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Abstract

Asynchronous circuit design is a beautiful application area for any formalism that can
reason about parallelism. By means of two small, but challenging, exercises we illustrate
the similarities and differences between parallel program and asynchronous circuit design.
The exercises are simple to state and have many solutions, which are sometimes surprisingly
efficient. They all illustrate many aspects of asynchronous circuit design. For each exercise
we present several solutions, which are analyzed with respect to delay assumptions, safety,
progress, and performance issues. We also mention some open problems.

*This work is supported by the Natural Sciences and Engineering Research Council of Canada under grant
OGP0041920 and by a grant from the Information Technology Research Centre of Ontario.
These notes are a revision of the lectures presented at the BANFF VII Workshop on Asynchronous Hardware
Design, August 28 — Sept. 3, 1993.
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It is quite difficult to think of the code
entirely in abstracto without any kind of circuit.

Alan M. Turing [33].

1 Introduction

The design and analysis of asynchronous circuits has witnessed a remarkable upsurge in the
past five years. Many researchers have claimed or demonstrated that asynchronous circuits
have a great potential for speed, low power consumption, robustness, modular design, and
ease of design. Some of these properties, like modular design and ease of design, were already
demonstrated in the 60’s in the Macromodules project [7]. The recent advances are characterized
by many novel design and verification techniques [1, 3, 6, 11, 12, 17, 21, 32] or by the new
applications of and improvements in classical approaches [4, 8, 9, 19, 24, 28]. The performance
analysis of asynchronous circuits is also beginning to draw wide attention [2, 5, 13, 27, 30, 36].
The novel techniques indicate that the design and analysis of asynchronous circuits have much
in common with the design and analysis of parallel programs. The purpose of this paper is to
illustrate some techniques in designing asynchronous circuits and in analyzing the performance
of these circuits with respect to area complexity, power consumption, and response time. The
design of a circuit consists of the derivation of a parallel program for a specification. Wherever
possible, we try to give a heuristics for each design decision. The derivations are presented in a
format that allows a quick verification of all steps.

Our method for designing asynchronous circuits is based on a simple formalism. Specifi-
cations are given by means of guarded commands with input and output actions, a notation
inspired by Dijkstra’s guarded commands [10] and Hoare’s CSP [15]. The formalization of im-
plementation is given by the definition of decomposition. A decomposition of a specification
consists of a network of basic components realizing the specified behavior. The notion of a
delay-insensitive circuit plays an important role in our implementations. A delay-insensitive cir-
cuit is a special type of an asynchronous circuit, which is informally characterized as a network of
basic components implementing a specification such that the correctness of the implementation
is insensitive to any delays in wire connections or variations in the response time of the basic
components.

The modulo-N counter and the up-down N counter are beautiful examples for illustrating
both design and analysis techniques for asynchronous circuits. Both components have simple
specifications, but admit a surprising variety of implementations. We give detailed derivations
of several implementations for the two counters and a performance analysis of the designs. Our
final designs for the counters have a bounded response time, a bounded power consumption,
and an area complexity logarithmic in N. All bounds are asymptotically optimal. We start
by giving a specification for the modulo-N counter. Along the way we explain the rules of the
game.
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2 The Modulo-N Counter

The goal of the game is to find an efficient decomposition of the modulo-N counter into ba-
sic components, for any N > 1. The decomposition should be efficient with respect to area
complexity, power consumption, and response time.

There are several ways to specify a modulo-N counter. Perhaps the most simple one is to
view the modulo-N counter as a component with one input » and two outputs a0 and al. After
each of the first V — 1 inputs r, the component may respond with output al, and after the
Nth input the component may respond with output al. This behavior then repeats. A formal
specification for this component can be formulated as follows.

pref « [ (r?; al)¥ 715 725 a0!]

where ‘7’ denotes an input action, ‘I’ denotes an output action, ¢;’ denotes concatenation, ‘EV’

denotes N-fold repetition of the command E, ‘x[ |’ denotes arbitrary repetition of the enclosed
command (or Kleene’s closure), and prefE denotes the prefix-closure of E. (A more precise
explanation of the notation follows in the next section.)

A higher-level specification can be given if we consider the outputs a0 and al as special
implementations of sending the values 0 and 1 on channel a. Channel a is then considered as
an output channel of type binary. We denote this by a!: bin. Channel r can be considered an
input channel of type unary, since each signal on channel » can be seen as the communication
of a value that is always the same. If » is an input channel of type unary, we denote this by
r? : un. In this more abstract view, the modulo-V counter can be specified as follows.

ModC(N :int, r?:un, a!: bin)
= { by definition }

|[ var n:int
initially n = 0
pref [ r?;n:=(n+ 1) mod N;
ifn#0 thena:=1
| n=10 thena:=0
fi; al
]
Il

where int denotes the type integer and an occurrence of a! denotes ‘the value of a is sent along
its channel.” In order to leave as much freedom as possible in choosing an implementation, in
particular in implementing the data types, we use this specification for deriving decompositions.

A property worth remembering of this last specification is that the precondition for each
output a! is given by

(#rmod N =0) = (a=0)

where #r is the number of inputs r received thus far. For this reason, a postcondition of a
corresponding input a? in another component can given by the same assertion. We use this
property frequently in the coming derivations.



Parallel Program and Asynchronous Circuit Design 5

When trying to find an implementation for the modulo-V counter, we assume that the envi-
ronment provides the inputs as specified. For example, after providing input r the environment
waits for output @ before providing the next input. Under this assumption our implementation
should provide outputs as specified.

In traditional circuit design, a modulo-N counter is specified by means of a state transition
diagram, where states and transitions are given by means of logic values. Implementations are
nearly always based on a binary representation of the count and consist of a series of latches
and logic gates. Often, these designs have a so-called ripple-carry delay, which makes the
response time dependent on N. Furthermore, if every latch is clocked in each clock period,
the power consumption of these designs is at least logarithmic in N. Various designs for the
modulo-N counter implemented in this way can be found in almost any textbook on switching
theory. We demonstrate that modulo-N counters with bounded response time and bounded
power consumption can be designed. Our designs are inspired by ideas developed at Philips
Research Laboratories [2, 18].

3 Rules of the Game

In the previous section we briefly stated our goal and gave a specification of the modulo-V
counter without much explanation. An attentive reader may have lots of questions. For example,
what is the formal meaning of our program notation? What do we mean by ‘implementation’?
What basic components can we use? How can we implement data types? How do we measure
area complexity, power consumption, and response time? In short, what are the rules of the
game? We try to answer briefly some of these questions in the coming sections.

3.1 Commands

The modulo-N counter is specified by a so-called guarded command. A guarded command
prescribes the communication behavior of a component by listing all sequences of communication
actions that may occur between the component and its environment. We first consider a subset
of guarded commands called commands.

The semantics of a command is given by a trace structure, which is a triple (I,0,T). Set
I is the input alphabet and represents all input terminals of the component; O is the output
alphabet and represents all output terminals of the component; T is the trace set and represents
all possible communication behaviors between component and environment. Every trace in T is
constructed from symbols in I U O.

For command F, the notations iE, oF, and t F stand for the input alphabet, output alphabet,
and trace set of the trace structure represented by F respectively. The alphabet of E is denoted
by aF and given by aF = iF U oFE. Equality between commands denotes equality of the trace
structures represented by the commands.

The so-called atomic commands are abort, skip, and a!,a?, and a for any symbol a. They
denote the following trace structures

abort = (0,0,0)
skip = <®7®7{5}>
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al (0,{a},{a})
a? = ({a},0,{a})
a = ({a},{a},{a})

The trace set of a command is constructed in a similar way as the language of a regular
expression. The constructions for concatenation ‘;’, selection (or union) ‘|’, N-fold repetition
‘()¥, and arbitrary repetition ‘[ |’ are defined as usual and omitted here. The operation weaving
is used to express a parallel composition with synchronization on common symbols. Formally,

the weave EO0||E1 of trace structures F0 and E1 is defined by

EO|E1 = (iE0UiEl
, 0E0UoF1
, {t€(aE0UaFEl) |t|aF0c tE0 A t|aFEl € tE1}

)

where t | aE0 stands for the projection of trace ¢ on the alphabet of £0. (Recall that aF0 =
iE0UoFE0.) Notice that every trace in the weave E0||E1 must be in accordance with a trace of
E0, if you only look at symbols from F0, and with a trace of E'1, if you only look at symbols from
E1. Because the weave EO0||E1 consists of all behaviors that are in accordance with behaviors
in E0 end in E1, weaving can be considered as the behavioral conjunction of E0 and E1. For
this reason, the symbol || is often pronounced as ‘and.” There are two special cases of weaving.
If aF0NaF1 = 0, then weaving E0 and E1 amounts to the interleaving of the traces of E0 and
El. If a0 = aF1, then weaving E0 and E1 amounts to taking the intersection of the traces of
EQ and F1.

The prefiz-closure of command E, denoted by prefFE, is a trace structure with the same
alphabets as F and with the trace set that consists of all prefixes of all traces in tFE. Trace
structure F is called prefiz-closed if prefE = E. The pref operation constructs prefix-closed
trace structures. Specifications are always given by commands that represent prefix-closed, non-
empty trace structures with disjoint input and output alphabets. Trace structure F is called
non-empty if tE # 0.) Whenever we speak of component E in the following, F represents a
prefix-closed, non-empty trace structure with disjoint input and output alphabets. The domain
of prefix-closed, non-empty trace structures is one of the simplest semantic domains [15]. Notice
that abort, a?, and a! do not represent non-empty, prefix-closed trace structures and there-
fore do not specify components. The command skip does represent a prefix-closed, non-empty
trace structure and therefore specifies a component: a component that has no input or output
terminals and doesn’t do anything.

The pref operator allows us to rewrite a specification by means of (un)folding. For example,
we have

pref x[ a?; b! |
{ unfolding }
pref(a?; x[ bl;a?])
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Finally we mention some laws for skip and abort

E; skip = FE

E| skip = E

E | abort E
t(E; abort) = t(abort)

(
t(E || abort) = t(abort)

3.2 Some Specifications and their Interpretations

In order to familiarize ourselves with commands, we specify the basic components WIRE, IWIRE,
MERGE, TOGGLE, JOIN, and the 2-by-1 j0IN. Their specifications are given in Table 1. As for
the priority of the binary operators, the parallel bar (||) has the highest binding power, then the
semicolon (;), and finally the choice bar (|).

Name Specification Schematic
WIRE pref [ a?; ! | a? == D!
IWIRE pref [ b!;a? | a? = > bl

? —
a: M —c!

MERGE pref x[ (a? | b7) ;¢! ] b2

A — b!
TOGGLE pref x[ a?; b5 a?; ¢! ] a? >—<
' = c!
a?
JOIN pref x[ (a?(|b?) ;¢! ] 3—»0!
b?

a0? ™| *=co

pref x[ (a0?|b?) ; c0!
2-by-1 JOIN | (al?]|67) ;1!
]

al? = |- *>cl

b?

Table 1: Some basic components

In the previous section we stipulated that components are specified by means of commands
representing prefix-closed, non-empty trace structures with disjoint input and output alphabets.
We interpret such a trace structure in a special mechanistic way as opposed to a physical
interpretation related to a particular implementation.

In order to understand this mechanistic interpretation, it is important to explain the role
of input and output first. In our interpretation, an output may be produced by a component
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as soon as that output is enabled in the specification. Similarly, an input may be produced by
the environment as soon as that input is enabled in the specification. The environment can be
considered as a collection of other components.

The mechanistic interpretation consists of two conditions: a condition related to safety and
a condition related to progress.

e Safety: no input or output is produced when not allowed by the specification.
o Progress: each trace specified may occur.

Because of our interpretation of inputs and outputs, the safety condition not only prescribes
what the component may not do, but also what the environment may not do. A specification is
a prescription for both component and environment. Because of the environment prescription,
we can stipulate the conditions under which correct component behavior must be guaranteed.
In this context we can interpret specification F as ‘if the environment produces the inputs as
prescribed in F, then the component may produce the outputs as prescribed in E.” If the
environment violates the prescription, nothing is guaranteed and erroneous behavior may occur.
The production of an input or output that violates a specification is also called computation
interference. This term was first introduced in [31]. In [11], it is called a choke. Later, when
we consider a network of components as an implementation of a specification one of our proof
obligations is to show that computation interference cannot occur.

While the safety condition prescribes what may not happen, the progress condition prescribes
to a certain extent what must happen. The progress condition says that, if the environment
produces the inputs as specified in F, then the component must behave such that every trace
in tE may occur. Here ‘may’ should be interpreted as ‘is possible, but not guaranteed.” This
requirement excludes, for example, implementations of components where some traces cannot
occur. On the other hand, this prescription does not require that every trace is guaranteed to
occur. The actual occurrence of a trace may depend on nondeterministic choices made during
the operation of the implementation: if the right choices are made, then each trace can occur.
This progress condition is too weak in a number of cases. On the other hand, it is easy to work
with and suffices in many cases. Formulating a general, satisfactory progress condition that is
convenient to deal with is still an open problem. We will return to a more formal treatment of
these conditions and their problems later when we discuss implementations of specifications.

The abstract mechanistic interpretation allows for several physical implementations, like a
mechanical, optical, or electrical one. The usual electrical implementation is that each symbol
in the alphabet is associated with a terminal of a circuit. Each occurrence of a symbol in a trace
corresponds to a voltage transition at that terminal. There is no distinction between rising and
falling transitions: both transitions are denoted by the same symbol. This type of signaling is
called transition signaling [32]. Outputs are transitions caused by the circuit and inputs are
transitions caused by the environment.

With the above mechanistic interpretation in mind, we can explain the behavior of the basic
components as follows. A WIRE has one input and one output terminal. Each communication
behavior is an alternation of inputs and outputs, starting with an input, if any. (A WIRE
can be implemented by a physical wire.) Notice that the safety condition prescribes that the
environment is not allowed to provide two inputs in a row, nor is the component allowed to
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produce initially an output, or to produce two outputs in a row. The progress condition, on the
other hand, prevents implementations where an output is guaranteed never to occur.

The IWIRE also has one input and one output terminal. Each communication behavior is an
alternation of inputs and outputs, starting with an output, if any.

The MERGE has two input terminals and one output terminal. Each communication behavior
is an alternation of inputs and outputs: the environment may choose to produce one of the
two inputs (not both), the component may then produce an output. (The MERGE can be
implemented by an XORr gate.)

The TOGGLE has one input and two output terminals. Each communication behavior is also
an alternation of inputs and outputs starting with an input, if any. After each input has been
received, an output may be produced. The outputs are produced at alternating terminals.

The J0IN has two input terminals and one output terminal. Each communication behavior is
an alternation of two inputs and an output. After both inputs have been received, the J0IN may
produce an output. The JOIN can be implemented by a Muller C-ELEMENT [23]. The Muller
C-ELEMENT has a more general specification:

pref x [ a?? | 872 | (a?]|b?; ) ]

Notice that the behaviors of the JOIN are a proper subset of the behaviors of the C-ELEMENT.
For example, for the C-ELEMENT the environment is allowed to produce an input a and then
immediately withdraw that input. The specification of the JOIN prescribes that the environment
is not allowed to withdraw an input. Knowing what the environment may do and what it may
not do will be essential later when we give our correctness criteria for an implementation. For
these reasons we distinguish between the J0IN and the C-ELEMENT. (The JOIN is also known as
the RENDEZ-VOUS element in the Macromodules project [7].)

The 2-by-1 JOIN has three input and two output terminals. Each communication behavior is
an alternation of two inputs followed by an output. Either a0 and b are received in parallel and
then a ¢0 may be produced, or al and b are received in parallel and then a ¢l may be produced.
We have listed the 2-by-1 10IN only. Other n-by-m 10INs for n, m > 0 are specified in a similar
way. Notice that the standard JOIN is a special n-by-m JOIN, viz., a 1-by-1 JOIN. (n-by-m JOINS
for m,n > 1, are called DECISION-WAIT modules in the Macromodules Project [7].)

3.3 Guarded Commands

If we extend our command language with variables, channels, and guarded selection we get
the language of guarded commands with input and output actions. A variable n of type T is
declared by var n : T . Type T denotes the set of values n can take. For example, the type
binary is defined by

type bin = {0,1}
If the initial value of a variable n is val then this can be indicated in the program by
initially n = val

The scope of variables is delineated by means of the scoping brackets |[ and ||. The formal
meaning of delineating the scope of a list of variables V is given by hiding those actions that
involve changes to those variables. For example, we have
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|[ var n: bin ::
initially n = 0
pref x[7?; n:=(n+ 1) mod2; a!l; 7?; n:= (n+ 1) mod 2; a!0 ]

]
= { hiding local variable n }

pref [ r?; a!l; r?; al0]

In any parallel composition components are not allowed to share variables; components can
only communicate through message passing via channels. For each component a channel is either
an input channel or an output channel. An input channel » of type T is declared by r? : T in
the specification of the component. The occurrence of 7? in the program text denotes an input
action and means ‘r receives a value on its channel.’ If val is a value of type T, then r?val
means ‘receive value val on channel ».” An output channel b of type T is declared by b! : T. The
occurrence of b! in the program text denotes an output action and means ‘the value of b is sent
along its channel.” Similarly, a!val means ‘send value val along channel a.” Local channels in a
parallel composition are declared as follows.

|| chanb:T :: CO0(a?,b!) || C1(b?,¢!)]]

where components C0(a?,b!) and C1(b7?, c!) have been specified elsewhere with channel b of type
T. If channels have types associated with them, then the formal meaning of a component is
given by a trace structure where symbols are pairs (b, val) with b representing the name of the
channel and val representing the value that is communicated. (See for example [27].)

The last extension to our language is guarded selection. A guarded selection has the following
form.

if B0 then 50
| Bl then 51
fi

Here B0 and B1 are guards of the commands 50 and 51 respectively. A guard is a Boolean
expression. Informally, the meaning of this guarded command is the selection of the commands
for which the guards evaluate to true. If no guard evaluates to true, the command is trace-
equivalent to abort. (Recall that abort is the identity of selection.) So the formal meaning
is

if B0 then S0 | Bl then S1fi
= { by definition }
(S0 | S1)
where the alphabets of S0 and S0’ are the same and

t(50) if B0 holds
t(abort) otherwise

o) - {

A similar meaning applies to S1'.
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3.4 Two Implementations for Data Communications

If a channel is of type unary, then implementing a data communication along that channel is
straightforward: the channel consists of a single wire connection, and sending a single transition
along that connection implements a data communication. What if the data types are not unary?
For example how do we implement a data communication along a binary channel? We consider
two types of implementations: an implementation using a dual-rail transition encoding and an
implementation using a single-rail data-bundling encoding. As an example we use a component
with a binary input channel a, binary output channel b, and communication behavior given by

pref x[a?; b:=a; b!]

With a dual-rail transition encoding, each bit is implemented using two wires, one wire for the
value zero and one wire for the value one. Sending a transition along the ‘0’ wire implements
the communication of a zero, and sending a transition along the ‘1’ wire implements the com-
munication of a one. With single-rail data bundling, each bit is implemented using a single
wire. The level on that wire indicates which binary value is communicated. These wires are
called the data wires. Besides the data wires, which indicate what value is communicated, there
is one wire that is used to indicate when the data is communicated. This wire is called the
data-valid wire. Whenever a transition occurs at the connection, the data wires are assumed
to have reached a stable value. This assumption imposes a delay constraint between the arrival
of the transition on the data-valid wire and the ‘validness’ of the data wires. This constraint
is called the data-bundling constraint. In order to satisfy the data-bundling constraint, delays
may have to be inserted in the data-valid wire to compensate for any possible delays in data
wires. In Figure 1 these delays are indicated by long ovals. As a convention, we indicate the

a?0 = plo

a?l w»—————— = pi]
(a) Dual-rail transition encoding (b) Single-rail data bundling

Figure 1: Two data implementations for data types

data-valid wires by solid lines. The data wires in the data part are indicated by dashed lines.
The data wires and the data-valid wire that belong together are ‘bundled’ by drawing a circle
around them.

As a further illustration, we discuss some implementations of two other components.

C(a?: bin, b7 : un, c!: bin)
= { by definition }

pref x [a?]|b?; c:=a; ! ]
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If we forget the data types, the behavior of component C is the same as that of the jOIN.
If we use a dual-rail transition encoding, an implementation consists of a 2-by-1 JOIN. The
implementation using single-rail data bundling consists of a JOIN, a delay, and a data wire as
given in Figure 2.

a?0 = ~}—cl0
c!
a?2l =+ —=cl }
N -
(a) Dual-rail transition encoding (b) Single-rail data bundling

Figure 2: Two implementations for C

Finally we discuss two implementations for the modulo-2 counter Mod((2,7?, a!). There are
several ways in which the specification of the modulo-2 counter can be written. Here are two of
them.

|[ var n: bin ::
initially n = 0 ::
pref x [r?; n:= (n+ 1) mod 2; a:=n; a!]
Il
= { hide variable n }

pref [ r?; all; 77; al0]

2 i /

all =15 TR
al) =— _
77777 |

(a) Using dual-rail transition encoding (b) Using single-rail data bundling

Figure 3: Two implementations for Mod(C(2,r?, a!)

When using dual-rail transition encoding, the modulo-2 counter can be implemented by a
TOGGLE. This implementation resembles the last specification. The implementation using
single-rail data bundling resembles the first specification. It consists of a transition latch marked
L, a delay, and a feedback wire with an inverter. When the transition latch receives an input
transition, it latches the input data —which becomes the new output data— and then sends the
data-valid signal for the output data. Normally, each set of data wires implementing a variable
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should have a data-valid wire associated with it to compensate for possible delays in the data
wires. We have not done so here for the feedback wire with the inverter, since the local delays
in this wire can easily be compensated for by a delay in the data-valid wire for the output. In
the following we apply a similar optimization for local feedback wires.

The generation of the data-valid signals can be seen as just another ‘clocking’ strategy.
Unlike conventional clocking strategies, where the clock signals are generated at regular, fixed
intervals and sent to all storage devices, the generation of the data-valid signals depends on
the occurrence of a data communication, and the route of a data-valid signal may depend on
the value of the data. A convenient component to route the data-valid signal depending on the
value of a binary variable is the SELECT. The SELECT can be seen as a demultiplexer for the
data valid signal. Its specification is given in Figure 4. Each input ¢ will propagate to either

pref « [ %[ t7; qO']; b7; [t?; q1!]; b7 ] 1}—» 1!
b? S

Figure 4: Specification of the SELECT

output g0 or output gl. The level of the input b will determine whether output g0 or g1 will be
produced. If the level is 0 output g0 will be produced, and if the level is 1, output g1 will be
produced. Initially the level of b is 0. It is assumed that b has reached a stable level before a
transition on ¢ occurs. This constraint is in fact a data bundling constraint. For this reason we
have encircled the ¢t and b wires in Figure 4.

Implementing data communications using data bundling has been employed extensively in
the Macromodules project [7]. One of the advantages of employing data bundling is that con-
ventional logic design can be used for the data part, which often results in smaller circuits. A
disadvantage is the implementation of the data-bundling constraints, which results in a worst-
case behavior and makes the design sensitive to certain delay variations.

In a data-bundling implementation, the circuit consisting of the data-valid wires is the control
circuit. This circuit can be designed separately from the data part. When combining the control
part and the data part, the data-bundling constraints are met by inserting appropriate delays in
the (data-valid) wires of the control part. Of course, such a method will only work if the control
part is a delay-insensitive circuit. That is, the correctness of the circuit for the control part
should be insensitive to adding arbitrary delays in the wire connections. Accordingly, delay-
insensitive circuits play an important role in the design of data-bundling implementations. In
the next sections we explain what exactly is a delay-insensitive circuit.

3.5 Decomposition versus Parallel Composition

Expressing a specification as a parallel composition (i.e., a weave) of smaller specifications is
a first step towards finding a network implementation. Unfortunately, it is not the case that
each parallel composition can be interpreted as a network of components that implements the
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specification. The problem is that that our parallel composition expresses a synchronization
on common symbols irrespective of whether these symbols are input or output symbols. In
general, a component in a network will produce an output as soon as that output is locally
enabled. It will not wait for other components, where that same symbol is an input for example,
to synchronize on the production of that symbol. In order to transform a parallel composition
into a network implementation and avoid these synchronization failures there are several things
we can do. One solution is to enforce the proper synchronizations by introducing handshakes
for each communication on each channel. This method is proposed by Martin [21] and is also
used by Van Berkel [1]. Another solution is to design your parallel composition in such a way
that no handshakes are needed: whenever a component can produce an output, the components
for which that symbol is an input are waiting for that input to happen. We need to formalize
this property more precisely. We first discuss what our correctness criteria are for a network
implementation of a specification.

The definition of decomposition formalizes the idea of ‘implementing a specification by a
network of components.” In this section we discuss four conditions that have to be satisfied in
order to call a network a decomposition of a specification. These conditions are based on our
abstract mechanistic interpretations of specifications.

Let us briefly recall the mechanistic interpretation of a specification. Our interpretation is
based on the distinction between the component and the environment and on two conditions, the
safety and the progress condition. Both conditions prescribe the behavior of the component and
the environment. The safety condition says that no input or output may be produced when not
allowed by the specification. The progress condition says that every trace specified may occur.
It is important to distinguish the component’s prescriptions and the environment’s prescriptions
in a specification. When implementing a specification, we try to implement the component’s
prescriptions by a network of components assuming that the environment’s prescriptions are
satisfied.

We formulate the conditions for a decomposition of component F into components Ey,..., E,,
n > 0. The network of components E; through E, is denoted by (Ei,...,E,). The prop-
erty that E can be decomposed into the network consisting of E; through F, is denoted by
E — (E4,...,E,).

First, we take into account the behavior of the environment with respect to the network
(E1y...,E,;). The environment’s prescriptions for the network are given in E. In order to
consider the production of an input by this environment as the production of an output by a
component, we consider the reflection of E, denoted by E and defined by

E = (oE,iE,tE)
Consequently, iE = oF, oFE = iE, and tE = tE. By reflecting E, we interchange the pre-
scriptions for the component and the environment. Instead of considering £ and network
(Ei,...,E,), we now consider the network (E,,..., E,), where E, = E.

In order for E to be decomposable into the network (E,..., E,), four conditions have to
hold for the network (Ey, ..., E,). Two conditions concern the so-called structure of the network
and two conditions concern the behavior of the network. The behavioral conditions are related
to the safety and the progress condition in our interpretation. We discuss these four conditions
below.
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¢ Closed network
In the network (Eo,...,E,) there are no dangling inputs and outputs: every input is
connected to an output and every output is connected to an input.

¢ No output interference
Outputs of distinct components are not connected to each other. In other words, the
output alphabets of the components in the networks are pairwise disjoint. The first two
conditions guarantee that each symbol is an output of exactly one component and an input
of at least one component. (Notice that an output may be connected to multiple inputs.)

¢ No computation interference (Safety)
The third condition states that the environment’s prescriptions for every specification in
the closed network may not be violated. In other words, no output may be produced by
any component when not allowed by the specifications for which this symbol is an input.
Or, to put it positively, every output that can be produced by a component can be accepted
as input by the receiving component. This condition can be checked by constructing all
possible network behaviors and verifying that no environment prescription is violated.
The trace set T of all possible network behaviors can be constructed as follows. Initially,
T = {e}. We repeatedly enlarge trace set 7" with extensions of traces in T as indicated
below until T can no longer be enlarged. The rule for extending 7 is as follows. Choose a
trace t € T, symbol z, and component E;, such that after network behavior ¢, component
E; may produce output z. Since component F; cannot be prevented from producing output
z after behavior ¢, tz is also a possible network behavior, and we add tz to T. Our third
condition states that any possible network behavior must be in accordance with every
specification, which can be formulated by

T |aE;, CtE; foralli=0,...,n. (1)

where T represents the trace set of all networks behaviors. If this condition holds, we say
that the network is free of computation interference.

¢ Completeness with respect to specification (Progress)
The fourth condition states that every trace of the specification F may also occur in the
network behaviors. This condition is formulated as

T | aE = tE (2)

where again T represents the trace set of all network behaviors. If this condition holds we
say that the network behaviors are complete with respect to the specification.

3.6 Some Examples

We consider some examples to familiarize ourselves with this definition of decomposition. We
are given component E specified by

E = pref x[r?; (a!; »?7) || (s7!; sa?); a!]



16 Ebergen, Segers, Benko

For the moment we consider all channels to be unary. Notice that for every four communications
on r and a there are two communications on sr and sa. For this reason, this component can
be called a four-phase-to-two-phase converter. In Figure 5 two decompositions for F are given.
Both networks contain a TOGGLE, JOIN, and a MERGE. Network (b) also contains an IWIRE. It

sa?
sa?

sr!

Figure 5: Two decompositions for a four-to-two-phase converter £

is easy to verify that both networks, including the environment, form a closed network without
output interference. Notice that in networks (a) and (b) there are multiple input connections
at terminals ¢ and y respectively. If we construct the network behaviors for network (a), again
including the environment, we find

T=t (pref* [r?; z; ((al5 r?5 y) || (svl; sa?)); z; a! ])

If we project trace set T' on each of the component’s alphabets we obtain a subset of the trace
set of the component. That is,

where F; is a specification of a component. We even have T' | aF = tE. From these observations
we can conclude that network (a) is indeed a decomposition of the four-to-two-phase converter.
The network behaviors for network (b), including the environment, are given by

T =t (pref(r?z; +[ 55 (ol r?) || (s} sa?; 2)); w3 ((ak #2) || (2 2)) ] ))

If we project T' on each of the component’s alphabets, we obtain subsets of the trace sets of
the components: no specification is violated. Furthermore, we have that T | aE = tE. (Notice
that by deleting z,y, and z and after some folding we get specification E again.) Consequently,
network (b) is also a decomposition of the four-to-two-phase converter.

As an example where the safety condition is violated, we can take network (a) with the WIRE
between terminal z and sr replaced by an IWIRE. Since initially this network can produce sr,
the set of network behaviors would now include trace sr. According to the specification F, sr
may not occur initially, so the safety condition is violated.

As an example where the progress condition is violated, we take network (b) with the IWIRE
replaced by a WIRE. The network behaviors are then given by T' = t (pref r?). After the initial
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input 7, nothing will ever be produced. Obviously, not every trace from the specification E may
occur, so the progress condition is violated.

The above decompositions only apply if the channels are unary channels. If the channels
are not unary, we may get a different decomposition depending on how we implement data
communications. If data communications are implemented using a single-rail data bundling
scheme, these decompositions may be used as a control circuit for directing the data-valid
signals. When the control part is combined with the data part, delays may have to be inserted
in some of the wire connections. The important question then is whether these delay insertions
will affect the correctness of the decomposition. In other words, do these networks represent
delay-insensitive circuits? This question is answered in the next section.

3.7 Modularity and Delay-Insensitivity

With the definition of decomposition we can now state precisely what it means that a circuit
can be designed in a modular way and what the differences are between a speed-independent
and a delay-insensitive circuit.

The modularity of our design method is based on the Substitution Theorem [12]. The Sub-
stitution Theorem applies to problems of the following kind. Suppose that component E, can be
decomposed into a number of components of which F is one such component. Suppose, more-
over, that F' can be decomposed further into a number of components. Under what conditions
can the decomposition of F' be substituted for F' in the decomposition of Fy?

Theorem 1 (Substitution Theorem) For components Eq, E1, E,, E3, and F we have

’Lf EO — (E]_, F)
and F — (E, E;)
then E, — ( Ei, E,, E;),

if the following condition is satisfied.
(aEoUaFE;)N (aE, UaFE;) = aF. (3)

Condition (3) states that the only symbols that the decompositions of Eq and F have in
common are symbols from aF. It is essentially a trivial condition, since, by an appropriate re-
naming of the internal symbols in the decomposition of F, this condition can always be satisfied.
The internal symbols of the decomposition of F' are given by (aFE, UaFE;)\aF, where ¢\’ means
set deletion.

The theorem above considers decompositions into two components only. The generalization
of this theorem to decompositions into more than two components is straightforward.

Some of the main attractions that are often mentioned in connection with speed-independent
and delay-insensitive circuit design are the ‘modular design approach,’ the ‘hierarchical design
approach,’ ‘design by stepwise refinement,” or the ‘possibility for incremental improvements.’
All these characteristics refer to the same property in our formalism and are symbolized in the
Substitution Theorem.

If a network is a decomposition of a specification, it represents a speed-independent circuzt.
Therefore, a decomposition is also called an SI decomposition. A speed-independent circuit,
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however, is not necessarily a delay-insensitive circuit. The reason is that decompositions are
invariant under variations in response times of components, but not under the insertion of
communication delays in the connections. If the correctness of the circuit is invariant under the
insertion of communication delays in the connections as well, then we call such a circuit a delay-
insensitive circutt. While a speed-independent circuit is formally described by means of (SI)
decomposition, a delay-insensitive circuit is formally described by means of DI decomposition. A
DI decomposition is a decomposition in which all communication delays between the components
are taken into account. Formally, these communication delays are represented by WIREs.

We say that the network (E4,..., E,) forms a DI decomposition of component E, denoted

by E bf (Ei,..., E,) if and only if
E — (ren(Ey), Wires(E,),...,ren(E,), Wires(E,) ).

where ren(E;) is a renaming of E; to a ‘localized’ version and Wires(E;) is the collection of
WIRE components connecting ren(E;) with its original terminals aF;.

In general, DI decompositions are more difficult to derive and verify than SI decompositions,
because of all the connection WiREs. By the Substitution Theorem, it follows that a SI decom-
position is a DI decomposition, if all constituent components are DI components. A component
F is called a DI component, if

E — (ren(E), Wires(E)).

The DI property formalizes that the communication behavior between component and environ-
ment is insensitive to the insertion of communication delays. In other words, specification F
is invariant under any extension with WIREs at its input or output terminals. All basic com-
ponents of Figure 1 are DI components. Consequently, the decompositions of Figure 5 are DI
decompositions. The C-ELEMENT and the SELECT, however, are not DI components.

The idea of formalizing delay-insensitivity using a characterization of a DI component orig-
inates from Molnar [22]. Udding was the first to give a rigorous formulation of the DI property
in terms of trace structures [34]. More information on SI decomposition, DI decomposition, and
DI components, can be found in [12].

3.8 Limitations of Decomposition

Our correctness conditions for decomposition have certain limitations, in particular the progress
condition. The safety condition guarantees that whenever an output can be produced, the pro-
duction causes no problems. It does not guarantee that every output will be produced. Therefore
we need a progress condition. OQur progress condition excludes, for example, decompositions into
so-called ‘accept-everything-do-nothing’ modules: components that accept every possible input
but never produce any output. On the other hand, although the progress condition requires that
each trace in tF may occur in the network behaviors, in general it does not require that some
traces, or outputs, are guaranteed to occur. The occurrence of a trace, or output, may depend
on nondeterministic choices made by some components. Figure 6 illustrates this property by
means of two decompositions of a WIRE. The component depicted by the left half of a circle is
a SELECTOR. Its specification is given by

pref x [ a?; (bl|c!)]
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a0 :4>b! a? C ' b!

(a) Deadlock (b) Livelock

Figure 6: Examples of deadlock and livelock

After each receipt of input a, either output b or output ¢ may be produced. The output is chosen
nondeterministically. The component depicted by an open square is a SINK. It only accepts
inputs. Decompositions (a) and (b) satisfy all four conditions for decomposition. Decomposition
(a), however, exhibits a behavior that could be characterized by deadlock: once output ¢ is chosen
by the SELECTOR, output b will never be produced. Decomposition (b) exhibits a behavior that
could be characterized as livelock: if the SELECTOR makes enough ‘bad’ choices, there can be an
unbounded number of internal communications on d and ¢, and output b may not be produced.
Obviously, if we design an implementation, we do not want deadlock or livelock to occur. So,
in formulating a better progress condition we want to exclude implementations with deadlock
and livelock. This is easier said than done. Do there exist ‘proper’ definitions for deadlock and
livelock (or of progress) in the context of our formalism? If so, what are they? If not, how much
should our formalism be extended to accommodate proper definitions? For example, an obvious
definition for livelock might be that in a trace an unbounded number of internal symbols can
occur between two external symbols. With this definition in mind consider the decomposition of
a ‘one-shot’ WIRE, pref(a?; b!), in Figure 7. If we look to the traces of this decomposition, then

a? b!

d c

Figure 7: Livelock?

after input a an unbounded number of internal symbols ¢ and d can occur before output b is
produced. According to our tentative definition, we should conclude that livelock can occur. On
the other hand, from experience we know that output b will eventually occur, if the WIREs are
implemented by physical wires. So in our context, this tentative definition may not be a ‘proper’
definition of livelock. Finding definitions of deadlock and livelock (or of progress) that are simple
enough to state, have a proper justification in the context of speed-independent circuit design,
are easy to verify, and satisfy a property like the Substitution Theorem is still an open problem.
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4 How to Play the Game

Knowing what the rules of the game are, there can be many ways of playing the game. For
instance, we can simply apply a trial-and-error process: propose a decomposition and verify all
conditions. If the conditions are not satisfied, we try another decomposition. Such a style is
rather unsatisfactory, since it does not give much guidance in how one could derive a decompo-
sition in a systematic way.

We explore a different way. It is based on a few simple principles. We first try to obtain a
parallel decomposition of our specification E. For example, we try to express F as

E=| chanV = F|G ]

by using techniques from parallel program design. The obvious candidate for a decomposition
then is

E—-(F,G)

The conditions for decomposition can be verified easily by inspecting the syntax of E, F, and
G. For example, the conditions for a closed network and absence of output interference are
easily verified by checking the alphabets. Absence of computation interference can be verified
by checking that as soon as an output can be produced by a component locally, then the
receiving components are waiting for that output to happen. With a little care in specifying the
components F' and G, this condition can often be satisfied. Finally, we mention without proof
that the progress condition (that is, completeness of the network behaviors) is automatically
satisfied if we already have E = |[ chanV = F | G ||
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5 The Modulo-N Counter Continued

5.1 A First Decomposition: Divide and Conquer

How can we decompose the modulo-V counter into smaller components? An obvious choice
is to try a divide-and-conquer approach: decompose the modulo-2N counter into a modulo-IV
counter and a ‘small’ subcomponent. ‘Small’ can be interpreted as the specification has a small
number of states, which is independent of N. We derive two such decompositions. The first
decomposition is based on the following idea. Keep track of two counts represented by n and k,
where n is incremented modulo N each time an input r occurs and k is incremented modulo 2
each time n reaches 0. Initially, both n and k are 0. While incrementing n and k, we maintain
the invariant

#r mod 2N = kN +n

In other words, #r mod 2N = 0 is equivalent to n = 0 and k& = 0. This observation leads to the
following first derivation step. For 2N > 0, we have

ModC(2N,r?,a!)
= {#r mod 2N = kN +n }

|[ var n: int, k: bin
initially n = 0,k =0
prefx [ r?; n:=(n+ 1) mod N
;ifn=10 thenk:=(k+1)mod2 | n# 0 then skipfi
;ifn#0V E#0 thena:=1
| n=0A k=0 thena:=0
fi; al!]
]

Incrementing n modulo N and indicating whether n # 0 or n = 0 can be done by a modulo-
N counter. Consequently, in our second step we introduce a modulo-N counter and replace each
statement n := (n 4 1) mod N by the communication actions sr!; sa?. Since the postcondition
for each communication on sa is given by

(n=0) = (sa=0)

where n = #sr mod N, we can replace the conditions n # 0 and » = 0 by sa # 0 and sa = 0
respectively. These observations then lead to the following parallel composition.

ModC(2N,r?,a!)
= { def. of ModC(N,sr?,sal) }

|[ chan sr: un, sa: bin
CELLO(r?, a!, sr!, sal) || ModC(N,sr?,sal)
]

where CELLQ is defined by
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CELIO(r? : un, a!: bin, sr!: un, sa? : bin)
= { by definition }

|[ var k : bin :
initially sa =0, k=0
pref x [ r?; sr!; sa?
;if sa=0 thenk:=(k+1)mod2 | sa# 0 then skipfi
;ifsa20 V E#0 thena:=1
| sa=0A k=0 thena:=0
fi; a!]
]

The parallel composition above is a candidate for a network implementation of the modulo-2NV
counter. We have to check if the conditions for decomposition are satisfied. First, we observe
that the network of CELL0, the modulo-N counter, and the environment is closed and has
no output interference. Second, we observe that as soon as a component or the environment
can perform an output action, the corresponding input action is also enabled: no computation
interference can occur in the communications between CELLQ, the modulo-N counter, and the
environment. We may therefore conclude the following decomposition

ModC(2N,r?,a!)
—  { def. of decomposition }

( CELLO(r?,al,sr!,sa?), ModC(N,sr?,sal))

We briefly present two implementations for CELLO. We observe that the guarded command
for CELLO can also be written as

prefx[ r?; srl; (sa?l; all
| 5a?0; k:= (k4 1) mod 2;
if k=1 thena!l | k=0 thena!0fi )
]

Recalling that counting modulo-2 can be done by a TOGGLE, it is now not difficult to verify
that the network given in Figure 8(a) represents an implementation of CELL0 using a dual-rail
transition encoding. An implementation using single-rail data bundling is given in Figure 8(b).

5.2 A Second Decomposition

In the first step of our previous decomposition, we can choose a different alternative by inter-
changing the increments to n and k. That is, we increment ¥ modulo-2 after each input r and
increment n modulo N each time k reaches 0. Now the invariant is given by

#r mod 2N =2n + k

Based on this observation we obtain the following first derivation step.
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Figure 8: Implementations of CELL0

ModC(2N,r?,a!)
= {#rmod2N =2n+k }

|[ var n: int, k: bin
initially n = 0,k =0
pref x| r?; k:= (k+ 1) mod2
;if k=0 thenn:=(n+1)mod N | k# 0 then skipfi
;ifn#0V E#0 thena:=1
| n=0A k=0 thena:=0
fi; al!]
]

23

The next steps are now similar to the previous section. We introduce a modulo-N counter
and replace the statement n := (n+4 1) mod N by sr!; sa?. The conditions n # 0 and n = 0 are

replaced by sa # 0 and sa = 0 respectively. If we define CELL1 as follows

CELL1(r? : un, a!: bin, sr!: un, sa? : bin)
= { by definition }

|[ var k : bin ::
initially sa =0, k=0
pref x [ r?; k:= (k+ 1) mod2
; if k=0 then sr!; sa? | k # 0 then skip fi
jifsa 20V kE#0 thena:=1
| sa=0A k=0 thena:=0
fi; al!]
]

we obtain the parallel composition and subsequent network decomposition
ModC(2N,r?,a!)
= { def. of weave }
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|[ chan sr: un,sa:bin :: CELLL(r?,al,sr!,sa?) || ModC(N,sr?,sal) ||
—  { def. of decomposition }
( CELL1(r?,al,sr!,sa?) , ModC(N,sr?,sal))

Let us briefly look at some implementations for CELL1. First, we observe that CELL1, after
some simplification, can also be written as

pref « [ r?; all; 775 srl; (sa?0; al0 | sa?l; all) ]

Apparently, we again need a modulo-2 counter to record whether the input r? has to propagate
to output a'l or to output sr!. This observation then quickly leads to the implementations in
Figure 9.

= sr!
r?
L

- sa?l

sa?0

(a) Using dual-rail transition encoding (b) Using single-rail data bundling

Figure 9: Implementations for CELL1

5.3 What about odd N?

So far we have presented two decompositions for even N. What about odd N? Although there
are some decompositions that apply to odd N only, we present a decomposition that applies
to any N > 0. We try to decompose a modulo-(N + 1) counter into a modulo-N counter and
a small subcomponent. Again we keep track of two integers n and k, where we maintain the
invariant

#rmod (N+1)=n+k

Initially £k = 0 and n = 0. If £ = 0 and an r is received, then k is set to 1. If & = 1, then for
each r received, n is incremented by one modulo N. When n becomes 0, k is also set to zero.
This leads to the following derivation step.

ModC(N + 1,77, 4a!)
= {#rmod(N+1)=n+k }
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|[ var n:int, k: bin :
initially n = 0,k =0 ::
prefx[r?; if k=1 thenn:=(n+1)mod N | k=0 then skipfi
;ifk=0V n#0 thenk:=1;a:=1
| k=1 An=0 thenk:=0;a:=0
fi; al!]
Il

Similar to the previous decompositions we introduce a modulo-N counter for incrementing
n modulo N and indicating whether n # 0 or n = 0. We then obtain the following parallel
composition and network decomposition.

ModC(N + 1,77, 4a!)
= { intro. of mod-N counter, def. of parallel composition }
|[ chan sr: un, sa:bin :: CELL2(r?,a!,sr!,sa?) || ModC(N,sr?,sa!)]|
—  { def. of decomposition }
( CELL2(r?,al,sr!,sa?) , ModC(N,sr?,sal))
where CELL2 is defined by
CELL2(r? : un, a!: bin, sr!: un, sa? : bin)
= { by definition }

|[ var k : bin :
initially sa = 0, k =0 ::
pref x[r?; if k =1 then sr!; sa? | k=0 then skip fi
;ifk=0V sa#0 thenk:=1;a:=1
| k=1 A sa=0 thenk:=0;a:=0
fi; al!]
Il

We give two implementations for CELL2 without proof. In the case that binary channels
are implemented using a dual-rail transition encoding, CELL2 can be implemented as given in
Figure 10(a). (Notice that the 2-by-1 JOIN is used for implementing the binary variable k. An
IWIRE is used for the proper initialization.) In the case that single-rail data bundling is used for
implementing binary channels, CELL2 can be implemented as given in Figure 10(b).

5.4 What about Parallelism?

All our decompositions thus far have a sequential behavior in the sense that all communication
actions (and even internal actions) are totally ordered. As such, our programs are not much
different from a normal sequential program with procedure calls. How can we derive decom-
positions that exhibit parallel behavior? For example, would it be possible to introduce some
parallel behavior in our sequential decompositions without invalidating their correctness? There
are several ways to do this. We discuss two.

Observe our specification of the modulo-N counter once more
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(a) Using dual-rail transition encoding (b) Using single-rail data bundling
Figure 10: Implementations for CELL2

ModC(N :int, r?:un, a!: bin)
= { by definition }

|[ var n:int
initially n = 0
pref [ r?; n:=(n+ 1) mod N;
ifn#0 thena:=1 | n=0 thena:=0fi; a!
]
]

Notice that the value to be sent on channel a can be computed ahead of time, possibly before
r arrives. Only when r arrives the value of a is sent along channel @, and, in parallel, the
computation of the next value of a is initiated. In order to compute the value of a before r
arrives, we can put component P in front of ModC(N, sr?, sa!).

P(r?: un, a!: bin, sr!: un, sa? : bin)
= { by definition }
pref( 7?7 || (sr!; sa?); *[ a:= sa; ((al57?) ]| (sr!;sa?))])
Initially, in parallel with receiving input r, the first value of a modulo-N counter is requested
and received via channels sr and sa respectively. After both input r and the first value on sa
have been received, the value of sa can be sent on channel a. In parallel with sending a and
receiving the next request r, the next value from the modulo-N counter is requested and received

on channels sr and sa, respectively. This behavior then repeats. It is not difficult to see that
the modulo-V counter can be decomposed into a renaming of itself and component P.

ModC(N,r?,a!)
—  { def. of decomposition }

(P(r?,al,srl,5a?) , ModC(N,sr?,sal))



Parallel Program and Asynchronous Circuit Design 27

Since component P can be put in front of every modulo-V counter, it can also be put in front of
every CELL without changing the correctness of the decomposition. In this way we can obtain
decompositions where many communications may take place in parallel. Notice, however, that
the communication behavior on the pair of channels between any two adjacent cells remains
invariant when we insert component P between the cells: after the insertion, actions from
different pairs of channels can occur in parallel, but actions from the same pair still occur in the
same sequential order and the same values are communicated.

If we decide to implement binary channels by means of dual-rail transition encoding, then
component P can be implemented by a 2-by-1 JOIN, a MERGE, and an IWIRE. See Figure 11(a).
If we decide to implement binary channels by means of single-rail data bundling, then component
P can be implemented by a transition latch, a JOIN, and an IWIRE. See Figure 11(b).

r? s

— T o—sr!
M
al - L[ <sant
al0 —= - ———=sa?0
(a) Using dual-rail transition encoding (b) Using single-rail data bundling

Figure 11: Implementations for component P

Another way to introduce parallelism is to consider the specification of each CELL in iso-
lation and to try changing or reordering the statements in the guarded command such that
communications on the channels » and a can be done in parallel with the communications on
channels sr and sa. In doing so we should not destroy the correctness of the decomposition. In
other words, if PCELL is the specification obtained after changing CELL, then PCELL should
still satisfy the decompositions in which CELL is used. In order not to destroy the correctness
of the decomposition, we keep the communication behavior on the channels » and a invariant
and, for reasons of symmetry, also the communication behavior on the channels sr and sa.
Communications from different pairs of channels, however, may overlap.

Based on these observations we try to specify the communication behavior of PCELL: as
follows.

PCELLi(r? : un, a!: bin, sr!: un, sa? : bin)
= { by definition }

|[ var k : bin :
initially sa =0, k=0
pref ( if B.i then  r? || (sr!; sa?) | - B.i then r? fi; S.3;
*[ if B.i then (a!; r?) || (sr!; sa?) | - B.i then (a!; r?)fi; S.i])
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where S.i represents the statement that calculates the next value of a (possibly using some local
variables) and B.7 is a guard. Notice that in each repetition step there is one pair of communica-
tions with the environment through ¢ and r, and possibly one pair of communications with the
subcomponent through sr and sa. The occurrence of a communication with the subcomponent
depends on the value of B.i. We try to find appropriate values for B.i and 5.7 by changing the
specification of CELLi. The specification for PCELLi should still satisfy the decomposition for
the modulo-V counter in which CELLi was used.

As an example we consider CELL] once more.

CELL1(r? : un, a!: bin, sr!: un, sa? : bin)
= { by definition }

|[ var k : bin ::
initially sa =0, k=0
pref x [ r?; k:= (k+ 1) mod2
; if k=0 then sr!; sa? | k # 0 then skip fi
jifsa 20V kE#0 thena:=1
| sa=0A k=0 thena:=0
fi; al!]
]

We first switch k := (k+ 1) mod 2 with the succeeding if ...fi , thereby also changing the guards
of the selection.

pref x[r?; if k # 0 then sr!; sa? | k=0 then skip fi
; k:i=(k+ 1) mod 2
;ifsa20V E#0 thena:=1
| sa=0A k=0 thena:=0
fi;al]

After some unfolding and reordering we get a specification of the desired form, where
B.l1=(k+#0)

S1= (k:=(k+1)mod2;
ifsa#0 V E#0 thena:=1
| sa=0A k=0 thena:=0
fi)

The other cells only require some unfolding and reordering of a!; »? to obtain the desired form.
We just give the outcome of this exercise here. For PCELI) we get

B.0 = true

S.0=if sa=0 thenk:=(k+1)mod2 | sa# 0 then skipfi
jifsa 20V kE#0 thena:=1
| sa=0A k=0 thena:=0
fi;
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For PCELL?2 we get

B2=(k=1)

S2=(ifk=0V sa#0 thenk:=1; a:=1
| k=1 A sa=0thenk:=0;a:=0
fi)

For each of the cells PCELLi, 0 < i < 2 we can try to find an implementation using a dual-
rail transition encoding for the binary channels. It turns out that PCELLi can be decomposed
into P and CELLi, for 0 < i < 2. In other words, we can put the implementation of cell P in
front of the implementation for CELLi, and we get an implementation for PCELLi. These are
not the only implementations for PCELLi, however. For example, for PCELL1 and PCELL2

some smaller implementations can be obtained. See Figures 12 and 13. The verification of these
implementations is left to the reader. Notice that the combinational logic in Figures 12(b)

r?
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(a) Using dual-rail transition encoding (b) Using single-rail data bundling

Figure 12: Implementations for PCELL1

—a> sa?
r? M
?
= Sr!
] “f

- . —=sa?l — ._T‘, (T -
all = M| 1 ( o
alo l«sa?o Ljf
al S S 0
1} msrl
(a) Using dual-rail transition encoding (b) Using single-rail data bundling

Figure 13: Implementations for PCELL2

and 13(b) are straightforward implementations of the statements 5.1 and S5.2. Furthermore,
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the implementations for the control part correspond to the network given in Figure 5(b). The
condition B.7 is the input to the SELECT that controls the communications with the subcounter.
Notice also that if the data input to the SELECT alternates in value, as is the case with 5.1, then
the SELECT boils down to a TOGGLE.

6 Performance Analysis

By now we have many ways to decompose a modulo-N counter. How do we compare these
decompositions? Do there exist some measures for our parallel programs which are similar to
the running time or space complexity of an algorithm? Are ‘time’ and ‘space’ the only interesting
performance aspects? How do we measure each performance aspect?

We consider three performance criteria: area complexity, power consumption, and response
time. For each performance criterion we give a performance measure. Our estimates for each of
these performance measures satisfy four properties. First, for all measures we only look to an
order-of-growth estimate; no estimates are given in terms of square millimeters, microwatts, or
nanoseconds. Second, our estimates are based on the program texts: they do not rely on a specific
implementation of the basic cells. Third, certain conditions apply in order for our estimates to
be accurate first-order approximations. Some of these conditions are discussed later. Fourth,
calculating these estimates can be done on the back of an envelope. We emphasize once more that
our performance estimates are just first-order approximations. We should always be aware that
the hidden constants and second order terms can vary heavily among implementations. A more
detailed performance estimate will require further knowledge of the particular implementation.

As usual in the analysis of algorithms, we use the notations O, (2, and ® to denote an upper
bound, lower bound, and tight bound for the order of growth of a function.

6.1 Area Complexity

Our first performance criterion is area complexity. The area complexity is a rough estimate for
the area occupied by a physical implementation such as an integrated circuit. As a measure for
area complexity we take the number of ‘basic’ components in the decomposition. Here, a basic
component can be any component as long as the number of states is bounded by a predetermined
constant. (Notice that for a given constant there can only be a bounded number of basic
components.) For regular implementations consisting of a linear array of basic components, like
our modulo-N counter implementations, our measure gives a good first-order approximation.
The accuracy of the estimate may change, however, when the connections among the basic
components become more complex.

Before we study the area complexity of some decompositions, let us make a list of the decom-
positions we have so far. Let ModC(N) and sModC(N) be abbreviations for ModC(N, r?, a!)
and ModC(N, sr?, sal!) respectively. The cells have the usual input and output channels. We
take N > 1.

ModC(2N) — ( CELLD , ModC(N)) (0)
ModC(2N) — ( CELL1, sModC(N) ) (1)
ModC(N +1) — ( CELL2, sModC(N)) (2)
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ModC(2N) — ( PCELLD , sModC(N) ) (3)
ModC(2N) — ( PCELLL, sModC(N)) (4)
ModC(N +1) — ( PCELL2, sModC(N)) (5)
ModC(N) — (P, sModC(N)) (6)

First, we remark that the number of states of each cell is independent of N and therefore
bounded. Accordingly, we can consider these cells as ‘basic’ components in our area complexity
analysis. Second, we remark that the decompositions (3)-(5) are similar to decompositions (0)-
(2), as far as area complexity is concerned. Finally, we observe that it does not make sense to
use decomposition step (6) to obtain an efficient area complexity. For these reasons, we only
concentrate on the first three decompositions.

With decomposition step (2) we can decompose any modulo-N counter for N > 1 into basic
components CELL2 and a modulo-2 counter. The area complexity of such a decomposition
is linear in N, that is ®(N). If we use decomposition step (0) or (1) when N is even and
decomposition step (2) when NV is odd, we obtain a decomposition into basic components CELLOD,
CELLl, CELL2, and a modulo-2 counter with a logarithmic area complexity, that is, the area
complexity is ©(log V). (Notice that at least every other decomposition step is of the form (0)
or (1), which gives the logarithmic complexity.)

Is there a decomposition into basic components that has an area complexity that grows less
than logarithmic in N? In fact, what is the lower bound of the area complexity of the modulo- N
counter taken over all decompositions into basic components? It turns out that we cannot do
any better than logarithmic in V. Here is an argument why. Consider a network with & basic
components, and each component has at most ¢ states for a given constant ¢. This network can
implement a specification with at most O(¢*) states. The modulo-N counter has ©(V) states.
Consequently, any decomposition into basic components of the modulo-N counter has at least
(log N) basic components. A similar reasoning can be applied to any specification to obtain a
lower bound for the area complexity.

6.2 Power Consumption

Our second performance measure is power consumption. In physical terms, the power consump-
tion of an integrated circuit is the energy dissipated per time unit. Since in our abstract approach
there is no time metric, we consider the energy dissipated per external action. As a measure for
the energy we take the total number of communication actions in a behavior. Furthermore, in
this note we are not interested in incidental peaks in the power consumption: we only consider
the power consumption over the long term. That is, we amortize all communication actions
over the external actions. Finally, since the power consumption may depend on what external
actions are performed by the environment, we assume a worst-case environment for our power
consumption analysis. A worst-case environment is an environment that communicates with the
implementation in such a way that the total number of communication actions is maximized
over the long term. For these reasons, we take as a measure for the power consumption the
total number of communication actions amortized over the external communication actions for
a worst-case environment. In order for this measure to be a good first-order approximation a
number of conditions must be satisfied. Some of these conditions are discussed below.
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The power consumption of a circuit is determined by the dynamic and static power con-
sumption. The dynamic power consumption is dominated by the charging and discharging of
capacitances. The static power consumption in CMOS circuits is due to leakage current. Our
measure, which is based on counting communication actions, is intended to be an estimate of the
dynamic power consumption. In order for this ‘communication count’ to be a good first-order
approximation for the power consumption, the static power consumption should be negligible to
the dynamic power consumption. This condition can be met in a CMOS implementation, if the
frequency at which the communication actions occur is high enough. If the frequency becomes
too low, static power consumption is no longer negligible [35].

The second condition is that all voltage transitions in the implementation require about the
same amount of energy. The amount of energy needed for a transition depends on the load
capacitance. Load capacitances can vary orders of magnitudes in an integrated circuit. For
example, the load capacitance of a long wire with a large fan-out is much higher than the load
capacitance of a short wire with a fan-out of only one. In particular, in an implementation with
an irregular structure and large differences in capacitances, our estimate becomes inaccurate.

The third condition is that the power consumption of (CMOS implementations of ) our basic
components is proportional to the number of external communication actions performed on it.
This assumption requires, for example, that the implementations of our basic components do
not exhibit any livelock or metastable behavior.

If one of the conditions above is not satisfied, then the power consumption can only be
higher. In this respect, our measure will always give a lower bound for the order of growth of
the power consumption.

Let us return to defining the power consumption of a decomposition in terms of the ‘com-
munication count.” For a decomposition into basic components, the power consumption of a
behavior t is defined as the number of communication actions in ¢ amortized over the number
of external communication actions in ¢, where ¢ is ‘long enough’. We take the amortized power
consumption of a behavior in order to spread out evenly the cost of all communication actions
over the external communication actions. For example, initialization effects can be spread out
in this way over many external communication actions. If we defined the power consumption
of a behavior simply as the number of all communication actions divided by the external com-
munication actions, we could get extremely high power consumptions during initialization or
could even get division by zero. The power consumption of the decomposition is defined as the
maximum of the power consumptions over all behaviors of the decomposition. We say that the
decomposition has bounded power consumption if its power consumption is bounded from above
by a constant. These definitions have been inspired by [2].

With these definitions we can calculate the power consumption for various decompositions.
As a first example, we take the decomposition where only decomposition step (2) (i.e., CELL2)
is used. Here are some behaviors of that decomposition

Tolo, ToT1G100, ToT172020140, - . -

where ry represents a communication on channel r between the environment and cell 0, r;
represents a communication on channel r between cell 0 and cell 1, etc. A similar meaning
applies to a;. See Figure 14. For the decomposition of a modulo-N counter, there are N — 2
components CELL2 and one modulo-2 counter as end cell. The first external communication on
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Figure 14: A linear array of cells

channel r propagates to cell 0 and then returns via channel a, the second external communication
propagates to cell 1 and then returns via the a channels, and so on. The N — 1st and N-th
external communication propagate to the end cell and then return via the a channels. These
behaviors then repeat. So for every part of a behavior where 2V external communication actions
(N on channel » and N on channel a) occur, there will be a total of

(]g 2i) + 4(N — 1) = (N — 1)(N + 2)

external and internal communication actions. So the power consumption amortized over the
external communication actions for this part of the behavior is ®(N). Since every behavior
consists of a repetition of these part behaviors, every behavior has a power consumption of
O(N). Consequently, the complete decomposition also has a power consumption of @(NV).

Let us calculate the power consumption of a decomposition of the modulo-N counter where
only decomposition step (0) is used. In such a decomposition each external action on the r
channel propagates through the entire array of ®(log V) cells to the end cell and then back
on the a channels. Consequently, every behavior has a power consumption of ®(log N), and
therefore this decomposition also has a power consumption of ®(log V).

What would the power consumption be of a decomposition where only step (1) is used?
Notice that in this decomposition each cell propagates every other input » further in the linear
array of cells. So if in a communication behavior 2k external communication actions take place,
at most 2k/2 communication actions take place between the first and second cell, at most 2k /4
communication actions take place between the second and third cell, and so on. Consequently,
each communication behavior with 2k external communication actions has a power consumption
of at most

(i 2k/2)/2k < 2

From this observation we may conclude that every behavior has a bounded power consumption,
and therefore the decomposition also has a bounded power consumption.

What would be the power consumption of a decomposition using step (1) for even N and step
(2) for odd N? It turns out that such a decomposition also has bounded power consumption.
The argument why this is so is only a slight elaboration of the argument used in the previous
analysis. First we observe that for CELL2 after any behavior the number of communication
actions on channels sr and sa is at most the number of communication actions on channels r
and a. Second, we observe that at most every other cell in the decomposition is of type CELL2.
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This means that the total number of communication actions in the complete decomposition is at
most double that of a decomposition where only CELL1 is used. Since a decomposition where
only CELL1 is used has a bounded power consumption, a decomposition where CELLI is used
for even N and CELIL2 for odd N also has a bounded power consumption.

Can we improve any of these bounds if we use any of the steps (3)-(5) instead of (0)-(2)
respectively? It turns out that none of these bounds improves. Notice that by using any of
the components PCELLi instead of CELLi, 0 < ¢ < 3, many actions can take place in parallel,
but the communication behavior between any two neighboring cells remains almost invariant
for a given external behavior. The only difference is that some extra internal communications
take place for computing some responses ahead of time. The number of extra internal actions
is at most O(L), where L is the length of the array. Since we only consider long-term behaviors
where the number of external actions & > L, these extra communication actions are negligible
in calculating the power consumption. For these reasons the results of the analyses of the
‘sequential’ cells are still valid when using the ‘parallel’ cells.

6.3 Response Time

Our third performance measure is the response time of a decomposition. The response time is
the delay between the receipt of an input and the production of the succeeding output. The
response time is always measured from the time the last input arrives that enables the production
of that output to the actual production of that output. We are particularly interested in the
worst-case response time.

In calculating the response time of a decomposition, we assume that the response times of
our basic components are bounded from above and below by fixed constants. Consequently,
all implementations of the basic components may not exhibit livelock, deadlock, or metastable
behavior, since then there is no guaranteed upper bound. We do not require that the response
times of basic components are constant. Response times may vary arbitrarily between lower and
upper bound. For example, response times may depend on the actual values of the data received,
like addition may depend on the actual values added. Response times may also vary over different
instances of the same basic component or may vary over time. These delay assumptions are more
general than the assumptions made in [27], for example, and may sometimes lead to results that
are too pessimistic. A more detailed performance analysis and optimization technique, which
is based on Martin’s design approach, is given by Burns in [5]. Techniques for analyzing the
throughput and latency of micropipelines are proposed in [30, 36].

Let us see if we can calculate the response times of the various decompositions for the modulo-
N counter. If we only consider the steps (0)-(2), then the decompositions do not exhibit any
parallel behavior. Let us first consider a decomposition that uses only step (2). In the worst case
an input r propagates through all N — 2 cells to the end cell and then back. Consequently, this
decomposition has a response time that grows linearly with N. What is the response time of a
decomposition using only step (0)? In such a decomposition every input propagates through all
O(log N) cells and then back. Consequently, the decomposition has a response time of ®(log V).
A decomposition using only step (1) also has a response time of ®(log V), since in the worst
case an input r propagates through all ®(log V) cells and then back.

Response time analysis is perhaps the most difficult analysis to perform, in particular when
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there is a high degree of parallelism. In order to facilitate the analyses of decompositions using
steps (3)-(6), we present some theorems on response times for linear arrays of cells that exhibit
parallel behavior.

We consider a linear array of cells as given in Figure 15. We assume that each cell in the

r?»

Sr
al - - | - s P E——
sa

Figure 15: A linear array of cells

linear array has a communication behavior given by
pref(INIT; %[ if B then (a!; 7?) || (sr!; sa?) | not(B) then (a!; r?)fi; 5 ) (7)

where S represents the computation of the values to be communicated on a and sr, and INIT
is some initial behavior that can be represented by a proper ‘postfix’ of the behavior in the
repetition. For example, INIT = r?; S or INIT = (r? || (sr!; sa?)); S. The guard B depends
on the values that are communicated and possibly the values of the local variables. Since we
are only interested in when which communication action can occur, we have abstracted as much
as possible from the computation of the values that are communicated. There are two special
cases for the guards in which we are interested. One case is where B = true in each repetition
step; so in every repetition step there is a pair of communications on a¢ and r and on sr and sa.
The other case is where at most every other repetition step B = true. More specifically, if B;
represents the value of guard B in repetition step 4,7 > 0, then we have

B; = not(B;;;) foralli>0

In other words, if in a certain repetition step there is a pair of communications on sr and sa,
then in the next repetition step there are no communications on sr and sa.

Each cell has two outputs: a and sr. For each of these outputs, each of the inputs can be
the last input to arrive that enables the production of that output. Accordingly, the response
times for a cell are denoted by

T(r?;al), T(sa?;al), T(sa?;srl), T(r?;sr!)

The response time 7(r7;a!) is the time it takes to produce output a! after input »? has been
received, where we assume that input 7? is the last input that enables output a!. The other
response times are described similarly. The response times of the cells may vary. For example,
they may vary over different instances of a cell, over time, or they may depend on the state of a
cell. We assume, however, that all response times 7 of each cell have upper bound A and lower
bound 4, that is

b< T <A
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The end cell has a behavior given by
pref x [ r7; a! |

The response time of this end cell is given by 7.(r7; a!). We also assume that the response time
of the end cell has lower bound d and upper bound D, that is

dSTLSD

Finally we let R stand for the response time of the decomposition. Since we have chosen to
calculate the worst-case response time, R is the maximum of all R.7, ¢ > 0, where R.7 is the
maximum delay between occurrence 7 of input r and output a in the decomposition. We have
the following theorems.

Theorem 2 If for all cells in the decomposition B = true in every repetition step, then
R<D+2L(A-9)
where L is the number of non-end cells in the linear array.

With the proper distribution of delays, this upper bound can indeed be attained. The delays
then should be independent of each other. Recall furthermore that delays may vary in ‘time
and space,’ that is, in occurrence of an output and in instance of a component. The freedom of
varying delays independent of each other and in time and space may give a too pessimistic bound
for some applications. If more information is available about the possible delay distributions,
then tighter upper bounds may be obtained.

Theorem 3 If for all cells in the decomposition B = true in at most every other repetition
step, and D satisfies

D<A+ A*§+6L7 -2AL
then
R<A+A%S
where L is the number of non-end cells in the linear array.

Notice that here the upper bound for the response time R is independent of L, the number
of cells in the array. The response time R only depends on the values of § and A. In other
words, the response time is bounded under any delay distribution (in time and space) and for
any length of the array. The requirement for D, the maximum response time for the end cell, is
easy to satisfy. For example, D < A will do for any L. For large L, however, D may be chosen
much larger such that still a bounded response time is guaranteed. (In fact D may increase
quadraticly with L.) This property can be exploited by taking, for large L, an end cell that is
very slow, but has a low power consumption, for example.

What is the response time for a decomposition using only PCELL0? Such a decomposition
has L = O(logN) cells, and each cell, except the end cell, is of the form (7). Furthermore,
in each repetition step there is a pair of communications with both neighbors. Consequently,
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Theorem 2 applies. From Theorem 2 we then derive that the decomposition has a response time
of at most O(log N), if A # §. If A = §, then the response time is bounded by the response
time of the end cell. (It can be proven that the upper bound of O(log N) can be attained, if the
distribution of the delays is such that, for example, 1’s propagate twice as fast as 0’s through
the cells.)

In order to calculate the response time of a decomposition using only PCELL1 we can apply
Theorem 3. Notice that PCELL] communicates on channels sr and sa in at most every other
repetition step. We assume that the end cell has a response time of at most A, that is, D < A.
By Theorem 3 it now follows that this decomposition has a bounded response time.

For a decomposition using PCELL1 for even N and CELL2 for odd N, we can also use
Theorem 3 to conclude a bounded response time. This conclusion follows from looking at
the composite behavior of PCELLL followed by CELL2. Without proof we mention that this
behavior is also of the form (7) and has the property that at most every other repetition step
there is pair of communications on channels sr and sa.

There are many other combinations of decomposition steps we haven’t analyzed. For exam-
ple, what is the response time of a decomposition using PCELL2 only? What is the response
time of a decomposition using PCELLO and PCELL2? Or, of a decomposition using PCELL1
and PCELL2? None of the two theorems directly applies to these decompositions. For most of
these combinations the analysis is non-trivial. Having more general theorems than the two we
presented would be helpful to calculate response times of such decompositions.
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7 The Up-Down N Counter

7.1 Specification

An up-down counter is a component on which two operations can be performed: an ‘up’, which
is an increment by one, and a ‘down’, which is a decrement by one. For each of those operations,
one of three replies will be sent back to the environment. The reply depends on the count and
the range of the counter. The count of the counter is the number of ups minus the number of
downs. The range of the up-down N counter is [0..N], where N > 0. Initially, the count of the
counter is 0. If after a down, the count of the up-down N counter reaches 0, then the reply will
be ‘empty’. If after an up, the count of the up-down N counter reaches IV, then the reply will
be “full’. Otherwise, the reply will be ‘ack’. In order for the count of the up-down N counter
to stay in the range [0..N], we assume that the environment will not attempt a down when the
count is 0 and will not attempt an up when the count is N. Notice that the environment is
informed after each operation whether the counter is empty, full, or neither. We stipulate that
initially the counter is empty.

Here is a specification of the up-down NN counter using guarded commands. We take the
following type definitions throughout these notes.

type ud = {up, down}
type efa = {empty, full, ack}

The specification reads

UDC(N :int, r?: ud, a!: efa)
= { by definition }

|[ var n:[0..N]::

initially n = 0 ::

pref x [ r7;
ifr=up An=N-1 thena:=full; n:=n+1
| r=up A n<N-—1thena:=ack;n:=n+1
| r=down A n=1 thena:=empty; n:=n-1
| r=down A n>1 thena:=ack;n:=n-1

fi; al
]

]

For the repetition we have the invariant
n = (#rlup — #rldown)
Notice that the two alternatives

r=douwun AN n=10
r=up A n=N
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do not occur in the guarded selection, since we assume that the environment does not attempt
a down when the count is 0 and not attempt an up when the count is N. (By definition of the
guarded selection, the if ..fi statement amounts to an abort in states where these alternatives
would apply.)

The important property we should remember is the precondition for every output a:

(a=full) = (n=N) A (a=empty) = (n=0)
Here is one special case of the up-down N counter. For V = 1 we have
pref « [ r?up; alfull; r?down; alempty |

Given the specification of the up-down N counter we are asked to find an efficient asyn-
chronous implementation for this component for any N > 0. Try it, before reading any further.

7.2 Related Work and Results

There are many implementations of up-down counters commercially available. (See, for example,
the data books of several manufacturers.) There are also many applications for an up-down
counter. For example, they can be used in any application that keeps track of a count within
a range [0..NV], and where the only operations on the count are increments and decrements by
one and testing whether the value of the count is 0 or N. Applications that come to mind
immediately are semaphores, bounded stacks, and bounded queues.

There is also quite a rich literature on all sorts of counters. Designing synchronous imple-
mentations (as opposed to asynchronous implementations) of an up-down counter is usually
considered a standard exercise in almost every textbook on digital design. In [25] one can find
designs for many types of counters, including up-down counters. In [14] a synchronous imple-
mentation of an up-down counter is discussed, where the output is available after a constant
number of clock cycles. This design, however, does not detect whether the counter is full. The
idea of this implementation is the same as the idea underlying our first design. In [16] an up-
down 2N counter is implemented by N identical modules. The output is also available after a
constant number of clock cycles under the assumption that the inputs can be broadcast to all
modules in a constant amount of time. In our designs no broadcast is needed. In [26], which is
based on [14], several up-down counter designs are presented. The counters are slightly different
in the sense that they behave like modulo- NV counters when an increment occurs in the full state.

Most counters described in the literature are counters that report the value of the count in
some radix representation after each operation. For the up-down counter, however, there is no
need to know the value of the count after each operation. The only information that is needed
is whether the count is equal to one of the two boundary values, and, if so, which one. It is,
however, possible to implement an up-down counter that is based on a counter that reports the
value of the count after each operation. From this value the response full, empty, or ack can be
calculated. This calculation must consider all digits in the radix representation. If you want to
obtain a bounded response time, it is hard to imagine that this could be achieved with such a
design.

Most published implementations we have found are synchronous implementations and are
based on some sort of binary representation of the count. As a consequence the clock frequency
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depends on the counter size N. For most designs this is due to the carry and borrow propagation
during increments and decrements [20]. These carry and borrow propagations give a response
time that is at least logarithmic in N. Furthermore, every synchronous implementation based
on a binary representation of the count has to clock in each period about log IV storage devices,
making the power consumption at least proportional to log N.

In conclusion, we have found that all published designs are clocked designs, have a logarithmic
area complexity, usually do not give a response time analysis, do not give a power consumption
analysis, and only apply to very few values of N (usually only for values 2¥—1, % > 0). We present
several designs for the up-down N counter that have an area complexity of log V, but unlike all
previously known designs, are unclocked, have a bounded response time, have a bounded power
consumption, and apply to any N > 0. These bounds are asymptotically optimal.

7.3 A First Decomposition

The derivation of our first decomposition is based on the usual binary representation of numbers.
Suppose the count is represented by k bits, ¥ > 0. An increment can be implemented by adding
1 to the least significant bit modulo 2, where a carry may propagate possibly all the way to
the most significant bit. Similarly, a decrement is implemented by subtracting 1 from the
least significant bit modulo 2, where a borrow may propagate possibly all the way to the most
significant bit. Keeping track of whether the counter is full or empty can be done while returning
to the least significant bit from a carry or borrow propagation. Assuming that the counter is
full when all bits are 1 and empty when all bits are 0, then we can have the following scenario.
Each cell records whether the rest of the (more significant) bits are all 1 (subcounter full), all 0
(subcounter empty), or neither all 1 nor all 0. After an increment to a cell, the response is ‘full’
if the subcounter is full and the new value of the bit is 1. Similarly, after a decrement to a cell,
the response is ‘empty’ if the subcounter is empty and the new value of bit is 0. In all other
cases the response is ‘ack.’

In order to give a formal derivation, we show that a 2NV + 1 counter can be decomposed into
an N counter and a cell. Let N > 0. We first give the specification of the 2N + 1 counter. The
specification for the cell will arise in the derivation.

UDC(2N + 1:int, r?: ud, a!: efa)
= { by definition }

|[ var nn : [0..(2N 4 1)] ::

initially nn = 0 ::

pref x [ r7;
ifr=up AN nn=2N thena:= full; nn:=nn+1
| =up A nn< 2N thena:=ack; nn:=nn+1
| »=down A nn=1 thena:=empty; nn:=nn—1
| »=down A nn>1 thena:=ack; nn:=nn-1
fi; al
]
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In our first step we introduce binary variable k, representing the value of the bit in the cell, and
variable n, representing the count of the subcounter. The variables k and n are related to nn
by the invariant

P:omm=2xn+k A 0<n<N A 0<k<1
From this invariant we derive the following equivalences.

nm=2N = (n=N A k=0)
nm<2N = n#N
nm=1 = (n=0A k=1)
nm>1 = n#0

These observations then lead to the following program for UDC(2N + 1,7, a).

|[ var nn : [0..(2N + 1)],n: [0..N], k : bin ::
initially n = 0,k =0 ::

pref x [ r?
sifr=up An=N A k=0 thena:= full; nn:=nn+1
| r=up AN n#N then a := ack; nn:=nn+1
| r=down A n=0 A k=1 thena:=empty; nn:=nn—1
| »=down A n#0 then a := ack; nn:=nn -1
fi

sifr=up A k=1 thenn:=n+1
| »=down A k=0 thenn:=n-1
| (r=up AN k=0)or (r=down A k=1) then skip

fi
; k:=(k+1)mod?2
; al
]
Il
The alternative » = up A k = 1 corresponds to a carry propagation, here represented by

n :=n+ 1, and the alternative »r = down A k = 0 corresponds to a borrow propagation, here
represented by n :=n — 1. It is not difficult to see that nn =2xn+k A 0 < k <1 are indeed
invariants of this program. Let us check that 0 < n < N is an invariant of the program as well.
Because of the semantics of guarded selection, a postcondition for the first guarded selection,
which is the precondition for the second guarded selection, is

(r=up ANk=1=n<N) A (r=down A k=0 = n>0)

In other words, an increment to n is not done when n = N and a decrement to n is not done
when n = 0. From this observation we may conclude that 0 < n < N is an invariant of the
repetition.

After the first derivation step, we can make a couple of observations. First, the variable
nn is a ghost variable: it is never inspected and is only used for the correctness proof of the
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derivation step. Consequently, we can remove all statements involving nn from the program.
Second, we observe that the only operations on variable n are increments, decrements, and tests
whether n = 0 or n = N. These operations can be performed by an up-down N counter. For
this purpose we introduce an up-down NV counter with input channel sr and output channel sa,
and whenever an increment to n is done we replace this statement by srlup; sa?, whenever a
decrement to n is done we replace this statement by srldown; sa?. After every communication
on channel sa we can then assert

(sa=full)=(n=N) A (sa=empty) =(n=0)

where n = (#sr?up — #sr?down). These observations then lead to the following parallel com-
position.

UDC(2N +1,r?,al)
= { def. of UDC(N, sr?, sa!), see above }

|[ chan sr: ud, sa: efa
CELLO(r?, a!, sr!, sal) || UDC(N,sr?, sa!)
]

where CELLQ is defined by

|[ var k : bin :
initially sa = empty, k =0 ::
pref x [ r?
sifr=up A sa=full N k=0 then a := full

| »=wup A sa # full then a := ack
| »=down A sa=empty A k=1 then a:= empty
| »=down A sa# empty then a := ack
fi

sifr=up A k=1 then srlup; sa?
| »=down A k= 0then srldown; sa?
| (r=up N k=0)or (r=down A k=1) then skip
fi
s k:=(k+1)mod?2
; al
]
]

Notice that CELLO will not attempt an sr!down when the subcounter is empty, nor will
CELLO attempt an srlup when the subcounter is full. This property follows immediately from
the invariant 0 < n < N of the previous program.

Finally we observe that all conditions for decomposition are satisfied. In particular, no
computation interference can occur: in CELLO every output sr! is immediately followed by
input sa? and every output a! is immediately followed by input »?. Accordingly, we can write
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UDC(2N + 1, r?, a!)
—  { def. of decomposition }

( CELLO(r?, a!, sr!, sa?) , UDC(N,sr?,sal))

7.4 What about even N?

In the previous section we derived a decomposition that applies to odd IV only. If we need to
have a decomposition that applies to all N, we also need to find a decomposition that applies
to even N. Qur next decomposition is a generalization of our first decomposition and is not
restricted to even IV only.

The previous decomposition was based on the unique binary representation of each number.
The invariant we used there was

P:omm=2xn+k A 0<n<N A 0<k<1

where nn represents the count of the 2V + 1 counter and n represents the count of the NV
counter. What would happen if we enlarged the range of k? For example, what would change
in our derivation if we had 0 < k < K? It turns out that we need to change our derivation only
slightly. Let K > 0. Our new invariant is

nm=2xn+k AN 0<n<N A 0<k<K
From this invariant we derive the following equivalences.

(nn=2N+K-1) =
(nn < 2N + K — 1)

nn=1

n=NAk=K-1)
n#ZN V kE<K-1)
n=0Ak=1)
n#0V k>1)

(
(
(
(

nm>1 =
These observations then lead to the following program.
UDC(2N + K,r?,a!)
= { for def. of CELL2 see below }
( CELL2(K : int, 2, a!, sr!, sa?) , UDC(N, sr?, sa!))

where CELL2 is defined by
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CELIL2(K :int, r?: ud, a!: efa, sr!:ud, sa? : efa)
= { by definition }

|[ var k:[0..K] ::
initially sa = empty, k =0 ::
pref x [ r?

sifr=up A sa=full N k=K —1 thena:= full
| r=up A (sa+# full V k< K —1) thena:=ack
| »=down N sa=empty AN k=1 then a:=empty
| r=down A (sa# empty V k> 1) thena:=ack
fi

sifr=up A k=K then srlup; sa?
| »=down A k=0 then srldown; sa?
| (r=up N k# K)or(r=down A k#0) then skip
fi

sifr=up AN k#K thenk:=k+1
| r=up A k=K thenk:=K -1
| =down AN k#0 thenk:=k—1
| =down A k=0 thenk:=1

fi

; al

]

]

Now we have many decompositions that apply for even N. For example, we can use CELL2 for
K =2or K =4, when N is even. For odd N we also have many decompositions. We can use
CELL2 for K =1 or K = 3, when N is odd. If we are restricted to using CELL2 for values of
K = 2 and K = 3, then any N counter for N > 1 can be decomposed using such cells, if we
have at least as end cells a 1 counter, a 2 counter, and a 3 counter. Notice that for N > 1, we
have 2N +2 > 4 and 2N + 3 > 5.

For K = 1, we have the usual binary number system, where each number has a unique
representation. For K > 1 we use a redundant binary number system, where the digits can
range from 0 to K inclusive. For example, for K = 2 the number 4 can be represented as 100
and as 012 (least significant digit to the right). This redundancy will pay off later when we
examine the power consumption and response time.

7.5 What about Parallelism?

The next step in our derivation of an optimal design is the introduction of some parallelism.
We try to do so by allowing as much freedom as possible in the ordering of the communication
actions in a cell with the restrictions that the communication behavior on channels r and a
remains invariant and the communication behavior on channels sr and sa remains invariant.

We first introduce some parallelism in the specification for CELL0. Let us consider the
specification for CELL0 once more.



Parallel Program and Asynchronous Circuit Design 45

CELIO(r? : ud, a!: efa, sr!: ud, sa?: efa)
= { by definition }

|[ var k : bin :
initially sa = empty, k =0 ::
pref x [ r?
sifr=up A sa=full N k=0 then a := full
| »=wup A sa # full then a := ack
| »=down A sa=empty AN k=1 then a:=empty
| »=down A sa# empty then a := ack
fi

sifr=up A k=1  then srlup; sa?
| »=down A k=0 then srldown; sa?
| (r=up N k=0)or (r=down A k=1) then skip
fi
s k:=(k+1)mod?2
; al
]
]

Observe that although the value of a is calculated immediately after » has been received, it is
sent only after there has been a possible communication on the channels sr and sa. Immediately
after sending a the next request on channel r can be received, in order to avoid computation
interference. Is it possible to send a (and receive the next request on r) in parallel with sending
sr (and receiving sa)? Yes, that can be done. If we unfold the repetition a bit and reorder some
statements, we get the following program for PCELLQ

PCELLO(r? : ud, a!: efa, sr!:ud, sa?: efa)
= { by definition }

|[ var k : bin :
initially sa = empty, k =0 ::
pref (775 S4;
x(ifr=up N k=1 then (a!; »?) || Sk || (srlup; sa?)
| r=down A k=0 then (a!; r?) || Sk || (sr!down; sa?)
| (r=up AN k=0)or
(r = down A k=1) then (al;7?) | S

where Sy = k:= (k+1) mod 2 and 5, is the statement that calculates the next value for a given

by
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Sa
= { by definition }
ifr=up ANsa=full N k=0 then a := full
| »=up A sa # full then a := ack
| »=down A sa=empty AN k=1 then a:= empty
| »=down A sa # empty then a := ack
fi

It is not difficult to verify that the communication behavior of CELLO and PCFELLO is the
same if we look to the channels » and a only. Similarly, the communication behavior of CELLO
and PCELILQ is the same if we look to the channels sr and sa only.

The same exercise can be performed on CELL2. If we name the resulting specification
PCELL2, we get

PCELL2(K : int, r? : ud, a!: efa, sr!:ud, sa? : efa)
= { by definition }

|[ var k:[0..K] ::
initially sa = empty, k =0 ::
pref (r?; S,;
x(if r=up A k=K then(al;r?)| (k:=K —1)| (srlup; sa?)

| r=down A k=0 then (al; r?) || (k:=1) || (srldown; sa?)
| r=up AN k# K then (al; r?)|| (k:=k+1)
| r=down A k#0 then (al; r?) || (k:=k—1)
fi
Sa

where 5, is the appropriate statement calculating the next value of a.

7.6 An Implementation

As an example of an implementation, we briefly present one for PCELLQ using data bundling.
As an encoding for the data type ud, we use a single wire and take by definition up = 1 and
down = 0. As an encoding for the type efa we take two wires called f and e. Each value of type
efa is then encoded by a pair of binary values (f,e) in the following way.

full = (1,0)
empty = (0,1)
ack = (0,0)

The value (1,1) is not used. These encodings then quickly lead to the implementation of Figure 16
for the up-down 1 counter.
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Figure 16: An implementation for UDC(1) using data bundling

From the program for PCELLO, we derive that the ‘new’ values for a = (a.f, a.e) and k can
be calculated as follows from the inputs r and sa = (sa.f, sa.e).

a.f = r Asa.fA-k
a.e = —rAsael k
E = -k

The ‘new’ value for sr is calculated as follows. If » and k are both zero or both one, then sr
becomes zero or one respectively. Otherwise, sr retains its ‘old’ value. In other words, the ‘new’
value for sr is the majority of r, k, and the old value of sr. Furthermore, a communication with
the subcounter takes place only when r and k are both zero or both one. Therefore, we introduce
a binary variable prop (of propagate) to direct the communications with the subcounter. The
values for sr and prop are calculated as follows.

sr = maj(r,k,sr)

prop = (rAk)V(-rA-k)

where prop = 1 if there is a communication on the channel sr, and prop = 0 if there is no
communication on the channel sr.

The control part of the implementation consists of a JOIN, a MERGE, a SELECT, and some
WIREs. The control part is indicated with solid lines in Figure 17. The data part is indicated
by dashed lines in Figure 17.

7.7 Performance Analysis

Before we are going to analyze the performance of some complete decompositions of the up-
down N counter, we give a brief summary of the possible decomposition steps. Below, UDC(N)
stands for UDC(N, r? : ud, a!: efa) and CELL2(K) stands for CELL2(K : int, r? : ud, a!:
efa, sr!: ud, sa? : efa). A similar correspondence holds for PCELL2(K). (Recall that CELLO
is a special case of CELL2(K ), viz., CELL2(1) = CELLD)

UDC(2N +1) — ( CELI2(1), UDC(N)) (0)
UDC(2N +2) — ( CELL2(2), UDC(N)) (1)
UDC(2N +3) — ( CELL2(3), UDC(N)) (2)

) = ) (3)

PCELI2(1), UDC(N))



48 Ebergen, Segers, Benko

Figure 17: An implementation of PCELL0 using data bundling

UDC(2N +2) — ( PCELI2(2), UDC(N)) (4)
UDC(2N +3) — ( PCELL2(3), UDC(N)) (5)

Let us consider the area complexity of some decompositions first. Our first observation is
that any of the cells above can be considered as a basic component, since the number of states
of each cell is bounded by some constant, which is independent of N. A similar remark can be
made for small counters, like the 1, 2, and 3 counter. Accordingly, a first-order estimate for
the area complexity can be obtained by counting the total number of cells and end cells of the
decomposition. The area complexity of some decompositions can now be calculated easily. A
decomposition of the up-down N counter using any of the cells CELL2(K ) or PCELL2(K) for
K =1,2,3 obviously has area complexity ®(log N). In a similar manner as for the modulo-N
counter, we can prove that this bound is optimal.

The analysis for the power consumption is a bit more difficult. Let us first consider the
power consumption of a decomposition using only CELL2(1). This decomposition is based on
the usual binary number system. In the worst case a request propagates through all log V cells
and comes back, and this can happen repeatedly. For example, when the count of the counter
is (N — 1)/2 (that is, the binary representation consists of all ones, except the most significant
bit which is zero), and the sequence r?up; alack; r?down; alack is performed repeatedly. Then,
for each request, each bit has to flip once. Consequently, each external communication results
in O(log N) communications, and so the worst-case power consumption over all communication
behaviors is ©(log V),

What is the power consumption of a decomposition using CELL2(2) and CELL2(3) with
UDC(1), UDC(2), or UD(C(3) as end cell? This decomposition uses a redundant binary repre-
sentation of the count. The important observation is that in both CELL2(2) and CELL2(3) in
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at most every other repetition step there will be a communication on the channels sr and sa.
Accordingly, if in a communication behavior 2k external communication actions take place, at
most 2k/2 communication actions take place between the first and second cell, at most 2k/4
communication actions take place between the second and third cell, and so on. Consequently,
each communication behavior with 2k external communication actions has a power consumption
of at most

(i 2k/2)/2k < 2

From this observation we may conclude that every behavior has a bounded power consumption,
and therefore the decomposition using cells CELL2(K) for K = 2,3 has a bounded power
consumption.

Would the power consumption change if we used a PCELL? instead of a CELL2? From the
programs for CELL2 and PCELL2 we derive that for each external behavior with 2k actions,
the maximum number of internal communication actions that can take place in the parallel and
the sequential version are the same. The only difference is in the order in which the actions can
take place. For this reason, the results of the power consumption analyses for the sequential
version are also valid for the parallel version.

Finally we analyze the response time of some decompositions. The ‘sequential’ decomposi-
tions are easy. A decomposition using any of the cells CELL2 has logarithmic response time,
since in the worst case a request propagates through all ®(log N) cells to the end cell and then
returns as an acknowledgement.

For the decomposition using the parallel versions of CELL2, we can use Theorems 2 and 3.
We assume that the upper bounds and lower bounds for the response times of the cells (including
the end cells) are given by A and § respectively. Neither Theorem 2 nor 3 is directly applicable
to a decomposition using only PCELL2(1). However, if we assume that the environment gives
input requests according to a worst-case scenario, then after an initial behavior each cell will
communicate on channels r, @ and sr, sa in each repetition step. According to Theorem 2, this
decomposition then has a worst-case response time of O(log N) if A > §. In order to attain this
upper bound, however, we have to assume a very pessimistic delay distribution.

For PCELL2(2) and PCELL2(3) we observe that in at most every other repetition step there
is a pair of communications on sr and sa. Accordingly, Theorem 3 is applicable, and we conclude
that a decomposition using PCELL2(2) and PCELL2(3) has a bounded response time.

8 Concluding Remarks

We have illustrated some techniques in the design and performance analysis of asynchronous
circuits. The techniques were illustrated by means of two examples: the modulo-N counter
and the up-down N counter. For both examples we derived several designs that have an area
complexity of ®(log N), a bounded power consumption, and a bounded response time. These
bounds are optimal. Although the exercises have given us some insights in the alternatives in
designing asynchronous circuits, there are still many problems that remain. We mention a few
of them.
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The final step of our derivations consisted of finding circuit implementations for the cells.
Compared to many of the other steps in the design, this last step was rather large and often
ad hoc and without a proof. We did so, because the main emphasis of these notes was on the
design of the parallel program rather than on the design of circuit implementations for the cells.
In order to obtain a complete design method, however, it is important that this last step be
investigated more closely, and that a systematic method be found to translate our specifications
for the cells into circuit implementations. The choice of implementation for the data types will
undoubtedly play a large role in this step.

For all designs, we first started with the design of a sequential program and then transformed
this sequential program into a parallel program by reordering the communication actions. Can
this be done for every design? That is, for every parallel program, does there exist a sequential
program that can be transformed into the parallel program by reordering the statements and
communication actions? If so, do there exist some general techniques for reordering communi-
cation actions so as to obtain a parallel program?

The performance analyses raised some interesting questions as well. For the area complexity
we can compute a lower bound for any implementation of a component easily. For the power
consumption and response time this is a different matter. How do we calculate the lower bounds
for the power consumption and response time for any implementation of a particular component?
For example, what is the lower bound of any implementation for an IN-place stack or queue?
Knowing what the lower bound is of the power consumption of a component, we may able to
conclude whether we have found an optimal design. If not, we may want to search for a more
efficient design.

Calculating the response time of an implementation was a nontrivial task. We gave some
theorems that were very useful, but these theorems applied only to linear arrays of cells and only
under certain conditions for the behavior of the cells. How do we calculate the response time for
other networks of cells or when the cell’s behavior does not satisfy these restricted conditions?

Finally, we mention the problem of formulating appropriate progress conditions. For any
design it is important to know whether progress is guaranteed or not. For example, a design
should be free from the danger of deadlock or livelock. Our correctness conditions are too weak
to guarantee progress in general. (See Section 3.8.) Finding correctness conditions for progress
that have a proper justification in the context of asynchronous circuit behaviors and, preferably,
are easy to work with is still an open problem.
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