size of these matrices without

ignoring some of the sampled data or reducing the detail of the �tting spline�

Reducing the complexity of C� thereby facilitating its factorization� is the only

means available to lower the amount of work done�

Recall from De�nition ������ that for any parameter point ui at most r� the

basis order� of the B�splines are non�zero� Thus a more concise de�nition for rows

of C can be given based on l� the index of the interval �
l 	 ui 	
l��� containing

the point ui�

Ci � �

lz �� �
� � � � �

rz �� �
Br

l�r���u� � � � Br
l �u�

m�l�rz �� �
� � � � � �

Given that the sequence fuigsi�� is non�decreasing� it follows that the sequence

of interval indices flgsi�� is also non�decreasing� This strict ordering allows for the

grouping of the evaluation points by the index of the interval in which they lie�

This means that the corresponding basis evaluations will have the non�zero values

in the same columns� The restriction that every basis function Bi�u� is evaluated

at least once forces each row Ci� i � �� to have a least one non�zero column entry

in common with its predecessor� Ci���

This allows the presentation of C as a block matrix with each block containing

the evaluation of all the points in the same interval�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

C �

�
���

rz �� �
x x x x

x x x x

x x x x

�������
�����

ui 	 �

�
��

x x x x

x x x x

x x x x

�������
�����

ui 	 �
��
��

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

�
���

�
���

The blocks will be denoted by superscripting C� Thus� the block containing

entries for interval �
l�
l��� will be termed C
l� � As an example� assume that there

are j parameter values� � ui� � � � ui�j�� �� in the interval �
l�
l���� Evaluating the

B�splines at each of the j parameter values yields the submatrix C
i� 	 IRj�r�

C
i� �

�
���������

Bl�r���ui� Bl�r�ui� � � � Bl�ui�

Bl�r���ui��� Bl�r�ui��� � � � Bl�ui���
���

���
���

Bl�r���ui�j��� Bl�r�ui�j��� � � � Bl�ui�j���

�
���������

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

The objective is to produce an upper triangular matrix by eliminating� in a

column�by�column fashion� the lower triangular elements� The total computation

time is a function of the number of lower triangular elements and thus the goal is

to minimize the number of such elements� This strict format of the matrix provides

the opportunity to perform the factorization more e�ciently�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

��� Factorization

In producing an upper triangular matrix� the total computation time is primarily

a function of the number of lower triangular elements� Therefore� the �rst goal is

to minimize the number of such elements�

The fundamental methods used to solve a least squares system were given in

Section ��
� Now details will be given for the factorization method chosen� along

with an outline of the basis matrix structure�

Various methods can be used to compute a QR�decomposition� Though each

performs the job� there are particular classes of matrices to which each method is

best suited� Givens Rotations are well suited to decomposing sparse matrices� as

each rotation can eliminate a speci�c lower triangular element� The elements found

in the B�spline �tting systems exhibit coherence across both rows and columns�

requiring excessive numbers of rotation matrices� This large number of consecutive

elements makes factorizations such as the Modi�ed Gram�Schmidt method attrac�

tive� However� as demonstrated later� these systems require the mass introduction

of zeros in well de�ned� consecutive locations� Householder transformations are

well suited to this situation� Despite incurring more computational expense than

the Modi�ed Gram�Schmidt in general� Householder transformations will save time

in this speci�c case of matrices with entries from B�spline evaluations� Numerical

stability in the decomposition is also a
orded by Householder transformations�

����� Methodology

De
nition ��� A Householder transformation� H 	 IRs�s is an orthogonal�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE
�

symmetric matrix de�ned by a vector � 	 IRs and the formula

H � I � ���T��T�

�

A complete description of how to �nd the Householder transformations� together

with proofs that they represent re	ections and that they are both orthogonal and

symmetric� can be found in �����

The most relevant attribute of these transformations is that for a given column

vector C i 	 IRs the application� via matrix pre�multiplication� of a Householder

transformation is simply the re	ection of C i within the hyper�plane spanf�g��

Thus� the ��norm of C i is unchanged by the transformation� preserving the residual

as required�

An appropriately constructed vector � �see ����� ensures that the resulting

Householder matrix will re	ect C i in such a way that all its elements� except the

�rst� will become zero�

HiC
i � Hi�Ci��� � � � � Ci�s�

T � �C �

i��� �� � � � � ��
T

The target vectors� fCjgmj��� are chosen to contain all lower triangular elements

of successive columns from the basis value matrix� Cj � fCjgsj�i� The application

of a Householder transformation� derived individually for each of the target vectors�

will introduce zeros in all positions that lie below the diagonal� Once a target vector

from each column has been extracted and transformed� the basis value matrix� C�

will be in upper�triangular� or simply triangular form�

Throughout this process� preservation of the Euclidean norm means that

C�
i�i � � � �� C�

i�s � �C
�

i�i�
�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

so

C �

i�i � �
q
C�
i�i � � � � � C�

i�s�

����� Solving systems with Householder Transformations

Beginning with a simple overdetermined system

CV � D� ��C 	 IRs�m� ��s
 m�

The factorization process involves �nding a sequence of matrices�H�� � � � �Hm� which

premultiply C� transforming it to an upper triangular matrix� Understanding the

factorization process is simpli�ed by the following example� extended from �����

Example ��� Suppose there are s � � data points and the chosen �tting curve has

order r � � and dimension m � �� implying the curve has two intervals� This gives

a basis matrix C 	 IR	���

Assume that the Householder matrices H� and H� have been computed so that

H�H�C �

�
����������������

x x x x x

� x x x x

� � x x x

� � x x x

� � x x x

� � x x x

�
����������������

�

The third column� C�� is the current target vector� It is to be re�ected in a manner

that zeros all elements below the diagonal� Focusing on the boldface entries� the

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

matrix !H� 	 IR��� must be found to produce

!H�

�
���������

x

x

x

x

�
���������
�

�
���������

x

�

�

�

�
���������

If H� � diag�I�� !H��� that is to say

�
�� I� �

� !H�

�
�� � �
�
�

then

H�H�H�C �

�
����������������

x x x x x

� x x x x

� � x x x

� � � x x

� � � x x

� � � x x

�
����������������

�

After two more steps� an upper triangular matrix is obtained and can be used to

solve the system�

����� Optimizing the Process

Typically a trade�o
 must be made between the saving of time and the saving of

space� The special format of C and the decomposition method combine to allow

savings in both areas and in two di
erent ways�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

Reducing Computational Complexity

The decomposition process� as detailed so far� does not take into account the special

format of C given in equation �
���� The potential optimization to the �tting

process should be obvious with the following extension to the last example�

Example ��� Suppose that the evaluation points fuigsi�� for this problem have two

points in the �rst knot interval and the remaining four in the second�

The basis matrix is now�

C �

�
����������������

B��u�� B��u�� B��u�� B��u�� �

B��u�� B��u�� B��u�� B��u�� �

� B��u�� B��u�� B��u�� B��u��

� B��u�� B��u�� B��u�� B��u��

� B��u�� B��u�� B��u�� B��u��

� B��u	� B��u	� B��u	� B��u	�

�
����������������

� �
���

When determining the �rst Householder transformation to zero out all entries below

the diagonal� a re�ection satisfying

H�

�
����������������

B��u��

B��u��

�

�

�

�

�
����������������

�

�
����������������

B��u��

�

�

�

�

�

�
����������������

is needed� This problem can be reduced to �nding

!H�

�
�� B��u��

B��u��

�
�� �

�
�� B��u��

�

�
�� �

CHAPTER �� SPLINE FITTING IN ONE VARIABLE �

A new attribute of the B�spline matrix is the column extent� The column extent

indicates the last non�zero basis value and is based on both the data points� f�igsi���

and the evaluation points� fuigsi���

De
nition ��� The column extents� fegm�r��
i�� are values such that ei� which is

based on the i�th column of a B�spline matrix� is the largest value j such that Bi�uj�

is non�zero�

For example� using the matrix in �
��� e� is � since B��u�� is the last non�zero

entry in the column� Similarly� the column extents of the remaining columns is ��

The existence of column extents allows us to make the following observation�

while the Householder transformation used to introduce zeros to i�th column is

!Hi 	 IRs�i�m�i in general� the special format of C reduces the extent of non�zero

entries of the column vector C i to s�ei� This reduces the size of the transformation

matrix for the i�th� so !Hi 	 IRs�ei�m�i�

Formally� a re�nement to equation �
�
� yields�

H � diag�Ii� !Hi� Is�ei��

This reduction in size means that not only is !Hi less costly to compute but� as will

be show later� the number of shadow columns that need to be computed is also

reduced�

Another valuable set of information is the set of column tops� These indices

indicate the �rst non�zero entries in each column vector� C i� They are used further

on in the discussion of optimizations and are de�ned procedurally�

De
nition ��� Initialize the set of column tops� f�igmi��� to their maximum pos�

sible value� s� For each of the data points fuigsi��� and its corresponding interval

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

index� li raise the column tops for each of the columns with non�zero basis value to

be at least the current row index� i� So f�jg
li�r
j�li

� min�i� �j��

Reducing Storage Requirements

There are two potential areas in which storage requirements may be reduced� The

�rst is based on the column extents� feigmi��� described in the previous section� This

provides an immediate savings of

nX
i��

�s� ei��

These savings are based exclusively on elements below the diagonal� A second

avenue towards saving space is provided through the use of shadow columns� To

illustrate this concept� start with the basis value matrix

C �

�
����������������

b b b � �

b b b � �

� b b b �

� b b b �

� � b b b

� � b b b

�
����������������

� �
���

To indicate the various states of the matrix entries during the transformations

distinct typefaces are used� The original B�spline values are indicated by b� b

denotes lower triangular entries of the column being processed and bmarks elements

that will be modi�ed as the Householder transformation is applied to that column�

Elements originally known to be zero and previously modi�ed will be indicated by

� This helps demonstrate the changes incurred from the transformation�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

Having found a Householder transformation that reduces the italic elements to

zero� all columns that have non�zero entries above the lowest italic entry must be

premultiplied� Again� the a
ected elements are denoted by the sans�serif b�

C �

�
����������������

b b b � �

� b b � �

� b b b �

� b b b �

� � b b b

� � b b b

�
����������������

�
���

The �rst transformation failed to alter the known zero elements� Those locations

changed as a result of the second Householder transformation� again shown as the

sans�serif entries� will include elements previously unused� Continuing with the

third transformation� there are again elements that are changed to become non�

zero�

C �

�
����������������

b b b � �

� b b
 �

� � b b �

� � b b �

� � b b b

� � b b b

�
����������������

�
���

Once the transformations reach the leftmost column� the shadow columns will

not modify any additional zero entries� Householder transformations continue to

be applied to each column until only upper triangular elements remain� Thus� the

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

example produces the �nal matrix�

C �

�
����������������

b b b � �

� b b
 �

� � b b

� � � b

� � � � b

� � � � �

�
����������������

�
���

With the example complete� the notion of shadow columns can be formally

de�ned� making the column top values� f�ig
m
i��� essential�

De
nition ��
 When applying the i�th Householder transformation to the matrix

C the shadow columns are the columns C i��� � � � � Cj� where j is the minimum

value for which the column extent �i 	 ej�

Thus� shadow columns are computed for each column that has a non�zero entry

with an index higher than the lowest non�zero entry of the current target vector�

Example ��� Returning to the previous example� the matrix in ����� has a target

vector of C�� It has as shadow columns C�� C�� since e� 	 ��� Similarly� the

matrix in ����� has C� as its target vector� with C�� C� as its shadow columns since

e� 	 ��� The last matrix ����� has shadow columns� C�� C��

Once the extents of all the shadow columns are computed� those matrix ele�

ments that are una
ected by the transformations are known� These are the upper

triangular entries which remained zero from �
��� to �
���� As these entries do not

contribute to the factorization� there is no need to store them�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

Depending on the savings provided by both the column extents and shadow col�

umn methods� it may be worthwhile to implement some form of sparse matrix �see

Chapter ��� The space savings must be weighted against the increased cost of

indexing such a structure�

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

��� Fitting to Multidimensional Data

The �tting procedure from the previous section provided a method for determining

a control mesh� V � f�igmi��� for an underlying set of B�splines� B
r
i �u�� from a set

of data points� D � fdigsi��� This relationship can be expressed as

D
Br
i�� V� �
���

We can use the same set of B�splines to �nd �ts between multiple data sets

fDigni�� and their computed control vectors f�ig
n
i��� yielding

Di

Br
i�� Vi�

Having a one multidimensional data setDn accommodates the usage of the curve

�tting process on each of the elements of the slice set in a particular dimension�

Example ��� Taking the data set D 	 IL����	 in Example 	�	 and generating the

slice set in the second dimension would produce the slice set � f�ig�i��� where

�i 	 IL���� Using the curve �tting process the sets of control vertices f�ig�i�� could

be produced�

In general� when given the data pointsD 	 ILi�������n and a dimension j� � 	 j 	 n�

in which to perform the �ts� there are

nY
l��

il�ij

elements in the slice set

 � ffdi������ing
sj
ij��g

sk
ik
gk�������j���j�������n� �
����

CHAPTER �� SPLINE FITTING IN ONE VARIABLE ��

Now a �t can be performed on each of the elements of the constructed slice set

D�

Br
i�� V�� � 	 �

Each of the slices in equation �
���� has sj elements and each slice produces mj

control points� This means that the original data D 	 ILi�� � �in is approximated by

the B�splines Br
i with the control points V 	 ILi������ij���m�ij�������in �

Chapter �

Fitting in Arbitrary Dimensions

Until now� discussion has been restricted to problems that can be solved with either

a one�variable B�spline i�e� a curve� or a set thereof� sharing a common set of basis

functions� In this chapter� the need for extending the �tting scheme to include

multi�variable splines� or hyper�splines� is presented� Increasing the number of vari�

ables in the �tting splines allows the �tting of entire multidimensional data sets

with a single B�spline formulation� This leads to an algorithm that produces ap�

proximating B�spline hyper�surfaces as a generalization of the existing curve �tting

process�

��� Motivation

While the example of �tting colour data in Chapter
 was instructive� its simplicity

re	ects the fact that it is unrealistic in several aspects� The most essential short�

coming is that there is little interest in increasing the accuracy of single colour

printing� Existing calibration methods for monochrome printers are su�cient ����

��

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

demands for �delity seldom exceed capabilities� A second reason why such simple

�tting techniques are inadequate is that no one�dimensional colour space exists�

The common models� as outlined in Section ���� all have at least three components�

The only single component model that can be considered is one based upon the

wavelength of light� This model is also inadequate� as no existing physical device

is capable of producing the entire spectrum of colours based on a single input� In�

stead� a desired colour is separated into components such as red� green and blue�

which can be output by electron guns�

The last motivation to move beyond splines of one variable comes from the in�

termixing of colours� For example� magenta inks may have traces of yellow in them

or combinations of magenta and cyan may re	ect more blue than is contained in

each of the individual inks� It is this �nal point that is of primary concern� Ideally�

neither of the proposed in�delities exists in the printer inks� Realistically� only a

spectroradiometer can determine the resultant output colour to any given input�

therefore� the inputs cannot be examined in isolation� Using simple� one variable�

�tting splines denies the opportunity to re	ect this intermixing of colours� Evalu�

ation can only be performed along the data dimension in which the approximation

was computed� A means of extracting information about the printer�s results in

each of the colour dimensions is required� Providing a multi�variable spline permits

the necessary interpolation for intermediate data points� Thus� points not on any

particular axis can be evaluated�

Data sets for colour consist of elements that have both the desired colour and

the actual output colour� as measured by the spectroradiometer� This leads to the

expected conclusion that the colour data sets are not simple vectors� nor are they

matrices� which could be addressed satisfactorily by the �tting techniques in �
�� ����

Instead� the data comes as rectangular lattice with data dimension three� four� or

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

higher� It would have been a simple matter to extend Sre�ckovi�c�s �tting schemes �
��

to accommodate data sets whose dimension is higher than two� However simplicity

is outweighed by the work involved in customizing the application for each separate

data dimension� A �tter was needed for the quick handling of colour spaces with

unforeseen data dimensions� Additionally� the increased precision of the resulting

�ts of Forsey and Bartels ���� was not required� As will be shown later� the data is

well approximated by basic tensor product B�splines�

��� Notation

With the objective of building on the existing B�spline �tter� the single�variable

B�spline curve from Chapter
 is extended to produce a B�Spline Tensor Product

Hyper�Surface�

De
nition ��� A B�Spline Tensor Product Hyper�Surface� C�u�� u�� � � � � un��

is an n�variable spline de�ned by

C�u�� u�� � � � � un� �
m�X
i���

m�X
i���

� � �
mnX
in��

�i��i����inB
r�
i�
�u��
��B

r�
i�
�u��
�� � � �B

rn
in
�un�
n�

�����

where B
rj
ij
�uj�
j� is the j�th B�spline basis� with order rj� dimension mj� and is de�

�ned over the knot sequence
j � f
j�ig
mj�rj��
i�
 � The control points V � �i��i������in 	

ILm��m������mn

t � form a rectangular lattice�

The reader may recall from Example ��� that the j�th basis functions in the

i�th variable were denoted as B

i�
j ��

i�� At that point the extra detail provided by

the knot sequences was unnecessary� Now� the superscript �i� was replaced by the

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS �

argument
i to reinforce the notion that the B�splines in each variable are indepen�

dent of those in the remaining variables� That stated� from this point onward the

short form B
rj
ij
�uj� will be used in place of B

rj
ij
�uj�
j� with the understanding that

the B�splines in each of the variables can have a unique knot sequence�

The multidimensional data set describing the n�variable mapping problem con�

sists of a set of inputs ��� � � � � �n and the result components ��� � � � � �t� Each input

is sampled at various points along a range� giving lowi � �i in the i�th input�

Additionally� each input has sampling point at each extent� giving�

�i � lowi � �i�

�i � highi � �ini �

A single sampling set produces a data set with a data dimension of one� When

observations are based on multiple inputs the set will contain one entry from each of

the possible combinations of inputs� The entire set of combinations can be expressed

through the Cartesian product of the individual sampling sets� This provides a data

set with rectangular lattice structure whose input components are the n�tuples

���i�� � � � � �
n
in
�� subject to the ranges detailed previously� The corresponding output

component is

�i������in � ��
�
i������in

� � � � � �t
i������in

��

So the �tting problem is one of �nding a spline of the form

C��� � C���� � � � � �n� �
mnX
i�

� � �
m�X
i�

�i������inB
r�
i�
��i� � � �Br�

i�
��i��

where �i������in � ��
�
i������in

�ti������in��

In the multidimensional generalization the evaluation points continue to be iden�

tical to the input points� So in the i�th spline variable the evaluation points are

�i � f�ijg
si
j��� meaning the �tting spline should satisfy C��

�
i�
� � � � � �nin� � �i������in�

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

Extending the residual function from Equation �
��� is now straight�forward�

De
nition ��� The Least Squares Residual Norm of a data set D 	 ILs��s������sn
n�t

and a �tting hyper�spline C�u�� u�� � � � � un� that approximates it is

res�C�D� �
s�X

i���

s�X
i���

� � �
snX

in��

kC���i�� �
�
i�
� � � � � �nin�� �i��i������ink �����

where �i��i������in � ��
�
i� �i������in

� � � � � �t
i��i������in

��

The de�nition of a curve �tter must also be extended to arbitrary dimensions�

De
nition ��� A hyper�surface
t provides the solution to the minimization of

equation ���	��

With these de�nitions in place� the process of �tting data in arbitrary dimen�

sions can be detailed�

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

��� Fitting Algorithm

In Chapter
 the control net� V 	 ILm
t � was found for a curve that �t a vector

of results points� A 	 ILs
t � Such problems had a data dimension of one� a spline

domain dimension of one� and t result components� The equivalence between the

data and spline domain dimensions is fundamental and always exists� Problems of

increased complexity� such as colour data �tting� involve �nding the control net V 	

ILm������mn

t for a hyper�surface that approximates the lattice of result components

A	ILs������sn
t � Here� both the spline domain dimension and data dimension are n�

When dealing with multidimensional data sets the �tting of each element of the

slice set along the j�th data dimension yields a control net with mj elements� With

this reduction� focus moves from the result components� A	 ILs������sn � to a data

set

�i��i������in 	 ILs������sj���mj�sj�������sn � ���
�

Entries in the reduced data set� �i��i������in � ���
i��i������in

� � � � � �t
i��i������in

� retain the

same number of result components as the original�

In general there is no ordering of data dimensions that� when slicing is per�

formed� provide results that are superior to any other order� For convenience the

convention of taking slices from the highest data dimension� n� through to the low�

est� �� is used� This can also be described as working from the n�th spline variable�

un� through to the �rst spline variable� u�� If� as suggested� only one slice is taken�

the convention implies that it would be in the n�th data dimension� Thus� j � n�

simplifying equation ���
� to�

�i��i������in 	 ILs������sn���mn � �����

With the ordering of an approach in place� the �tting process is performed in

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

a stepwise fashion over each of the n variables in the data dimension� The last

preparatory item is the set of substitution variables f�

k�
in�k�������in

gnk��� referred to as

the intermediate control nets�

The process begins when the �rst intermediate control net is extracted from the

original hyper�spline formula

C�u�� � � � � un� �
mnX
in��

mn��X
in����

� � �
m�X
i���

�i������in���inB
r�
i�
�u�� � � �B

rn��
in��

�un���

� �z �
�
�n�
in

Brn
in
�un��

�����

where �
n�
in

� ����n�
in

� � � � � �t�n�

in
�� By rewriting equation ����� in terms of �
n�

in
� the

�tting spline is simpli�ed to�

C�u�� � � � � un� �
mnX
in��

�

n�
in
Brn

in
�un�

In turn� the �tting problem reduces to solving the system�

mnX
in��

�

n�
in
Brn

in
�un� � A� �����

Since A is extracted directly from D� its entries are �i������in� with components

���
i� �����in

� � � � � �t
i������in

�� where � � ij � sj� j � �� � � � � n�

The hyper�spline �tting problem is now expressed in the same format as Equa�

tion �
���� The solution to such systems can be found by taking a slice set of

the data and performing a series of curve �ts� as described in Section
��� With

A 	 ILs������sn
t and the reduction from equation ����� the structure of the �rst

intermediate control net is known to be �
n�
in
	 IL

s������sn���mn

t �

The original problem of �nding V 	 ILm��m������mn has been reduced to the

simpler task of �nding a hyper�spline in n� � variables� The next step in the

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

process is to solve for �

n�
in
� This leads to another approximation�

mn��X
in����

mn��X
in����

� � �
m�X
i���

Ci��i����inB
r�
i�
�u�� � � �B

rn��
in��

�un���

� �z �
�
�n���
in���in

B
rn��
in��

�un��� � �

n�
in
�

Now the substitution is performed� as in Equation ������ to get

mn��X
in����

�

n���
in���in

B
rn��
in��

�un��� � �

n�
in
� �����

With the intermediate control points �
n�
in
available from equation ������ the solution

to ����� is also given by equation �
����

The substitution process continues by solving the general equation

mk��X
ik����

mk��X
ik����

� � �
m�X
i���

�i��i����inB
r�
i�
�u�� � � �B

rk��
ik��

�un���

� �z �
�
�k���
ik�������in

B
rk��
ik��

�uk��� � �

k�
ik �����in

for k � n��� � � � � �� When the step n�� is solved the �tting is complete� The

unknown control net from equation ����� is found in the identity

�i������in � �

��
i������in

� �����

Example ��� The data set D 	 IL����	� from Example 	�	� is to be �t by a ��

variable spline� C�u�� u�� u��� with basis dimensions m� � m� � m� �
� Following

the stated convention� the slice set from the third dimension is taken �rst� The

���
	� ��element vectors are passed through the curve �tter to produce twenty

��element vectors of intermediate control points� After this step the result compo�

nents of the data set D 	 IL����	 are replaced by �

��
i�
	 IL������ Continuing� by

slicing along the second data dimension� yields ���
�� ��element vectors� These

are given to the curve �tter� which computes �fteen ��element vectors producing

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

�

��
i��i�

	 IL������ Finally� the �rst data dimension is sliced� providing ���

 ��

element vectors for the curve �tter� The nine resulting ��element vectors de�ne

�

��
i��i��i�

	 IL������ From the identity in ����� the control points �i��i��i� � �

��
i��i��i�

produce V 	 IL������ as desired�

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

��� Multidimensional data

To this point no justi�cation of the suitability of this �tting process has been o
ered�

There are several assumptions that have been made which will now be explained�

The �rst assumption is that the control net provided by this stepwise process

is the best one� There are two underlying questions that ground this assumption�

First� does a direct� non�stepwise method for such �tting exist� and if so� do the

results provided by this method match those obtained from the stepwise method�

Indeed a direct method does exist� but as the following discussion demonstrates

its computational complexity makes its use prohibitively expensive� To demonstrate

this expense� two notational conveniences are used� the �rst is the function "�C��

which yields the column vector obtained by placing the columns of C� from right

to left� atop one another� The second is the Kronecker product of two matrices C
��

and C
��� denoted by �C
�� � C
����

De
nition ��� The Kronecker product of two matrices C
�� 	 IRs��m� and

C
�� 	 IRs��m� is the s�s� �m�m� matrix given by

�C
�� � C
��� �

�
���������

C
�����C
�� C
�����C
�� � � � C
����m�C
��

C
�����C
�� C
�����C
�� � � � C
����m�C
��

���
���

� � �
���

C
��s���C
�� C
�����C
�� � � � C
��s��m�C
��

�
���������
�

Finding the least squares solution to the system

m�X
i���

m�X
i���

�i��i�B
r�

��i�

Br�

��i�

� Ds��s�

can be reduced to

�C� �C��"�V � � "�D�� �����

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

This is presented without proof� with the reader referred to the literature ���� ���

for details� Equation ����� demonstrates that a multi�variable �tting spline can be

computed directly� The cost of such a direct approach is dominated by the expense

of the factorization of �C� � C��� Since factorization is an O�n�� process� the cost

of solving the minimization directly would be

�s�s�m�m��
�

compared with a cost of

�s�m��
� � �s�m��

�

for the stepwise method� The potential savings o
ered by the iterative method

means that it is almost always chosen in the literature� as was done here�

The second assumption is that the stepwise process can be applied to the di�

mensions of the data and intermediate control nets in any order� the convention

used takes slices starting in the highest data dimension and progressing towards the

�rst data dimension� This assumption is valid because all work is being performed

in Cartesian coordinates� meaning that the coordinate vectors are mutually orthog�

onal� Thus� minimizing the sum of squares of all the components of a vector can be

achieved by minimizing each of the coordinates individually� without adjusting any

of the others� The mathematical equivalence of the iterative and direct methods�

also detailed in ���� ���� means that no ordering of the iterations will provide a

better solution� so any order will su�ce�

The �nal assumption was that the control net could be found independently

for each dimension of the space in which the �tting spline exists� The ��bases are

found by a SVD� as outlined in Section ���� This produces a basis that is not only

linearly independent� but also orthogonal� Least squares �tting and orthogonality

CHAPTER �� FITTING IN ARBITRARY DIMENSIONS ��

are mutually supportable� implying that the least squares minimization� with re�

spect to an orthogonal basis� can be carried out independently with respect to each

basis element� Such characteristics are not demonstrated by non�orthogonal bases�

Chapter �

Visualization

In Chapter
 the approximation criterion was presented as a function� This provides

a simple analytic tool to measure the success with which a data set is �t by a curve�

When dealing with colour data there are other� less objective measures of suc�

cess� These are based on known attributes of the data set� For example� with

CMYK inputs� it is known that the �rst alpha basis will decrease as the percent�

age concentration of any of the input colours decreases� Such characteristics would

help indicate problems not hinted at by the residual value� An example of this

would be when the residual was not undesirably large while the hyper�surface ap�

proximation of the �rst alpha basis was constant� instead of decreasing� Another

example comes from the knowledge that observations of inputs that are to produce

dim colours� such as browns and dark blues� cannot be measured with the same

accuracy as brighter colours� Thus� a high residual may be acceptable� provided

that the majority of its size comes from poor approximation of such murky colours�

With these additional measures of �t quality established a means must be pro�

vided which allows the researcher to gauge these subjective criteria� The goal of this

��

CHAPTER �� VISUALIZATION �

work is to provide an easy�to�use and extensible set of tools that allow researchers

to quickly develop applications� The resulting applications can be used not only

to produce �ts but also to help develop a satisfactory de�nition of quality through

visualization of those �ts�

The two constituents of the data set each present visualization problems� The

inputs� or independent variables� are easily handled when they are not too numer�

ous� In �tting with a planar curve� the results can be plotted as heights along a

single axis� When dealing with two inputs� the results� plotted as heights above

their arguments� require a projection for display by existing printers or monitors�

Displaying the entire set of results as heights cannot be extended beyond this point�

With three inputs� a domain volume may be drawn and the heights displayed for

any slice that holds one of the inputs constant� The observer may be aware of the

existence of a third input but is restricted to viewing a subset at any given moment�

When faced with data sets containing more than three inputs only a subset of the

domain can be displayed by the volume� Further� as in the three input case� only

results from two of the chosen three inputs can be displayed�

The result components also introduce di�culties� Take for example where the

number of output components was constant� t � �� for data sets with varying

numbers of inputs� Examining the result components for a one variable data set

can be accomplished by plotting eight curves� one for each result component� It

has been established that two independent variables is the limit to the height �eld

method� regardless of whether they come from two inputs or from more inputs�

with some being held constant� Thus� a series of eight surfaces can be used for

data sets with multiple inputs� With a large number of result components� such

as the eight alpha basis coe�cients� the surfaces can become intertwined� leaving

the option of displaying them as planes with contour lines� or simply viewing one

CHAPTER �� VISUALIZATION ��

result component at a time�

Visualizing multidimensional data sets is an area of active research� Experi�

mental methods for the display of results using motion� colour� or specialized data

entry markers do permit the interpretation of entire data sets� Given the infancy

of such work and the lack of applications that adequately address multidimensional

data� the results from this work were analyzed by viewing subsets thereof with a

commercial product� Wavefront�s Data Visualizer�

��� Data Views

The methods used to present the �tting results are now introduced with the data

set itself� providing the opportunity to demonstrate the subset techniques described

earlier�

The visualization application restricts the number of input dimensions to three�

With data sets having four sampling dimensions a tradeo
 must be made to display

static images� In this and subsequent visualization sections� the input for black� K�

is considered to always be zero� This value was chosen for simplicity and does not

re	ect any particular bias in the result components� Outlining the domain serves

as an indicator to the viewer that additional� unseen� data exists�

Using a mesh to display the data provides a reminder that it contains discrete

points� This convention will allow the reader to disambiguate immediately between

the data and the �tting surface� which is displayed through continuous shading�

Each �gure contains three cut planes �
�� through the CMY� input volume�

Interactively� only one plane is used and it is easily moved along the yellow axis�

With each input having the range �������� the results at Y��� Y������ and Y����

CHAPTER �� VISUALIZATION ��

have been chosen to give the reader an impression of the data�s characteristics�

Little is gained by providing displays for all eight of the result components�

Rather� a select few components are used to demonstrate high level characteris�

tics� such as constant value areas� or strictly decreasing regions� which should be

mimicked by the �tting spline�

To accentuate the subtleties in the data� the range for each alpha component is

di
erent� The ranges will remain �xed across subsequent �gures that display the

same component�

Figure ��� shows the �rst result component� ��� These coe�cients exhibit the

characteristic of decreasing value as concentrations of magenta and cyan increase�

Again� it is essential that the �tting curve approximate this downward slope�

A display of the result component �� �Figure ���� provides a demonstration of

aberrations in the data� seen as peaks in the topmost slice� These are typically due

to experimental error� but they will still contain some information about the colour

produced by the inputs at the given concentrations� It is the �tter�s task to ignore

the error and the investigator�s job to provide a spline with enough precision to

interpolate the correct value�

The �nal data �gure �Figure ��
� shows ��� which is unusual in that the coe��

cients tend to form a valley in the mid�range of cyan� This last �gure emphasizes

the independence of both the shape and range of the alpha basis coe�cients�

��� Fitting Surfaces

The �tting spline exists� necessarily� over the same domain as the data set� Given

the continuity of the speci�cation� it may be sampled as frequently as necessary�

CHAPTER �� VISUALIZATION ��

Figure ���� Cut planes for the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ���� Cut planes for the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ��
� Cut planes for the �� coe�cient�

CHAPTER �� VISUALIZATION ��

depending on the granularity desired by an investigator� This means that a true

surface can display the approximation without implying the existence of unknown

values�

In displaying each result component individually an investigator can interac�

tively view the basic shape of the �tting hyper�spline� At this point choices made

for the spline basis order and number of segments can be evaluated� Should the de�

gree of the basis be raised� This would provide an closer approximation to the data�

while incurring additional cost during evaluation� Are more segments needed� This

alteration involves a trade�o
s between a higher residual and the worry of �tting

the noise in the data�

Considering the smoothness of the data� i�e� there were no folds or sharp peaks�

initial �ts were computed using a two segment spline in each data dimension� Fig�

ures� ��� � ���� show these �rst approximations of the data presented in the last

section�

��� Direct Comparison

Not all the questions posed in the last section can be answered with only the �tting

surface visible� A direct comparison of the original data with the surface that

approximates it may provide additional insights �Figures� ��� � ����

What may appear to be a problem spot for the surface� i�e� a rapid change in

shape along one of its variables� may simply be an artifact of a very noisy data

point� By showing the two together such an anomaly may be better understood�

CHAPTER �� VISUALIZATION ��

Figure ���� Two segment �t of the the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ���� Two segment �t of the the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ���� Two segment �t of the the �� coe�cient�

CHAPTER �� VISUALIZATION �

Figure ���� Cut planes and �tted surface for the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ���� Cut planes and �tted surface for the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ���� Cut planes and �tted surface for the �� coe�cient�

CHAPTER �� VISUALIZATION ��

��� Residual Display

To gain a better understanding of the elements that sum to provide the residual

value� a new surface may be produced from the di
erence between the data set and

the �tting spline� Of course� the de�nition of this surface can only be as �ne as the

sampling points used to compute the residual�

Figure ���� outlines the varying levels of success achieved in the initial �t� This

provides a simple means to determine if the characteristics of the �tting splines

need to be changed�

Working with the assumption that more segments can be introduced without

approximating any of the error in the data� a �tting spline was produced with three

segments� When this is done it may be di�cult to determine the improvement in the

approximation� A simple way to analyzing the e
ects of this change it to visualize

the di
erences between the two residual surface� as is done in Figure �����

For the most part the addition of another segment has brought the �tting surface

only slightly closer to the data� The one exception is the data spike in the top slice�

with the surface making signi�cant movement towards it�

For this data set the move to splines with four segments would not provide better

approximations� due to the in	uence of noise� At this point the �tting is considered

complete� Queries of the hyper�surface will provide access to information needed

to perform accurate colour reproduction� as discussed in detail in Chapter ��

The goal throughout this visualization process is to provide an investigator with

intuitive� meaningful� representation of the approximation� While it is true that

other methods exist to convey this information� concern here is not with the manner

in which the message is delivered� only that details required to de�ne a suitable

hyper�surface are accessible�

CHAPTER �� VISUALIZATION ��

Figure ����� Residual values for a two segment �t of the �� coe�cient�

CHAPTER �� VISUALIZATION ��

Figure ����� Change in residual values after the addition of a third segment to the

�� �t�

Chapter �

The Minimization Process

The colour printing hardware used for this work provided data in which the sam�

pling set consisted of a regularly spaced lattice of points in CMYK space� These

sets were measured by spectroradiometry� as ��tuples� ��� � � � � ��� of ��basis coef�

�cients� Completion of the �tting process results in a spline hyper�surface that

functionally approximates the output characteristics of a speci�c printer�

The �tting spline� C�u�� � � � � un�� provides a function that maps points in CMYK

space to points in the space of the ��bases� This function can be evaluated with

tools detailed in Chapter �� At this point� the following question can be answered�

Given a requested colour Pcmyk � which is required to be a point in the domain of

the hyper�surface� what colour will actually be produced by the printer� P����������

Here the printed colour is a point in the range of the spline

C�Pcmyk� � C�c�m� y� k� �� ��cmyk
� � � � � ��cmyk

�

Directly� such information is of little use and poses a demanding problem� When an

artist or designer wants a speci�c colour on a piece of paper they are not concerned

��

CHAPTER �� THE MINIMIZATION PROCESS ��

with the inputs provided to the printer� A speci�c result is desired without concern

for the route taken to achieve it�

What is needed is the ability to ask for a desired colour� P���������� and be provided

with the inputs that must be sent to the printer� Pcmyk � to achieve this result� In

terms of a mathematical function� it is the inverse of C that is needed to allow

access to the desired colours�

C�����cmyk
� � � � � ��cmyk

� � Pcmyk

Since there is no known inverse function for an arbitrary B�spline hyper�surface� an

appeal must be made to a minimization process to �nd particular values of C���

The minimization process solves two similar but notably distinct problems�

Those are� one� �nding the parameter points from the domain of the B�spline� re�

quired to reproduce a colour and two� determining a suitable substitute for colours

that cannot be produced on a speci�c printer� The similarity in these problems is

due to the fundamental underlying question� what parameter point is closest to the

one that produces the desired colour� Even when asked to produce an attainable

colour only the closest point approximation will be attained� since the �tting spline

itself does not interpolate the data points�

��� The Minimization Engine

At the lowest algorithmic level� the function minimization is performed by existing

routines ����� Details of how this was incorporated into these tools can be found in

Chapter �� This is a local minimizer� meaning that it will �nd the parameter value

that minimizes the objective function only if it is provided with a suitable starting

point� A complete treatment of such minimization problems is given in �����

CHAPTER �� THE MINIMIZATION PROCESS ��

The availability of this minimizer reduces the problem to one of �nding a suitable

initial guess for the closest point�

De
nition ��� The minimization problem for a point� Pi������in consists of �nd�

ing an initial parameter point �u�� � � � � un� that permits a minimizing algorithm to

converge upon the solution point �u��� � � � � u
�

n�� Additionally� this convergence must

be to a point that minimizes the function

kC�u��� � � � � u
�

n�� Pi������ink�

��� Conversion to B	ezier form

During the �tting procedure any change to control vertices of a B�ezier spline would

require constraints to preserve continuity� such constraints are not required for B�

splines� Now that the �tting process is complete� the control vertices are set and no

further changes are required� The derivative conditions outlined in that section are

maintained as the resulting B�spline hyper�surface is re�represented as equivalent

B�ezier splines� This permits the easy computations of �rst derivative roots�

Given that B�ezier curves are a special case of the more general B�spline repre�

sentation� the conversion of the �tting spline to B�ezier form is relatively simple�

Theorem ��� Any NUB�spline whose knots all have order�multiplicity is equiva�

lent to a B�ezier that has those points as its breakpoints�

The conversion process is simply a matter of inserting any necessary knots to

raise all knot multiplicities to a su�cient level� The proof of this theorem can be

found in �����

CHAPTER �� THE MINIMIZATION PROCESS ��

��� Seeding the Minimizer

The minimization engine used in this work ���� implements a variation of the secant

method ���� Successful convergence to minima is assured� subject to the criteria that

the interval in which the minimization takes place can have� at most� a single change

in sign of the �rst derivative�

Complying with the restriction involves �nding the in	ection points of the �tting

spline and subdividing the B�ezier hyper�spline into intervals with the necessary

attributes� This was done by subdividing the spline until every segment in each

of the n variable dimensions was either strictly increasing or decreasing� There is

no theoretical proof that this subdivision has been su�cient to guarantee that a

global minimum will be found� The results obtained and presented in Chapter �

demonstrate that typical surfaces provide initial parameter points in the correct

segment� allowing the minimizer to be successful in �nding the true minimum�

With the hyper�surface su�ciently subdivided� there are two distinct approaches

to determine the closest point solution�

����� The Minimization Method

The process begins by converting the NUB�spline formulation �computed through

the stepwise process in Chapter �� into the equivalent B�ezier representation� This

conversion is the basis for the re�nement criteria detailed in Section
��� The

conversion is simple� with the multiplicity� qi�j� of each knot in each of the vectors�

f
gni�
� being raised to the order of the spline in that dimension� ri�

The elimination of segments that will trap the local minimizer is a two step

process� First� the �in	ection points� of the B�ezier hyper�surface are located� This

CHAPTER �� THE MINIMIZATION PROCESS �

requires that the polynomial representation of the hyper�surface along each of the

n variables be found� From this� zero values in the �rst derivative are computed�

The parameter points of these zeros are used to subdivide the hyper�spline� further

demonstrating the need for a spline that can be re�ned easily� When all the re�ne�

ments are completed no segment of the hyper�spline remain that might trap the

minimizer�

The control point method of minimization assumes that the convex hull property

of B�ezier formulations� along with the subdivision� have made the control points a

good approximation of the actual spline� By determining the control point that is

closest to the exterior point� a parameter point in the region of in	uence of that

control point can be used as the initial seed to the minimizer� This parameter point

is computed via an extension to the Greville point� whose original de�nition for the

B�spline Br
i �u� is the average of the parameter points
i��� � � � �
i�r��� The exten�

sion consists of averaging all the Greville points for the B�splines Br
i �u�� � � � � B

r
i�r�u�

in	uenced by the control point �i�

The availability of these initial parameter methods means that a user need

only supply the desired external point� An initial parameter will be computed

automatically and the minimum found� Details of this procedure follow in Chapter �

as part of the implementation speci�cation�

This is the conclusive product of work� Current research ��� makes use of these

minimization results to demonstrate the feasibility of various cross�rendering meth�

ods� The goal here is not to �nd the de�nitive solution to this dual media problem�

Rather� success is measured in terms of the facility provided by these tools to others�

Chapter �

Implementation

Previous chapters have described data sets that� by virtue of their rectangular

topology� are candidates for �tting� These sets have data dimensions that range

from three� for simple CMY observations� to eight� using the alpha bases to measure

results� It would be impractical to write an application suitable for these and all

other potential data dimensions�

The goal of this work is to provide C�� libraries that can be used to build pro�

totype applications to solve colour �tting problems� Development of these classes

was accelerated by building upon existing work �
�� ���
��� The encapsulation and

inheritance features of the C�� language ��
� minimized the integration problems

typically encountered outside the object oriented paradigm ����� Steadily increas�

ing the functionality of prototyping tools has been the ongoing goal of the Splines

Project since ���� �
��� This is the fourth work produced as part of this ongoing

project� As such it uses existing classes� written by peers� while building new classes

that future researchers may use�

While contributing to tools that are of general use to computer graphics re�

��

CHAPTER �� IMPLEMENTATION ��

searchers� each project within the group produces classes tailored to focused prob�

lems� In this case� the tools will help build applications to �t printer spectra data�

where the data dimension is arbitrary� Applications will produce hyper�spline for�

mulations that can be used to determine appropriate input values� typically CMYK�

to send to a printer to render the desired colour � as measured by the alpha bases

� onto paper�

Before the application is outlined� the various support classes must be outlined�

There are two categories of classes� those that extend current �xed dimension

approximation tools and those that were built to support the unique characteristics

of the colour �tting problem� Complete interface details� in the form of manual

pages� are provided in Appendix B�

The Splines Project is organized into a series of libraries� each containing a set

of closely related or directly inherited classes� The SmallTalk and NIH ���� model�

which consists of one large inheritance tree� is avoided in lieu of a forest of many

small trees�

�� Indexing Schemes

When working with data of arbitrary dimensions the simple indexing schemes nor�

mally used to access vector and matrix elements become cumbersome to implement

in each of the myriad of potential data dimensions� The Lattice class library con�

tains the lowest level of support for multidimensional data by bundling a variety

of indexing schemes� Each class in the Lattice library implements operators that

take an arbitrary number of index values and convert them into a single index�

suitable for accessing data stored as a vector�

CHAPTER �� IMPLEMENTATION ��

Storage reduction is provided by the CompMatIndex class� which is built from the

column tops and extents of the B�spline evaluation matrix� described in Section
���

This allows the banded matrix to be indexed as though it were a complete matrix�

Avoiding unde�ned matrix elements is the responsibility of the application� though

the class enforces rules to deny such access to non�compliant applications�

Code Sample ��� Constructing an instance of the CompMatIndex requires the col�

umn tops and the number of elements in each column� The IntVec �	
� class is a

simple integer array�

IntVec tops���� �� � column matrix

IntVec sizes����

tops��� 	
� tops��� 	
� tops�
� 	 �� �� First non�zero row

sizes��� 	
� sizes��� 	 �� sizes�
� 	
� �� Last non�zero row

CompMatIndex ti�tops� sizes�� �� The indexer

Data sets based on a rectangular lattice� with all entries de�ned� are supported

by the abstract base class Lattice� All descendant classes� such as STensorIndex�

must provide an implementation of the multiple to single indexing operator� which

is a pure virtual operator in Lattice� Structures such as the control net of the

hyper�spline and the original data set itself are accessed easily by STensorIndex�

The intermediate control nets produced during the stepwise �tting process also

make use of this indexing scheme�

Code Sample ��� Instances of the TensorIndex only require the size of each di�

mension� This example constructs an indexer to access the data from Example

	�	�

IntVec sizes���� �� ��d matrix

sizes��� 	 �� sizes��� 	 �� sizes�
� 	
� �� of size �x�x

TensorIndex ti�sizes�� �� The indexer

CHAPTER �� IMPLEMENTATION ��

The repeated slicing of data sets required during the �tting process is facilitated

by the STensorIndexPerm class� The similarity in naming is meant to help users

know that this indexes into the same rectangular structure as the STensorIndex�

The di
erence is in the interpretation of the index values during an iteration through

the index� The order of signi�cant indices within a STensorIndexPerm is arbitrary�

though �xed at construction time� This user speci�ed ordering makes the determi�

nation of slice sets trivial in any data dimension�

Code Sample ��� The slice set from Example 	�� is easily obtained from the fol�

lowing instance of TensorIndexPerm�

IntVec sizes���� �� ��d matrix

IntVec order����

sizes��� 	 �� sizes��� 	 �� sizes�
� 	
� �� Size �x�x

order��� 	 �� order��� 	 �� order�
� 	
� �� Digit significance

TensorIndexPerm ti�sizes�order�� �� The indexer

Index ranges are not always zero based� When mass evaluations are performed

across the domain of a spline� they typically iterate along the entire fully de�ned

range in each dimension� Lattices that are based at non�zero indices are handled

by the doubly bounded indexing class DBTensorIndex�

Code Sample ��� The size of the DBTensorIndex in each dimension is implied

by the extents along those dimensions�

IntVec bot���� �� ��d matrix

IntVec top����

bot��� 	
� bot��� 	 �� bot�
� 	
� �� Range minima

top��� 	 �� top��� 	
� top�
� 	 �� �� Range maxima

DBTensorIndex ti�bot� top�� �� The indexer

CHAPTER �� IMPLEMENTATION ��

These indexing methods are rarely used directly� Rather they are used with a

data vector� as described in the next section

Lattice

CompMatIndex TensorIndex

TensorIndexPermDBTensorIndex

Figure ���� Indexing Classes

�� Multidimensional Arrays

The power of the indexing classes is seldom used without an associated set of data

points� This fact lead to the development of a parallel set of classes to act as

data maintainers for the Lattice library� These data maintenance classes form

the SIndexedVec library� Applications and other class member functions rely on

classes from this library� rarely accessing the Lattice library directly�

The SCompMat class is comprised of the indexing class CompMatIndex and a

vector of 	oating point values� There is no need to maintain a vector with arbitrary

length tuples� as this class is used to store B�spline evaluations� Such evaluations

are 	oating point values� regardless of the number of variables in the approximating

hyper�spline�

CHAPTER �� IMPLEMENTATION ��

Code Sample ��� Building a SCompMat is a simple process� once the underlying

indexing class is constructed�

IntVec tops���� �� � column matrix

IntVec sizes����

tops��� 	
� tops��� 	
� tops�
� 	 �� �� First non�zero rows

sizes��� 	
� sizes��� 	 �� sizes�
� 	
� �� Last non�zero rows

CompMatIndex ti�tops� sizes�� �� The indexer

SCompMat mat�ti�� �� The data maintainer

The basic indexing functions provided by the Lattice class are combined with a

vector of arbitrary length tuples to form the abstract base class SIndexedVec� This

class underlies all maintainers of gridded data that have entries with an arbitrary

number of components�

As expected� the STensorVec class facilitates access into a rectangular grid of

tuples� its indexing operators simply appealing to the corresponding STensorIndex

member� A similar wrapper was envisioned for all the indexing classes� providing

a parallel library�

Code Sample ��� When constructing a STensorIndex for the control net of a

hyper�spline its tuple length must be n� t�

IntVec sizes���� �� For a ��d index

sizes��� 	 �� sizes��� 	 �� sizes�
� 	 �� �� of size �x�x�

TensorIndex idx�sizes�� �� The indexer

STensorVec tup��� idx�� �� Tuple length is �

The Spline Project is maturing in concert with the C�� language� During the

development of the SIndexedVec library templating �
�� C�� compilers became

CHAPTER �� IMPLEMENTATION ��

available� This advance provides means to implement the class SIdxVec� which

takes classes inheriting from Lattice as arguments at instantiation� Data main�

tenance for the STensorVecPerm indexer is provided by SIdxVec� Other classes�

such as SCompMat and STensorVec� were rendered redundant by the arrival of tem�

plating compilers� They remain in the delivered tools as time constraints did not

permit complete retro�tting of existing code�

Code Sample ��� Many types of data maintainers can be created in a similar

fashion with the availability of templates� The indexer type must be supplied along

with the data storage type and the tuple length� Complete details of the appropriate

data types are in the Appendix B�

IntVec bot���� �� ��d matrix

IntVec top����

bot��� 	
� bot��� 	 �� bot�
� 	
� �� Range minima

top��� 	 �� top��� 	
� top�
� 	 �� �� Range maxima

DBTensorIndex ti�top� bot�� �� The indexer

SIdxTuple�DBTensorIndex� DoubleVec� TupleVec� tup�idx� ���

Code Sample ��
 The �exibility of the SIdxTuple is shown here as another type

of indexer is used to access data�

IntVec sizes���� �� ��d matrix

IntVec order����

sizes��� 	 �� sizes��� 	 �� sizes�
� 	
� �� Size �x�x

order��� 	 �� order��� 	 �� order�
� 	
� �� Digit significance

TensorIndexPerm ti�sizes�order�� �� The indexer

SIdxTuple�TensorIndexPerm� DoubleVec� TupleVec� tup�idx� ���

CHAPTER �� IMPLEMENTATION ��

It is important to note that instances of both STensorVec and the STensorIndexPerm

version of SIdxVec can share the same set of data� since the data is always main�

tained as a simple vector� This provides an easy means to manipulate the same

data from varying perspectives�

SIndexedVec

STensorVec

SCompMat

SIdxTuple

Figure ���� Data Classes

�� Multivariable Splines

The support for multidimensional data sets provided by the SIndexedVec library

minimizes the work required to implement classes for splines with an arbitrary

number of variables� These classes form the SHypSurf library�

Existing B�spline basis classes provide tested evaluation routines� Their cor�

rectness is assumed� given the history of their use in the development of B�spline

CHAPTER �� IMPLEMENTATION ��

curve and surface classes �
���

The hyper�splines required for this work are tensor products� Extending existing

implementations in two variables to functions in n variables was straightforward�

While many evaluation member functions exist � see Appendix B� they all center

on the single point evaluation routine that implements the B�spline bases� control

vertex formula from equation ������ The new classes SHypSpline and SHypBSpline

abstract the notions of a tensor product surface and a tensor product B�spline sur�

face respectively� This abstraction accelerates the implementation of two restricted

forms of B�spline hyper�surfaces� namely the SHypNUBSpline and SHypBezSpline�

These are used to maintain nonuniform B�spline hyper�surfaces �produced by the

�tting process� and their B�ezier counterparts used by the minimizer� respectively�

Code Sample ��	 All that is required to create a hyper�spline for �tting are the

orders and dimensions� For brevity the knot vectors are initialized to their defaults�

�� �� ���� ri�mi� Only the number of components are required for the control net� as

the structure of the lattice is implied by the bases� The entries of the control net

are computed during the �tting process�

IntVec ords������ �� All orders are �

IntVec dims������ �� All dimensions are �

SHypNUBSurf t�ords� dims� ns� ��� �� ��variable spline with

�� ��d control points� knot

�� vectors default to ��
������

Code Sample ���� The B�ezier counterpart can be constructed from the same in�

formation as the nonuniform spline� Alternatively� as is done in the prototype

applications a SHypNUBSurf can be used as the construction parameter�

CHAPTER �� IMPLEMENTATION �

IntVec ords������

IntVec dims������

SHypBezSurf s��ords� dims� ��� �� A Bezier�volume

SHypNUBSurf s
�ords� dims� ��� �� A NUB�volume

SHypBezSurf s�� s
 �� �� A Bezier�volume

Given the need for hyper�splines whose segments guarantee convergence by the

minimizer� the B�ezier representation may require subdivision� The points at which

subdivision is to occur are found by the class BezCV
Poly� which provides a polyno�

mial representation of the B�ezier hyper�surface� Such a formulation can be passed

o
 to existing polynomial classes for in	ection point location�

Code Sample ���� The process of �nding �rst derivative roots is trivializes by

the BezCV
Poly class� Here� the polynomial representation of a B�ezier spline is

found via a member function�

BezCV
Poly conv���� �� Converts a �th order Bezier

DoubleVec cvs�
������ �� The cvs ���������

��

�� Compute the polynomial co�effs for the given control net

��

DoubleVec coeffs 	 conv�getCoeffs�cvs��

�� Multidimensional Fitters

Continuing with the extension of existing work to arbitrary dimensions� the SHypSurfFit

library was implemented� This development completes the progression from exist�

ing curve �tters and surface �tters to the approximation of data by hyper�splines�

CHAPTER �� IMPLEMENTATION ��

SHypSurf

SHypBSurf

SHypNUBSurfSHypBezSurf

BezCv2Poly

Figure ��
� Multivariable Spline Classes

CHAPTER �� IMPLEMENTATION ��

Following the same design as its predecessors� the SHypSurfFit classes maintains

a set of data to be approximated and a B�spline formulation� At the outset� this

B�spline contains only basic information such as the orders and knot vectors for

each variable� The �tter completes the structure by computing the control vertices

based on the data set� While the curve and surface �tters use the general facilities

of the LINPACK library to derive their control nets� the multidimensional �tter

uses the Householder method detailed in Section
���

Code Sample ���� The �tting of a data set with the hyper�spline from Code Sam�

ple ��
 involves just one member function� once the data and surface are combined

within the �tter�

SHypNUBSurf surf� ords� dims� tupleLen ��

SHypNUBSurfFit fitter�data��

fitter�defaultSurfaceSet� �realSurf ��

fitter�lsFit���

cout �� �The fitted surface is � �� realSurf �� ��n��

�� Linear Algebra Classes

To maximize the advantage provided by the banded format of the B�spline eval�

uation matrix� a custom library� SLinAlg� was written� The SLeastSqHH class

performs a QR�factorization on a matrix� maintained by the SCompMat class� to

�nd a solution to the approximation problem via Householder transformations�

Though consisting of a single class� the SLinAlg library has been created to high�

light the main attribute of its member� the ability to factorize a matrix� Future

CHAPTER �� IMPLEMENTATION ��

SHypSurfFit

SHypBSurfFit

SHypNUBSurfFit

Figure ���� Fitting Classes

work with special format matrices may produce classes with functionality similar

to SLeastSqHH� The extraction of common functionality would permit the develop�

ment of a base class for generalized factorization methods�

Code Sample ���� Using the indexer from Code Sample ��� a SCompMat is out�

lined� The entries in the basis evaluation matrix are assumed to be provided from

the input stream� Factorization of the supplied matrix is completed as part of the

class construction� The SLeastSqHH is then ready to solve to linear systems� when

provided with a data vector�

SCompMat mat� ti �� �� The data maintainer

SLeastSqHH hh� mat �� �� Factorizing class

DoubleVec rhs�

cin �� rhs�

cout �� �Solution is � �� hh�solve� rhs � �� ��n��

CHAPTER �� IMPLEMENTATION ��

SLeastSqHH

Figure ���� Linear Algebra Classes

�� Minimization Classes

The minimization library� SMinimizer� provides a C�� interface to a local minimizer

���� along with several initial parameter routines� These combine to provide a

global minimizer for descendants of SHypBSurf� The success of the minimization

process depends on the topological characteristic of the underlying �tting surface�

The removal of potential trouble areas� as described in Chapter �� is essential in

allowing this class to converge consistently onto the desired minimum values� This

too is a 	edgling library and future work may add to its contents� Meanwhile� the

unique functionality of its sole class justi�ed the existence of a separate library�

Code Sample ���� The minimization class only requires a surface over which it

can compute points� This is used in the search for those parameter values whose

evaluation lies closest to the user speci�ed point�

SHypNUBSurf aSurf� �� A surface instance

cin �� aSurf� �� Read in details

SHypSurfMinim mine� �aSurf �� �� Attach surface to minimizer

parVals 	 mine�closest� point ���� Using the minimizer

CHAPTER �� IMPLEMENTATION ��

SHypSurfMinim

Figure ���� Miminimization Classes

�
 Data Input�Output

All classes produced within the Splines Project provide member functions to sup�

port object persistence� This mechanism provides a simple communication path

between applications�

In this case the typical split was at the hyper�spline class� One application

would read in the data and perform the �tting� The resultant hyper�spline could

then be written out to disk� to be used by various applications� Those applications

include one that reads in the hyper�spline and formats an output stream readable

by the Data Visualizer� This might be termed a format manipulation application�

as is commonly found in image processing� A second type of application reads in

the hyper�spline to perform minimizations based on user inputs� Typically� the

original sampling points� which span the printer gamut� would be provided to such

a minimization application to generate the inputs needed to produce the desired

colours�

�� Application Prototyping

The applications built using these libraries will typically have three distinct com�

ponents�

 Colour data �tting

CHAPTER �� IMPLEMENTATION ��

 Closest point minimization

 Post�processing

While initial experiments are being conducted� only the �tting component is

required� Once the user is satis�ed with the resulting �ts� the application can

be extended to include the minimizer� Alternatively� two smaller applications can

be written� with the necessary data transferred between them using the persistence

operators� The minimizer permits interactive querying of the �tted surface to deter�

mine closest point solutions� The results of such queries can be used to determine

the input values that must be sent to the printer to get the closest possible ap�

proximation to the desired colour� irrespective of the desired colour�s location with

respect to the printer�s gamut�

Finally� post�processing is meant to include any analysis that is done on the

minimization results�

��	�� Data Fitting

Data Input If the data is provided in a format that is understood by the input

operators of the STensorVec� this step reduces to calling that member function�

Otherwise� the data must be converted into such a format�

Spline Characteristics As outlined in Section ��
 details of the �tting hyper�

spline must be provided to seed the process� The orders and knot vectors� which

imply the spline space dimension� must be fed to the application�

CHAPTER �� IMPLEMENTATION ���

Build Hyper�Surface With the essential characteristics of the �tting spline

available the application can build an instance of the SHypNUBSurf class� For now

the control net remains unde�ned�

Build Fitter The data and the hyper�spline are brought together at this point

to create an instance of the SHypNUBSurfFit class� The entire �tting process is

contained within its member functions� This allows the approximation to be easily

performed by calling the SHypNUBSurfFit��lsFit�� function�

��	�� The Minimization Process

Once a suitable hyper�spline has been determined the minimization engine can be

used�

Prepare spline formulation The �tting spline is readily available when the

minimization application is combined with a �tting application� If these two appli�

cations are separate the spline must be read from the output stream of the �tter�

Re
ne problem areas Any potential problem areas within the hyper�spline�

as described in Section ��
��� must be handled at this point� A polynomial rep�

resentation is extracted from the B�ezier version of the �tting spline by using the

BezCV
Poly class� Existing derivative and root �nding routines provide those points

at which the hyper�surface should be re�ned� This subdivision process is handled

by Splines Project classes predating this work�

Build a minimizer This step merely attaches the re�ned surface to the mini�

mization engine� As the underlying minimizer is a local minimizer� the determi�

CHAPTER �� IMPLEMENTATION ���

nation of a suitable initial parameter is essential� Such a parameter allows the

minimizer to converge on the surface point closest to the user supplied external

point�

Query minimizer The member functions of the SMinimizer class will provide

closest point solutions based on the attached surface� The user simply speci�es

the external point �desired colour� and the initial parameter method� The options

for the initial parameter method are detailed in the manual page as well as in

Section ��
� The minimizer will then return a point within the printer�s input

domain to produce the desired colour�

��	�� Post�Processing

With the closest point returned �based on the user�s desired colour� the application

is now able to interpret the result� This interpretation might be based on a series of

queries� i�e� are all the returned colours within some tolerance� The results might

be used directly to control a printer� thus providing an accurate reproduction of

the desired colour�

As mentioned in the introduction� the mandate of this work is not to provide

uses for these results� only to make the results easily accessible to other researchers�

Chapter �

Future Work

Having achieved the original goal of developing means to �t multidimensional

printer data� it is important to consider future directions� Possible paths have

become apparent as results from this approach were examined�

Chapter � outlines how intervention is required to supply the optimal number of

�tting segments� While such information is never simple to determine� the charac�

teristics of printer data may prove helpful� One potential avenue is the development

of a statistical method for determining the number of segments that best �t a given

data set�

The methods used in Chapter � to re�ne the �tting surface have performed

as required� Experience has demonstrated that� in practice� excessive subdivision

is occurring� A more rigorous method may be required to approach the optimal

re�nement of the �tting surface� within the constraints of the minimizer�

A desire to improve upon the existing solutions to these two problems is rooted

in the goal of packaging a stand alone application� By polishing existing tools� more

convenient� transportable systems can be created� One use of such systems is the

���

CHAPTER 	� FUTURE WORK ��

generation of a gamut mapping table to do on�the�	y colour conversion within a

digital printer�

All these routes remain faithful to the original assumption that least squares

proximity of desired and produced colour is meaningful� Though true� least squares

systems are just one of many possible approaches� Currently� the computation of a

closest point subject to linear constraints is a desirable goal� Inputs would be the

same as those currently used while the system would �nd the closest point on a

result gamut� subject to a given illumination�

The development of new ideas and solutions to them continues� Closing the

time gap between these two events is an important task� which was addressed in

hopes of releasing the 	ow of ideas from the worries of implementation�

Appendix A

Summary of Notation

The notation used throughout this work is presented� along with the corresponding

page reference of their de�nitions�

Data Sets

�j
i������in

the j�the result component at entry i�� � � � � in of the data set ���

�i sampling set in the i�th data dimension� � � i � n ���

�i a slice of the data set in the i�th data dimension ����

 i the entire slice set in the i�th data dimension ����

A the set result components of a data set ����

Dn an n�dimensional data set ����

ILi the space of i�tuples ����

n the data dimension ���

t number of result components in each data set entry ���

���

APPENDIX A� SUMMARY OF NOTATION ���

Splines

 knot vector of a B�spline ����

�i element in the control net ����

� intermediate control net� from the stepwise process ����

Br
i �j� a i�th B�spline of order r� in the �tting along the j�th data di�

mension ��
�

C�u� B�spline formulation for �tting spline ���� ���

li index of the interval containing ui lives ����

m dimension of a B�spline� also number of control points ����

n number of variables in the spline equivalent to the data set di�

mension ���

q multiplicity of a knot ����

r order of a B�spline ��
�

V control net of the �tting spline curve ����

Matrices

� number of parameter points u with lui 	 i ��
�

C matrix of B�spline evaluations �
��

C i the i�th column of C �
��

Ci the i�th row of C �
��

C
i� submatrix of non�zero B�spline values for all uj where lj � i �
��

e column extent of C� ��
�

APPENDIX A� SUMMARY OF NOTATION ���

Factorization

Hi the i�th Householder transformation �
��

QC orthogonal component of the QR decomposition of C ����

RC upper triangular component of the QR decomposition of C ����

Appendix B

C		 Class Manual

In keeping with the goal of providing durable tools for application prototyping�

classes within the Splines Project are documented by an automatic manual page

generation system� The coordination of code development and documentation en�

sures that future users of this work are not required to learn complete implemen�

tation details�

���

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/Lattice (3) C++ class manpages/Lattice (3)

NAME
Lattice – An abstract class for multi-key to single key indexing

DESCRIPTION
A lattice allows for the creation of a map from a user defined n-dimensional space to a linear indexing
scheme. The user provides an outline of the space and the Lattice generates an unique integer for each ele-
ment in the space.

PREREQUISITES
rwmath, rwtool, STools

SEE ALSO
TriangleIndex, TensorIndex.

AUTHOR
Bruce Hickey, bhickey@watcgl.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS Lattice
Base class(es)
public SError

Friends
ostream& operator<<(

ostream& os,
const Lattice& inst

);

Public members
enum latEnum { BEGIN = -9, END = -99 };

Lattice(void);
A default (no arguments) constructor is included so we can create arrays of Lattice.

Lattice(unsigned n);
A n-dimensional Lattice

Lattice(const Lattice&);
Copy constructor.

virtual ˜Lattice(void);
Class destructor.

virtual int operator ()(int);
virtual int operator ()(int, int);
virtual int operator ()(int, int, int);

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/Lattice (3) C++ class manpages/Lattice (3)

virtual int operator ()(int, int, int, int);
virtual int operator ()(int, int, int, int, int);
virtual int operator ()(IntVec& i);

The first five opreators simply build an Intvec and call the last version. This exist simply to allow
flexible access. They all update the index member.

virtual int operator ()();
Get map of current value in index.

int operator++();
int operator--();

Shorthand for next()/prev().

void deepenShallowCopy(void);
Dealias data.

virtual int getDimension() const =0;
virtual void putDimension(unsigned) =0;

Retrieve/change the dimension. The new dimension is returned after the change.

virtual IntVec getIndex(void) const;
virtual int getIndex(int i) const;
virtual int putIndex(int i);
virtual int putIndex(int i, int n);
virtual int putIndex(const IntVec& i);

Retrieve/change the index vector to a specific number or sequence. PutIndex will return the map
of the new index.

virtual int prev(void) =0;
virtual int next(void) =0;

Move index to next/previous position and return map of new index.

virtual int first(void) =0;
virtual int last(void) =0;

Move index to next/previous position and return map of new index.

virtual RWBoolean isEOI(void) const ;
virtual RWBoolean isBOI(void) const ;

Check for Begining/End Of Index.

virtual int size(void);
The size of the array indexed by this lattice.

Protected members
IntVec index;

The last index, used for fast repeated access.

virtual RWBoolean verify(void) const =0;
Conditions specific to derived instances of Lattice.

virtual int multiToSingle(void) const =0;
Convert from multiple to single indexes, the multiple index used is the INDEX variable above.

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/Lattice (3) C++ class manpages/Lattice (3)

RWBoolean isEqual(const IntVec& iv, int n) const;
Check if all elements of iv are equal to n.

Private members
Nothing

INCLUDED FILES
iostream.h
rw/ivec.h
rw/rwstring.h
STools/SError.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ��

manpages/CompMatIndex (3) C++ class manpages/CompMatIndex (3)

NAME
CompMatIndex – A compressed matrix lattice

DESCRIPTION
This class converts from multiple to single indices where each multiple index represents a cell in an
2-dimensional virtual matrix. Compressed matrices provide a virtual matrix which allows for traditional
indexing operators. The addition of a indexing function allows the data to be stored in the minimum amount
of space.

IntVec start(4,2), sizes(4,3);
SCompMat(start, sizes);

This example will provide a virtual 4 by 6 matrix where only the elements with row indices greater than 1
can be accessed. A graphical output demonstrates the format of the matrix.

[X X X X]
[X X X X]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

In this case a 24 element virtual matrix only requires 15 doubles. Positions marked by an X cannot be
accessed. An access error will occur if any non-data element is accessed.

PREREQUISITES
rwmatx, rwtools, STools

SEE ALSO
SIndexedVec

AUTHOR
Bruce Hickey, bhickey@watcgl

BUGS
Only the standard output primitives are supported for input, the graphical
representation is not.

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS CompMatIndex
Base class(es)
public Lattice

Friends
istream& operator>>(

istream& is,
CompMatIndex& inst

);
ostream& operator<<(

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/CompMatIndex (3) C++ class manpages/CompMatIndex (3)

ostream& os,
const CompMatIndex& inst

);

Public members
CompMatIndex(void);

NULL Constructor, for arrays of CompMatIndex.

CompMatIndex(IntVec& v1, IntVec& v2);
A CompMatIndex with row data beginning at v1 and having a length of v2.

CompMatIndex(const CompMatIndex&);
Copy Constructor.

˜CompMatIndex(void);
Class destructor.

void reshape(const IntVec&, const IntVec&);
Change the tops/lenghts of the columns in the lattice.

CompMatIndex& operator = (const CompMatIndex& i);
Assign operations.

virtual int operator ()();
virtual int operator ()(int);
virtual int operator ()(int, int);
virtual int operator ()(int, int, int);
virtual int operator ()(int, int, int, int);
virtual int operator ()(int, int, int, int, int);
int operator()(IntVec& i);

The indexing routines.

int operator == (const CompMatIndex& i);
int operator != (const CompMatIndex& i);

Index comparison.

virtual int next(void);
virtual int prev(void);

Set to next/previous index from the current index.

virtual int getDimension(void) const ;
virtual void putDimension(unsigned);

Retrieve/change the dimension of the compressed matrix YOU CANNOT CHANGE THE
DIMENSION FOR THIS CLASS. The putDimension function exists only for compatability.

const IntVec& getTops(void) const ;
void putTops(IntVec&);

Retrieve/change the first element indices.

const IntVec& getSizes() const ;
void putSizes(IntVec&);

Retrieve/change the number of elements in the columns.

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/CompMatIndex (3) C++ class manpages/CompMatIndex (3)

int isFirst(void) const ;
int isLast(void) const ;

Check for first/last index.

int first(void);
int last(void);

Set to the first/last index.

virtual RWString className(void) const;
Class id

void printOn(ostream&, RWBoolean gFlag=FALSE) const;
void scanFrom(istream&);

I/O routines.

Private members
IntVec firstElem, colSizes;
DoubleVec vec;

Data vector, and its limits;

virtual int multiToSingle(void) const ;
Converting multiple index to linear index.

virtual RWBoolean verify(void) const;
virtual void checkEnds(void) const;
virtual void checkSizes(void) const;
virtual RWBoolean checkBounds(void) const;

static const unsigned fixedCMIDimension;
For now, we will only deal in 2-D

INCLUDED FILES
rw/ivec.h
rw/dvec.h
Lattice.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/DBTensorIndex (3) C++ class manpages/DBTensorIndex (3)

NAME
DBTensorIndex – A rectangular lattice with both upper and lower bounds

DESCRIPTION
A DBTensorIndex provides the same functionality as a TensorIndex with the addition of a lower bound on
each index. While the range of a TensorIndex is : [0, uMax[0]-1] ... [0, uMax[last]-1] that of a DBTensorIn-
dex is [uMin[0], uMax[0]] ... [uMin[last], uMax[last]].

IntVec top(3), bot(3);
x[0] = 5; x[1] = 3; x[2] = 5;
bot[0] = 1; bot[1] = 0; bot[2] = 1;
int const len = 4;
DBTensorIndex ti1(bot, x);
DBTensorIndex ti1(bot, x, DBTensorIndex::TOP);

// These both index into the array [[1..5],[0..3],[1..5]]
DBTensorIndex ti2(bot, x, DBTensorIndex::LEN);

//Indexes into the array [[1..2],[0..5],[1..4]]
DBTensorIndex ti3(bot, len);

//Indexes into the array [[1..4],[0..3],[1..4]]
int size1 = prod(x-bot+1) = ti1.size();
int size2 = prod(x) = ti2.size();
int size2 = pow(len,bot.length()) = ti3.size();
<Type> array[t1.size()]; // The data

These functions allow you to declare arrays of the sizes given and index into them without keeping track of
each bound yourself.

PREREQUISITES
TensorIndex, VecMtx, RWTools, STools

SEE ALSO
TriangleIndex

AUTHOR
Bruce Hickey, bhickey@watcgl.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS DBTensorIndex
Base class(es)
public TensorIndex

Friends
istream& operator>>(

istream& is,
DBTensorIndex& inst

);
ostream& operator<<(

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/DBTensorIndex (3) C++ class manpages/DBTensorIndex (3)

ostream& os,
DBTensorIndex& inst

);

Public members
enum mode { TOP, LEN };

Two different constructor types.

DBTensorIndex(void);
NULL Constructor.

DBTensorIndex(const DBTensorIndex&);
Copy Constructor.

DBTensorIndex(
const IntVec& bot,
const IntVec& x,
mode m=TOP

);
DBTensorIndex(const IntVec& bot, unsigned len);

Constructor with initialization values.

˜DBTensorIndex(void);
Destructor.

DBTensorIndex& operator = (const DBTensorIndex& i);
Assign operator.

int operator == (const DBTensorIndex& i);
int operator != (const DBTensorIndex& i);

Index comparison.

IntVec top(void) const;
IntVec bot(void) const;
unsigned top(unsigned) const;
unsigned bot(unsigned) const;

Retrieve the top/bottom index for all/the specifed dimension.

void top(unsigned i, unsigned n);
void bot(unsigned i, unsigned n);

Change the size along the Nth parameter space.

void reset(void);
Set the top/bottom to zero.

virtual RWString className(void) const;
Class id.

virtual IntVec getIndex(void) const;
virtual int getIndex(int i) const;

Get the current index.

void putDimension(unsigned n);

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/DBTensorIndex (3) C++ class manpages/DBTensorIndex (3)

Change the dimension.

void printOn(ostream&);
void scanFrom(istream&);

I/O routines.

Protected members
IntVec bottom;

First index along each parameter

const static RWString classname;
Class id.

Private members
Nothing

INCLUDED FILES
TensorIndex.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SIdxTuple (3) C++ class manpages/SIdxTuple (3)

NAME
SIdxTuple – Vectors of elements indexed by lattices.

DESCRIPTION
This class holds data the can be indexed by a variety of existing lattices. Additionally the data can be of
several types. The user must specify the data type and the element type at instantiation. The possible tem-
plate instantiations are:

SIdxTuple< "Lattice", Triple, TupleVec >
SIdxTuple< "Lattice", SPoint, SPointVec >
SIdxTuple< "Lattice", SPoint, SDPointVec >
SIdxTuple< "Lattice", SVector, SVectorVec>
SIdxTuple< "Lattice", SVector, SDVectorVec >

where "Lattice" can be any class derived from Lattice

PREREQUISITES
Lattice, Tuple, STools, RWTools, VecMtx

SEE ALSO
STriVec, STensorVec

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

TEMPLATE CLASS SIdxTuple
Template argument(s)
class latticeType
class PointType
class VecType

Base class(es)
public SError

Public members
SIdxTuple(void);

Default constructor.

SIdxTuple(SIdxTuple&);
Copy constructor.

SIdxTuple(latticeType lat, unsigned vecElemLen=3);
Creates a VecType, with tuples of length vecElemLen, the size of the VecType is determined bt
the lattice. Since we typically do work in 3-space the element length defaults to this.

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SIdxTuple (3) C++ class manpages/SIdxTuple (3)

˜SIdxTuple(void);
Class destructor.

inline PointType operator()(unsigned a);
inline PointType operator()(unsigned a, unsigned b);
inline PointType operator()(
unsigned a,
unsigned b,
unsigned c
);
inline PointType operator()(
unsigned a,
unsigned b,
unsigned c,
unsigned d
);
inline PointType operator()(IntVec&);

Data access.

inline latticeType& refLattice(void);
Return a reference to the lattice. This is designed to be overloaded be derived classes to return a
reference of their type.

virtual inline RWString className(void) const;
Class id.

void scanFrom(istream&);
void printOn(ostream&);

I/O primitives

Protected members
VecType data;

The data is contained in the SIdxTuple.

latticeType lattice;
The indexing function, a copy is made and retained by the SIdxTuple.

void verify();
Input verification.

Private members
Nothing

OPERATORS, FREE FUNCTIONS, CODE, ETC.
template<

class latticeType
class PointType
class VecType

>
istream& operator>>(

istream& is,
SIdxTuple<latticeType, PointType, VecType>&

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ��

manpages/SIdxTuple (3) C++ class manpages/SIdxTuple (3)

);

template<
class latticeType
class PointType
class VecType

>
ostream& operator<<(

ostream& os,
SIdxTuple<latticeType, PointType, VecType>&

);

INCLUDED FILES
iostream.h
STools/SError.h
Tuple/TupleVec.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SIndexedVec (3) C++ class manpages/SIndexedVec (3)

NAME
SIndexedVec – Base class for Lattice indexed tuple vectors

DESCRIPTION
This is an abstract class for indexed TupleVecs. A derived class must provide an indexing function which is
derived from the Lattice class.

PREREQUISITES
Lattice, Tuple, STools, RWTools, VecMtx

SEE ALSO
STriVec, STensorVec

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS SIndexedVec
Base class(es)
public SError

Public members
SIndexedVec(void);

Default constructor.

SIndexedVec(const SIndexedVec&);
Copy constructor.

SIndexedVec(TupleVec& data, Lattice* x);
Creates a TupleVec, with tuples of length tLen.

SIndexedVec(
unsigned int tLen,
unsigned int size,
Lattice* x

);
Creates a TupleVec, with tuples of length tLen.

˜SIndexedVec(void);
Class destructor.

inline DoubleVec operator()(unsigned int) const;
inline DoubleVec operator()
(

unsigned int,
unsigned int

) const;

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SIndexedVec (3) C++ class manpages/SIndexedVec (3)

inline DoubleVec operator()
(

unsigned int,
unsigned int,
unsigned int

) const;
inline DoubleVec operator()
(

unsigned int,
unsigned int,
unsigned int,
unsigned int

) const;
inline DoubleVec operator()(IntVec&) const;

Data access.

inline const Lattice& refLattice(void) const;
Return a reference to the lattice. This is designed to be overloaded be derived classes to return a
reference of their type.

inline const TupleVec& refData(void) const;
Return a reference to the data.

virtual RWString className(void) const=0;
Class id.

unsigned int tupleLength(void) const;
The length of the tuples in the vector.

Protected members
TupleVec data;

The data

Lattice *baseIdx;
Pointer to the indexing function.

Private members
Nothing

INCLUDED FILES
iostream.h
STools/SError.h
Lattice/Lattice.h
Tuple/TupleVec.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SCompMat (3) C++ class manpages/SCompMat (3)

NAME
SCompMat – A virtual 2-D matrix

DESCRIPTION
SCompMat(s) gives the illusion of a complete 2-D matrix of doubles but only stores data for valid positions
in the indexing lattice. This is essentially a data container for the CompMatIndexer lattice. This class is not
derived from the SIdxTuple class because it handles tuples and I only want doubles.

PREREQUISITES
Lattice, Tuple, STools, RWTools, VecMtx

SEE ALSO
CompMatIndexer

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS SCompMat
Base class(es)
public SError

Friends
ostream& operator<<(ostream&, SCompMat&);
istream& operator>>(istream&, SCompMat&);

Public members
SCompMat(void);

Default constructor.

//SCompMat(SCompMat&); Copy constructor.

SCompMat(CompMatIndex& indexer);
Creates a doubleVec with the size given by the indexer

SCompMat(DoubleGenMat& mat);
Builds an SCompMat from a DGEMatrix-- BE CAREFUL -- this function does a test with zero to
determine the bounds of the matrix.

˜SCompMat(void);
Class destructor.

operator DoubleGenMat();
Returns an uncompressed matrix with a copy of this data.

void reshape(const IntVec&, const IntVec&);

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SCompMat (3) C++ class manpages/SCompMat (3)

Reshape the matrix - useful when you’ve contructed an array of this class and need to add some
detail to it.

const CompMatIndex& refLattice(void) const;
Reference to the indexer.

DoubleVec col(int j);
double& operator()(unsigned int, unsigned int) ;

Data access.

unsigned int topPos(unsigned int) const;
unsigned int botPos(unsigned int) const;
unsigned int diagPos(int j) const;

How far into the data-only column is the real diagonal position.

unsigned int rows(void) const;
unsigned int cols(void) const;

Info members

virtual RWString className(void) const;
Class id.

void printOn(ostream&, RWBoolean grFlag=FALSE);
void scanFrom(istream&);

void verify(void);

Protected members
DoubleVec data;

The data

CompMatIndex idx;
Pointer to the indexing function.

Private members
static const RWString classname;

Identifying name for the class.

INCLUDED FILES
iostream.h
rw/dvec.h
rw/dgenmat.h
STools/SError.h
Lattice/CompMatIndex.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL �
�

APPENDIX B� C

 CLASS MANUAL �
�

manpages/STensorVec (3) C++ class manpages/STensorVec (3)

NAME
STensorVec – A multi-dimensional tensor.

DESCRIPTION
This class holds and indexes into a multi-dimensional array, such as those used to maintain the control
mesh of a rectangular Bezier volume.

PREREQUISITES
Lattice, Tuple, STools, RWTools, VecMtx

SEE ALSO
TensorIndex, STriVec, SIndexedVec

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS STensorVec
Base class(es)
public SIndexedVec

Friends
istream& operator>>(istream& is, STensorVec& inst);
ostream& operator<<(

ostream& os,
const STensorVec& inst

);

Public members
STensorVec(void);

The default constructor.

STensorVec(unsigned tLen);
Create a TensorVec with tuples of size tLen, the default Tensor Index will be used. The data can
be customized via the reshape() function.

STensorVec(unsigned tLen, TensorIndex& x);
Create a TensorVec with tuples of size tLen using x’s indexing scheme.

STensorVec(TupleVec& theData, TensorIndex& x);
Use the given data and x’s indexing scheme.

STensorVec(const STensorVec& x);
Copy constructor.

˜STensorVec(void);

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL �
�

manpages/STensorVec (3) C++ class manpages/STensorVec (3)

Class destructor.

void printOn(ostream&) const;
void scanFrom(istream&);

I/O routines.

virtual inline RWString className(void) const;
Class id.

STensorVec& operator=(const STensorVec&);
Assignement operator - copies data.

STensorVec& operator+=(const STensorVec&);
STensorVec& operator-=(const STensorVec&);
STensorVec& operator*=(const STensorVec&);
STensorVec& operator/=(const STensorVec&);

Vector arithmetic.

STensorVec& operator+=(double);
STensorVec& operator-=(double);
STensorVec& operator*=(double);
STensorVec& operator/=(double);

Scalar arithmetic.

void deepenShallowCopy(void);
Used to dealias data - copy constructors alias data.

STensorVec copy(void) const;
Make a separate copy.

inline const TensorIndex& refLattice(void) const;
Reference to the indexer.

inline unsigned size(unsigned n) const;
Get the size of the TensorVec in the Nth dimension.

void resize(unsigned dim, unsigned sz);
Resize the the TensorVec in the Nth dimension, data may be corrupted.

unsigned dimension(void) const;
void dimension(unsigned);

Query/change the dimension of *this.

void reshape(const IntVec&);
void reshape(unsigned, const IntVec&);

Change the shape of the underlying lattice as well as resizing the data vector. The second case
allows you to resize the tupleLength of the data.

void trim (const IntVec& start, const IntVec& len);
Trim away elements not in the specified range. All other data remain unchanged, except thier
indices will be adjusted such that the element in the ’start’ postion will be translated to 0,0..0.

STensorVec slice(IntVec&);

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL �

manpages/STensorVec (3) C++ class manpages/STensorVec (3)

Return only the specified elements.

STensorVec subTensorVec(const IntVec& start, const IntVec& len);
Return TensorVec, with it’s own indexer, with the given dimensions.

Protected members
void verify(void) const;

Validate input.

Private members
TensorIndex idx;

Indexing function.

OPERATORS, FREE FUNCTIONS, CODE, ETC.
double dot(const STensorVec&, const STensorVec&); Dot product

INCLUDED FILES
iostream.h
Lattice/TensorIndex.h
SIndexedVec.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL �
�

APPENDIX B� C

 CLASS MANUAL �
�

manpages/SHypSurf (3) C++ class manpages/SHypSurf (3)

NAME
SHypSurf – Parametric hyper-surface container class

DESCRIPTION
A parametric volume is a map from the plane to n space. Additions consist of curvature computing routines
- Gaussian as well as maximal and minimal curvatures can be computed (including the associated direc-
tions).

PREREQUISITES
STools, VecMtx, RWTools

SEE ALSO
TPSurf

AUTHOR
Bruce Hickey, bhickey@watcgl.uwaterloo.ca

CLASS SHypSurf
Base class(es)
public SError {

protected:
SHypSurf();

public:
virtual ˜SHypSurf();

virtual DoubleVec realEvaluate(DoubleVec& pt, IntVec& der) const =0;
virtual inline DoubleVec evaluate(DoubleVec& pt) const;
virtual inline DoubleVec evaluate(DoubleVec& pt, IntVec& der)const;

Evaluate the point on the surface at pt or evaluate the der-th order parametric derivative.

virtual void evaluate(DoubleVec* pts, IntVec& der, STensorVec* vals) const;
virtual void evaluate(DoubleVec* pts, STensorVec* vals) const;

Evaluate the surface along the hyper-grid formed by the elements of the pts vectors. Fill the vals
structure with the details.

double safeStep(double x0, double x1, int nPts) const;
Determine the step required to get from x0 to x1 in n steps.

void gridEvaluate(DoubleVec& start, DoubleVec& stop, IntVec& steps,
STensorVec* vals);

Evaluate the surface along the hyper-grid formed by the elements of the vectors, v[i]. Each v[i] is
computed as steps[i] equally spaced points on the interval (start[i]-stop[i]). The vals structure is
filled with the evaluation results.

};

INCLUDED FILES
strstream.h
iostream.h
rw/dvec.h
rw/ivec.h

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL �
�

manpages/SHypSurf (3) C++ class manpages/SHypSurf (3)

SIndexedVec/STensorVec.h
STools/SError.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL �
�

APPENDIX B� C

 CLASS MANUAL �
�

manpages/SHypBSurf (3) C++ class manpages/SHypBSurf (3)

NAME
SHypBSurf – A container class for basis spline tensor product

DESCRIPTION
Bezier surfaces are derived from this.

NOTE
This is set up to evaluate the surface at the "last knot" as if that knot was the part of the previous segment
(and not give back zero).

PREREQUISITES
Refiner, FuncBasis, ForwDiff, Tuple, NumberSequence, VecMtx, HTuple

SEE ALSO
SHypNUBSurf

AUTHOR
Bruce Hickey bhickey@watcgl.uwaterloo.ca

CLASS SHypBSurf
Base class(es)
public SHypSurf {

private:

protected:

unsigned numB;
The number of pointers in the following array.

BBasis **bBasisPntr;
Array of pointers to the bases.

unsigned spaceDegree;
This is the dimension of the space we expect.

void verify(void) const;
Verify the size of the control mesh and the basis dimensions correspond.

STensorVec cvMatrix;
The control point lattice.

inline void hook(unsigned, BBasis* nB);
An array of numB pointers to the bases. This routine must be called to hook this class’ pointers to
the bases in the derived class. These bases are not yet created at SHypBSurf construction time and
consequently must be attached through this function. It must be called once for each basis.

public:
SHypBSurf();
SHypBSurf(int dim, IntVec& cmSizes, unsigned sd=3);
SHypBSurf(int dim, const STensorVec& m);
SHypBSurf(int dim, STensorVec& m);

These constructors are called by a derived class’ constructor which has not recieved bases pointers
in its argument list. These must be called in conjunction with init(). The spaceDegree of the last

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL �
�

manpages/SHypBSurf (3) C++ class manpages/SHypBSurf (3)

two ctors is implied by the size of the STensorVec.

virtual ˜SHypBSurf();
Desctructor.

inline unsigned numBases() const;
Get the number of bases in *this.

virtual DoubleVec realEvaluate(DoubleVec& pt, IntVec& du) const;
inline DoubleVec realEvaluate(DoubleVec& pt) const;

Evaluate a point on the surface or a parametric derivative. This is called by evaluate routines. The
second routine simply builds an empty IntVec and sends it to the first.

const BBasis& refBasis(unsigned n) const;
inline const BBasis** refBasis(void) const;

return a reference to the Nth basis, or all the bases at once.

virtual NumberSequence knots(unsigned n);
virtual NumberSequence breakpoints(unsigned n);

return the knot sequence for the Nth basis.

inline STensorVec& cvMat();
inline const STensorVec& cvMat() const;

Return the appropriately typed copy of the control mesh.

void cvMat(const STensorVec& x);
Set the entire control mesh. The sizes of x must agree with the bases.

inline DoubleVec cv(int);
inline void cv(int, const DoubleVec& newVert);
inline DoubleVec cv(IntVec&);
inline void cv(IntVec&, const DoubleVec& newVert);

Access or change a control vertex. The length of the DoubleVec is always spaceDegree

int dimension(unsigned n) const;
Get the size, in the Nth dimension, of the control vertex array. This is also the dimension of the
Nth basis function.

IntVec dimensions(void) const;
Get the size control vertex array in each dimension. Again, this is the dimension of the basis func-
tions.

int order(unsigned n) const;
IntVec order() const;

The order of the Nth basis/all bases.

virtual void printOn(ostream&) const;
virtual void scanFrom(istream&) ;

I/O routines.

};

ostream& operator<<(ostream&, const SHypBSurf&);

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypBSurf (3) C++ class manpages/SHypBSurf (3)

istream& operator>>(istream&, SHypBSurf&);

CLASS DECLARATIONS
class NumberSequence

INCLUDED FILES
iostream.h
rw/dvec.h
rw/dgemat.h
SIndexedVec/STensorVec.h
FuncBasis/BBasis.h
SHypSurf.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypBezSurf (3) C++ class manpages/SHypBezSurf (3)

NAME
SHypBezSurf – A Bezier hyper-volume

DESCRIPTION
Represents a Bezier tensor-product surface.

PREREQUISITES
Tuple, BezBasis, Refiner

SEE ALSO
SHypSurf, SHypBSurf

AUTHOR
T

CLASS SHypBezSurf
Base class(es)
public SHypBSurf {

public:

SHypBezSurf();
Default constructor.

SHypBezSurf(const IntVec& ords, const IntVec& numCPs, unsigned sd=3);
Specify the order and number of control points (numCPs[i]+1) in each dimension

SHypBezSurf(IntVec& ords, IntVec& dim, NumberSequence* bps, unsigned sd=3);
Specify the order/dimension/knots in each dimension, control points will be set to 0

SHypBezSurf(IntVec& ords, NumberSequence* bps, STensorVec& cvs);
Specify the orders/breakpoints in each dimension, control points are given explicitly.

SHypBezSurf(SHypBezSurf& x);
Copy constructor

virtual ˜SHypBezSurf();
Destructor.

virtual NumberSequence breakpointVec(int n);
Gets an alias to the knots of the Nth basis, so you can examine breakpoints and stuff. See Num-
berSequence for details about getting data out of the sequence. The simplest operation on a Num-
berSequence is accessing knots via knots(n)[i]. Often this is all you’ll need.

SHypBezSurf& operator=(SHypBezSurf&);
Assignment operator, doesn’t copy data. NOT IMPLEMENTED

BezSurf<NTuple, TupleMatrix> tpSlice(IntVec&);
Return a the BezSurf which lies in the indicated slice.

void rootSmooth(void);
Add breakpoints, based on "roots" to create a hyper-surface where each patch is "smoother"

void simpleSmooth(int numNewBps);
Add the given number of new breakpoints to each segment, in each dimension. This, in an effort to

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ��

manpages/SHypBezSurf (3) C++ class manpages/SHypBezSurf (3)

make the patches smoother.

void addBreakpoint(double newBp, int dim);
void addBreakpoints(NumberSequence& newBps, int dim);

Refine the surface by adding the given breakpoint(s) in the given dimension.

virtual RWString className(void)const ;

virtual void printOn(ostream&) const;
virtual void scanFrom(istream&) ;

I/O routines.

protected:

const static RWString classname;
Class identifier.

BezBasis *bezBasisPntr;
Array of bases.

DoubleVec findRoots(int dim);
Find all the first derivative roots of the polynomial components of the spline hyper-volume, in the
given dimension.

private:

};

ostream& operator<<(ostream&, const SHypBezSurf&);
istream& operator>>(istream&, SHypBezSurf&);

CLASSDOC ON

INCLUDED FILES
rw/ivec.h
FuncBasis/BezBasis.h
TPSurf/BezSurf.h
NumberSequence/NumberSequence.h
SHypNUBSurf.h
SHypBezSurf.in

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypNUBSurf (3) C++ class manpages/SHypNUBSurf (3)

NAME
SHypNUBSurf – Non-uniform B-spline Hyper volume

DESCRIPTION
Represents a non-uniform tensor product B-spline surface. A simple example of using SHypNUBSurf is in
SHypNUBSurf.tst.cc. This program evaluates the surface and normals at a mesh of points, then renders
using Renderer.

PREREQUISITES
Tuple, NUBBasis, Refiner, HTuple

SEE ALSO
SHypSurf, SHypBSurf

AUTHOR
T

CLASS SHypNUBSurf
Base class(es)
public SHypBSurf {

private:
protected:

NUBBasis *nubBasisPntr;
Array of bases.

public:

SHypNUBSurf();
Default constructor.

SHypNUBSurf(IntVec& ords, IntVec& numCPs, unsigned sd=3);
Specify the order and number of control points (numCPs[i]+1) in each dimension

SHypNUBSurf(IntVec& ords, IntVec& dim, NumberSequence* kts, unsigned sd=3);
Specify the order/dimension/knots in each dimension, control points will be set to 0

virtual ˜SHypNUBSurf();
Destructor.

//virtual inline NumberSequence knots(int n); Gets an alias to the knots of the Nth basis, so you
can examine breakpoints and stuff. See NumberSequence for details about getting data out of the
sequence. The simplest operation on a NumberSequence is accessing knots via knots(n)[i]. Often
this is all you’ll need.

virtual inline RWString className(void)const ;

virtual void printOn(ostream&) const;
virtual void scanFrom(istream&) ;

I/O routines.

NUBSurf<NTuple, TupleMatrix> tpSlice(IntVec&);
Return a the NUBSurf which lies in the indicated slice.

};

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypNUBSurf (3) C++ class manpages/SHypNUBSurf (3)

ostream& operator<<(ostream&, const SHypNUBSurf&);
istream& operator>>(istream&, SHypNUBSurf&);

INCLUDED FILES
rw/ivec.h
FuncBasis/NUBBasis.h
TPSurf/NUBSurf.h
SHypBSurf.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/BezCV2Poly (3) C++ class manpages/BezCV2Poly (3)

NAME
BezCV2Poly – Generates a polynomial description of a Bezier.

DESCRIPTION
This class simply maintains a monomial conversion matrix. It allows the user to obtain the polynomials for
a Bezier curve/surface segment.

BezCV2Poly conv(3); // The quartic Bezier
DoubleVec cvs(3,0,2); // {0, 2, 4}
DoubleVec coeffs= conv.getCoeffs(cvs); // The polynomial description

PREREQUISITES
Func, STools, rwtools, rwmath

SEE ALSO
Poly, BezCurve, BezSurf, SHypBezSurf

AUTHOR(S)
Bruce Hickey, bhickey@watpix

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS BezCV2Poly
Base class(es)
virtual
public SError {

public:
BezCV2Poly(unsigned order);

Creates an instance which will convert Bezier control meshes of order "ord" to their polynomial
representation.

DoubleVec getCoeffs(const DoubleVec& cvs, unsigned d=0);
TupleVec getCoeffs(const TupleVec& cvs, unsigned d=0);
DoubleGenMat getCoeffs(const DoubleGenMat& cvs, unsigned d=0);

Return the co-efficients of the polynomial with the given control net forms.

Poly getPoly(const DoubleVec& cvs);
Returns the polynomial definition.

unsigned order(void) const;
The order of the Bezier curve.

DoubleVec findAllRoots(TupleVec& cvs);
Finds all potential "problem" spots by computing the roots of the hyper-volumes first derivatives.
This is done by computing polynomial components of the spline volume. The numRoots vector

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/BezCV2Poly (3) C++ class manpages/BezCV2Poly (3)

will have the number of roots in each dimension as its contents. The returned numBases X max-
NumRoots matrix will have the roots for each parameter domain as its entries.

virtual RWString className(void) const; Class id.

protected:
DoubleGenMat coeffMat;

Mononmial basis conversion co-efficients.

private:

};

inline members for class Stt

inline unsigned BezCV2Poly::order(void) const { return coeffMat.rows(); }
//inline RWString BezCV2Poly::className(void) { return "BezCV2Poly"; }

INCLUDED FILES
rw/dgenmat.h
rw/dvec.h
Tuple/TupleVec.h
Func/Poly.h
STools/SMath.h
STools/SError.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypSurfFit (3) C++ class manpages/SHypSurfFit (3)

NAME
SHypSurfFit – Container class for tensor product hyper-surface fitters.

DESCRIPTION
This is the equivalent of CurveFit class for the tensor product hyper-surfaces. Procedures that estimate the
initial positions parameter values are available, as well as those to compute the residual and change the
parameter values. Data points are in this class. This can only deal with "grided" parameter values (ie. the
parameter values are two sequences, not a matrix). SHypSurfFitFree is included to have use of a "free
standing" routines that are defined in there.

PREREQUISITES
SHypSurf,CurveFit,Refiner,FuncBasis,ForwDiff,NumberSequence,
Tuple,dspmat,VecMtx,linpack

SEE ALSO
SHypBSurfFit, CurveFit

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

BUGS
Routines changing parameter values may "change the order" of
the parameters. User has to decide what to do with these.

CLASS SHypSurfFit
Base class(es)
virtual
public SError {

private:
STensorVec dataToFit; Data matrix.

DoubleVec *parData;
This is an array of parameter point vectors. One for each degree. Holds the parameter values
where the surface is to be evaluated to fit the data. Access via par() routine.

void getParSpace(unsigned);
Safely allocate space for the parameter vectors.

protected:
SHypSurf* defSurf;

Default surface. Access and set using defaultSurface() routines.

RWBoolean surfSetFlag;
Flag is true of pointer above is set.

RWBoolean mySurfCopy;
Flag is true if ownSurf() was used to indicate own copy of the surface.

virtual RWString className() const;
Returns above defined RWString.

void noSurfError(void) const;
Additional checks.

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypSurfFit (3) C++ class manpages/SHypSurfFit (3)

void removeSurf(void);
As we just keep pointer to the data and surface, we don’t want the destructor to deallocate the
memory. These functions do just that.

public:
virtual ˜SHypSurfFit();

Destructor.

SHypSurfFit();
SHypSurfFit(const SHypSurfFit&);

A default and copy constructor.

SHypSurfFit(IntVec& dims, unsigned tL);
Data matrix is tL x dims[0] x dims[1] x ...

SHypSurfFit(STensorVec& tv, DoubleVec *pars=NULL);
Construct with the data matrix with optional initial parameter values. The number of parameter
DoubleVecs is implied by the dimensionality fo the STensorVec.

unsigned dimension(void) const;
The dimension of the data and the surface that will fit this data.

void changeData(const STensorVec&);
void changeData(const STensorVec&, DoubleVec*);

Change the data points and parameter values.

void ownSurf(void);
Indicate private copies of the data and default surface. Appropriate flags are set; there is no actual
data copying going on.

const STensorVec& data(void) const;
STensorVec& data(void);

Data points.

unsigned length(unsigned);
const IntVec& lengths(void) const;
int tupleLength(void) const;

Information about the data matrix.

const DoubleVec* par(void) const;
DoubleVec* par(void);
const DoubleVec& par(unsigned) const;
DoubleVec& par(unsigned);

Access parameter values used in the fitting process.

void par(unsigned, DoubleVec&);
Access parameter values in a given dimension

SHypSurf* defaultSurface(void);
const SHypSurf* defaultSurface(void) const;

Look at the default surface.

SHypSurf& refDefSurface(void);

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ��

manpages/SHypSurfFit (3) C++ class manpages/SHypSurfFit (3)

const SHypSurf& refDefSurface(void) const;

int defaultSurfaceSet(SHypSurf*);
int defaultSurfaceSet(void) const;

First one sets the default surface and returns the previous value of the surfaceSetFlag; the second
one returns the value of the surfaceSetFlag.

double residual(void);
double residual(const SHypSurf& srf);

Total residual divided by the number of points.

void residual(STensorVec*, RWBoolean flag=FALSE);
void residual(const SHypSurf& srf, STensorVec*, RWBoolean flag=FALSE);

Matrix of residual vectors (if the flag is false) or residual values (if the flag is true) at each of the
data points.

void residual(DoubleVec*);
void residual(const SHypSurf& srf, DoubleVec*);

Total residual at each "row" and each "column" of the data points.

void printOn(ostream&) const;
void scanFrom(istream& is);
};

ostream& operator<<(ostream& strm, const SHypSurfFit& x);
istream& operator>>(istream& is, SHypSurfFit& x);

INCLUDED FILES
rw/ivec.h
SHypSurf/SHypSurf.h
SIndexedVec/STensorVec.h
STools/SError.h
SHypSurfFitFree.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypBSurfFit (3) C++ class manpages/SHypBSurfFit (3)

NAME
SHypBSurfFit – Fit data with B-spline tensor product surface.

DESCRIPTION
This is the equivalent of BCurveFit class for the tensor product surfaces. The goal is to compute the least
square fitted B-spline tensor product surface to a matrix of data points. The fit is a two step process, and
two steps can be applied in any order. There is a procedure that, given the basis and parameter values
corresponding to the data points will compute the control points of the surface that fits those points in the
least squares sense. Another procedure will take a surface and change the control points to reduce the resi-
dual difference. Procedures that estimates the initial positions parameter values are available.

PREREQUISITES
TPSurf,CurveFit,Refiner,FuncBasis,ForwDiff,NumberSequence,
Tuple,dspmat,VecMtx,linpack

SEE ALSO
BSurf, TPSurfFit, CurveFit

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

BUGS
There is no "leave-interpolate" version yet. There must be an equal number
of data and parameter points in each dimension.

CLASS SHypBSurfFit
Base class(es)
public SHypSurfFit {

private:
protected:
virtual RWString className() const;

Used for error messages.

public:
void printOn(ostream&) const;
void scanFrom(istream&);

˜SHypBSurfFit();
Destructor.

SHypBSurfFit();
SHypBSurfFit(const SHypBSurfFit&);

A default and copy constructor.

SHypBSurfFit(IntVec& dims, unsigned tL);
Data matrix is tL x dims[0] x dims[1] x ...

SHypBSurfFit(STensorVec& tv, DoubleVec* pars=0);
Construct with the data matrix and initial parameter values.

SHypBSurf* defaultSurface(void);
const SHypBSurf* defaultSurface(void) const;

Return the pointer to the default surface.

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypBSurfFit (3) C++ class manpages/SHypBSurfFit (3)

SHypBSurf& refDefSurface(void);
const SHypBSurf& refDefSurface(void) const;

Return the reference to the default surface.

virtual DoubleVec startKnots(NumberSequence* ns,
IntVec& numIntervals,
IntVec& orders);

This will compute the initial knot sequence if you have no better way of figuring that out. The
decision will be based on the number of data points. NumberSequences passed should be empty,
and the dimension()*2 element DoubleVec that is returned are the values that should be used as
bounds for the parameter values. These are alternate pairs of start/stop values for parameter
sequences. numIntervals is the required number of intervals where the surface is to be "fully"
defined.

virtual void startKnots(NumberSequence* ns, DoubleVec*,
IntVec& numIntervals,
IntVec& orders);

As above, but in this case the interval where the surface is "fully" defined is passed as the argu-
ment - not returned.

int lsFit(void);
int lsFit(SHypBSurf*);
STensorVec lsFit(const BBasis** bases);
int lsFit(const BBasis** bases, STensorVec*);

Compute the control points to make the resulting tensor product surface (on given basis) best (least
squares) fit to the data points. First deals with the default surface, first and second will change the
control vertices of the surface (as oppose of just returning them, as in the last two).

void findTopAndSizes(IntVec&, IntVec&, IntVec&, IntVec&);
void findSandECols(const BBasis&, IntVec&, IntVec&, const DoubleVec&,
int);

int intrpLsFit(const IntVec&, const IntVec&);
int intrpLsFit(BSurf*, const IntVec&, const IntVec&);
TupleMatrix intrpLsFit(const BBasis&, const BBasis&,
const IntVec&, const IntVec&);
int intrpLsFit(const BBasis&, const BBasis&, TupleMatrix*,
const IntVec&, const IntVec&);

Do a least squares after attepmting to interpolate points defined by a cross product of the two
IntVecs.

int leaveLsFit(const IntVec&, const IntVec&);
int leaveLsFit(BSurf*, const IntVec&, const IntVec&);

This will constraint the least squares process to change only the rows of control vertices
corresponding to the zero elements of the first IntVec and columns corresponding to the zero ele-
ments of the second IntVec. NOTE : This is not appropriate as the "first" computation of the con-
trol vertices.

int leaveIntrpLsFit(const IntVec&, const IntVec&,
const IntVec&, const IntVec&);
int leaveIntrpLsFit(BSurf*,
const IntVec&, const IntVec&,
const IntVec&, const IntVec&);

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypBSurfFit (3) C++ class manpages/SHypBSurfFit (3)

First two IntVecs are used for the "leave" part of the least squares process, the second two for the
"interpolate" part. WARNING : Not implemented yet.

IntVec bestSimpleInsert(double*, double*, double tol=0.0);
IntVec bestWeightedInsert(double*, double*, double tol=0.0);
IntVec bestSimpleInsert(const BSurf&, double*, double*, double tol=0.0);
IntVec bestWeightedInsert(const BSurf&, double*, double*, double tol=0.0);

Using the simple minded algorithms, this will provide the knots that should be inserted in u and v
direction to improve the fit. It will fail if inserting the knot at the required place will force discon-
tinuity. IntVec returned has two elements, first one being the success flag for U, the second one
for V direction.

};

ostream& operator<<(ostream& strm, const SHypBSurfFit& x);
istream& operator>>(istream& is, SHypBSurfFit& x);

INCLUDED FILES
SHypSurf/SHypBSurf.h
SHypSurfFit.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypNUBSurfFit (3) C++ class manpages/SHypNUBSurfFit (3)

NAME
SHypNUBSurfFit – Fit data with non-uniform B-spline hyper-surface.

DESCRIPTION
PREREQUISITES

SHypSurf, CurveFit, Refiner, FuncBasis, ForwDiff, NumberSequence, Tuple, rwtool, rwmatx, rwmath

SEE ALSO
NUBSurf, BSurfFit, TPSurfFit, CurveFit

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

CLASS SHypNUBSurfFit
Base class(es)
public SHypBSurfFit {

private:

protected:
virtual RWString className() const;

Used for error messages.

public:
˜SHypNUBSurfFit();

Destructor.

SHypNUBSurfFit();
SHypNUBSurfFit(const SHypNUBSurfFit&);

A default and copy constructor.

SHypNUBSurfFit(IntVec& dims, unsigned tL);
Data matrix is tL x dims[0] x dims[1] x ...

SHypNUBSurfFit(const STensorVec& tv);
Construct with the data matrix.

SHypNUBSurfFit(STensorVec& tv, DoubleVec* pars=NULL);
Construct with the data matrix and initial parameter values.

SHypNUBSurf* defaultSurface(void);
const SHypNUBSurf* defaultSurface(void) const;

Return the pointer to the default surface.

SHypNUBSurf& refDefSurface(void);
const SHypNUBSurf& refDefSurface(void) const;

Return the reference to the default surface.

void printOn(ostream&) const;
void scanFrom(istream&);
};

ostream& operator<<(ostream& strm, const SHypNUBSurfFit& x);
istream& operator>>(istream& is, SHypNUBSurfFit& x);

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypNUBSurfFit (3) C++ class manpages/SHypNUBSurfFit (3)

INCLUDED FILES
SHypSurf/SHypNUBSurf.h
SHypBSurfFit.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypSurfFitFree (3) C++ class manpages/SHypSurfFitFree (3)

NAME
SHypSurfFitFree – "Free" functions to help surface fitting.

DESCRIPTION
PREREQUISITES

CurveFit,Tuple,Linalg,Mat,VecMtx,linpack

SEE ALSO
CurveFitFree, TPSurfFit, CurveFit

AUTHOR
Bruce Hickey, bhickey@watpix.uwaterloo.ca

OPERATORS, FREE FUNCTIONS, CODE, ETC.
int unconstrLs(SCompMat* evalMat, unsigned num, STensorVec& P, STensorVec* V);
Compute the least squares solution to the system

t
min || B V C - P ||

using Kronecker products to simplify the procedure.

int constrLs(const DoubleGenMat& B, const DoubleGenMat& C,
const TupleMatrix& P,
const DoubleGenMat& K, const DoubleGenMat& L,
const TupleMatrix& D,
TupleMatrix* V);

Compute the least squares solution to the system
t t

min || B V C - P || subject to K V L = D
using Kronecker products to simplify the procedure.

void fitter (STensorVec*, STensorVec*, SLeastSqHH*, int dim);

INCLUDED FILES
rw/dgemat.h
CurveFit/CurveFitFree.h
SLinAlg/SLeastSqHH.h
SIndexedVec/SCompMat.h
SIndexedVec/STensorVec.h

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ��

APPENDIX B� C

 CLASS MANUAL ���

manpages/SLeastSqHH (3) C++ class manpages/SLeastSqHH (3)

NAME
SLeastSqHH – Least squares solver for SCompMat objects

DESCRIPTION
An object of this type will solve the least squares problem

A * solution ˜ b

It is assumed that the columns of [A] are linearly independent. This object performs the same function as a
rouge wave DoubleLeastSq object. The information contained in the SCompMat about the existence of
zeros in the matrix A is used to minimize the factorization process. If linear dependence is detected, based
on the tolerance setting, the value of isUnderDetermined will be TRUE. Subsequent calls to solve will fail
and return FALSE.

PREREQUISITES
SIndexedVec, Lattice, Tuple, STools, rwtool, rwlpak, rwmatx, rwmath

SEE ALSO
CurveFit, TPSurfFit, SHypSurfFit

AUTHOR(S)
Bruce Hickey, bhickey@watcgl

COPYRIGHT
Copyright (c) University of Waterloo

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS SLeastSqHH
Base class(es)
public SError

Public members
SLeastSqHH();
SLeastSqHH(SLeastSqHH&);
SLeastSqHH(const SCompMat&);

virtual ˜SLeastSqHH();

void factor(const SCompMat&);
The given matrix factored into the form QR using Householder transformations: H = I +
SCAL*V*(V**T). The i-th vector V for Q is stored from the 0-th position to the i-th position in
the rows-i-th row of matrix, and the i-th scale factor, SCAL, his stored in the array named scal.
The vectors V for P are stored in the left-hand column positions of the A portion of the array
matrix. The scale factors for P are also stored in the array named scal. The matrix passed to this
function will be copied then factored. Thus the parameter matrix is unaltered. This is opposite to
the constructor which uses an alias and factors the parameter matrix.

DoubleVec solve(const DoubleVec& rhside);
void solve(const TupleVec& rhside, TupleVec* solution);

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SLeastSqHH (3) C++ class manpages/SLeastSqHH (3)

TupleVec solve(const TupleVec& rhside);
Backsolve the solution to a factored system with a single or multiple right-hand sides.

DoubleVec residuals(DoubleVec& rhside);
void residuals(TupleVec& rhside, TupleVec* resids);

Perform the residuals calculation.

RWBoolean SLeastSqHH::isUnderDetermined(void);
Tests if the factored matix is under-determined with respect to the tolerance value.

double singularTest(void);
Uses the current factored matrix to find a solution, x, to Ax = R, where R is a vector of random
(0-1) numbers. The largest value of the solution is returned. This number should be realtively
small if the matrix is non-singular.

void SLeastSqHH::setTolerance(double);
Set the tolerance within which a factorization will find a matrix under-determined. Initially set to
the literal SEPS, found in <numerics.h>

const DoubleVec& diagonal(void) const;
const DoubleVec& scale(void) const;

Obtain information on the factorization, useful when factorization is unsuccessful.

virtual void printOn(ostream&) ;
virtual void scanFrom(istream&);

I/O functions

Protected members
RWBoolean isFactored;
RWBoolean isUnderDet;
DoubleVec diag;
DoubleVec scal;
double toler; The current tolerance.

SCompMat matrix;

RWBoolean doFactor(void);
Perfrom actual factoring.

Private members

OPERATORS, FREE FUNCTIONS, CODE, ETC.
ostream& operator<<(ostream&, SLeastSqHH&);
istream& operator<<(istream&, SLeastSqHH&);

INCLUDED FILES
math.h
numerics.h
iostream.h
rw/dvec.h
Tuple/TupleVec.h
SIndexedVec/SCompMat.h

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/SLeastSqHH (3) C++ class manpages/SLeastSqHH (3)

STools/SError.h

May 31 1994 CGL Splines Project 3

APPENDIX B� C

 CLASS MANUAL ���

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypSurfMinim (3) C++ class manpages/SHypSurfMinim (3)

NAME
SHypSurfMinim – Provides miminimization routines for SHypSurfs.

DESCRIPTION
Minimize nonlinear sum of residual squares using analytic jacobian. You can invoke the local minimizer
with your own initial point or allow the class to use it automatic initial point generation routines. The
actual minimization routines were written by John E. Dennis, Jr., David M. Gay, and Roy E. Welsch from
"Acm Transactions on Mathematical Software", September, 1981.

SHypNUBSurf aSurface;
DoubleVec aPoint;
DoubleVec initalGuess;
SHypSurfMinim minimizer(&aSurface);
DoubleVec domainSoln = minimizer.closest(initalGuess);
DoubleVec closestPoint = aSurface.evaluate(domainSoln);

PREREQUISITES
SHypSurfMinim, SHypSurf, TPSurf, ForwDiff, Refiner, FuncBasis,
SIndexedVec, NumberSequence, SAffGeom, Tuple, STools, rwtool, rwmath, f2c

SEE ALSO
SHypBezSurf

AUTHOR(S)
Bruce Hickey, bhickey@watcgl.uwaterloo.ca

COPYRIGHT
Copyright (c) University of Waterloo Computer Graphics Laboratory

The copyright to the computer program(s) implementing this (these) class(es) and associated with this
(these) manual page(s) is the property of the Computer Graphics Laboratory of the University of Waterloo.
The program(s) may be used and/or copied only with the written permission of the University of Waterloo
or in accordance with the terms and conditions stipulated in the agreement/contract under which the
program(s) have been supplied. In the event of any copying, this copyright notice must be retained with the
program(s).

CLASS SHypSurfMinim
Base class(es)
public virtual SError

Friends
ostream& operator<<(

ostream& os,
const SHypSurfMinim& inst

);
No input operator is provided as this is an actor class on SHypSurfs and maintains no persistant
state.

Public members

enum searchMeth { SAMPLE, USECVS };
The possible methods for the initial point computation.

SHypSurfMinim(void);

May 31 1994 CGL Splines Project 1

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypSurfMinim (3) C++ class manpages/SHypSurfMinim (3)

A default (no arguments) constructor is included so we can create arrays of SHypSurfMinim.

SHypSurfMinim(const SHypSurfMinim& rhs);
Copy constructor.

SHypSurfMinim(SHypBSurf* refSurf);
Provide a pointer to the surface which we will be working on.

˜SHypSurfMinim(void);
Destructor

void defSurf(SHypBSurf* refSurf);
Provide a pointer to the surface which we will be working on. No provision is made to protect any
currently referenced surface.

DoubleVec closest(
DoubleVec* u, Initial domain space guess
DoubleVec& p External point

);
Determine the closest point to the surface, to p, given an initial guess, u. The parameter values
which yield this surface point are returned in u.

DoubleVec closest(
DoubleVec& p, External point
searchMeth sm=SAMPLE ,
DoubleVec* domPt=0 domain point providing best soln

);
Determine the closest point on the surface.

virtual RWString className(void) const;
Get an identifier.

unsigned dataDim(void) const;
The dimension of the data.

unsigned domainDim(void) const;
The domain of the spline.

void evaluate(DoubleVec& u);
Evaluate the underlying surface at the given point.

virtual void printOn(ostream& os) const;
virtual void scanFrom(istream& is);

I/O routines.

RWBoolean inValidInterval(const DoubleVec& x);
TRUE if x is in the valid interval of the underlying surface.

HERE FOR DEBUGGING PURPOSES ONLY !!!!
SHypBSurf* theSurf; The underlying surface

May 31 1994 CGL Splines Project 2

APPENDIX B� C

 CLASS MANUAL ���

manpages/SHypSurfMinim (3) C++ class manpages/SHypSurfMinim (3)

Protected members

const static RWString classname;
Most classes should have a unique identifier.

void verify(void) const;

DoubleVec closestBruteForce(DoubleVec& p, DoubleVec* u);
This procedure will perform the minimization with many inital guesses and return the best result.
Currently this scheme will only work if the underlying surface’s control net is convex.

DoubleVec closestUsingCVs(DoubleVec& p, DoubleVec* u);
This procedure will perform the minimization with an inital guesses midway, in the parameter
domain, between the closest CV to the external point and the diagonally opposite CV. As an
example, the CV (4,5,6,8) would have (3,4,5,7)=(4-1,5-1,6-1,8-1) as its diagonal opposite.
Currently this scheme will only work if the underlying surface is a SHypBezSurf.

Private members

DoubleVec surfPt; The current surface point
DoubleGenMat derVals; The first derivatives at the above point

DoubleVec vv; Work arrays needed by nl2sol
IntVec iv, ui; Work arrays needed by nl2sol

Globals used for data transfer to C routines

EXTERNAL DECLARATIONS
double* srf_glob;
double* ders_glob;
SHypSurfMinim* theMinimizer;

INCLUDED FILES
iostream.h
rw/dvec.h
rw/dgemat.h
SHypSurf/SHypBSurf.h
STools/SError.h

May 31 1994 CGL Splines Project 3

Bibliography

��� Apple Computer Corp� LaserWriter User�s Guide� �����

��� James Avro� editor� Graphics Gems II� Academic Press� �����

�
� R�E Barnhill and Riesenfeld R�F� Computer Aided Geometric Design� Addison

Wesley� �����

��� R� Bartels� J� Beatty� and B� Barsky� An Introduction to Splines for use in

Computer Graphics and Geometric Modeling� Morgan Kaufmann Publishers�

Inc�� Los Altos� California� �����

��� I�E� Bell� Gamut�Mapping Algorithms for Re�ective Image Representations�

PhD thesis� University of Waterloo� Waterloo� Ontario� In progress�

��� P� B�ezier � D�e�nition num�erique des courbes et surfaces i� Automatisme�

������#�
�� �����

��� R�P� Brent� Algorithms for Minimization without Derivatives� Prentice�Hall�

���
�

��� S�D� Conte and C� de Boor� Elementary Numerical Analysis� McGraw�Hill�

�����

���

BIBLIOGRAPHY ���

��� C� de Boor� A practical guide to splines� In Applied Mathematical Sciences�

Springer�Verlag� New York� New York� ����� Volume ���

���� John E� Jr� Dennis� David M� Gay� and Welsch Roy E� An adaptive non�

liner least�squares algorithm� ACM Transactions on Mathematical Software�

��
��
��#
��� �����

���� P� Dierckx� An algorithm for least�squares �tting of cubic spline surfaces to

functions on a rectilinear mesh over a rectangle� Journal of Computational and

Applied Mathematics� ��
����
#���� �����

���� P Dierckx� Curve and Surface Fitting with Splines� Clarendon Press� ���
�

��
� M�A� Ellis and B� Stroustup� The Annotated C�� Reference Manual� Addison�

Wesley� �����

���� G�E� Farin� Curves and Surfaces for Computer Aided Geometric Design� Aca�

demic Press� Inc�� ����� Second edition�

���� James D� Foley� Andries� van Dam� Steven K� Feiner� and John F� Hughes�

Computer Graphics� Principles and Practice� Addison Wesley� �����

���� David R� Forsey and Richard H� Bartels� Tensor products and hierarchical

�tting� SPIE� Curves and Surfaces in Computer Vision and Graphics� �������#

��� �����

���� Andrew Glassner� editor� Graphics Gems� Academic Press� �����

���� G�H� Golub and C�F� Van Loan� Matrix Computations� John Hopkins Univer�

sity Press� ����� Second edition�

BIBLIOGRAPHY ��

���� M� Grossman� Parametric curve �tting� Computer Journal� ���������#����

�����

���� H� Inoue� A least�squares smooth �tting for irregularly spaced data� Finite�

element approach using the cubic b�spline basis� Geophysics� �����������#�����

�����

���� G�H Joblove and D�P Greenberg� Colour spaces for computer graphics� Com�

puter Graphics�
���#��� �����

���� F�L� Kitson� An algorithm for curve and surface �tting using b�splines� In In�

ternational Conference on Acoustics� Speech and Signal Processing� volume ��

pages ����#����� �����

��
� P� Lancaster and K� $Salkauskas� Curve and surface �tting� An introduction�

Academic Press� Inc�� �����

���� D�G� Luenberger� Introduction to Linear and Nonlinear Programming�

Addison�Wesley� ���
�

���� B� Meyer� Object�oriented Software Construction� Prentice Hall� �����

���� National Institutes of Health� NIH Class Reference� �����

���� W�A Paeth� Fast algorithms for color correction� Proceedings of the Society

for Information Display�
��
�����#���� �����

���� W�A� Paeth� Digital Models for Subtractive Colour� PhD thesis� University of

Waterloo� Waterloo� Ontario� In progress�

���� Rogue Wave Software� Math�h�� Introduction and Reference Manual� �����

�
�� Rogue Wave Software� Matrix�h�� Introduction and Reference Manual� �����

BIBLIOGRAPHY ���

�
�� Michael W� Schwarz� William B� Cowan� and John C� Beatty� An experimental

comparison of RGB� YIQ� LAB� HSV� and opponent color models� ACM

Transactions on Graphics� �������
#���� �����

�
�� M� Sre�ckovi�c� Adaptive hierarchical �tting curves and surfaces� Master�s thesis�

University of Waterloo� �����

�

� Maureen C� Stone� William B� Cowan� and John C� Beatty� Color gamut map�

ping and the printing of digital color images� ACM Transactions on Graphics�

��������#���� �����

�
�� B� Stroustup� The C�� Programming Language� 	nd Edition� Addison�

Wesley� �����

�
�� A� Vermeulen and R� Bartels� C�� splines classes for prototyping� Curves

and Surfaces in Computer Vision and Graphics II� ��������#�
�� ����� SPIE

Proceedings� SPIE ���� Bellingham� Washington�

�
�� Wavefront Technologies Ltd� Data Visualizer User�s Guide� �����

