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1. Introduction

The familiar formula of Stirling, which provides a series asymptotic to Γ(z), as z →∞
in |arg z| < π suffers from a lack of an expression for the general term. This deficiency is

readily overcome by considering instead the log-Gamma function:

Definition 1.1 The log-Gamma function is defined by lnΓ(x) = ln(Γ(x)) for real x > 0

and by analytic continuation into the complex plane.

Before presenting the promised asymptotic expansion for this function we must define

its principal branch.

The presence of the logarithm in Definition 1.1 means that lnΓ will have a branch point

at each point z where Γ(z) is either 0 or infinite. Γ(z) is never 0, but Γ has a simple pole at

each of the negative integers and 0. Hence lnΓ has a branch point at each of these points.

Therefore, in order to specify a branch of lnΓ it is necessary to assign a branch cut extending

from each such point to infinity (a curve whose complement in the complex plane is simply

connected).

Definition 1.2 The Principal Branch of the log-Gamma function is defined by taking

the principal branch of the logarithm in Definition 1.1, and by taking as the branch cut

from each non-positive integer the part of the negative real axis extending from that point

to negative infinity. Furthermore, the principal branch of log-Gamma is defined on the

negative real axis (less the negative integers) in such a way as to make it continuous in the

direction of increasing complex argument.

Note that this definition of the principal branch of lnΓ, and in particular the assignment

of values for lnΓ(z) for z on the branch cut, is consistent with the following identities:

lnΓ(z) = − ln z − γz −
∞∑

n=1

ln(1 + z/n)− z/n [3, ex. 7.7.4]

lnΓ(z) =
d

ds
ζ(s, z)

∣∣∣
s=0

+ 1/2 ln(2π) [5, 1.11(10)]
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where γ is Euler’s constant and ζ(s, z) is the Hurwitz ζ function ([5, §1.10]). The first of

these identities is taken in [9, §12.31] to be the definition of the principal branch of the

log-Gamma function.

For the remainder of this paper, the name lnΓ will always refer to the principal branch

of log-Gamma. Similarly, ln will refer to the principal branch of the logarithm function,

and, consistently with this, the argument function, z 7→ arg z, will be taken to be valued

in (−π, π].

Since the exponential function is entire and lnΓ and Γ are analytic on their domains

(which are the same, as noted above), and since the identity exp(lnΓ(z)) = exp(ln(Γ(z))) =

Γ(z) holds for real z > 0, it follows by the Identity Theorem [3, IV.3.8] that this identity

holds for all z in the domain of lnΓ, and hence that the various branches of the log-Gamma

function, evaluated at any given point z, must differ by integer multiples of 2πi. Alterna-

tively, this can be seen by exponentiating the first of the identities above and observing

that the result is the Euler product for Γ(z) [1, 6.1.3].

We will see, in Corollary 3.2 below, that if x < 0 then

lnΓ(x) = ln(Γ(x)) + 2πidx/2− 1e

showing that lnΓ(x) 6= ln(Γ(x)) for most such x.

For general complex z, this inequivalence follows from the observation that Γ maps lines

with constant real part to curves which wind around the origin. If we use polar coordinates

for the moment, writing Γ(z) = r(z)eθ(z), where θ(z) is continuous, with θ(x) = 0 for x a

positive real number (i.e., we do not restrict the range of θ to (−π, π]), then from Stirling’s

formula [1, 6.1.37], we have, for large =(z), θ(z) ≈ (<(z)−1/2) arg z+=(z)(ln |z|−1). This

latter expression is clearly unbounded (particularly in the case when <(z) is constant), and
so is not generally valued in (−π, π], which it would have to be for lnΓ(z) to equal ln(Γ(z))

(note that r(z) is an exponential for large |z|, again by Stirling’s formula, and so is positive).

Returning now to the discussion with which we opened this section, the asymptotic

series for lnΓ, usually known as Stirling’s series, is [1, 6.1.40]

lnΓ(z) ∼ (z − 1/2) ln z − z +
1

2
ln(2π) +

∞∑

n=1

B2n

2n(2n− 1)z2n−1
(1.1)
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as z →∞ in |arg z| < π − δ, where δ > 0 and Bk is the kth Bernoulli number [1, ch. 23].

For the purpose of computing Γ(z) by this method, the remarks following Definition 1.2

show that it doesn’t matter which branch of lnΓ(z) is computed at any given value of z.

However, lnΓ is a classical function of interest in its own right, and there are many and

varied situations in which the principal branch of lnΓ must be evaluated. To cite just two

examples, this is used in the standard methods for locating the zeros of the Riemann ζ

function (see, for example, [4, §6.5]), and also in [7], where evaluation of the principal

branch of lnΓ on the imaginary axis is required.

Abramowitz and Stegun have tabulated the principal branch of lnΓ for some values

[1, Table 6.7] (it is clear again, from this table, that lnΓ(z) 6= ln(Γ(z)) in general). That

tabulation is brief and sparse, of course, and there are intricacies involved in attempting to

extend the table, particularly into the half plane <(z) < 0 or to higher precision. Further-

more, while many papers include a statement to the effect that the results obtained therein

require the principal branch of lnΓ, to the best of this author’s knowledge the details of the

mathematics of this function have not before been published.

2. Computation of lnΓ(z) Using the Asymptotic Series

The choice of algorithms for computing approximations to lnΓ(z) for general complex z

is fairly limited. The coefficients in the series expansions at integer points of either lnΓ(z)

or Γ(z) involve the Riemann ζ function (see, for example, [1, 6.1.33]), making such series

attractive only for values of z very close to the expansion point. Rational or polynomial

approximations are quite good for limited precision computations and for values of z which

are not too large. The identities cited at the end of §1 are both quite poor for numerical

purposes.

For values of z which are far from the origin, the asymptotic expansion (1.1) is quite

attractive, as the coefficients are given by explicit formulae and hence an algorithm based

on (1.1) is scalable to arbitrary precision (at least for sufficiently large values of z). Of

course, (1.1) is a divergent series, which limits the accuracy obtainable at a particular

point z. Fortunately, there is a recurrence relation which can be used to shift any given z
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into the region where (1.1) can be applied. Starting from Γ(z + 1) = zΓ(z) [1, 6.1.15], we

take logarithms (using the principal branch of the logarithm, as usual), to get

Proposition 2.1 (Recurrence relation for lnΓ) If z is any complex number in the

domain of lnΓ, then lnΓ(z + 1) = ln(z) + lnΓ(z).

The point of this proposition is that no correction term involving a multiple of 2πi is

required to stay on the principal branch.

Proof That the result is true for real z > 0 follows from the definition of the principal

branch of lnΓ and the fact that z > 0 implies Γ(z) > 0.

The function z 7→ lnΓ(z + 1) − ln z − lnΓ(z) is analytic on C \ (−∞, 0], and is 0 on

the positive real axis. Thus, by the Identity Theorem [3, IV.3.8], the proposition is true for

z ∈ C \ (−∞, 0].

Since the functions ln and lnΓ are continuous from above onto the negative real axis

(less the negative integers), the result holds as well for z < 0, z not an integer. (This latter

case can also be seen directly as a consequence of Corollary 3.3 below.)

Proposition 2.2 (Multiple shift recurrence relation for lnΓ) Let n be a positive

integer, let z ∈ C \ (−∞, 0] with =(z) ≥ 0, let either

p(z, n) = z(z + 1)(z + 2)(. . .)(z + n− 1) , z(n) = z + n , s = 1

or

p(z, n) = (z − 1)(z − 2)(. . .)(z − n) , z(n) = z − n , s = −1

and let k(z, n) be the number of times the imaginary parts of the accumulating products

forming p(z, n) (z, z(z + 1), etc, or (z − 1), (z − 1)(z − 2), etc) change sign from positive

(or 0) to negative. Then

lnΓ(z(n)) = lnΓ(z) + s(ln(p(z, n)) + 2k(z, n)πi) .

The case =(z) < 0 can be handled by observing that since Γ is conjugate symmetric

and ln is conjugate symmetric off the negative real axis, lnΓ(z) = lnΓ(z) if z is not a negative

real number.
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Proof Consider first the case p(z, n) = z(z+1)(. . .)(z+n− 1), z(n) = z+n and s = 1.

Applying Proposition 2.1 iteratively, we obtain

lnΓ(z(n)) = lnΓ(z + n)

= ln(z + n− 1) + lnΓ(z + n− 1)

= ln(z + n− 1) + ln(z + n− 2) + lnΓ(z + n− 2)

= . . .

= ln(z + n− 1) + ln(z + n− 2) + . . .+ ln(z + 1) + ln(z) + lnΓ(z)

= ln(p(z, n)) + 2mπi+ lnΓ(z)

where m is an integer depending on z and n. It now follows easily from the multiplication

rule for the principal branch of the logarithm, namely,

ln(uv) = lnu+ ln v +

{
0 if −π < arg u+ arg v ≤ π
−2πi if arg u+ arg v > π
2πi if arg u+ arg v ≤ −π

that m = k(z, n).

The remaining case is similar.

The correction term in Proposition 2.2, k(z, n), computes the difference between the

sum of the logarithms of the factors of p(z, n) and ln(p(z, n)). The value of the proposition is

that it provides an algorithm for determining this difference without having to compute the

individual component logarithms (or, more precisely, their imaginary parts, which would

require the computation of the corresponding arctangents).

Employing Proposition 2.2 in such a way as to increase either |z| or <(z), one can

translate z into the region where (1.1) can be used to compute to the required accuracy.

We thus immediately have

Corollary 2.3 With the notation of Proposition 2.2,

lnΓ(z) ∼ (z(n)−
1

2
) ln z(n)− z(n) +

1

2
ln(2π) +

∞∑

m=1

B2m

2m(2m− 1)z2m−1
(n)

− s(ln p+2k(z, n)πi)

as z(n) →∞ in |arg z(n)| < π − δ, where δ > 0.
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3. Computation of lnΓ(z) Using the Reflection Formula

The asymptotic series (1.1) does not approximate lnΓ on the negative real axis. This

is easily seen by noting that since Γ(z) is real for z on the negative real axis (except for

poles at each of the non-positive integers), =(lnΓ(z)) must be a (constant) multiple of π on

each interval (j − 1, j) for integer j. However, the series (1.1) clearly has no such property,

since the imaginary part of (1.1) for z a negative real number is precisely (z − 1/2)π. (See

Corollary 3.2.)

It is also the case that the approximating properties of (1.1) are quite poor for values

of z near the negative real axis (see §4).

If <(z) is not too negative, Proposition 2.2 can be used to shift z to the right (i.e., in

the direction of increasing <(z)), sufficiently far into the right half plane so that lnΓ(z) can

be computed via Corollary 2.3. However, if <(z)¿ 0 this approach could be prohibitively

expensive. In such cases, we can use the logarithmic form of the reflection formula for Γ

[1, 6.1.17] to replace z with 1− z, and then use Corollary 2.3 to evaluate lnΓ(1− z).

Proposition 3.1 (Reflection formula for lnΓ) If z is a complex number with <(z) <
0, then

lnΓ(z) = ln
( π

sinπz

)
− lnΓ(1− z) + 2s(z)k(z)πi

where s(z) = 1 if =(z) ≥ 0 and s(z) = −1 otherwise, and k(z) = d<(z)/2− 3/4− δ=(z)/4e,
where δx is the Kronecker delta function.

Proof We consider the case =(z) > 0 first.

Observe that k(z) actually depends only on <(z), and not on =(z). To see this, note

that k(z) is constant on regions where none of z, 1 − z or sin(πz) cross the negative real

axis, which is the branch cut for both ln and lnΓ. Letting z = x + iy, where x < 0 and

y > 0, and writing sin(πz) in terms of its real and imaginary parts, we have

π

sin(πz)
= π

sin(πx) cosh(πy)− i cos(πx) sinh(πy)

|sin(πz)|2 (3.1)
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from which it is clear that the sign of the imaginary part of π/ sin(πz) can change only with

x = <(z).

Next, note from equation (3.1) that π/ sin(πz) crosses the negative real axis exactly

when <(z) crosses a point of the form 2j − 1/2, for some integer j, as these are the points

where cos(πx) = 0 and sin(πx) < 0. Thus, as <(z) varies from across an interval of the

form (2j − 1/2, 2j + 3/2], for some integer j, arg(π/ sin(πz)) varies across (−π, π]. Hence

k(z) is constant on such intervals, and it suffices to determine the value of k(z) for some

particular value of <(z) in each such interval. (We are, of course, only interested in the

intervals corresponding to non-positive integers j.)

We will present an overview of the argument first, filling in the details for completeness

afterwards.

Let j be a negative integer and let z = 2j+1/2+yi, where y is chosen sufficiently large

so that the net of the accumulated errors in the following approximations is less than 1/2.

Then π/ sin(πz) is real and positive, and by (1.1) we have

=(lnΓ(z)) ≈ = ((2j + yi) ln(2j + 1/2 + yi)− (2j + 1/2 + yi))

≈ jπ + y ln y − y

and

=
(
ln

(
π

sin(πz)

)
− lnΓ(1− z)

)
≈ −= ((−2j − yi) ln(1/2− 2j − yi)− (1/2− 2j − yi))

≈ −jπ + y ln y − y

from which it follows that k(z) = j = d<(z)/2− 3/4e.

For preciseness, let ε > 0, and choose y > 0 sufficiently large that the following condi-

tions hold (recall that =(ln(π/ sin(πz))) = 0):

∣∣∣=
(
lnΓ(z)−

(
(z − 1/2) ln z − z

))∣∣∣ < ε/6

∣∣∣=
(
lnΓ(1− z) +

(
(1/2− z) ln(1− z)− (1− z)

))∣∣∣ < ε/6

0 < arg z − π/2 < ε/(6j)

0 < π/2 + arg(1− z) < ε/(6j)
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0 < y ln

( |z|
|1− z|

)
< ε/3

(The last of these is easily seen to be possible by an application of L’Hôpital’s Rule.) Then

=(lnΓ(z)) = =
(
(z − 1/2) ln z − z

)
+ δ1

= 2j arg z + y ln |z| − y + δ1

= jπ + 2jδ2 + y ln |z| − y + δ1

where |δ1| < ε/6 and |δ2| < ε/(6j), while

=
(
ln(π/ sin(πz))− lnΓ(1− z)

)
= −=

(
lnΓ(1− z)

)

= −=
(
(1/2− z) ln(1− z)− (1− z)

)
+ δ3

= 2j arg(1− z) + y ln |1− z| − y + δ3

= −jπ + 2jδ4 + y ln |1− z| − y + δ3

where |δ3| < ε/6 and |δ4| < ε/(6j), and so

|2k(z)π − 2jπ| = |2j(δ2 − δ4) + y ln(|z|/|1− z|) + δ1 − δ3|

≤ 2j(|δ2|+ |δ4|) + y ln(|z|/|1− z|) + |δ1|+ |δ3|

< ε

and so, since k(z) and j are both integers and ε > 0 was arbitrary, k(z) = j = d<(z)/2−3/4e.

This finishes the proof for the case =(z) > 0.

For the case z = x < 0, (i.e., =(z) = 0) we have

=
(
ln

(
π

sin(πx)

))
=

{
0 if 2j < x < 2j + 1

π if 2j + 1 < x < 2j + 2

where j is a negative integer. We also have

lim
ε→0+

=
(
ln

(
π

sin(π(x+ εi))

))
=

{
0 if 2j < x < 2j + 1
π if 2j + 1 < x ≤ 2j + 3/2
−π if 2j + 3/2 < x < 2j + 2
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Thus, in order for lnΓ(x) to be continuous from above onto the negative real axis, the

formula for k(x + εi) when ε > 0 can be used if 2j < x < 2j + 3/2, while on the interval

2j + 3/2 < x < 2j + 2 this value must be decreased by 1. It is a simple computation to

verify that the formula k(x) = dx/2− 1e satisfies these conditions.

Finally, the case =(z) < 0 follows by an appeal to conjugate symmetry, since k(z) is

real valued.

Corollary 3.2 If x < 0 then lnΓ(x) = ln(Γ(x)) + 2πidx/2− 1e.

Proof If x < 0 then 1 − x > 0, so Γ(1 − x) > 0, so lnΓ(1 − x) = ln(Γ(1 − x)) and

ln(wΓ(1− x)) = lnw + ln(Γ(1− x)) for all w ∈ C \ {0}. Therefore

ln(π/ sin(πx)) = ln(Γ(x)Γ(1− x))

= ln(Γ(x)) + ln(Γ(1− x))

= ln(Γ(x)) + lnΓ(1− x)

and

ln(π/ sin(πx)) = lnΓ(x) + lnΓ(1− x)− 2k(x)πi

by Proposition 3.1. The last two lines above yield the result.

Corollary 3.3 If x < 0 and x is not an integer, then =(lnΓ(x)) = bxcπi.

Proof The reflection formula for Γ implies that sin(πx) and Γ(x) must have the same

sign. Therefore, by Corollary 3.2,

=(lnΓ(x)) = =(ln(Γ(x))) + 2k(x)π =

{
2k(x)π if bxc is even

(2k(x) + 1)π if bxc is odd

The result now follows from the observation that if bxc = 2m then dx/2− 1e = m (since x

is not an integer), while if bxc = 2m− 1 then dx/2− 1e = m− 1.

Note that Corollary 3.3 implies that if x < 0 is real, then the computation of lnΓ(x)

can be carried out completely in real arithmetic, as <(lnΓ(x)) = ln(|Γ(x)|).
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4. Error Bounds and Implementation in Maple V Release 3

The methods described in §§2 and 3 are very well suited to computation in a variable

precision environment such as Maple [2]. In general, the precision of a computation, as

requested by the user, determines whether or not an asymptotic method can be used to

evaluate a particular function at a particular point. For the Γ and lnΓ functions, however,

the recurrence relation (Proposition 2.2) and the reflection formula (Proposition 3.1) allow

the asymptotic method to be used for all arguments in the domain of lnΓ. (The values of Γ(z)

and lnΓ(z) at certain special arguments, z, such as moderately sized positive integers, can,

of course be computed more efficiently by more direct means.)

There is a relatively simple bound on the error, Rm, resulting from truncating the

asymptotic series (1.1) at the mth term to obtain an approximation to lnΓ(z) for some z

(z not a negative real number) [8, §8.4]:

|Rm| ≤
|B2m| sec2m(θ/2)

2m(2m− 1)|z|2m−1
≡ R̃m (4.1)

where −π < θ = arg z < π. Approximating the (2m)th Bernoulli number by 2(2m)!/(2π)2m

[1, 23.1.15], we have

R̃m ≈
2

(2π)2m
(2m− 2)! sec2m(θ/2)

|z|2m−1
(4.2)

from which we see that the smallest error will occur roughly when m sec(θ/2) ≈ π|z|. Using

Stirling’s formula [1, 6.1.37] we thus have

R̃m ≈
2|z|

(2π|z|)2m e−2m+1(2m− 1)2m−1 sec2m(θ/2)

≈ 2|z|
(2m)2m

e−2m+1(2m− 1)2m−1 sec2m(θ/2)

≈ |z|e
−2m

m

In order to use (1.1) to approximate lnΓ(z) to d digits, then, we should have R̃m <
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10−d|lnΓ(z)|, and we can approximate |lnΓ(z)| ≈ |z ln z|, again by (1.1). Thus R̃m ≈
|z|e−2m/m < 10−d|z ln z| implies m+ lnm > 1/2(d ln 10− ln |lnz|), or, upon discarding the

second order logarithm terms, m > d/2 ln 10 ≈ 1.15d, and so we should have

|z| > m sec(θ/2)/π ≈ .37d sec(θ/2) . (4.3)

For z in the right half plane (so <(z) ≥ 0), this bound is reasonable, as the maximum

value of sec(θ/2) is then
√
2, which leads to a uniform lower bound for |z| for the applicability

of (1.1) of about .52d. For z in the left half plane, (4.3) suggests that the asymptotic

formula (1.1) is less attractive, and, indeed, this observation led Olver to argue that (1.1)

should never be used for <(z) < 0 [8, §8.4]. This argument is flawed, however, as the

inequality on which it depends, namely (4.1), is derived using estimates whose accuracy

seriously degrades in the left half plane. Indeed, as the following proposition shows, the

applicability of (1.1) in the left half plane does not depend on θ = arg z at all, but only

on =(z). Therefore, the asymptotic series method is almost equally useful in the left and

right half planes.

Proposition 4.1 Let z ∈ C\R and let Rm be the error resulting from truncating (1.1)

at the mth term. Then

|Rm| ≤
π1/2Γ(m− 1/2)|B2m|
Γ(m+ 1)|=(z)|2m−1

.

Proof Let x = <(z), y = =(z), and without loss of generality, assume y > 0. Following

the early stages of the development of (4.1) as given in [8, §8.4], we have (B2m(t) is the

(2m)th Bernoulli polynomial)

|Rm| =
∣∣∣∣
∫ ∞

0

B2m −B2m(t− btc)
2m(t+ z)2m

dt

∣∣∣∣

≤ |B2m|
m

∫ ∞

0

1

|t+ z|2m dt

=
|B2m|
m

∫ ∞

0

1

((t+ x)2 + y2)m
dt

=
|B2m|
m

∫ ∞

x

1

(t2 + y2)m
dt

12
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=
|B2m|
my2m−1

∫ π/2

tan−1(x/y)
cos2m−2(φ) dφ

≤ |B2m|
my2m−1

∫ π/2

−π/2
cos2m−2(φ) dφ

=
|B2m|
my2m−1

π1/2Γ(m− 1/2)

Γ(m)

by Wallis’ formula [1, 6.1.49].

An analysis similar to that leading up to the bound (4.3) now gives us that for z = x+iy

with y 6= 0 the minimum term in the asymptotic series (1.1) occurs roughly when m = πy,

at which point the requirement |Rm| ≤ 10−d|lnΓ(z)| implies that 2πy > d ln 10+(lower

order terms), or, roughly,

y > .37d . (4.4)

Extensive numerical testing has shown that the error introduced by dropping the lower

order terms in this bound is more than compensated by the error introduced in the first

step of the proof of Proposition 4.1, and hence it is safe to use this as a firm bound.

Thus, Stirling’s series for lnΓ can be directly used to approximate lnΓ(z) to d digits

of accuracy as long as either of the conditions |=(z)| > .37d or <(z) ≥ 0 and |z| > .52d is

satisfied.

Based on the above error bounds and the results presented in the preceding sections,

there are thus three possible algorithms available for the evaluation of lnΓ(z) to a given

(but not fixed a priori) precision d:

1. The algorithm based on Corollary 2.3, with the recurrence formula applied, if

necessary, in the direction of increasing |z|.

2. The algorithm based on Corollary 2.3, with the recurrence formula applied, if

necessary, in the direction of increasing <(z).

3. The algorithm based on the Proposition 3.1, as the first step, followed by

Algorithm (1).

If <(z) ≥ 0 then Algorithms (1) and (2) are the same, and Algorithm (3) is not relevant.
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If <(z) < 0 and |=(z)| > .37d, then Algorithm (1) is clearly superior to Algorithm (2)

and the latter stage of Algorithm (3) will have the same cost as Algorithm (1), and hence

Algorithm (1) is to be preferred. These observations follow by noting that the convergence

criterion for the asymptotic series method (1.1) is a function of |z|, and not of <(z).

If <(z)¿ 0 and |=(z)| ≤ .37d then Algorithm (3) is the obvious choice.

Finally, if <(z) is not sufficiently negative so that (1.1) can be directly used on 1 − z,

and if |=(z)| ≤ .37d, then Algorithm (1) is not applicable, and it is by no means clear which

of Algorithms (2) or (3) is superior. Some elementary observations are possible, namely

that Algorithm (2) is to be preferred for z close to the imaginary axis, while Algorithm (3)

is to be preferred for z close to the point where the asymptotic series (1.1) could be applied

to 1− z with little or no shifting of the argument required. Ultimately, however, the choice

is not particularly important, as the shifting and/or reflecting of the argument represents

a lower order of magnitude cost to the total computation than does the evaluation of the

asymptotic expansion.

It should be noted that the inequalities (4.3) and (4.4) provide minimum conditions

under which the asymptotic series (1.1) will converge. If we employ Proposition 2.2 (pos-

sibly preceded by an application of Proposition 3.1 if <(z) < 0 and |=(z)| < .37d) in such

a way as to produce a z(n) (in the notation of §2) which at least satisfies these conditions,

then we can use the asymptotic expansion (1.1) to compute lnΓ(z(n)) and hence use Corol-

lary 2.3 to compute lnΓ(z). However, it is clear from the above analysis that if we use

the recurrence relation to make |z(n)| larger still, then fewer terms of (1.1) will be required

to compute lnΓ(z(n)) to a given precision d. As the coefficients in the series (1.1) involve

Bernoulli numbers, which carry some cost of computation themselves, it is generally worth-

while to do this. At some point, of course, the cost of the recurrence relation itself will

outweigh the savings realized.

Thus, the implementation of lnΓ in Maple V Release 3 is fundamentally as follows:

− If =(z) < 0 then lnΓ(z) is computed.

− If <(z) ≥ 0, or <(z) < 0 and =(z) > .37d, then Algorithm (1) is used, with the

recurrence relation applied until |z(n)| ≥ d.
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− If <(z) < 0 and =(z) < .37d, then Algorithm (3) is used. (In versions subse-

quent to Maple V Release 3, Algorithm (2) is used in this case if <(z) ≥ −10.)

In Maple, the goal of the numerical evaluation of a basic function, such as lnΓ, at a

point, is to produce a value which is accurate to the precision requested by the user, plus

or minus at most .6 units in the last place (essentially, Maple strives to produce a value

whose relative error is on the order of 10−d, where d is the user-requested precision). In

order to achieve this goal, Maple floating-point evaluation routines will normally increase

the precision at which intermediate calculations are done. This means that the decision

procedure described above is executed at the working precision in effect at that point in the

code, which is usually a small amount higher than the precision of the end result.

The author wishes to thank Dr. David Jeffrey of the University of Western Ontario for

valuable discussions.
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