Feature Oriented Composition Of B-Spline

Surfaces

Cristin Barghiel

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 1995

(©Cristin Barghiel 1995

Abstract

Detailed features are added to composite spline surfaces in a multi-layered fashion
by means of an efficient displacement scheme. The feature orientation is arbitrary,
and the underlying domains may be partially overlapping and non-linearly trans-
formed. By mapping only the control vertices, defined as displacement vectors in
a diffuse coordinate system, we can manipulate the pasted elements in real-time,

independently or as a whole.

The procedure, known as pasting, is more than a refinement instrument. It
makes possible the rendering of a surface composition selectively, and thus expedites
the rendering process. It can be used to model surfaces by interactively changing
displacements, control vertices, or the domain layout. Base surfaces may serve as
sliding paths for pasted clusters whose shape and motion are determined by the
underlying topography, resulting in an organic motion effect. Pasting also applies
to higher-dimension entities, which may incorporate non-geometric components,

such as color, opacity or brightness.

Acknowledgements

I would like to thank Dr. Richard Bartels, who has guided my footsteps with
wisdom and patience, and has encouraged me to explore the area of geometric
design. I would also wish to thank my readers, Dr. Charlie Colbourn and Dr.
Steve Mann, for their time and constructive criticism. I cherish the friendship of
the CGL family, the many exciting chats and brain-storming sessions during the
late night hours, and most notably the valuable advice given to me by wizards such

as Alex Nicolaou, Robert Kroeger, and Frank Henigman.

Financial support for the research presented in this thesis was provided by post-
graduate scholarships from the Natural Sciences and Engineering Research Council

of Canada, and the Province of Ontario’s Information Technology Research Centre.

I dedicate this work to my parents, whose infinite love and support have given
me the strength to go forth, and to Dr. Dan Somnea, the first to show me the

magic world of computer graphics.

1

Trademarks

Silicon Graphics is a registered trademark of Silicon Graphics Incorporated.

PasteMaker and the Splines Library are under the copyright of the Computer

Graphics Laboratory at the University of Waterloo.

All other products mentioned in this thesis, such as Math.h+-+ and Tools.h++,
are trademarks of their respective companies. Our use of general descriptive names,
trade names, and trademarks, even if not precisely identified, is not an indication

that such names may be used freely in all circumstances.

111

Contents

1 Introduction 1
1.1 Motivation And Goals L. 2
1.2 Overview o o i i i e e e e e e e e e e e e e e 4

2 Feature-Oriented Pasting: The Basic Approach 6
2.1 An Overview of B-Spline Surfaces 7

2.1.1 Point and Vector B-Splines 7
2.1.2 The Diffuse Coordinate System 8
2.1.3 Greville Displacement B-Splines 9
2.2 The General Mapping Procedure 13
2.3 Pasting Greville Displacement B-Splines 16
2.4 Algorithm Evaluation 19

3 Changing the Hierarchy 23
3.1 Modeling Through Interactive Pasting 23
3.2 Determining The Base Coverage 27

v

3.2.1 Domain Clipping 28

3.2.2 Triangle Geometry 31
3.3 Contained Directed Acyclic Graphs 35
3.3.1 Definitions e 36
3.3.2 Algorithms o oo 41
3.4 Correction Frame Trees 43
3.5 Pasting: The Complete View. 49
Applications 54
4.1 Areas Of Applicability 54
4.1.1 Rendering and Previewing 54
4.1.2 Geometric Design oo, 55
4.1.3 Animation Lo 58
4.2 PasteMaker: A C4++ Pasting Editor 58
4.2.1 An Object Oriented Exercise 58
4.2.2 Architectural Overview 61
4.2.3 Functional Overview 62
Final Comments 65
5.1 Summary e e e e e e e 65
5.1.1 Strengths o 67
5.1.2 Limitations o oL 68
5.2 Future Work 69

A The C++4 SPaste Classes 72

B Color Plates 92

Bibliography 100

vi

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Greville abscissa and the displacement scheme. 10
The one-point mapping procedure. 14
Domain classification. 0oL 16
Domain and surface mapping. 18
Grid evaluation on hierarchical domains. 20
Examples of displacement schemes. 21
Overlapping domains: the polygonal view. 24
Overlapping domains: the structural view. 25
The steps of the Difference operation. 28
Domain discretization and triangulation. 30
Triangle representation in barycentric coordinates. 32
The four main clipping cases. 34
Domain overlapping with and without loops. 35
Domain shufflingin a DAG. 36
Contained DAG and its high-bridges. 38

vil

3.10 Correction frame diagram., 44

3.11 The dual frame and polygon graph. 47
4.1 The inheritance hierarchies of the SPaste classes 59
4.2 Inheritance diagram of the PasteMaker class architecture Classes . . 60

4.3 The PasteMaker Architecture Represented As An MVC Diagram . 61

5.1 Base coverage before and after a domain change 70

viii

Chapter 1

Introduction

Free-form surfaces have become popular tools in the hands of today’s industrial
designers and computer animators. Back in the early 1960’s, non-parametric func-
tions of one or more arguments marked the first attempt at representing smooth
shapes by means of a computerized model; by virtue of their definition, however,
these functions were not adequate for fine surface control and adjustment, and had

little to offer in terms of initial parameter specification.

The parametric curve and surface functions introduced independently by de Castel-
jau [dC63] and Bézier [B66] quickly became a standard design tool with valuable
properties, including affine invariance, the convexr hull property, and the variation
diminishing property [Far93]. Key points on the convex hull of the surface, known
as control vertices, now allowed the modeler to specify the shape of a surface patch
to finer detail and with increased accuracy. To edit a patch, one would change the
position of one or more control vertices, thus affecting the aspect of the whole ge-
ometry. A separate stream of research led by Schoenberg and de Boor [dB78] in the
late 1950’s — early 1960’s and popularized by Riesenfeld in the 1970’s, brought about

CHAPTER 1. INTRODUCTION 2

the B-spline, a parametric representation more general than Bézier’s approach and

with important new properties such as better continuity control.

1.1 Motivation And Goals

B-Splines are easy to maintain and economical with respect to the amount of data
that defines them. Large B-spline surfaces are typically used to represent sophis-
ticated models; often, surfaces must coexist in a model that undergoes change,
and certain aspect criteria need to be preserved. For example, surfaces defining
a flexible head profile must remain smooth throughout any motion or stretching.
Such requirements are hard to meet when the component surfaces are assembled
via alignment or blending operations. A more suitable alternative is to use simple
B-spline tensor product surfaces that consist of internally aligned and guaranteed

continuous pieces called patches.

A remaining problem, though, is the possibly high number of control vertices
needed to represent such a surface. If the model is intended for further adjustment
rather than static viewing, speed and space-saving considerations suggest that it
is desirable to represent a surface with fewer control vertices, while keeping the
shape information intact. If, however, extensive detailing is necessary, fewer control
vertices may be insufficient. There are two ways to increase the number of control
vertices: elevate the degree of the surface, or refine it by inserting domain points,
called knots. Boehm’s algorithm [Boe80] and the Oslo algorithm [BBB87] are among
the more popular refinement methods. In either case, however, the main complaint
is that the algorithm produces more control vertices than desired, and increases the

computation needed to evaluate the surface.

An alternative solution, aimed at maintaining a low number of control vertices,

CHAPTER 1. INTRODUCTION 3

was presented by Forsey and Bartels [FB88|: detail surfaces, called overlays or
features, are applied onto a base surface in a hierarchical fashion to create a com-
posite surface of increased complexity. Each overlay is a normal displacement from
a conveniently chosen reference point. The approach focuses on uniform B-splines,
assumes a strictly nested (tree-like) layering of the overlays, and requires that all

domains be parametrically aligned.

In this thesis we generalize Forsey’s method, elaborate on a displacement method
proposed by Bartels [BF91], and investigate ways of applying it to interactive,
real-time modeling, as well as to real-time animation. To avoid computing the
displacement of every point along the feature surface, we define an approzimate
displacement mechanism that involves only the control vertices, and we illustrate
that, by recursively refining the feature, the approximate displacement approaches
the ideal one at the limit. One employs this efficient, yet inexact approximate dis-
placement method during an interactive previewing session, then applies the true

displacement for the final result.

We remove the nesting requirement for the surface regions, allowing them to be
transformed freely — independently, as clusters, or as a whole — and to overlap so
as to form a Directed Acyclic Graph (DAG) rather than just an N-ary Tree. There
is to be no restriction on the transformations applied to the regions (as long as an
inverse transformation is defined), or on the normal or tangential displacement. The
study focuses on non-uniform B-splines, which call for a more general displacement
scheme, and on the feasibility of the approximation technique (called pasting) for

previewing, free-form design, and animation.

Under this approach, the pasting procedure becomes more than a refinement
tool; it provides the possibility of rendering a surface composition selectively, thus

expediting the rendering process. It can be used to model compositions by interac-

CHAPTER 1. INTRODUCTION 4

tively changing displacements, control vertices of one or more surfaces, and region
layouts. Base surfaces may serve as sliding paths for pasted clusters whose motion
and shape are determined by the underlying topography, generating an organic
motion effect. Pasting also applies to higher dimension entities that incorporate

non-geometric components, such as color, opacity, and brightness.

1.2 Overview

The second chapter introduces the terminology and notation, presents an overview
of B-splines and displacement mappings, and describes the pasting method from a

mathematical standpoint.

Chapter 3 discusses the hierarchical aspects of the pasting procedure. The dis-
cussion is geared towards an interactive, dynamic approach to modeling. It suggests
an efficient clipping algorithm for two-dimensional B-spline surface domains, based
on barycentric coordinates. Finally, it introduces the pasting data structures and

a set of pasting-related operations.

Chapter 4 lists a number of applications to free-form modeling and animation.
Then it describes PasteMaker, a C++ application that implements the elements
presented in the previous chapters. A section is dedicated to operations either
derived from the pasting procedure or closely related to it. The chapter illus-
trates PasteMaker’s architecture by means of the Model-View-Controller (MVC)

paradigm, and closes with comments on the editor’s user interface.

Chapter 5 summarizes the findings, explores more exotic areas of applicability,

and probes into future research.

Appendix A is a complete listing of the C++ header files representing the core

CHAPTER 1. INTRODUCTION 5

of the paste library (SPaste) and PasteMaker’s engine. The software was written

at the Computer Graphics Lab, as a component of the Splines Library [VB92].

Appendix B illustrates the pasting concepts in a set of color plates. The images

were created with PasteMaker, the editor presented in Chapter 4.

Chapter 2

Feature-Oriented Pasting: The

Basic Approach

After establishing the notation used throughout the discussion, the chapter intro-
duces the concept of a B-spline surface, defines the pasting procedure, and evaluates

the performance of the pasting operation as a modeling and animation instrument.

The pasting philosophy is independent of the dimension of the space in which
it is formulated. To facilitate its understanding, however, we focus our discussion
on the three-dimensional euclidean space, R®>. We denote points by upper case
Roman characters, and represent them as triples of coordinates: P = (z,y,z2),
where z,y,z € R. Greek or Italic fonts are used to represent regular scalars such
as ,y,z in lower case, and surface domains (D) in upper case. Vectors are given
in lower case bold, and are expressed as scaled unit components in each spatial
direction: v = (ad, 3j,7k), with «, 8,4 € R. Finally, we denote transformations by

upper case bold characters, as in T or F.

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 7

2.1 An Overview of B-Spline Surfaces

In the broadest sense, a three-dimensional spline surface is defined in terms of a
two-dimensional domain D and a collection of three-dimensional control vertices
knows as CVs. Depending on the type of CV, one can identify two classes of spline

surfaces: point splines and vector splines.

We base our presentation on a widely used type of spline surfaces, the B-spline
tensor product. The shape of the tensor product is determined by a rectangular
mesh of control vertices and a pair of basis functions, B(u) and B(v) over domain D,
defined in each parametric direction — u and respectively v. Bézier bases and non-
uniform rational bases (NURBS) are among the most frequently used [BBB87];

both types represent feasible incarnations of the pastable surfaces introduced next.

2.1.1 Point and Vector B-Splines

A point B-spline surface S(u,v) is a linear combination of control points P; ;' and

basis functions B;(u) and Bj,(v):
S(u,v) = 32D PiiBir(u)Bju(v) (2.1)
T g
where k and £ are the orders of the first and second basis function respectively.

If we replace the control points by control vectors representing offsets from
some origin, we obtain the definition of a vector (or displacement) B-spline surface,

s(u,v):

!Commonly referred to as CVs. Here, we define both point and vector splines, and must
distinguish between the two types of control entities; therefore, we will call them CVs only when

their type is irrelevant.

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 8

s(u,v) = Zzpi’jBi’k(u)Bj’l(v) (22)

where p, . are the control vectors. In surface modeling, vector splines present
the advantage of being independent of the coordinate frame origin. They also
allow great flexibility in determining a very reasonable displacement scheme [FB88,
BF91], and are well suited to handling Forsey’s overlays [For90] more generally and

conveniently.

It is possible to write a point spline, defined in a frame whose origin is O € R?,
in terms of a vector spline. To represent the vector spline relative to O, we add the

origin to both sides of Equation 2.2, which becomes:
0] + s(u,v) = 0 + Z Z pi,jBi,k(u)Bj,l(v) =
T g

O+s(u,v) = >3 (0 +Ppij)Bik(u)Bju(v) (2.3)

Since S(u,v) is rooted at origin O, each of its control points P, ; can be expressed
relative to O and p, ;: P;; = O + p, ;. Then, by Equation 2.1, the above equation
yields:

O + s(u,v) = S(u,v) (2.4)

Equation 2.4 shows that a point spline can be written as a point-vector sum of

the frame origin and the displacement spline. This is the observation that underlies

the system of offsets used in [FB88, BF91]

2.1.2 The Diffuse Coordinate System

A more interesting displacement scheme, which also underlines the pasting mech-

anism, involves a scattered or diffuse coordinate space (DCS), which associates a

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 9

“suitably chosen” frame with each control vector. The frame selection process will
be defined later. For now, assume that frame IF; ; € DCS has been assigned an
origin O;; and an offset p; ;. Then, the point spline (Equation 2.1) can be written

as:

EZ 2% —I_plj ()Bj,l(v) (2'5)

The choice of origin O;; and displacement p, ; is paramount for the quality of
the pasting operation, and determines the behavior of pasted and unpasted surfaces
when either the origin or the displacement handle has changed. Before describing
the DCS construction, we must briefly dwell on the underlying domain of the

B-spline surface.

2.1.3 Greville Displacement B-Splines

The two-dimensional domain of a piecewise B-spline surface is determined by the
values of its knots [BBB87| in each parametric direction. Consider the general case
of a non-uniform B-spline (NUB) surface, which has two basis functions Bj(v) and
By(v) defined as in Equation 2.1 over domain D. Let p and v be the number of knots
in each direction, and {ug,...,uu—1} , {vo,...,v,_1} the respective nondecreasing

knot sequences. Then, the complete surface domain is
D = {(u;,v;)|0 <1< p,0 <5 <v} (2.6)

If the surface has m x n control vertices (m < g and n < v), the domain over which

it is valid or well defined is D', D' C D:

D' = {(w,)| up—1 < u < Upg1, 001 <V < Vpga) (2.7)

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH10

‘ Greville displacement
dZ
A\

[N

T T T T
2 Uig Feature Domain /

Figure 2.1: Greville abscissa and the displacement scheme.

We illustrate the choice of origin O, ; in Figure 2.1, leaving the variable v aside
and concentrating on the variable u for simplicity. A NUB-spline basis is defined
such that each control vertex P, ; influences a number of knots equal to the degree
of the basis. These knots belong to D', the domain over which the spline is well
defined. In Figure 2.1a, for example, vertex P, ; influences domain points u; 41, %it2,
and u;;3 (and similarly for v). The domain point over which a control vertex has
mazimal influence is called a Greville abscissa [Far93], and is defined as an average

of ‘degree’ d knots:

1

Yi = 3(“1’4—1 + . Uitd) (2.8)

with ¢ ranging from 0 to the number of control vertices minus 1. (and similarly for
v) The image of the Greville abscissa on the surface indicates the point likely to
be most affected when the corresponding CV moves. The above equation applies

with little change to the simpler case of the Bezier basis, whose breakpoints can be

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH11

interpreted as knots with multiplicity d.

In summary, the Greuville point v; ; associated with control vertex P, ; is defined

as a pair of Greville abscissae, one for each parametric direction:

Vi = (%> 75)
with 4; and vj computed as in Equation 2.8.

The inherently two-dimensional Greville points can be embedded into a three-
dimensional space by adding an arbitrary coordinate to each point. Let the free

coordinate be 0. Then, the three-dimensional Greville point is
Lij = (%4,0)

The array of Greville points forms a discrete Greville domain, which shares
the same space as the CVs. The latter can then be rewritten as CV offsets in

corresponding frames, with I'; ; as the origin and P;; — I'; ; as the displacement:
Pij =T+ (Pi; — Lij)

Let d;; = P, ; — I'; ; be the Greville displacement. The pair {T; ;,d;;} forms a

local coordinate frame IF; ; for control vertex P, ;:
IF;; = {Ii;,ds;} (2.9)

Then by Equation 2.5 the diffuse representation of a point B-spline in terms of its

Greville points is:

S(u,v) = Z Z(Fi,j + d;,;) Bik(u) Bje(v) (2.10)

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 12

Equation 2.10 is illustrated in Figure 2.1b, which shows the domain embedded
in 3-space, and one Greville displacement drawn from the (¢, 7)th Greville point to
the corresponding CV; d,, dy, and d, are the z, y, and respectively z components
of the Greville displacement vector. By inverting the sign of the z component it is

possible to mirror the displacement relative to the XY plane.

Thus, a point B-spline can be written as a collection of local displacements
from the Greville abscissae and represented vectorially as a Greville Displacement

B-spline by removing the I' origins from Equation 2.10:

s(u,v) = Z E d; ; B; () Bje(v)

Algorithm 2.1 summarizes the process described so far:

Algorithm 2.1 Building a Greville Displacement B-Spline

gwen point B-spline S(u,v) = ;3 ; Pi jBix(u)B;e(v):
for each control point P; ; do
compute 2D Greville abscissa v; ;;
embed v; ; into 3-space to obtain I'; ;;
compute Greville displacement d; ; =P, ; — T'; ;
end
assemble vector B-spline s(u,v) = 32, 3°; d; ; B; 1(u) Bj(v)

end

The significance of the above Greville surface representation derives from the

mazimal influence property of the Greville abscissae: by establishing a vectorial

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 13

relationship between control points and Greville points, one defines a matrix of
mazimal support for the given point spline, one most likely to preserve the shape

and proportions of the surface under arbitrary domain transformation.2

2.2 The General Mapping Procedure

Chapter 1 has already mentioned that the main drawback of classic refinement
methods is the often unnecessary addition of control vertices leading to “heavy”
splines. An alternative is to use a displacement mapping to add detail to a base
surface. Although conceptually sound, this solution is not feasible for interactive
applications due to the expense involved in displacing every evaluation point in
the surface hierarchy. David Forsey’s approach [For90] simplified the algorithm
by approximating the complete displacement mapping with a mapping of control
points only. The procedure is applied recursively for every overlay (or feature) in
the hierarchy, and requires only that all overlay domains be strictly nested and

aligned.

The pasting approach described here generalizes Forsey’s algorithm and en-
hances the modeling potential of the resulting composition. It involves at least two
surfaces: a base surface on which to paste Sp, defined over domain Dpg, and a fea-
ture surface Sp defined over domain Dp. Assume the feature point to be mapped
is Sg(r,s), determined by point (r,s) € Dp, and its mapped image on the pasted

surface is §F(T,S), as shown in Figure 2.2.

The process of pasting Sp onto Sp starts with mapping Dp into Dp by an

invertible transformation T. Let the mapped domain point be (u,v) € Dp, with

*Invertible transformations are particularly relevant to the pasting process.

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 14

S(rs)_ - S
(rs) ~-S,_

(r.s) F

Figure 2.2: The one-point mapping procedure.

pre-image (r,s) = T '(u,v) € Dp, and let Sp(u,v) be the point on base surface
S at (u,v). If sp is the vector representation of surface Sg (see Equation 2.2) and
dr its displacement matrix, the displaced feature point §F(T,S) = Sr(T*(u,v))
results from applying the d (T *(u,v)) displacement to its mapped origin Sg(u,v).

The quality of the result is highly dependent on the type of displacement chosen
for dp: either global displacement relative to a unique origin O, as in Equation 2.3,
or local displacement of each point P, ; relative to origin O, ;, as in Equation 2.5.
A global displacement is unlikely to be sufficiently sensitive to the topography of
the base surface and to generate a uniformly distorted pasting. However, if the
displacement is anchored at multiple origins within the feature domain, as the

second option suggests, a more satisfactory mapping is achieved.

Ideally, each local coordinate frame should be representative of the shape of the
surface and its behavior under topographic stress. A good candidate for a diffuse
coordinate system with this property is the Greville displacement spline introduced

earlier in this chapter (Equation 2.9), which assigns the Greville points to frame

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 15

origins, and computes the displacements by subtracting each Greville point from
its corresponding control point. This choice is valid as long as one is interested in

mapping only the control points.

To apply the feature displacement onto the mapped origin Sp(u,v), one must
set up a local coordinate frame IF at Sp(u,v), where Fp = {Sp(u,v), v(i,j, k)}.
The yet undetermined vector v must reflect the curvature of the base surface at
the mapped origin Sg(u,v), and convey the direction of dr’s vector as mapped by
transformation T. The tangent-plane vector components i and j are given by the

partial derivatives of base surface Sg at Sp(u,v), and

i xJ for positive displacement

k =

J X1 for negative displacement

If the pre-image domain points are r(u,v) and s(u,v), the partial derivatives

are:
aSp _ aSBa_u_I_ 855 dv
ar du Or v Or (2 11)
8Sg _ aSBa_u_I_ 8Sg ov '
8s = Bu 08s 8s Os

Efficiency considerations suggest that Equation 2.11 be replaced with a good

yet inexpensive approximation, such as the difference quotient.

958 oy SB(U(T + 6,3),’0(7‘ + 673)) - SB(U(T‘,S),D(T‘,S))
Or €

Difference quotients yield satisfactory results for a very small e value that is inversely

proportional to the distance between two successive domain points.

Finally, the pasted image g(r,s) results from embedding the feature displace-
ment d(r,s) into the local coordinate frame IF. The operation is a point-vector

addition performed in the given frame context:

Sr(r(u,v),s(u,v)) = Sg(u,v) + d(r, s)

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 16

2.3 Pasting Greville Displacement B-Splines

The previous section has made no assumptions about the number or type of feature
points mapped onto the base surface. The same procedure applies to one or many
points, and its result depends mostly on the displacement scheme chosen for the
feature surface. One instance of the algorithm is used in the pasting operation,
which maps only the control mesh of the feature, and generates a new B-spline
surface defined in terms of the mapped CVs (Plate 1). The surface representing
the displacement is the Greville vector B-spline (Equation 2.9). Pasting a feature
Sp onto a base Sp reduces to mapping each of the feature Greville displacements
onto the base surface, and rebuilding a point B-spline surface from the mapped

control points P; ;.

Base Domain Vo
‘ -1 I

Figure 2.3: Domain classification.

Recall that mapping a feature CV first calls for an evaluation of the base surface
at a point whose image in the feature domain is the Greville abscissa. To guarantee
a successful evaluation, the mapped feature Greville must lie inside the complete

base domain D (Equation 2.6) and fit inside the part of the base domain over which

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 17

the base surface is defined (Equation 2.7). Thus, the required range of a feature
Greville is:

urt..tup_1 > Umt1t--FUmir—1

- > up_1 and = < Ut
v1+...+ve_1 Un41+-FVnge_1
1 2 v and =SSR S vy

The complete base domain and the valid domain coincide for Bezier bases, but are
not identical for NUB or NURB bases. Figure 2.3 shows the domain relationships
for NUB bases and the containment conditions a feature domain must satisfy to
ensure successful mapping. The figure shows a hashed feature domain lying atop
the white base domain, with its dotted Greville domain barely inside the base’s

dotted valid domain.

If all above conditions are satisfied, pasting proceeds as follows:

Algorithm 2.2 The Basic Pasting Procedure

given the feature’s Greville point matriz I' and displacement matriz d
for each T; ; = (vi,7;,0) do
let (u,v) = image of point (v;,7v;) € Dr tn domain Dp
evaluate Sp at (u,v) to obtain base image Sp(u,v)
build local frame IFg = {Sp(u,v),v(i,j, k)}
let f’” = Sp(u,v) + d;; in the context of IF g
end

end

The algorithm is illustrated in Figure 2.4, which simplifies the example by vary-
ing parameter v and keeping v constant. The dotted line links the base domain

point (u,v), to its image Sg(u,v) on the base surface. Point (u,v) represents the

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 18

Pasted Feature

Base Surface

/

/ Feature Domain

/

Base Domain

\

\
\
\

\
;

Figure 2.4: Domain and surface mapping.

image of feature Greville I'; ; on the base domain. The pasted control point f’”
results from applying the Greville displacement d;; to its mapped origin Sp(u,v)

in the local frame determined by Sg(u,v) and v.

If all CVs are mapped in a similar fashion, the end-result is a free standing
surface that reflects the topography of the underlying base while still preserving
some of its original contour traits. If a base surface point changes, and the point
has a domain image that overlaps one of the feature’s domain pre-images, the
mapped feature will also change shape. Should more features be pasted recursively
on one or more bases, then every point of the composite will lie in some hierarchy
of domains, and the changes operated at a base level will propagate through the
hierarchy to affect the features above, in the order in which they were pasted. This

will be made clearer in Algorithm 3.5.

As long as the dynamics of the pasted composition does not affect the domain

dependencies between bases and features, the procedure described in Algorithm 2.2

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH19

can be simplified by eliminating the remapping of the feature Greville points:

Algorithm 2.3 The CV Pasting Procedure

given the feature’s mapped Greville point matriz T
and Greville displacement matriz d
for each f‘” = (u,v,0) do
evaluate Sp at (u,v) to obtain base image Sp(u,v)
build local frame IFg = {Sp(u,v),v(i,j, k)}
let f’” = Sp(u,v) + d;; in the context of IF g
end

end

2.4 Algorithm Evaluation

Interdependencies among feature and base surface domains can be traced through-
out the pasted hierarchy, and can be used to detect the surface that ultimately
represents the shape of the compound at a given point. An obvious example is
the evaluation of a pasted composition at a point specified in the base domain, as
shown in Figure 2.5. The spikes that pierce the overlay domains indicate what do-
mains are encountered along the search path, and what domain point the respective

evaluation would occur at.

The figure also points out a possible problem that may arise when the evaluation
point is very close to the edge of an overlapping domain. The dotted circle, for ex-
ample, denotes a point probably shared by base domain D; and feature domain D,.

If the two surfaces are not C° continuous (ie. do not touch) at the common domain

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 20

D3

N ¢ “er 1

Iy

/ D1

Figure 2.5: Grid evaluation on hierarchical domains.

point, an arbitrary decision on which surface to evaluate might yield unpleasant
or undesired visual results. Irrespective of the choice of surface, the discontinuity
cannot be hidden; it can only be made less obvious. Such cases are infrequent,
though, since the most common goal is to “grow” a seamless detail from a bare
base surface. To minimize the gap between feature and base along the junction
points, the Greville displacements along the feature’s edges should have a zero z
component. This requirement is easily accomplished with end-point interpolating
tensor product surfaces, whose only condition on the edge points is to be equal
in z. Since the two-dimensional Greville points are embedded in the 3D space at
an arbitrary z value, one can conveniently use the minimum of all z values in the

control mesh for this purpose.

It should be emphasized that the mapped surfaces are only approximations of
the true displacement surface. Therefore, even if invisible to the naked eye, seams
might still exist. The accuracy of the approximation depends on five factors: the

feature and base domain alignment, the level of the feature and base refinement,

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH21

the curvature of the base surface, the displacement scheme, and the precision of
the difference quotient evaluation (Equation 2.2). Regardless of the value of these
parameters, the boundary of the pasted feature is merely a close approximation of
the surface it rests on, and will carry a small gap factor as long as its domain is not
perfectly aligned with the underlying domain. If the two domains are equiparamet-
ric, irregularities may still occur, especially if the feature surface is unsufficiently
refined. Plates 3 and 4 illustrate this case: in Plate 4, the red feature surface
pierces the blue surface on which it is pasted, but no longer does so after refine-

ment (Plate 3).

Figure 2.6: Examples of displacement schemes.

The displacement scheme is another determining factor of the pasting quality.
We have already decided that representing the feature surface in terms of its Gre-
ville displacements is likely to yield satisfactory results. Depending on the size of
the domain and the placement of the control points, the resulting displacements
may be more or less aligned, as shown in Figure 2.6. The picture on the left de-
picts a scheme in which all z and y displacements are zero; the figure on the right
demonstrates a more de-aligned scheme. Neither representation is perfect, and nei-
ther will perform equally well or badly under a non-planar base surface topography.

However, experiments have shown that displacements with a zero tangential com-

CHAPTER 2. FEATURE-ORIENTED PASTING: THE BASIC APPROACH 22

ponent are overall more intuitive and better shape-preserving representations than
others. An example of a more extreme case is illustrated in Plate 6, in which the
green surface is pasted onto the purple one, but intersects it rather violently due

to its negative displacement vectors.

These and other properties of the pasting operation can be turned into useful
features in a well designed application. The multiple uses of this procedure and the

details of hierarchical pasting are presented in the chapters to come.

Chapter 3

Changing the Hierarchy

The previous chapter has presented the pasting procedure as a mapping of features
onto a known set of bases. Rarely, however, is the structure of the composition
rigid or known a priori; surface modeling requires repeated morphological changes
and stresses the need for flexible data structures. This chapter discusses the hierar-
chical aspects of the pasting mechanism, geared towards an interactive approach to
modeling. First, the chapter presents a two-dimensional clipping algorithm based
on barycentric coordinates, suited to the shape of the surface domains. Then, it

describes the pasting data structures and their basic operations.

3.1 Modeling Through Interactive Pasting

Pasted compositions come alive through changes applied to their control vertices
and domains. As far as pasting is concerned, control vertex editing is synonymous
with surface remapping on unchanged base domains, as described in Chapter 2.

Domain transformations, on the other hand, modify the composition layout and

23

CHAPTER 3. CHANGING THE HIERARCHY 24

require a complete domain and surface remapping.

B2

Bl

Figure 3.1: Overlapping domains: the polygonal view.

The structure of a pasted hierarchy changes due to domain transformations, new
pastings, and pasting removals (or unpastings), all of which are known as structural
modifications. These operations involve two entities, each consisting of any number
of pasted surfaces that form a base composition or a feature composition respectively.
In Figure 3.1, for example, the base composition is B = {B1, B2, B3, B4, B5};
similarly, the feature composition is F = {F1, F2}. The components of each set
are listed in pasted order'. Domain Bl is the root of the composition, since it is
not pasted onto any domain and is sufficiently large to accommodate all its pasted

details.

In this example, the feature domains and the base domains are strictly nested
before the pasting of F onto B. The domain dependencies established thereafter
are illustrated in Figure 3.2, where the nodes of the graph represent domains, while
edges indicate portions of domains that overlap. Although both B5 and F2 are

subdomains of F'1, they lie on opposite sides: B5, which is a base component, lies

1The order in which each was pasted onto its respective base domain(s)

CHAPTER 3. CHANGING THE HIERARCHY 25

under F'1, while feature F'2 is pasted on F'1.

Figure 3.2: Overlapping domains: the structural view.

When the structure of a composition changes, two steps precede the surface

mapping operation:

1. recomputation of the set of bases;

2. reassociation of each Greville point on the feature domain with the directly

underlying base.

Step 1 determines the structural base coverage (SBC), defined as the
set of base domains the root feature touches directly. In Figure 3.1, SBCr =
{B2, B3, B5}, where F1 is the root. A different view of SBCr is given in Fig-

ure 3.2, which represents the structural base coverage as a set of edges incident to

CHAPTER 3. CHANGING THE HIERARCHY 26

F1. The SBC reflects domain dependencies, but provides no information on the

size or shape of the exact overlap areas.

The polygonal base coverage(PBC) is a prerequisite for Step 2. Given
the root domain F,,,; of a feature composition and its structural base coverage

SBCr = {By,...,B,}, the polygonal feature residual (PFR) is defined as a

set of polygonal shapes:
PFRr={R:,...,R.}, Ri. m 720, m<n (3.1)
where residuals R, _,, are defined as:

Rl — Froot - Bn (32)

Ri = Ri—l - Bn—i—|—17 2 S 7, S m (33)

Then the polygonal base coverage is the set of polygonal fragments as follows:

PBCr={D1,....;.Dp}, D1 . 20, m <n (3.4)

where
D = B,NF, .. (3.5)
Di == Bn—i-l—l N Ri—l, 2 S 1 S m (36)

In Figure 3.2, the incident edges of node F'1 show the P BC'x polygons computed
in the order B5, B3, B2. At each step, the residual is intersected with the base,
then updated through a difference operation. An eflicient solution for computing

the base coverage is presented in the next section.

CHAPTER 3. CHANGING THE HIERARCHY 27

3.2 Determining The Base Coverage

The polygonal base coverage definition suggests a straightforward algorithm to com-
pute the set of bases and the feature fragments that intersect them. The algorithm
requires two rather expensive geometric operations between planar polygons — dif-
ferencing and clipping — which help determine the SBC and the PBC respectively.
The method presented below finds the S BC without clipping, and focuses on find-
ing only the structural base coverage?, whose components completely determine the

graph dependencies.

Let F,o: be the root feature of composition F, and B = {Bi,...,B,} the
domains of the base composition, stored in pasted order. We denote the residual

by R. Then:

Algorithm 3.1 Finding the Structural Base Coverage

let R=F - B,
if R=0 add B, to SBCx, and exit
for each B;, n—1>1t¢>2 do
let Riemp = R — B;
Riermp # R then
add B; to SBCr
if Riemp = 0 exit
let R = Rtemp
end

end

?For the complete algorithm, see the PBC definition (Equation 3.1- 3.6)

CHAPTER 3. CHANGING THE HIERARCHY 28

— —

Figure 3.3: The steps of the Difference operation.

Figure 3.3 shows how the algorithm is applied to feature F'1 (from the earlier
Figure 3.1 example). The steps highlight the result of the successive differences
between F' and {B3, B5}.

The algorithm is linear in the number of base domains, and can be optimized
for efficiency with bounding-box tests for intersection. The expensive operation is
that of computing the difference between two non self-intersecting polygons which

can be concave, hole-filled, and fragmented as illustrated in Figure 3.3.

3.2.1 Domain Clipping

Polygonal difference, intersection, and union are boolean operations frequently used
to determine visible surfaces, produce high-quality surface details, or distribute
scene objects to appropriate processors in parallel ray tracing systems [FvDFJ90].
Generally referred to as clipping operations (by the name of the intersection opera-
tion), they have spawned two classes of algorithm design based on the precision of

the computations:

Image Precision methods operate at the resolution of the display, and deter-
mine the visibility of each pixel. A typical example is the z-buffer algorithm [Cat74],
which does not require any intersection calculation, but uses a large amount of stor-

age and records only the surface fragments with the closest depth value. Another

CHAPTER 3. CHANGING THE HIERARCHY 29

algorithm, created by Warnock [War69], subdivides areas into four equal squares
recursively, according to the amount of local detail. Warnock’s method does not
completely eliminate the line intersection computations, and has a poor worst-case

behavior.

Object Precision algorithms are display independent, and have a precision
equal to that of the objects they operate on. They produce accurate results and use
structures easy to traverse after the initial setup overhead, but require extensive
intersection computations. The depth-sort algorithm, Binary Space-Partitioning
Trees (BSP), and Weiler-Atherton’s algorithm [NNT72, FAG83, WAT77| are among
the most efficient. Another category of object-precision algorithms, called scan-line
methods, apply scan conversion to determine the intersection, the union, or the
difference of arbitrary polygons. A recent improvement belongs to Vatti [Vat92],
whose scan beam algorithm replaces the unit increments with segment increments

equal to the vertical distance between two successive line intersections.

Regardless of the strengths of the algorithm, clipping arbitrary polygons is a
complex task. The current solutions can be fast when limited to specific polygo-
nal types (such as rectangles, or strictly convex shapes); otherwise, as is the case
with most object precision algorithms, they have expensive overheads. Of all the
methods listed above, the BSP trees and the scan-beam algorithm are best suited
to computing the base coverage of pasted compositions. Both approaches operate
on complex polygons in a 2%—dimensional space, and both yield accurate clippings.
Moreover, they construct a spatial graph that lends itself to subsequent boolean
computations. However, the overhead of building the graph restricts the effective-
ness of these algorithms to static models. The interactive approach promoted by
the pasting procedure, involving frequent domain shuffles, requires a fast clipping

algorithm with no overhead or precision penalty. While successive clipping of a fea-

CHAPTER 3. CHANGING THE HIERARCHY 30

ture domain against its bases produces complex polygonal fragments, the original
shape of the polygon is a rectangle. The algorithm presented next takes advan-
tage of the simplicity of the initial domain geometry. Even if affinely transformed,
a rectangle can be partitioned easily into two or more triangles, as illustrated in

Figure 3.4.

Figure 3.4: Domain discretization and triangulation.

Once represented as a set of adjacent triangles, the polygon delegates the clip-
ping task to its components. Although a boolean operation between p polygons of
n triangles each, has complexity O(pn), the method is feasible because triangles are

simple geometric primitives offering a low-cost, object-precision clipping advantage.

The difference operation between two triangulated polygons is a new set of
triangles whose cumulative contour is not relevant to the polygonal base coverage,
and therefore need not be computed. The difference algorithm produces a set of

disjoint and possibly adjacent triangles, as follows:

Algorithm 3.2 Computing the Difference of Two Polygons, P1 — P2

for each triangle T € P1 do
let residue R =T
for each triangle Q € P2 and while R # 0 do
let R =R — Q (possibly following a bounding-box test)

CHAPTER 3. CHANGING THE HIERARCHY 31

end
if R # 0 add R to difference

end

The problem of finding the geometric difference between two domains reduces
to computing the difference between two triangles that intersect at arbitrary angles.

A solution based on barycentric coordinates is discussed briefly in the next section.

3.2.2 Triangle Geometry

Consider a triangle with vertices A, B, C and a coplanar point P, as in Figure 3.5.
P can be represented in terms of the triangle as a barycentric combination of the

three vertices:

P = OéAA + OéBB + Oécc (37)

where ay, ap, and a¢ are the barycentric coordinates of P with respect to A, B, C,

and satisfy the condition:
ap +ag + ag = 1, QA , OB, AC €R (38)

Equations 3.7 and 3.8 form a linear system of equations in ay, ap, and ag, with

solutions:
P. B, C. A, P, C, A, B, P,
P, B, Gy A, Py Gy A, B, Py
1 1 1 1 1 1 1 1 1
A = , OB = , g =
A, B, C, A, B, C, A, B, C,
% A, B, G, % A, B, G, % A, B, G,

—_
—_
—_
—_
—_
—_
—_
—_
—_

CHAPTER 3. CHANGING THE HIERARCHY 32

C(001)

C
ol <o
A
CXB <0
O{C:O
A (100) © | B(010)
//0 <
o-° e}

Figure 3.5: Triangle representation in barycentric coordinates.

At each vertex the corresponding « is 1, while the other two a’s are 0 (Fig-
ure 3.5). Along the axes defined by the triangle edges, the barycentric coordinate
of the facing vertex is 0, indicating that the vertex does not contribute to the po-
sition of any point on that axis. On each side of the axis, a is positive in the
half-plane containing the vertex (towards the inside of the triangle), and negative

in the outer side. A point P is inside the triangle if as g,c > 0.

As Figure 3.5 illustrates, the alpha values partition the barycentric space into

two areas:

o the region within the edges of the triangle, where 0 < appc < 1;

o the region outside the triangle, where at least one barycentric coordinate lies

outside the [0,1] interval. A further subdivision of this region is possible:

— the front-face space, delimited by one “defining” edge and the outward

extension of the other two edges. The subspace is said to face the vertex

CHAPTER 3. CHANGING THE HIERARCHY 33

opposite the defining edge. If one endpoint of an arbitrary line segment
lies in the front-face space, the segment either does not intersect the
triangle, or if it does, it must first intersect the defining edge. In this

space, two a’s are always positive.

— the back-face space, delimited by the outward extension of two “defining”
edges. The subspace lies at the back of the vertex where the defining
edges intersect. If one endpoint of an arbitrary line segment lies in the
back-face space, the segment either does not intersect the triangle, or if
it does, it first intersects one of the two defining edges. In this space,

two a’s are always negative.

Figure 3.5 shows the signs of the barycentric coordinates of points lying in

the front-face of vertex B, and in the back-face of vertex C respectively.

It is possible to construct a function that maps « values to barycentric regions,

and stores the information in a 6-bit word?®:

‘OéA>0|OéA:0|OéB>0|OCB:0|050>0|O£C:0‘

A case-driven algorithm can be developed on this basis, taking into account the
alpha regions as well as the configuration of the two triangles. Figure 3.6 gives an
example of every configuration — one, two, three vertices, or no vertex inside the
base triangle — and shows the result of the difference operation as shaded polygons.

Similar principles apply to the union and intersection of two triangles.

To compute the contours generated by a boolean operation, the algorithm must
find the points where the triangles intersect. Given a pair of coplanar segments
|AB| and |UV|, the point of intersection K results from a system of parametric line

equations with unknowns ¢ and 7:

3Three bits would not permit the detection of all three « placements: a > 0, & = 0, and o < 0.

CHAPTER 3. CHANGING THE HIERARCHY 34

> X
A7y

Figure 3.6: The four main clipping cases.

K(t)=(1-t)A+B
K(r)=(1-71)U+4+ 71V

(3.9)

I/\
I/\

1

0
Point K is a valid intersection if
0

. .

I/\
I/\

Algorithm 3.2 performs well on the average case, and can be optimized to by-
pass non-intersecting triangles and produce better triangulations of the clipped
areas (to avoid slivers). As the areas become smaller, fewer triangles overlap, and
the method terminates quickly. This approach exploits area coherence, a prop-
erty of shapes that cover significant portions of the underlying area, thus requiring
few intersections with the neighboring layers. Quick termination and simple com-
putations recommend the case-driven barycentric algorithm as a good choice for

interactive pasting.

CHAPTER 3. CHANGING THE HIERARCHY 35

3.3 Contained Directed Acyclic Graphs

If the structural base coverage of a feature contains more than one domain, the do-
main dependencies form a directed graph with interconnected nodes (Figure 3.2).
Rather than being strictly nested as in Forsey’s approach [For90], domains over-
lap arbitrarily. Theoretically, loops generated by partially overlapping entities do
not increase the complexity of the model, as long as the areas of intersection (the
polygonal base coverage) are circuit-free; however, the concern for real-time sur-
face composition renders loops impractical, and shifts the focus to structural base
coverage. Therefore, the pasting algorithm does not know the extent to which do-
mains overlap, and cannot allow a feature to become its own base, as Figure 3.7

illustrates.

Figure 3.7: Domain overlapping with and without loops.

The first picture shows domains A, B and C combined in a loop. If domain A
changes, the mapping process will traverse the graph in the order A — ' — B —
A — ... ad infinitum. To avoid an infinite loop, the algorithm requires all domain
planes to be strictly layered, as shown in Figure 3.7b. Also, domains are assumed

to be non self-intersecting, or if they are, they are not pasted onto themselves.

CHAPTER 3. CHANGING THE HIERARCHY 36

Selective mapping® is a complex mechanism that handles loops by storing the
polygonal base coverage of every feature and eliminating the polygons that intersect.
For the sake of simplicity, this section assumes the layout of pasted domains forms

a loop-free directed graph, known as Directed Acyclic Graph or DAG®.

D2

D2 \, D2
D1 D1 D1

OO CY
Sy G0 Ge

Figure 3.8: Domain shuffling in a DAG.

The solution presented in this section views the model as a system that records
only its current state. Thus, once a surface slides completely from under its features
(Figure 3.8 and Plates 11, 13, and 14), it ceases to determine the shape of the
pasted features, and is pasted on top of these ex-features if shifted back across the
ex-feature domain. This mechanism acts as a safeguard against loop formation and

provides an intuitive rule for structural motion.

3.3.1 Definitions

Surface domains are transformed individually or in groups in a manner that pre-
serves the graph acyclicity. This discussion concentrates on groups uniquely de-

termined by one component, known as a pivotal domain. A cluster defined by its

4See Chapter 5

% Composition DAG if tepresenting the structure in its entirety.

CHAPTER 3. CHANGING THE HIERARCHY 37

pivot forms a pivotal group, which is intrinsically loop-free and remains so under

structural modification.

Three classes of pivotal groupings are common:

e single grouping — contains only the pivot itself;
e exhaustive grouping — selects the DAG rooted at the pivot;

e contained grouping — ignores domains partially overlapping the inclusive

domains.

Single and exhaustive groupings are special cases of contained grouping. The
latter constructs a contained DAG, which is a subset of the composition DAG
with the property that all its domains (i.e. nodes) lie completely inside the subset’s
root domain. In Figures 3.2 and 3.1, for example, F'1 is an element of the contained
DAG whose root is B2, since F'1 and all its descendents — as well as B3, B5, and
B2 itself — are inside B2.

The contained DAG notion is a component of the containment paradigm

formally introduced below.

Definition 3.1 Given a directed acyclic graph G(V,E), nodes s,t,z1...z, € V,
and a directed node-path P(s,t) from s to t, P(s,t) = (s,21,...,%n,t), a reverse
node-path is P~ (s,t) = (¢, 2zn,...,21,5).

The reverse node-path is an ordered set that results from traversing a trajectory
from ¢ to s in the direction opposite to the one following the sense of the edges. De-
pending on the connectivity of the graph, there may be several directed (or reverse)

paths between s and ¢. In Figure 3.9, which is a rendition of Figures 3.2 and 3.1

CHAPTER 3. CHANGING THE HIERARCHY 38

with additional visual cues, there are three reverse paths between nodes B1 and F'1:
P, = (F1,B3,B2,Bl); P, = (F1,B2,Bl); and P; = (F'1,B5,B2,B1). Notice
that nodes B1, B2, F'1 appear in all three sets.

B3's contained DAG

/ / - ~N
f <
|
\ . .
N N S / \\B3’s high-bridge DAG
R | \
\ n
\ /
N . 7

Figure 3.9: Contained DAG and its high-bridges.

Definition 3.2 Given a directed acyclic graph G(V,E) rooted at v € V, two nodes
s,t € V, and a directed node-path P(r,t), node t is contained relative to s iff

s € NT P; (r,t), where n is the size of the complete set of reverse paths.

A node t is contained relative to another node s if any reverse path from ¢ to the
root of the DAG includes s. For the DAG illustrated in Figure 3.9, node F'1 is
contained relative to B2 and to root B1l. Notice that both Bl and B2 appeared
in the result of previous example as nodes common to all reverse paths from Bl to

F1.

CHAPTER 3. CHANGING THE HIERARCHY 39

Definition 3.3 Given a directed acyclic graph G(V,E) rooted atr € V, and a node
s € V, the contained DAG rooted at s is GZ™(V', E"), where V! C V s the set of
all the nodes contained relative to s, and E' C E is the set of edges whose endpoints

are in V'.

If we use the same example, the contained DAG rooted at B3 consists of only two

nodes, B3 and B4, because no other node except B4 contains B3 in all its reverse

paths; indeed, F1 ¢ G%3* because B3 ¢ (F'1,B2,B1) . The only edge of G$5* is

the one that links B3 and B4. The contained DAG may or may not coincide with
cont

the subgraph rooted at the given node. In Figure 3.11b, for instance, G%5* contains

only D2 because neither child is spawned exclusively by D2.

Definition 3.4 Given a directed acyclic graph G(V,E) rooted atr € V, and a node
set W C V, the portion of the node path shared by all w € W is an ordered set
defined as Pa(G,W) = N; Pi(r,w). The minimum container Q of all w € W is
the last node of Po(G,W).

In Figure 3.9, the path shared by B3, F1, and B5 is Pq = (B1,B2). B2 is the
minimum container, ie. the node with the shortest path to all the elements in W. If
W represents the structural base coverage of a feature, then the minimum container
is the topmost domain that fully contains the feature and the base coverage domains.
Thus, if we were about to add F'1’s composition to the DAG rooted at B1, we would
identify {B3, B2, B5} as its structural coverage and B2 as the closest node to all
three. Since B2 is the closest node to F1’s base coverage, it also represents the

root of the smallest contained DAG that includes F'1.

F1 happens to touch B2 directly, which explains why B2 is both a component of

the structural coverage set and the minimum container. In Figure 3.11b, however,

CHAPTER 3. CHANGING THE HIERARCHY 40

D4’s structural coverage is {D2, D3}, while the minimum container is D1. To

simplify the notation, we will refer to Q(G, W) as Qw whenever G is implicit.

Definition 3.5 Given a directed acyclic graph G(V,E) and a contained DAG de-
noted by G (V', E"), withs € V', V' C V and E' C E, the cutset of G¢™(V', E')

is B = Ef) Eg)y,, where:

low

o E“ 45 the low cutset of the contained DAG, and is equivalent to the set of

low

edges incident to node s.

o the high cutset, EfY, , is the set of edges whose tail node is in V', and whose

head node 1s in V — V'.

Definition 3.6 The bridge nodes of a contained DAG G (V', E') are the set
Veut = Vit U Vigss,, where:

ow

e known as the low-bridge node set, V¢ consists of the tail nodes of Ef*

ow low*

o Viiui represents the high-bridge node set, and consists of the head nodes

cut
of Ehigh'

The high-bridge nodes, or high-bridges for short, are the domains that partially
overlap the contained DAG. If the contained DAG reduces to one domain as for
single-grouping, the high-bridges are its immediate children in the composition
DAG; ezhaustive-grouping has an empty high-bridge set. High-bridges can have
pasted features of their own, in which case it is possible to determine the high-

bridge DAG’s (G"9") as contained DAG’s rooted at high-bridge nodes.

As noted earlier, F'1 is not in G%3*; however, it overlaps B3 partially and

qualifies as a high-bridge node. Domains B2 and B3 forms a high-bridge DAG

cont

with respect to Gg3 .

CHAPTER 3. CHANGING THE HIERARCHY 41

3.3.2 Algorithms

In an interactive environment, the structure of the composition DAG must adapt
to structural changes rapidly. Since the contained DAG, the minimum container,
and the high-bridges are sensitive to hierarchical modifications, they need to be

recomputed efficiently.

The first algorithm determines the contained DAG G¢™(V', E') from a directed
acyclic graph G(V, E).

Algorithm 3.3 Computing the Contained DAG

for each node s of DAG G(V, E) rooted at r do
let count, = in_degree,;
end
call visit (G, G*™, z);
The recursive visit routine:
procedure visit (G, G, v)
add v to G*®™’s node collection V'
for each child ¢ of v do
if count, = 1 then
add c’s incoming edges to G ’s edge collection E’
visit(G, G*™, ¢)
else
count, = count, — 1
end
end

end

CHAPTER 3. CHANGING THE HIERARCHY 42

The algorithm visits the graph nodes in a mixed depth-first and breadth-first
manner, adding nodes to the contained DAG if they have been reached from all
their incoming edges. If the domain layout is completely nested, the composition
DAG becomes an N-ary tree, and the algorithm collapses into a depth-first search

with redundant count tests on the nodes.

To determine the high-bridges, it is possible to modify the above algorithm to
compute the difference between the set of potential high-bridges and the nodes
confirmed to be contained. Algorithm 3.4 determines the high-bridge set Vi3 of
the contained DAG rooted at node z. Let r be the root of the DAG.

Algorithm 3.4 Computing the High-Bridge Nodes

for each node s of the DAG G(V, E) rooted at r do
let count, = in_degree,;
end
let the high-bridge set Viis, = {0}
call findHigh (G, V54,);
The recursive findHigh routine:
procedure findHigh (G, Vi, v)
for each child ¢ of v do
if count, = 1 then

if in_degree. > 1 remove c from V,fiﬁ

findHigh(G, G*™, c)
else

add c to th;ﬁ

count, = count, — 1

end

CHAPTER 3. CHANGING THE HIERARCHY 43

end

end

The removal operation in findHigh is particularly expensive on graphs with
high in-degree nodes. If the contained DAG is already known, the bridge finding
algorithm can be replaced by a linear traversal of the contained nodes, aimed at
identifying the high cutset of the contained DAG. Then the high-bridges are given
by the end-nodes of the high cutset edges. In our implementation we have used

this short-cut with significant improvement in performance.

As the composition DAG increases in density, the search required by the two
algorithms discussed here becomes more expensive. It is possible, however, to
perform the search faster on a tree representation of the composition, one that
records the coordinate frame dependencies and offers easy access to the roots of

contained DAG’s. This data structure is known as a correction frame tree.

3.4 Correction Frame Trees

Each surface domain is defined in a two-dimensional coordinate frame of given origin
and orientation. The shape, position, and orientation of the domain are expressed
in terms of a transformation relative to this frame. If the origin of the frame is
Op(10,0) in world coordinates, a domain displaced by, say, T'(2,7) relative to Op
is in fact at P(12,7) in the world frame. In frame O} (5,4), the same transformation
would yield P'(17,11) in world space. The frame in which the domain exists is called
the parent frame; the transformation relative to the frame is known as the to-parent

transformation.

CHAPTER 3. CHANGING THE HIERARCHY 44

o 4 No

Te f

Feature frame

World frame

Base frame

Figure 3.10: Correction frame diagram.

When pasted onto a base domain, the feature domain “attaches” itself to the
base by placing its frame in the domain space of the base. The operation replaces
the feature’s parent frame with the base frame. But, as the above example demon-
strates, if the to-parent transformation is not zero, a straightforward change of
frame would cause the feature to “leap” towards another point in the common ref-
erence frame. The effect of this unexpected jolt is unintuitive and undesirable in
the interactive modeling context. The point is illustrated in Figure 3.10, where the
base transformation T’z is composed with the feature transformation T to yield the
feature placement in base space (light hash). To keep the feature’s original position
(dark hash) unchanged, it is necessary to compute a correction transformation

Torrection t0 neutralize the effect of the frame switch.

Both feature and base frames refer to the world space, a common frame cho-
sen for convenience, their to-world transformations being Wr and Wp respectively.
Then, the correction needed to maintain the feature’s constant position and orien-

tation relative to the reference frame is the inverse of the base’s to-world transfor-

CHAPTER 3. CHANGING THE HIERARCHY 45

madtion:

Tcorrection = ng (310)

A closer analysis of the correction mechanism indicates that Te.orrection must
be stored when the feature is pasted, but need not be applied then, because the
feature’s to-world transformation (Wp) is still valid. Wy is invalidated when the
base’s transformation, Tg, changes, in which case Wpg is updated to Wy and the

feature’s to-world transformation becomes:
WF = TFTcorrectionWéa Wé = f(TB) (311)

Equation 3.11 makes the convenient simplifying assumption that the parent and

world frames of an unpasted domain D coincide: Tp = Wp.

If the base transformation T were constant, then by Equations 3.10 and 3.11:
Wp =TrWg'Wp = Tr (3.12)

Equation 3.12 shows that if the base domain does not change, the pasted feature
behaves independently of its parent, as if standing alone. Therefore, when unpasted,
the feature must refresh Wr only if the transformations undergone while pasted
were credited to its base:

. -1
W TFTcorrection WB if Tcorrection 7£ WB
F pu—

Tw otherwise
The mechanism introduced so far extends easily to multiple bases, which require
that the feature maintain a to-parent transformation for each base frame. The cor-
rection and to-parent transformations can be stored in the edges of the composition

DAG and updated as the structural layout changes.

CHAPTER 3. CHANGING THE HIERARCHY 46

The to-world transformations are unique for each domain and therefore stored
in the graph nodes. If feature F' has n bases, B; ... B,, it must define n to-parent
transformations T4 ...T, and n correction transformations Teorrection; « - - Leorrectionn,

such that:
WF - Tl Tcorrectionl WBl

WF = Tn Tcorrectionn WBn

The resulting — frame-padded — composition DAG provides support for two

types of domain grouping:

e selective feature grouping, that transforms a complete set of base domains
and a subset of their features. This category is synonymous with contained
grouping, since all the selected features are inside the given set of base

domains.

e selective base grouping, that transforms a subset of base domains and
their nested and/or partially overlapping features. If feature F' has n bases
out of which the first k of them (k < n) are in the selected group, and F’s
domain changes via its k base domains, it must update the remaining n — k
to-parent transformations, Tjyq...T,. This category is similar to, but more
accommodating than, contained grouping, because it may include features

that only partially overlap the set of selected bases.

A good reference on animating models in coordinate free geometry using frame
graphs is given in [Hen93]. To avoid loops in the frame dependency structure, the
pasting approach focuses only on selective feature grouping and the associate frame
relationships in the composition. If the domains were all nested, the frame graph

would be a tree whose edges could be interpreted both as structural base coverage

CHAPTER 3. CHANGING THE HIERARCHY 47

and frame dependency links. The edge duality is hereafter referred to as poly versus

frame respectively.

D1
D2
D4
D1 Legend:
—— Frame Tree
= Polygon DAG

Figure 3.11: The dual frame and polygon graph.

If a feature domain lies over multiple bases, it can be transformed as part of a
contained DAG whose root defines the behavior of all its nodes. When pasted onto
a base set, the feature depends ultimately on the shallowest contained DAG of the
base composition; that is, the one having the shortest maximal path from root to
leaf. The poly edges of the composition DAG will indicate the set of bases it touches
directly (as already illustrated in Figure 3.9), while an additional “virtual” edge —
a frame edge — will bind the feature to its minimum container. The graph of frame
edges is called a correction frame tree, because all nodes have in-degree one,
and every node contains a correction transformation relative to its parent. A frame
edge does not have a corresponding poly edge unless the end-node lies directly and

solely on the tail-node.

Figure 3.11 exemplifies the poly and frame duality on a composition of four

domains, D1, D2, D3, D4, whose top leaf, D4, is a subdomain of root D1, but lies

CHAPTER 3. CHANGING THE HIERARCHY 48

entirely across D2 and D3. The graph on the right shows the poly edges as thick
arrows, and the frame edges as thin arrows. The frame edges link the nodes in a
tree-like structure, with one edge per node. The edge between D1 and D4 is purely
virtual because D1 does not touch D4, yet it is the closest common parent of D4’s

bases, D2 and D3.

The frame graph of Figure 3.11 provides further insight into the containment
paradigm, a theory whose viability relies on efficient contained DAG and minimum
container algorithms. By definition, every node in the CFT is the root of a contained
DAG, because each parent node is the minimum container of its children. This
implies that the contained nodes and edges of any node z in the structure are given
by the subtree rooted at . This approach requires no tests on the visited nodes,
and substitutes the traversal of the possibly dense composition DAG with a search

through an N-ary tree.

When a frame moves, the subtree rooted at that frame moves along with it
and must have its to-world transformations refreshed recursively. Pasting requires
little effort on behalf of the feature composition, since the operation links only
the root feature to its minimum container and leaves the other features unchanged
frame-wise. Similarly, an unpasted feature composition need only detach the frame
edge between the root feature and its minimum container and possibly update its
to-world transformation. The complete pasting procedure, involving the contained
DAG and the correction frame tree, is assembled into a set of algorithms in the

concluding section.

CHAPTER 3. CHANGING THE HIERARCHY 49

3.5 Pasting: The Complete View

From the static perspective of motionless features, the pasting algorithm is reduced
to the domain and surface mapping procedure described in Chapter 2. Once the
relationships between overlapping entities are permitted to change, issues related
to efficient algorithms and supporting data structures require serious attention.
The degrees of freedom allowed for any transformable cluster is limited, in this
approach, by the simplifying requirement that the composition be circuit-free. The
model records its current state, determined by the node and edge configuration, and
ignores the historic sequence. The steps of the dynamic pasting mechanism include
graph adjustments and surface/domain mapping. The operations performed on
the data structures are centered on the notion of a contained DAG, and require a
local frame to be associated with each entity. An efficient description of the model
represents the composition as a pair of graphs: the composition DAG reflecting
structural and possibly polygonal base coverage, as well as the tree of frames and

correction transformations.

The algorithms described below take advantage of the dual model representation
and minimize the need for graph updates by operating only on the root of the
contained DAG where possible; also, they assume that the entities involved satisfy

the root-inclusion condition.

Algorithm 3.5 The Pasting Sequence

given feature composition F and base composition B do
find base coverage SBCx and min container {1z
for each Greville point P; in the domain of root feature Fy of F do
find domain B; € SBCx such that P; € B;

CHAPTER 3. CHANGING THE HIERARCHY 50

end

compute and store Fy’s correction transformation

attach feature CFT to base CFT with edge from Qr to Fy
wnsert feature DAG into base DAG with edges from SBCr to Fy
call The Basic Pasting Procedure® for F,

call The CV Pasting Procedure’ for all of Fy’s descendents

end

The unpaste operation is the reverse of pasting and is applicable to any grouping
of pasted entities except the root base. The algorithm listed below operates at the
contained DAG level, which consists of at least one entity and a sub-DAG at most,
and does not include entities partially overlapping its components. If such entities
exist, they must be “lifted” as high-bridges before operating on the contained DAG,

then “lowered” (i.e. repasted) on the base composition in pasted order.

High-bridge nodes may themselves be roots of contained DAG’s that intertwine
with other DAG components, and therefore must be lifted as contained entities in
pasted order. Algorithm 3.6 describes the recursive procedure of lifting the high-
bridge set of a contained DAG and returning an ordered set of contained DAGs,
denoted by @ZZ;‘Z

Algorithm 3.6 Lifting the High-Bridges

given high-bridge set Vi5%, do
for each z € Vi, do (in pasted order)

6 Algorithm 2.2
" Algorithm 2.3

CHAPTER 3. CHANGING THE HIERARCHY 51

remove &’s incoming edges (remove poly edge)
remove CE'T edge between Q, and © (remove frame edge)
compute high-bridge DAG G and its high-bridge set Hf),
add G to B30
let Vi, = Vi, — Hith
call Lifting the High-Bridges for H},

end

end

The lifted DAGs have had their cutsets removed, but have not been fully ex-
tracted from the composition DAG or from the correction frame tree. When low-
ered, they only need to reestablish the links with the underlying structure and

remap their surfaces to reflect the morphology of their new base coverage:

Algorithm 3.7 Lowering the High-Bridges

given an ordered list of high-bridge DAG’s @577}
for each GI*9" ¢ ®iot do
apply The Pasting Sequence with no DAG insertion
end

end

Unpasting derives easily from pasting as a complementary operation. The un-
pasting algorithm shows the steps of extracting the contained DAG rooted at =

from the graph G, and turning it into an independent structure:

CHAPTER 3. CHANGING THE HIERARCHY 52

Algorithm 3.8 The Unpasting Sequence

given DAG G and G<™ C G do

end

let ®527 = Lifting the High-Bridges for GJ™
remove graph G from G = stand-alone feature composition F
detach x©’s CFT (frame) edge from its minimum container in G
compute x’s correction transformation if required
for each Greville point I'; ; in x do
assoctate I'; ; with x
end
call The CV Pasting Procedure for all of F’s surfaces
call Lowering the High-Bridges for ®;7" onto the remaining G

Domain transformation or “shuffling” modifies the layout of the pasted domains.

It is applied to contained DAG’s assumed to remain within the area bounded by the

root of the entire composition. If that root coincides with the root of the contained

DAG, the algorithm requires that the high-bridges remain inside the root; also, it

does not paste the contained DAG onto anything. The procedure resembles the

three-step unpasting sequence: raise high-bridges, manipulate selected cluster, and

lower high-bridges, and is illustrated in Plates 11, 13, and 14.

Algorithm 3.9 The Domain-Transformation Sequence

given composition C and G<™ C C do

if x = root of C then
apply transformation to G¢™

for each Greville point I'; ; in z do

CHAPTER 3. CHANGING THE HIERARCHY 53

recompute I'; ; and associate it with

end

call The CV Pasting Procedure for all of C’s surfaces

else
call Lifting the High-Bridges for G&™
apply transformation to G=™
call Lower the High-Bridges onto C
end

end

Pasting lends itself to a variety of modeling operations, and is potentially useful

in animation. Its range of applicability is discussed in the next chapter.

Chapter 4

Applications

This chapter examines the applicability of the pasting operation to key areas of
computer graphics, such as rendering, free-form surface modeling, and animation.
PasteMaker, a test of the principles introduced so far, is presented next, followed

by a brief discussion on user interface issues.

4.1 Areas Of Applicability

Although initially derived from the need for a superior refinement scheme, the
feature-oriented pasting mechanism has emerged as a feasible instrument for ren-

dering, industrial previewing, geometric design, and computer animation.

4.1.1 Rendering and Previewing

In the classic approach, adding complexity to a surface requires an excessive number

of control vertices and a new rendering of the whole surface, regardless of the extent

54

CHAPTER 4. APPLICATIONS 95

of the change. The hierarchical pasting mechanism, however, maintains a low CV
count overall, and calls upon the renderer only on the areas affected by the editing
operation. Consequently, rendering becomes less expensive and better suited to

interactive inspection by the industrial previewer or computer artist.

4.1.2 Geometric Design

Perhaps the most intuitive use of pasting is in the modeling area: indeed, it defines
a method for making local changes and layering detail arbitrarily, and allows for
editing at the feature or composition level. Courtesy of the domain-surface duality,
features can be manipulated in the domain space or in the surface space either

pasted or unpasted.

Since feature changes are independent of the bases and non-overlapping fea-
tures do not interact with each other, modeling that affects remote parts of the
composition requires only few local updates. This optimization contributes to the

interactive modeling speed and enforces a tighter control on the locality of change.

Often, it is sufficient to design a single standard feature that applies “well” to
several base surfaces: instead of designing N features shaped as already pasted
details, it suffices to construct one unpasted feature that produces the N pasted
images when mapped on the various bases. The surface design ratio improves from a
costly 1 :1 to an efficient 1 : NV, and even if the pasted feature does not look perfect
initially, it requires less adjustment than needed when designing from scratch. This
is the case of the side-mirror in the car industry: the mirror has one unpasted shape
meeting the design needs of a whole car family when pasted onto each car body.
Further adjustments of the mirror configuration include sliding the pasted feature

along the car panels, and adjusting the control vertices of the composition.

CHAPTER 4. APPLICATIONS 56

The pasting mechanism provides two main handles to the geometry of the model,

both of which contribute equally to the shape of the composite surface:

e the domain handle is the underlying domain of each surface. When a do-
main is transformed, it may change the layout of the composition and redis-
tribute the contribution of the bases; as domains shuffle, the effect may be
twofold: if the DAG edges do not change to reflect radical modifications in
the overlapping strata, the polygonal base coverage’ must have been affected,
requiring that feature displacements be reapplied to the known set of bases.
This happens when the features slide only partially from under their bases.
If, however, the shuffle is more dramatic to incur changes in the structural
base coverage and modify the layout of the paste hierarchy, the new bases

must be determined prior to reapplying the feature displacements.

e the CV handle is the control vertex matrix associated with each surface.
When one or more CVs move, they leave the structural (domain) setup un-
changed, but affect the topography of the model from the owning surface of
the CV to all its descendants. The control vertex handle has a two-way appli-
cability to design editing: to alter the shape of a feature, assuming no change

2

in the critical domains®, one can either manipulate the CVs of the feature

(direct change), or those of the bases it lies on (indirect change).

— direct changes apply identically to the pasted and unpasted image:
as shown in Chapter 2, the control vertices of the pasted feature are

the mapped images of the original Greville displacements. Therefore, a

!Both polygonal and structural base coverage were defined in Chapter 3.

?The feature domain and the domains of the underlying bases.

CHAPTER 4. APPLICATIONS 57

change in the pasted CV has a correspondent in the unmapped displace-
ment; similarly, a CV change in the unpasted feature will be reflected
in its pasted image. Indeed, once the displacement vectors have been
established, it is no more expensive to edit the displacement than it is

to edit the regular spline.

— indirect changes are propagated from bases to features recursively, and
require that the feature surface and all its descendants be repasted onto

their bases.

Additional editing handles are provided by the length and orientation of the

feature displacement vectors.

e the orientation handle is determined by the cross-product order of the z
and y Greville displacements. # X y maps the result onto an elevation on the
base surface. y X @ is useful in generating depressions into the base. The use
of the orientation handle is illustrated in Plate 10, which depicts two blue

surfaces, one elevated and the other depressed, pasted onto a green base.

o the offset handle is the normal component of the unmapped displacement,
one of || # Xy || or || y x z || depending on the orientation choice. Useful
applications would involve changing one or more offsets by a constant or

variable delta, as shown in Plate 2.

Since the handles operate on contained DAGs — clusters of one or more surfaces —
the extent of the change depends on the size of the cluster chosen for the operation.
Thus, the contained DAG acts as a means of local deformation control. Nota
bene: if present, high-bridge surfaces may extend the deformation area beyond the

boundaries of the contained DAG.

CHAPTER 4. APPLICATIONS 58

4.1.3 Animation

The pasting operation fits well into the animation scheme as an alternative solution
to key-frame trajectories and other path-definition techniques. To this end, the
object(s) subject to animation must be pasted onto a base composite that is not

represented visually, but serves as a path generator.

The primary contribution to the animation realm stems from the inherent shape-
motion duality of the domain and CV handles, yielding what we call organic motion:
a blend of sweeping motion and smooth molding of the features in their passage
between layers of arbitrarily shaped surface clusters. Imagine, for example, the
behavior exhibited by a tear drop as it trickles down the cheek, or the sluggish
crawl of a snail on uneven land. Since features change their shape according to
the non-planar base surface(s) on which they are mapped, the pasting technique

applies primarily to the animation of morph-assisted motion.

4.2 PasteMaker: A C+4++ Pasting Editor

PasteMaker is a spline surface editor that demonstrates the concepts presented in
the previous chapters, and explores ways in which the theoretical findings apply to
modeling and animation. The editor runs on an SGI Onyx machine, and performs
all the animated tasks interactively, in real time. The main features of the editor

appear in the color plates shown in Appendix B.

4.2.1 An Object Oriented Exercise

The program is written entirely in C++ using the Splines library [VB92] under
development at the University of Waterloo. Many of the object oriented princi-

CHAPTER 4. APPLICATIONS 59

ples translated here into code originate from [Mey88]. Valuable references on the

intricacies of the C++ programming language are found in [ES90] and [Str91].

RWCollectable RWCollectable SError
& N/
SGraphNode SGraph
SError SDAGraph
s/ J
SPasteDom SPasteDomDAG
SPasteSurf SPasteSurfDAG

Figure 4.1: The inheritance hierarchies of the SPaste classes

The underlying component of the application is the SPaste library, which im-
plements the concept of feature-mapping and provides handles to pasting-related
operations. SPaste is device-independent. The core of the package is SPaste Dom, a
two-dimensional domain class that specifies a domain by a rectangle and an affine
transformation to be applied to the rectangle. Domain objects are manipulated
from within SPasteDomDAG, a DAG class responsible with pasting, transforming
affinely, and unpasting its components. A third class, SPasteSurf, inherits SPaste-

Dom’s properties and adds generic B-spline information.

Inserting a surface into an SPasteSurfDAG instance is equivalent to pasting it
onto a base DAG. SPasteSurfDAG is derived from SPasteDomDAG, and controls
the surface aspect of the pasting operation by redefining a small set of virtual

functions. The class hierarchy diagram and the class interface listings are presented

CHAPTER 4. APPLICATIONS 60

SPasteSurf ~ NUBSurf
N

/ \ PSurface Y / 0 \

SPasteSurfDAG
/SPasteSurf NUBSurf \ 0 \l

[
NS
\ \ PSurface /

\ \\~//C/’\\\ o /
\ y \ /
\ /SPasteSurf NUBSurf 0 /

\ LN) /

PSurf /
N \ urface Y J

PSurfaceDAG 0

Figure 4.2: Inheritance diagram of the PasteMaker class architecture Classes

in Figure 4.1.

PasteMaker uses the SPaste library to define its own pasting classes: PSur-
face, which inherits from SPasteSurfand a B-spline tensor-product class, and PSur-
faceDAG, derived from SPasteSurfDAG. Figure 4.2 shows the inheritance graphs
of PSurface and PSurfaceDAG, and the relationships between objects of the two

classes.

The other application-specific classes are presented from an architectural stand-

point in the next section.

CHAPTER 4. APPLICATIONS 61
4.2.2 Architectural Overview

PasteMaker is structured on the Model-Viewer-Controller (MVC) paradigm, il-
lustrated in Figure 4.3.

Model
PScene

PSUrfaceDAG (PSurfaceDAG

(¢)

o
O (PaurfaceDAG

Scene Info Scene Changes

Controller

Viewer

PSurfWindow
PDomwindow

Feedback

Surface:
Domain:

Mouse:
Panel:

SPickDevice
PForm

Rendered Images

User Input

Figure 4.3: The PasteMaker Architecture Represented As An MVC Diagram

The controller is user-driven and is responsible for updating the model and
processing the viewer feedback. It has two components, each dedicated to a style
of interaction: the control panel on the right-hand side of the screen (Plate 1)
maintains a set of buttons and settings to adjust the model indirectly via mouse
clicks; outside the panel, the mouse buttons interact with the model directly, in
sequences of pick-and-edit operations. PForm is the class that implements the

panel component, while SPickDevice is a major element of the mouse component.

The model is a collection of B-spline surface clusters (or DAGs) organized as a
scene. The controller classes interact only with PScene, the maintainer of the entire
model. PScene delegates editing tasks to its components, the PSurface DAGs, which

in turn maintain pasted nodes of type PSurface. The changes affecting the model

CHAPTER 4. APPLICATIONS 62

are reflected instantly in the viewer.

The viewer addresses the issue of determining suitable visualization and inter-
action handles, considering the dual nature of the pasting mechanism. Since both
the domains and the CV displacements are mapped during the pasting operation,
and both are valuable modeling handles, the viewer offers a split image of the model
by rendering the domains and surfaces in separate windows. Classes PDom Win-
dow and PSurfWindow, both derived from the abstract PWindow class, implement
the viewer in its surface and respectively domain instantiation. The domain view
provides a clear picture of the structural relationships in the model, and offers an

intuitive handle to layout editing.

4.2.3 Functional Overview

PasteMaker operates in one of three modes, pasting, control vertex editing, or

vtewing, with specific operations bound to the mouse buttons in each mode.

Pasting and domain operations can be accomplished by direct manipulation in
either view. The cluster of surfaces subject to change is determined by the current
selection, which may contain a single object, a contained DAG, or a whole graph.
For example, depressing the left mouse button on a domain selects the contained
DAG rooted at that domain; then, as the selection is dragged in domain space,
establishing new structural dependencies in the DAG, the surface view reflects
the repasting process at the control vertex level as a smooth animation of surface

morphing and sliding.

The control panel commands are active in all three modes. Among them,
PULL/RELEASE and POSITIVE/NEGATIVE PASTING implement the displace-

ment vector handles presented earlier in this chapter. Pulling a surface by an

CHAPTER 4. APPLICATIONS 63

amount changes the length of the original normal displacements (Plate 2), while
releasing it resets the displacements to the original offset. Depending on the num-
ber of displacements affected and the type of pull — constant or variable — the effects
of the deformation may vary significantly. Three such examples, a magic carpet, a
blow-up, and an extrusion effect, are illustrated in Plates 8, 2 and 5 respectively.
Plate 10 and its single-color counterpart, Plate 9, demonstrate the use of positive
and negative pasting (notice the two blue surfaces), which converts depressions into

elevations and vice-versa by reversing the displacement orientation.

PasteMaker’s COPY command generates pasted or unpasted clones according
to the user’s choice. Plate 6 shows the green pasted surface on top of its purple
base, and its unpasted clone on its left. The blue and pink composition on Plate 10
is an identical copy of its twin, both of which are pasted onto a green surface. The

clone of a pasted surface uses the pasted CVs of its original as displacements.

The editor explores the use of linear as well as non-linear region transforma-
tions in the NEW command, which can instantiate surfaces whose domains are

transformed by a sinusoidal transformation (Plate 12).

To verify the statement that knot insertion improves the precision of the pasting,
PasteMaker contains a recursive REFINEMENT command that operates in either
parametric direction. Plate 4 shows the red feature piercing its blue base before
refinement, when it has 64 control vertices; after v and v refinement resulting in a

total of 225 control vertices, the refined feature of Plate 3 is pasted more accurately.

The editor contains a set of wvisual feedback options to test the integrity of the
hierarchy changes, and to examine new visualization techniques. The BRIDGES
option monitors the formation of high-bridge surfaces, rendered in orange; the

OUTLINE option highlights the surfaces whose domain could accommodate the

CHAPTER 4. APPLICATIONS 64

selection if it were to be pasted, as indicated by the yellow contour on the right-
most green surface in Plate 6. To represent the composition of surfaces as a single
entity, the editor offers two alternatives: TRIM the bases recursively along the
feature junctions (Plates 7 and 8), or render the DAG as ONE MESH (Plate 9).

The application also provides a handle to the alpha value for transparency editing.

Direct manipulation seems to be the best type of interaction in the modeling of
feature-oriented compositions. Ideally, the domain transformation would be trans-

parent to the user, with all the interaction being performed in control vertex space.

Chapter 5

Final Comments

This chapter reviews the ideas and principles introduced so far, and sheds light
on the strengths and limitations of the pasting operation. Finally, it suggests new

areas of applicability, and provides directions for future research.

5.1 Summary

As the performance of the graphics hardware approaches the age of feasible vir-
tual environments, the emphasis on real-time, interactive modeling and animation
has emerged as a powerful trend. Although surface modeling has long benefited
from Bézier’s innovation on parametric functions, sophisticated design requirements
maintain the need for fast and flexible modeling tools. Moreover, B-spline surfaces
have become commonplace in the production studios of today’s entertainment cap-

itals, caught up in a competition for an ever greater arsenal of special effects.

Conventional spline surfaces are popular modeling instruments, yet lack impor-

tant qualities when applied to models whose shape and complexity are subject to

65

CHAPTER 5. FINAL COMMENTS 66

ongoing change. Even when surfaces are specified as tensor products that pre-
serve the continuity between patches, there is a limit to how much control vertices
can move without affecting areas that should remain unchanged. The locality of
the change is determined by the degree of the curves defining the given area, and
the only reasonable way (using conventional methods) of reducing the size of the
affected area is to increase the number of control vertices. As a result, multiple de-
tails added to a single, overly specified, spline surface reduce editing speed, increase
storage requirements, and are hard to remove or adjust. If, instead, each element
of detail were an individual surface somehow applied to the underlying topography,
the resulting composition would be easier to maintain and would perform better

under tight speed and storage requirements.

This thesis has presented a composition method that applies B-spline surfaces,
called features, to any number of base surfaces, in an attempt to meet what we
perceive to be major performance criteria in a dynamic modeling environment:
local editing, convenient detail repositioning, and interactive execution speed. Our
solution, known as the pasting procedure, derives from a technique proposed by
Forsey [FB88]. We represent each feature surface as a vector spline, where each
vector v, ; is a three-dimensional displacement of control vertex CV, ; relative to
its Greville abscissa I'; ;. The matrix of control vertices defining a spline surface
is therefore expressed as a scattered coordinate system consisting of diffuse C'Vs,

suitable for pasting on a series of arbitrarily shaped surfaces.

The pasting operation initially identifies the underlying base(s) and maps the
feature domain onto them; the resulting image points and the local curvatures of
the base surface(s) form local coordinate frames which serve as mapping support
for the feature’s CV displacements. Finally, the pasted image of each control vertex

is the point that results from adding the associated displacement vector to the local

CHAPTER 5. FINAL COMMENTS 67

coordinate frame. The matrix of pasted control vertices and the feature domain

fully determine the shape of the pasted surface.

Aside from its original use as a space-saving refinement instrument and time-
efficient rendering aid, the multi-layered composition of pasted surfaces provides
a suitable ground for further processing, which might involve trimming, blending,
warping, and so on[CB89, SP86|. Pasting is a versatile modeling instrument that
supports arbitrary domain shuffling provided the compositional structure remains
a DAG (Plates 10 and 12), and lends itself well to path-definition and motion con-
trol problems in animation. The inherent motion-shape duality transcending the
pasting algorithm applies itself to the animation of organic forms, tissue, cloth, or
composites whose finer details yield under changes affecting the underlying struc-

ture.

5.1.1 Strengths

e Provides a low cost, space-efficient refinement mechanism with local deforma-

tion control by representing additional detail as a separate surface.

o Facilitates the modeling and animation of multi-layer detail surfaces in real
time, and enables an interaction with the composition as a whole or as a set

of self-standing surfaces.

o Uses a general and eflicient displacement scheme applicable to non-uniform
rational B-splines, (NURBS). The displacement length and orientation pro-
vide additional modeling handles for depression and elevation control. Low
curvature base surfaces with as few as one or two patches perform very well
under the Greville displacement scheme, and produce pleasingly accurate ap-

proximations.

CHAPTER 5. FINAL COMMENTS 68

o Relaxes the nesting requirement for the surface regions, allowing them to
overlap and change arbitrarily, individually or in groups, as long as they
relate in a DAG fashion and have invertible, linear, or non-linear domain

transformations.

e Supports editing at the control vertex level and at the domain level: CV
editing operates directly in the surface space, while domain changes — caused
by structural region shuffies or independent transformations — influence the
shape of the surface indirectly, through the shape and layout of the underlying

bases.

e Extends naturally to n-dimensional B-spline surfaces and to other surface def-
initions as long as they provide support for an efficient displacement method.
Essentially, one must be able to identify those points that are most likely to
influence the behavior of the surface under modeling transformations, and use

them as origins of the displacement vectors.

5.1.2 Limitations

o Despite its qualities of speed, flexibility, and broad applicability, pasting re-
mains an approzimation technique, subject to the choice of displacement
scheme, control vertex density, and surface curvature. In cases when pre-
cise measurements are important, the exact feature displacements must be

computed for every point on the surface, regardless of the cost of the task.

o Irregularities in the approximation may also arise from the different tensor
product alignment of the overlapping surfaces. A bicubic, for example, has a

sixth degree behavior unless the surfaces are equiparametric. A feature’s mar-

CHAPTER 5. FINAL COMMENTS 69

gin varies as a cubic, while its bases vary as a sixth degree surface. Since the
pasting procedure does not address the issue of precise base-feature intersec-
tion, slight mismatches might be noticeable along the junctions, particularly

on surfaces of sharp curvature around the junction zone.

e The smooth blending between feature and base has not been addressed, un-
der the assumption that features adjust to the shape of their base(s) given
the originally computed displacements. To achieve rough C° continuity, the
feature displacements around its edges should be zero. For a higher degree
of continuity, the curvature of the feature in the proximity of its edges must
approach zero: the slower the feature “takes off” from the base, the closer
it will follow the shape of the underlying base. Even if the model fails to
impose exact continuity, the concern for preciseness can be relaxed under the

consideration that both resolution and machine-cutting are finite.

5.2 Future Work

As the number of control vertices and overlapping surfaces increases, the mapping
costs impact the performance of the algorithm significantly. Further research should
focus on optimization issues, such as identifying the smallest area that needs to be

updated after a pasting change.

Consider the case shown in Figure 5.1a. Feature domain F' rests on root domain
A, and on domains B and C. When B moves slightly to the left, as in Figure 5.1b,
the feature must identify the base associated with each displacement vector, and
remap its displacements accordingly. To optimize these operations, one can ignore

the parts of the base coverage that do not change, as is the case with domain C,

CHAPTER 5. FINAL COMMENTS 70

i
—

a) Before moving domain B b) After moving domain B

Figure 5.1: Base coverage before and after a domain change

and remap only the displacements affected by the change. Referred to as selective
mapping, this method must compute the polygonal base coverage of each pasted
feature, and perform updates that propagate along “thinner” paths through the
hierarchy. To a limited extent, selective mapping is capable of dealing with loops

in the structure graph.

In this thesis we have proposed a displacement scheme that is easy to construct,
and yields satisfactory result in most cases. There are certainly other schemes, more
or less sophisticated, whose performance ranges from poor to excellent, depending
on the data at hand. A worthwhile goal is to develop displacement techniques
suitable for specific surface configurations or spline representations. Moreover, the
entire pasting process may need to be adapted to other types of splines — multi-
variates, box splines, Coons patches, etc. — in response to the demand for custom

modeling tools.

One of the “rough edges” of the pasting method is the little concern for junction
smoothness. Leaving approximation and misalignment considerations aside, the
method cannot guarantee seamless detailing. It can, however, examine the feature
and base curvatures along the merging area, and possibly bend the feature’s ends

to brush smoothly against the surface of the underlying base(s). To avoid gross

CHAPTER 5. FINAL COMMENTS 71

imperfections of the pasting algorithm even well inside the feature domain, one
could base the step-size of the derivative calculation, defined in Chapter 2, on the
curvature of the base surface: the sharper the curvature around the image point,

the smaller the step-size would be.

The surfaces on which we have based our presentation have had a three di-
mensional geometric representation. The same methodology applies seamlessly to
entities exhibiting other properties, visual, acoustic, or both. The pasting mecha-
nism could serve as an inexpensive texture-mapping tool, allowing for textures to
be composited in color space, then applied to an object in geometric space. Further
research will probe into less obvious, yet suitable areas of applicability, and extend
the pasting concept to n-dimensional splines. If n is the dimension of the space,

selective n-pasting can denote the mapping of at most n coordinates.!

Higher dimension splines may store color, brightness, or transparency informa-
tion in the extra n — 3 dimensions. For instance, if color and transparency are
quantified attributes of the control mesh, they can undergo the same pasting trans-
formation as the geometry component. It is thus possible to define and manipulate
opacity at the detail level, and create special effects such as floating crystal-like
engravings on glass or stained glass figures roaming intriguingly within the narrow
framework of a gothic church window. Hyperspace pasting offers modeling a new

challenge and opens avenues of research in n-space compositing.

!This thesis has focused on complete 3-pasting, in which all three dimensions are mapped.

Appendix A

The C+-+ SPaste Classes

The classes listed in this appendix implement a fully functional pasting hierarchy,
based on the theoretical concepts presented in the thesis. The SPaste classes be-
long to the Splines project currently under development at the Computer Graphics
Laboratory, University of Waterloo.

The following pages list the header files of four templated classes: two node
classes, SPasteDom and SPasteSurf, and two graph classes, SPasteDomDAG and
SPasteSurfDAG. The class hierarchies are illustrated in Figure 4.1. Most Rogue
Wave classes encountered in the listing are prefixed by “RW”. [Wav9la, Wav91b]

72

Appendix B

Color Plates

The illustrations shown in this appendix were created with PasteMaker, a C++
Pasting editor described in Chapter 4. The photos were produced on a Silicon
Graphics Onyx with a Focus Graphics Camera.

92

Bibliography

[B66]

[BBBS7]

[BF91]

[Boe80]

[Cat74]

[CB8Y]

P. Bézier. Définition numérique des courbes et surfaces I. Automatisme,

XI1:625-632, 1966.

R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines for
use in Computer Graphics and Geometric Modeling. Morgan Kaufmann

Publishers, Inc., Los Altos, California, 1987.

R. Bartels and D. Forsey. Spline overlay surfaces. Technical report, Uni-

versity of Waterloo, Computer Science Department, Waterloo, Ontario,

1991. CS-92-08.

W. Boehm. Inserting new knots into B-spline curve. Computer-Aided

Design, 12:199-201, 1980.

E. Catmull. A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, University of Utah, 1974.

M. Casale and J. Bobrow. A set operation algorithm for sculptured
solids modeled with trimmed patches. Computer Aided Geometric De-
stgn, 6(3):235-248, 1989.

100

BIBLIOGRAPHY 101

[dB78]

[dC63]

[ES90]

[FAGS3]

[Far93]

[FB8S]

[For90]

[FvDFJ90]

[Hen93]

[Mey88]

C. de Boor. A practical guide to splines. In Applied Mathematical
Sciences. Springer-Verlag, New York, New York, 1978. Volume 27.

P. de Casteljau. Courbes et surfaces a poles. Technical report, A.

Citroen, Paris, 1963.

M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

H. Fuchs, G.D. Abram, and E.D. Grant. Near real-time shaded dis-
play of rigid objects. Computer Graphics, pages 65-72, August 1983.
Proceedings of SIGGRAPH ’83.

G.E. Farin. Curves and Surfaces for Computer Aided Geometric Design.
Academic Press, Inc., 1993. Third edition.

D. Forsey and R. Bartels. Hierarchical b-spline refinement. Computer

Graphics, 22(4):205-212, August 1988. Proceedings of SIGGRAPH ’88,
Atlanta, Georgia, August 1-5.

D. Forsey. Motion Control and Surface Modeling of Articulated Figures
i Computer Animation. PhD thesis, University of Waterloo, 1990.

J.D Foley, A. van Dam, S.K. Feiner, and Hughes J.F. Computer Graph-
1cs. Principles and Practice. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1990.

F.J. Henigman. Articulated Figure Animation In Coordinate-Free Ge-

B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

BIBLIOGRAPHY 102

[NNT72]

[SP86]

[Str91]

[Vat92]

[VB92]

[WATT]

[War69]

[Wav9lal

M.E. Newell, R.G. Newell, and Sancha T.L. A solution to the hidden
surface problem. Proceedings of the ACM National Conference, pages
443-450, 1972.

T.W. Sederberg and S.R. Parry. Free-form deformation of solid ge-
ometric models. In David C. Evans and Russell J. Athay, editors,
Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages
151-160, August 1986.

B. Stroustrup. The C++ Programming Language. Addison-Wesley,
1991.

B.R. Vatti. A generic solution to polygon clipping. Comunications of
the ACM, 35(7):56-63, July 1992.

A. Vermeulen and R. Bartels. C++ splines classes for prototyping.
Curves and Surfaces in Computer Vision and Graphics 11, 1610:121-
131, 1992. SPIE Proceedings, SPIE 92, Bellingham, Washington.

K. Weiler and P. Atherton. Hidden surface removal using using poly-
gon area sorting. Computer Graphics, pages 214-222, August 1977.
Proceedings of SIGGRAPH ’77.

J. Warnock. A hidden-surface algorithm for computer generated half-
tone pictures. Technical report, University of Utah, Salt Lake City, UT,
1969.

Rogue Wave. Math.h++ Class Library: Introduction and Reference
Manual. Rogue Wave Associates, 1991. Version 4.0.

BIBLIOGRAPHY 103

[Wav91lb] Rogue Wave. Tools.h++ Class Library: Introduction and Reference
Manual. Rogue Wave Associates, 1991. Version 4.0.

