
Parallel Program and Asynchronous Circuit Design �

Jo C� Ebergen

John Segers� Igor Benko

Computer Science Department

University of Waterloo

Waterloo� Ontario� Canada N�L �G�

Revised March ��� ����

Abstract

Asynchronous circuit design is a beautiful application area for any formalism that can
reason about parallelism� By means of two small� but challenging� exercises we illustrate
the similarities and di�erences between parallel program and asynchronous circuit design�
The exercises are simple to state and have many solutions� which are sometimes surprisingly
e�cient� They all illustrate many aspects of asynchronous circuit design� For each exercise
we present several solutions� which are analyzed with respect to delay assumptions� safety�
progress� and performance issues� We also mention some open problems�
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It is quite di�cult to think of the code

entirely in abstracto without any kind of circuit�

Alan M� Turing �����

� Introduction

The design and analysis of asynchronous circuits has witnessed a remarkable upsurge in the
past �ve years� Many researchers have claimed or demonstrated that asynchronous circuits
have a great potential for speed� low power consumption� robustness� modular design� and
ease of design� Some of these properties� like modular design and ease of design� were already
demonstrated in the 
��s in the Macromodules project ���� The recent advances are characterized
by many novel design and veri�cation techniques ��� �� 
� ��� ��� ��� ��� ��� or by the new
applications of and improvements in classical approaches �	� �� �� ��� �	� ���� The performance
analysis of asynchronous circuits is also beginning to draw wide attention ��� �� ��� ��� ��� �
��
The novel techniques indicate that the design and analysis of asynchronous circuits have much
in common with the design and analysis of parallel programs� The purpose of this paper is to
illustrate some techniques in designing asynchronous circuits and in analyzing the performance
of these circuits with respect to area complexity� power consumption� and response time� The
design of a circuit consists of the derivation of a parallel program for a speci�cation� Wherever
possible� we try to give a heuristics for each design decision� The derivations are presented in a
format that allows a quick veri�cation of all steps�

Our method for designing asynchronous circuits is based on a simple formalism� Speci��
cations are given by means of guarded commands with input and output actions� a notation
inspired by Dijkstra�s guarded commands ���� and Hoare�s CSP ����� The formalization of im�
plementation is given by the de�nition of decomposition� A decomposition of a speci�cation
consists of a network of basic components realizing the speci�ed behavior� The notion of a
delay�insensitive circuit plays an important role in our implementations� A delay�insensitive cir�
cuit is a special type of an asynchronous circuit� which is informally characterized as a network of
basic components implementing a speci�cation such that the correctness of the implementation
is insensitive to any delays in wire connections or variations in the response time of the basic
components�

The modulo�N counter and the up�down N counter are beautiful examples for illustrating
both design and analysis techniques for asynchronous circuits� Both components have simple
speci�cations� but admit a surprising variety of implementations� We give detailed derivations
of several implementations for the two counters and a performance analysis of the designs� Our
�nal designs for the counters have a bounded response time� a bounded power consumption�
and an area complexity logarithmic in N � All bounds are asymptotically optimal� We start
by giving a speci�cation for the modulo�N counter� Along the way we explain the rules of the
game�
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� The Modulo�N Counter

The goal of the game is to �nd an e�cient decomposition of the modulo�N counter into ba�
sic components� for any N � �� The decomposition should be e�cient with respect to area
complexity� power consumption� and response time�

There are several ways to specify a modulo�N counter� Perhaps the most simple one is to
view the modulo�N counter as a component with one input r and two outputs a� and a�� After
each of the �rst N � � inputs r� the component may respond with output a�� and after the
Nth input the component may respond with output a�� This behavior then repeats� A formal
speci�cation for this component can be formulated as follows�

pref � � �r�� a���N��� r�� a�� �

where ��� denotes an input action� ��� denotes an output action� ��� denotes concatenation� �EN �
denotes N �fold repetition of the command E� ��� �� denotes arbitrary repetition of the enclosed
command �or Kleene�s closure�� and prefE denotes the pre�x�closure of E� �A more precise
explanation of the notation follows in the next section��

A higher�level speci�cation can be given if we consider the outputs a� and a� as special
implementations of sending the values � and � on channel a� Channel a is then considered as
an output channel of type binary� We denote this by a� 
 bin� Channel r can be considered an
input channel of type unary� since each signal on channel r can be seen as the communication
of a value that is always the same� If r is an input channel of type unary� we denote this by
r� 
 un � In this more abstract view� the modulo�N counter can be speci�ed as follows�

ModC�N 
 int � r� 
 un� a� 
 bin �

� f by de�nition g

j� var n 
 int 


initially n � � 


pref � � r��n 
� �n� �� modN �

if n �� � then a 
� �
j n � � then a 
� �
� � a�
�

�j

where int denotes the type integer and an occurrence of a� denotes �the value of a is sent along
its channel�� In order to leave as much freedom as possible in choosing an implementation� in
particular in implementing the data types� we use this speci�cation for deriving decompositions�

A property worth remembering of this last speci�cation is that the precondition for each
output a� is given by

��r modN � �� � �a � ��

where �r is the number of inputs r received thus far� For this reason� a postcondition of a
corresponding input a� in another component can given by the same assertion� We use this
property frequently in the coming derivations�
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When trying to �nd an implementation for the modulo�N counter� we assume that the envi�
ronment provides the inputs as speci�ed� For example� after providing input r the environment
waits for output a before providing the next input� Under this assumption our implementation
should provide outputs as speci�ed�

In traditional circuit design� a modulo�N counter is speci�ed by means of a state transition
diagram� where states and transitions are given by means of logic values� Implementations are
nearly always based on a binary representation of the count and consist of a series of latches
and logic gates� Often� these designs have a so�called ripple�carry delay� which makes the
response time dependent on N � Furthermore� if every latch is clocked in each clock period�
the power consumption of these designs is at least logarithmic in N � Various designs for the
modulo�N counter implemented in this way can be found in almost any textbook on switching
theory� We demonstrate that modulo�N counters with bounded response time and bounded
power consumption can be designed� Our designs are inspired by ideas developed at Philips
Research Laboratories ��� ����

� Rules of the Game

In the previous section we brie�y stated our goal and gave a speci�cation of the modulo�N
counter without much explanation� An attentive reader may have lots of questions� For example�
what is the formal meaning of our program notation� What do we mean by �implementation��
What basic components can we use� How can we implement data types� How do we measure
area complexity� power consumption� and response time� In short� what are the rules of the
game� We try to answer brie�y some of these questions in the coming sections�

��� Commands

The modulo�N counter is speci�ed by a so�called guarded command� A guarded command
prescribes the communication behavior of a component by listing all sequences of communication
actions that may occur between the component and its environment� We �rst consider a subset
of guarded commands called commands�

The semantics of a command is given by a trace structure� which is a triple hI� O� T i� Set
I is the input alphabet and represents all input terminals of the component� O is the output
alphabet and represents all output terminals of the component� T is the trace set and represents
all possible communication behaviors between component and environment� Every trace in T is
constructed from symbols in I �O�

For commandE� the notations iE� oE� and tE stand for the input alphabet� output alphabet�
and trace set of the trace structure represented by E respectively� The alphabet of E is denoted
by aE and given by aE � iE � oE� Equality between commands denotes equality of the trace
structures represented by the commands�

The so�called atomic commands are abort� skip� and a�� a�� and a for any symbol a� They
denote the following trace structures

abort � h�� �� �i

skip � h�� �� f�gi
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a� � h�� fag� fagi

a� � hfag� �� fagi

a � hfag� fag� fagi

The trace set of a command is constructed in a similar way as the language of a regular
expression� The constructions for concatenation ���� selection �or union� �j�� N �fold repetition
���N �� and arbitrary repetition ��� �� are de�ned as usual and omitted here� The operation weaving
is used to express a parallel composition with synchronization on common symbols� Formally�
the weave E�kE� of trace structures E� and E� is de�ned by

E�kE� � h iE�� iE�

� oE� � oE�

� ft � �aE� � aE��� j t�aE� � tE� 	 t�aE� � tE�g

i�

where t � aE� stands for the projection of trace t on the alphabet of E�� �Recall that aE� �
iE��oE��� Notice that every trace in the weave E�kE� must be in accordance with a trace of
E�� if you only look at symbols fromE�� and with a trace of E�� if you only look at symbols from
E�� Because the weave E�kE� consists of all behaviors that are in accordance with behaviors
in E� and in E�� weaving can be considered as the behavioral conjunction of E� and E�� For
this reason� the symbol k is often pronounced as �and�� There are two special cases of weaving�
If aE�
 aE� � �� then weaving E� and E� amounts to the interleaving of the traces of E� and
E�� If aE� � aE�� then weaving E� and E� amounts to taking the intersection of the traces of
E� and E��

The pre�x�closure of command E� denoted by prefE� is a trace structure with the same
alphabets as E and with the trace set that consists of all pre�xes of all traces in tE� Trace
structure E is called pre�x�closed if prefE � E� The pref operation constructs pre�x�closed
trace structures� Speci�cations are always given by commands that represent pre�x�closed� non�
empty trace structures with disjoint input and output alphabets� Trace structure E is called
non�empty if tE �� ��� Whenever we speak of component E in the following� E represents a
pre�x�closed� non�empty trace structure with disjoint input and output alphabets� The domain
of pre�x�closed� non�empty trace structures is one of the simplest semantic domains ����� Notice
that abort� a�� and a� do not represent non�empty� pre�x�closed trace structures and there�
fore do not specify components� The command skip does represent a pre�x�closed� non�empty
trace structure and therefore speci�es a component
 a component that has no input or output
terminals and doesn�t do anything�

The pref operator allows us to rewrite a speci�cation by means of �un�folding� For example�
we have

pref �� a�� b� �

� f unfolding g

pref�a�� �� b�� a� ��
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Finally we mention some laws for skip and abort

E� skip � E

E k skip � E

E j abort � E

t�E� abort� � t�abort�

t�E k abort� � t�abort�

��� Some Speci�cations and their Interpretations

In order to familiarize ourselves with commands� we specify the basic components wire� iwire�
merge� toggle� join� and the ��by�� join� Their speci�cations are given in Table �� As for
the priority of the binary operators� the parallel bar �k� has the highest binding power� then the
semicolon ���� and �nally the choice bar �j��

Name Speci�cation Schematic

wire pref �� a�� b� � a? b!

iwire pref �� b�� a� � a? b!

merge pref �� �a� j b�� � c� �
a?
b?

c!M

toggle pref �� a�� b�� a�� c� � a?
b!

c!

join pref �� �a�kb�� � c� �
a?

b?
c!

��by�� join
pref �� �a��kb�� � c��

j �a��kb�� � c��
�

a0?

a1?

c0!

c1!

b?

Table �
 Some basic components

In the previous section we stipulated that components are speci�ed by means of commands
representing pre�x�closed� non�empty trace structures with disjoint input and output alphabets�
We interpret such a trace structure in a special mechanistic way as opposed to a physical
interpretation related to a particular implementation�

In order to understand this mechanistic interpretation� it is important to explain the role
of input and output �rst� In our interpretation� an output may be produced by a component
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as soon as that output is enabled in the speci�cation� Similarly� an input may be produced by
the environment as soon as that input is enabled in the speci�cation� The environment can be
considered as a collection of other components�

The mechanistic interpretation consists of two conditions
 a condition related to safety and
a condition related to progress�

� Safety
 no input or output is produced when not allowed by the speci�cation�

� Progress
 each trace speci�ed may occur�

Because of our interpretation of inputs and outputs� the safety condition not only prescribes
what the component may not do� but also what the environment may not do� A speci�cation is
a prescription for both component and environment� Because of the environment prescription�
we can stipulate the conditions under which correct component behavior must be guaranteed�
In this context we can interpret speci�cation E as �if the environment produces the inputs as
prescribed in E� then the component may produce the outputs as prescribed in E�� If the
environment violates the prescription� nothing is guaranteed and erroneous behavior may occur�
The production of an input or output that violates a speci�cation is also called computation
interference� This term was �rst introduced in ����� In ����� it is called a choke� Later� when
we consider a network of components as an implementation of a speci�cation one of our proof
obligations is to show that computation interference cannot occur�

While the safety condition prescribes what may not happen� the progress condition prescribes
to a certain extent what must happen� The progress condition says that� if the environment
produces the inputs as speci�ed in E� then the component must behave such that every trace
in tE may occur� Here �may� should be interpreted as �is possible� but not guaranteed�� This
requirement excludes� for example� implementations of components where some traces cannot
occur� On the other hand� this prescription does not require that every trace is guaranteed to
occur� The actual occurrence of a trace may depend on nondeterministic choices made during
the operation of the implementation
 if the right choices are made� then each trace can occur�
This progress condition is too weak in a number of cases� On the other hand� it is easy to work
with and su�ces in many cases� Formulating a general� satisfactory progress condition that is
convenient to deal with is still an open problem� We will return to a more formal treatment of
these conditions and their problems later when we discuss implementations of speci�cations�

The abstract mechanistic interpretation allows for several physical implementations� like a
mechanical� optical� or electrical one� The usual electrical implementation is that each symbol
in the alphabet is associated with a terminal of a circuit� Each occurrence of a symbol in a trace
corresponds to a voltage transition at that terminal� There is no distinction between rising and
falling transitions
 both transitions are denoted by the same symbol� This type of signaling is
called transition signaling ����� Outputs are transitions caused by the circuit and inputs are
transitions caused by the environment�

With the above mechanistic interpretation in mind� we can explain the behavior of the basic
components as follows� A wire has one input and one output terminal� Each communication
behavior is an alternation of inputs and outputs� starting with an input� if any� �A wire

can be implemented by a physical wire�� Notice that the safety condition prescribes that the
environment is not allowed to provide two inputs in a row� nor is the component allowed to
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produce initially an output� or to produce two outputs in a row� The progress condition� on the
other hand� prevents implementations where an output is guaranteed never to occur�

The iwire also has one input and one output terminal� Each communication behavior is an
alternation of inputs and outputs� starting with an output� if any�

The merge has two input terminals and one output terminal� Each communication behavior
is an alternation of inputs and outputs
 the environment may choose to produce one of the
two inputs �not both�� the component may then produce an output� �The merge can be
implemented by an xor gate��

The toggle has one input and two output terminals� Each communication behavior is also
an alternation of inputs and outputs starting with an input� if any� After each input has been
received� an output may be produced� The outputs are produced at alternating terminals�

The join has two input terminals and one output terminal� Each communication behavior is
an alternation of two inputs and an output� After both inputs have been received� the join may
produce an output� The join can be implemented by a Muller C�element ����� The Muller
C�element has a more general speci�cation


pref � � a�� j b�� j �a�kb�� c�� �

Notice that the behaviors of the join are a proper subset of the behaviors of the C�element�
For example� for the C�element the environment is allowed to produce an input a and then
immediately withdraw that input� The speci�cation of the join prescribes that the environment
is not allowed to withdraw an input� Knowing what the environment may do and what it may
not do will be essential later when we give our correctness criteria for an implementation� For
these reasons we distinguish between the join and the C�element� �The join is also known as
the rendez�vous element in the Macromodules project �����

The ��by�� join has three input and two output terminals� Each communication behavior is
an alternation of two inputs followed by an output� Either a� and b are received in parallel and
then a c� may be produced� or a� and b are received in parallel and then a c� may be produced�
We have listed the ��by�� join only� Other n�by�m joins for n�m � � are speci�ed in a similar
way� Notice that the standard join is a special n�by�m join� viz�� a ��by�� join� �n�by�m joins
for m�n � �� are called decision�wait modules in the Macromodules Project �����

��� Guarded Commands

If we extend our command language with variables� channels� and guarded selection we get
the language of guarded commands with input and output actions� A variable n of type T is
declared by var n 
 T � Type T denotes the set of values n can take� For example� the type
binary is de�ned by

type bin � f�� �g

If the initial value of a variable n is val then this can be indicated in the program by

initially n � val

The scope of variables is delineated by means of the scoping brackets j� and �j� The formal
meaning of delineating the scope of a list of variables V is given by hiding those actions that
involve changes to those variables� For example� we have
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j� var n 
 bin 


initially n � � 


pref �� r�� n 
� �n� �� mod �� a��� r�� n 
� �n� �� mod �� a�� �

�j

� f hiding local variable n g

pref �� r�� a��� r�� a�� �

In any parallel composition components are not allowed to share variables� components can
only communicate through message passing via channels� For each component a channel is either
an input channel or an output channel� An input channel r of type T is declared by r� 
 T in
the speci�cation of the component� The occurrence of r� in the program text denotes an input
action and means �r receives a value on its channel�� If val is a value of type T � then r�val
means �receive value val on channel r�� An output channel b of type T is declared by b� 
 T � The
occurrence of b� in the program text denotes an output action and means �the value of b is sent
along its channel�� Similarly� a�val means �send value val along channel a�� Local channels in a
parallel composition are declared as follows�

j� chan b 
 T 

 C��a�� b�� k C��b�� c�� �j

where components C��a�� b�� and C��b�� c�� have been speci�ed elsewhere with channel b of type
T � If channels have types associated with them� then the formal meaning of a component is
given by a trace structure where symbols are pairs �b� val� with b representing the name of the
channel and val representing the value that is communicated� �See for example ������

The last extension to our language is guarded selection� A guarded selection has the following
form�

if B� then S�
j B� then S�
�

Here B� and B� are guards of the commands S� and S� respectively� A guard is a Boolean
expression� Informally� the meaning of this guarded command is the selection of the commands
for which the guards evaluate to true� If no guard evaluates to true� the command is trace�
equivalent to abort� �Recall that abort is the identity of selection�� So the formal meaning
is

if B� then S� j B� then S� �

� f by de�nition g

�S�� j S���

where the alphabets of S� and S�� are the same and

t�S��� �

�
t�S�� if B� holds
t�abort� otherwise

A similar meaning applies to S���
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��� Two Implementations for Data Communications

If a channel is of type unary� then implementing a data communication along that channel is
straightforward
 the channel consists of a single wire connection� and sending a single transition
along that connection implements a data communication� What if the data types are not unary�
For example how do we implement a data communication along a binary channel� We consider
two types of implementations
 an implementation using a dual�rail transition encoding and an
implementation using a single�rail data�bundling encoding� As an example we use a component
with a binary input channel a� binary output channel b� and communication behavior given by

pref � � a�� b 
� a� b� �

With a dual�rail transition encoding� each bit is implemented using two wires� one wire for the
value zero and one wire for the value one� Sending a transition along the ��� wire implements
the communication of a zero� and sending a transition along the ��� wire implements the com�
munication of a one� With single�rail data bundling� each bit is implemented using a single
wire� The level on that wire indicates which binary value is communicated� These wires are
called the data wires� Besides the data wires� which indicate what value is communicated� there
is one wire that is used to indicate when the data is communicated� This wire is called the
data�valid wire� Whenever a transition occurs at the connection� the data wires are assumed
to have reached a stable value� This assumption imposes a delay constraint between the arrival
of the transition on the data�valid wire and the �validness� of the data wires� This constraint
is called the data�bundling constraint� In order to satisfy the data�bundling constraint� delays
may have to be inserted in the data�valid wire to compensate for any possible delays in data
wires� In Figure � these delays are indicated by long ovals� As a convention� we indicate the

a?0

a?1

b!0

b!1

a? b!

�a� Dual�rail transition encoding �b� Single�rail data bundling

Figure �
 Two data implementations for data types

data�valid wires by solid lines� The data wires in the data part are indicated by dashed lines�
The data wires and the data�valid wire that belong together are �bundled� by drawing a circle
around them�

As a further illustration� we discuss some implementations of two other components�

C�a� 
 bin� b� 
 un� c� 
 bin�

� f by de�nition g

pref � �a�kb�� c 
� a� c� �
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If we forget the data types� the behavior of component C is the same as that of the join�
If we use a dual�rail transition encoding� an implementation consists of a ��by�� join� The
implementation using single�rail data bundling consists of a join� a delay� and a data wire as
given in Figure ��

b?

a?0

a?1

c!0

c!1 a?

b?
c!

�a� Dual�rail transition encoding �b� Single�rail data bundling

Figure �
 Two implementations for C

Finally we discuss two implementations for the modulo�� counter ModC��� r�� a��� There are
several ways in which the speci�cation of the modulo�� counter can be written� Here are two of
them�

j� var n 
 bin 


initially n � � 


pref � �r�� n 
� �n� �� mod �� a 
� n� a��

�j

� f hide variable n g

pref � � r�� a��� r�� a�� �

r?

a!1

a!0

r?

a!

L

�a� Using dual�rail transition encoding �b� Using single�rail data bundling

Figure �
 Two implementations for ModC��� r�� a��

When using dual�rail transition encoding� the modulo�� counter can be implemented by a
toggle� This implementation resembles the last speci�cation� The implementation using
single�rail data bundling resembles the �rst speci�cation� It consists of a transition latch marked
L� a delay� and a feedback wire with an inverter� When the transition latch receives an input
transition� it latches the input data �which becomes the new output data� and then sends the
data�valid signal for the output data� Normally� each set of data wires implementing a variable
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should have a data�valid wire associated with it to compensate for possible delays in the data
wires� We have not done so here for the feedback wire with the inverter� since the local delays
in this wire can easily be compensated for by a delay in the data�valid wire for the output� In
the following we apply a similar optimization for local feedback wires�

The generation of the data�valid signals can be seen as just another �clocking� strategy�
Unlike conventional clocking strategies� where the clock signals are generated at regular� �xed
intervals and sent to all storage devices� the generation of the data�valid signals depends on
the occurrence of a data communication� and the route of a data�valid signal may depend on
the value of the data� A convenient component to route the data�valid signal depending on the
value of a binary variable is the select� The select can be seen as a demultiplexer for the
data valid signal� Its speci�cation is given in Figure 	� Each input t will propagate to either

pref � � �� t�� q���� b�� ��t�� q���� b� �
S

0

1
t?

b?

q0!
q1!

Figure 	
 Speci�cation of the select

output q� or output q�� The level of the input b will determine whether output q� or q� will be
produced� If the level is � output q� will be produced� and if the level is �� output q� will be
produced� Initially the level of b is �� It is assumed that b has reached a stable level before a
transition on t occurs� This constraint is in fact a data bundling constraint� For this reason we
have encircled the t and b wires in Figure 	�

Implementing data communications using data bundling has been employed extensively in
the Macromodules project ���� One of the advantages of employing data bundling is that con�
ventional logic design can be used for the data part� which often results in smaller circuits� A
disadvantage is the implementation of the data�bundling constraints� which results in a worst�
case behavior and makes the design sensitive to certain delay variations�

In a data�bundling implementation� the circuit consisting of the data�valid wires is the control
circuit� This circuit can be designed separately from the data part� When combining the control
part and the data part� the data�bundling constraints are met by inserting appropriate delays in
the �data�valid� wires of the control part� Of course� such a method will only work if the control
part is a delay�insensitive circuit� That is� the correctness of the circuit for the control part
should be insensitive to adding arbitrary delays in the wire connections� Accordingly� delay�
insensitive circuits play an important role in the design of data�bundling implementations� In
the next sections we explain what exactly is a delay�insensitive circuit�

��� Decomposition versus Parallel Composition

Expressing a speci�cation as a parallel composition �i�e�� a weave� of smaller speci�cations is
a �rst step towards �nding a network implementation� Unfortunately� it is not the case that
each parallel composition can be interpreted as a network of components that implements the
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speci�cation� The problem is that that our parallel composition expresses a synchronization
on common symbols irrespective of whether these symbols are input or output symbols� In
general� a component in a network will produce an output as soon as that output is locally
enabled� It will not wait for other components� where that same symbol is an input for example�
to synchronize on the production of that symbol� In order to transform a parallel composition
into a network implementation and avoid these synchronization failures there are several things
we can do� One solution is to enforce the proper synchronizations by introducing handshakes
for each communication on each channel� This method is proposed by Martin ���� and is also
used by Van Berkel ���� Another solution is to design your parallel composition in such a way
that no handshakes are needed
 whenever a component can produce an output� the components
for which that symbol is an input are waiting for that input to happen� We need to formalize
this property more precisely� We �rst discuss what our correctness criteria are for a network
implementation of a speci�cation�

The de�nition of decomposition formalizes the idea of �implementing a speci�cation by a
network of components�� In this section we discuss four conditions that have to be satis�ed in
order to call a network a decomposition of a speci�cation� These conditions are based on our
abstract mechanistic interpretations of speci�cations�

Let us brie�y recall the mechanistic interpretation of a speci�cation� Our interpretation is
based on the distinction between the component and the environment and on two conditions� the
safety and the progress condition� Both conditions prescribe the behavior of the component and
the environment� The safety condition says that no input or output may be produced when not
allowed by the speci�cation� The progress condition says that every trace speci�ed may occur�
It is important to distinguish the component�s prescriptions and the environment�s prescriptions
in a speci�cation� When implementing a speci�cation� we try to implement the component�s
prescriptions by a network of components assuming that the environment�s prescriptions are
satis�ed�

We formulate the conditions for a decomposition of componentE into componentsE�� � � � � En�
n � �� The network of components E� through En is denoted by �E�� � � � � En�� The prop�
erty that E can be decomposed into the network consisting of E� through En is denoted by
E � �E�� � � � � En��

First� we take into account the behavior of the environment with respect to the network
�E�� � � � � En�� The environment�s prescriptions for the network are given in E� In order to
consider the production of an input by this environment as the production of an output by a
component� we consider the re�ection of E� denoted by E and de�ned by

E � hoE� iE� tEi

Consequently� iE � oE� oE � iE� and tE � tE� By re�ecting E� we interchange the pre�
scriptions for the component and the environment� Instead of considering E and network
�E�� � � � � En�� we now consider the network �E�� � � � � En�� where E� � E�

In order for E to be decomposable into the network �E�� � � � � En�� four conditions have to
hold for the network �E�� � � � � En�� Two conditions concern the so�called structure of the network
and two conditions concern the behavior of the network� The behavioral conditions are related
to the safety and the progress condition in our interpretation� We discuss these four conditions
below�
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� Closed network
In the network �E�� � � � � En� there are no dangling inputs and outputs
 every input is
connected to an output and every output is connected to an input�

� No output interference
Outputs of distinct components are not connected to each other� In other words� the
output alphabets of the components in the networks are pairwise disjoint� The �rst two
conditions guarantee that each symbol is an output of exactly one component and an input
of at least one component� �Notice that an output may be connected to multiple inputs��

� No computation interference �Safety�
The third condition states that the environment�s prescriptions for every speci�cation in
the closed network may not be violated� In other words� no output may be produced by
any component when not allowed by the speci�cations for which this symbol is an input�
Or� to put it positively� every output that can be produced by a component can be accepted
as input by the receiving component� This condition can be checked by constructing all
possible network behaviors and verifying that no environment prescription is violated�
The trace set T of all possible network behaviors can be constructed as follows� Initially�
T � f�g� We repeatedly enlarge trace set T with extensions of traces in T as indicated
below until T can no longer be enlarged� The rule for extending T is as follows� Choose a
trace t � T � symbol z� and component Ei� such that after network behavior t� component
Ei may produce output z� Since componentEi cannot be prevented from producing output
z after behavior t� tz is also a possible network behavior� and we add tz to T � Our third
condition states that any possible network behavior must be in accordance with every
speci�cation� which can be formulated by

T � aEi 
 tEi for all i � �� � � � � n� ���

where T represents the trace set of all networks behaviors� If this condition holds� we say
that the network is free of computation interference�

� Completeness with respect to speci�cation �Progress�
The fourth condition states that every trace of the speci�cation E may also occur in the
network behaviors� This condition is formulated as

T � aE � tE ���

where again T represents the trace set of all network behaviors� If this condition holds we
say that the network behaviors are complete with respect to the speci�cation�

��� Some Examples

We consider some examples to familiarize ourselves with this de�nition of decomposition� We
are given component E speci�ed by

E � pref � � r�� �a�� r�� k �sr�� sa��� a� �
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For the moment we consider all channels to be unary� Notice that for every four communications
on r and a there are two communications on sr and sa� For this reason� this component can
be called a four�phase�to�two�phase converter� In Figure � two decompositions for E are given�
Both networks contain a toggle� join� and a merge� Network �b� also contains an iwire� It

r?
sa?

x

y

z

Ma! sr!

Mr?
sa?x

z

a!
sr!

y

�a� �b�

Figure �
 Two decompositions for a four�to�two�phase converter E

is easy to verify that both networks� including the environment� form a closed network without
output interference� Notice that in networks �a� and �b� there are multiple input connections
at terminals x and y respectively� If we construct the network behaviors for network �a�� again
including the environment� we �nd

T � t
�
pref �

h
r�� x� ��a�� r�� y� k �sr�� sa���� z� a�

i�
If we project trace set T on each of the component�s alphabets we obtain a subset of the trace
set of the component� That is�

T � aEi 
 tEi

where Ei is a speci�cation of a component� We even have T � aE � tE� From these observations
we can conclude that network �a� is indeed a decomposition of the four�to�two�phase converter�

The network behaviors for network �b�� including the environment� are given by

T � t
�
pref

�
r�kx� �

h
y� ��a�� r�� k �sr�� sa�� x��� y� ��a�� r�� k �z� x��

i ��
If we project T on each of the component�s alphabets� we obtain subsets of the trace sets of
the components
 no speci�cation is violated� Furthermore� we have that T � aE � tE� �Notice
that by deleting x� y� and z and after some folding we get speci�cation E again�� Consequently�
network �b� is also a decomposition of the four�to�two�phase converter�

As an example where the safety condition is violated� we can take network �a� with the wire
between terminal x and sr replaced by an iwire� Since initially this network can produce sr�
the set of network behaviors would now include trace sr� According to the speci�cation E� sr
may not occur initially� so the safety condition is violated�

As an example where the progress condition is violated� we take network �b� with the iwire
replaced by a wire� The network behaviors are then given by T � t �pref r��� After the initial
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input r� nothing will ever be produced� Obviously� not every trace from the speci�cation E may
occur� so the progress condition is violated�

The above decompositions only apply if the channels are unary channels� If the channels
are not unary� we may get a di�erent decomposition depending on how we implement data
communications� If data communications are implemented using a single�rail data bundling
scheme� these decompositions may be used as a control circuit for directing the data�valid
signals� When the control part is combined with the data part� delays may have to be inserted
in some of the wire connections� The important question then is whether these delay insertions
will a�ect the correctness of the decomposition� In other words� do these networks represent
delay�insensitive circuits� This question is answered in the next section�

��	 Modularity and Delay
Insensitivity

With the de�nition of decomposition we can now state precisely what it means that a circuit
can be designed in a modular way and what the di�erences are between a speed�independent
and a delay�insensitive circuit�

The modularity of our design method is based on the Substitution Theorem ����� The Sub�
stitution Theorem applies to problems of the following kind� Suppose that component E� can be
decomposed into a number of components of which F is one such component� Suppose� more�
over� that F can be decomposed further into a number of components� Under what conditions
can the decomposition of F be substituted for F in the decomposition of E��

Theorem � 
Substitution Theorem� For components E�� E�� E�� E�� and F we have

if E� � � E�� F �

and F � � E�� E� �

then E� � � E�� E�� E� ��

if the following condition is satis�ed�

�aE� � aE�� 
 �aE� � aE�� � aF� ���

Condition ��� states that the only symbols that the decompositions of E� and F have in
common are symbols from aF � It is essentially a trivial condition� since� by an appropriate re�
naming of the internal symbols in the decomposition of F � this condition can always be satis�ed�
The internal symbols of the decomposition of F are given by �aE� � aE��naF � where �n� means
set deletion�

The theorem above considers decompositions into two components only� The generalization
of this theorem to decompositions into more than two components is straightforward�

Some of the main attractions that are often mentioned in connection with speed�independent
and delay�insensitive circuit design are the �modular design approach�� the �hierarchical design
approach�� �design by stepwise re�nement�� or the �possibility for incremental improvements��
All these characteristics refer to the same property in our formalism and are symbolized in the
Substitution Theorem�

If a network is a decomposition of a speci�cation� it represents a speed�independent circuit�
Therefore� a decomposition is also called an SI decomposition� A speed�independent circuit�
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however� is not necessarily a delay�insensitive circuit� The reason is that decompositions are
invariant under variations in response times of components� but not under the insertion of
communication delays in the connections� If the correctness of the circuit is invariant under the
insertion of communication delays in the connections as well� then we call such a circuit a delay�
insensitive circuit� While a speed�independent circuit is formally described by means of �SI�
decomposition� a delay�insensitive circuit is formally described by means of DI decomposition� A
DI decomposition is a decomposition in which all communication delays between the components
are taken into account� Formally� these communication delays are represented by wires�

We say that the network �E�� � � � � En� forms a DI decomposition of component E� denoted

by E
DI
� �E�� � � � � En� if and only if

E � � ren�E���Wires�E��� � � � � ren�En��Wires�En� ��

where ren�Ei� is a renaming of Ei to a �localized� version and Wires�Ei� is the collection of
wire components connecting ren�Ei� with its original terminals aEi�

In general� DI decompositions are more di�cult to derive and verify than SI decompositions�
because of all the connection wires� By the Substitution Theorem� it follows that a SI decom�
position is a DI decomposition� if all constituent components are DI components� A component
E is called a DI component� if

E � �ren�E��Wires�E���

The DI property formalizes that the communication behavior between component and environ�
ment is insensitive to the insertion of communication delays� In other words� speci�cation E

is invariant under any extension with wires at its input or output terminals� All basic com�
ponents of Figure � are DI components� Consequently� the decompositions of Figure � are DI
decompositions� The C�element and the select� however� are not DI components�

The idea of formalizing delay�insensitivity using a characterization of a DI component orig�
inates from Molnar ����� Udding was the �rst to give a rigorous formulation of the DI property
in terms of trace structures ��	�� More information on SI decomposition� DI decomposition� and
DI components� can be found in �����

��� Limitations of Decomposition

Our correctness conditions for decomposition have certain limitations� in particular the progress
condition� The safety condition guarantees that whenever an output can be produced� the pro�
duction causes no problems� It does not guarantee that every output will be produced� Therefore
we need a progress condition� Our progress condition excludes� for example� decompositions into
so�called �accept�everything�do�nothing� modules
 components that accept every possible input
but never produce any output� On the other hand� although the progress condition requires that
each trace in tE may occur in the network behaviors� in general it does not require that some
traces� or outputs� are guaranteed to occur� The occurrence of a trace� or output� may depend
on nondeterministic choices made by some components� Figure 
 illustrates this property by
means of two decompositions of a wire� The component depicted by the left half of a circle is
a selector� Its speci�cation is given by

pref � � a�� �b�jc�� �
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a? b!

c
d

M
a? b!c

�a� Deadlock �b� Livelock

Figure 

 Examples of deadlock and livelock

After each receipt of input a� either output b or output c may be produced� The output is chosen
nondeterministically� The component depicted by an open square is a sink� It only accepts
inputs� Decompositions �a� and �b� satisfy all four conditions for decomposition� Decomposition
�a�� however� exhibits a behavior that could be characterized by deadlock
 once output c is chosen
by the selector� output b will never be produced� Decomposition �b� exhibits a behavior that
could be characterized as livelock
 if the selector makes enough �bad� choices� there can be an
unbounded number of internal communications on d and c� and output b may not be produced�
Obviously� if we design an implementation� we do not want deadlock or livelock to occur� So�
in formulating a better progress condition we want to exclude implementations with deadlock
and livelock� This is easier said than done� Do there exist �proper� de�nitions for deadlock and
livelock �or of progress� in the context of our formalism� If so� what are they� If not� how much
should our formalism be extended to accommodate proper de�nitions� For example� an obvious
de�nition for livelock might be that in a trace an unbounded number of internal symbols can
occur between two external symbols� With this de�nition in mind consider the decomposition of
a �one�shot� wire� pref�a�� b��� in Figure �� If we look to the traces of this decomposition� then

M

a? b!

cd

Figure �
 Livelock�

after input a an unbounded number of internal symbols c and d can occur before output b is
produced� According to our tentative de�nition� we should conclude that livelock can occur� On
the other hand� from experience we know that output b will eventually occur� if the wires are
implemented by physical wires� So in our context� this tentative de�nition may not be a �proper�
de�nition of livelock� Finding de�nitions of deadlock and livelock �or of progress� that are simple
enough to state� have a proper justi�cation in the context of speed�independent circuit design�
are easy to verify� and satisfy a property like the Substitution Theorem is still an open problem�
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� How to Play the Game

Knowing what the rules of the game are� there can be many ways of playing the game� For
instance� we can simply apply a trial�and�error process
 propose a decomposition and verify all
conditions� If the conditions are not satis�ed� we try another decomposition� Such a style is
rather unsatisfactory� since it does not give much guidance in how one could derive a decompo�
sition in a systematic way�

We explore a di�erent way� It is based on a few simple principles� We �rst try to obtain a
parallel decomposition of our speci�cation E� For example� we try to express E as

E � j� chan V 

 F k G �j

by using techniques from parallel program design� The obvious candidate for a decomposition
then is

E � � F � G �

The conditions for decomposition can be veri�ed easily by inspecting the syntax of E� F � and
G� For example� the conditions for a closed network and absence of output interference are
easily veri�ed by checking the alphabets� Absence of computation interference can be veri�ed
by checking that as soon as an output can be produced by a component locally� then the
receiving components are waiting for that output to happen� With a little care in specifying the
components F and G� this condition can often be satis�ed� Finally� we mention without proof
that the progress condition �that is� completeness of the network behaviors� is automatically
satis�ed if we already have E � j� chan V 

 F k G �j�
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� The Modulo�N Counter Continued

��� A First Decomposition� Divide and Conquer

How can we decompose the modulo�N counter into smaller components� An obvious choice
is to try a divide�and�conquer approach
 decompose the modulo��N counter into a modulo�N
counter and a �small� subcomponent� �Small� can be interpreted as the speci�cation has a small
number of states� which is independent of N � We derive two such decompositions� The �rst
decomposition is based on the following idea� Keep track of two counts represented by n and k�
where n is incremented modulo N each time an input r occurs and k is incremented modulo �
each time n reaches �� Initially� both n and k are �� While incrementing n and k� we maintain
the invariant

�r mod �N � kN � n

In other words� �r mod �N � � is equivalent to n � � and k � �� This observation leads to the
following �rst derivation step� For �N � �� we have

ModC��N� r�� a��

� f �r mod �N � kN � n g

j� var n 
 int� k 
 bin 


initially n � �� k � � 


pref � � r�� n 
� �n� �� mod N

� if n � � then k 
� �k� �� mod � j n �� � then skip �

� if n �� � � k �� � then a 
� �
j n � � 	 k � � then a 
� �
� � a� �

�j

Incrementing n modulo N and indicating whether n �� � or n � � can be done by a modulo�
N counter� Consequently� in our second step we introduce a modulo�N counter and replace each
statement n 
� �n� �� modN by the communication actions sr�� sa�� Since the postcondition
for each communication on sa is given by

�n � �� � �sa � ��

where n � �sr mod N � we can replace the conditions n �� � and n � � by sa �� � and sa � �
respectively� These observations then lead to the following parallel composition�

ModC��N� r�� a��

� f def� of ModC�N� sr�� sa�� g

j� chan sr 
 un� sa 
 bin 


CELL��r�� a�� sr�� sa�� k ModC�N� sr�� sa��

�j

where CELL� is de�ned by
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CELL��r� 
 un� a� 
 bin� sr� 
 un� sa� 
 bin�

� f by de�nition g

j� var k 
 bin 


initially sa � �� k � � 


pref � � r�� sr�� sa�

� if sa � � then k 
� �k � �� mod � j sa �� � then skip �
� if sa �� � � k �� � then a 
� �
j sa � � 	 k � � then a 
� �
� � a� �

�j

The parallel composition above is a candidate for a network implementation of the modulo��N
counter� We have to check if the conditions for decomposition are satis�ed� First� we observe
that the network of CELL�� the modulo�N counter� and the environment is closed and has
no output interference� Second� we observe that as soon as a component or the environment
can perform an output action� the corresponding input action is also enabled
 no computation
interference can occur in the communications between CELL�� the modulo�N counter� and the
environment� We may therefore conclude the following decomposition

ModC��N� r�� a��

� f def� of decomposition g

� CELL��r�� a�� sr�� sa�� � ModC�N� sr�� sa�� �

We brie�y present two implementations for CELL�� We observe that the guarded command
for CELL� can also be written as

pref�� r�� sr�� � sa��� a��
j sa��� k 
� �k � �� mod ��

if k � � then a�� j k � � then a�� � �
�

Recalling that counting modulo�� can be done by a toggle� it is now not di�cult to verify
that the network given in Figure ��a� represents an implementation of CELL� using a dual�rail
transition encoding� An implementation using single�rail data bundling is given in Figure ��b��

��� A Second Decomposition

In the �rst step of our previous decomposition� we can choose a di�erent alternative by inter�
changing the increments to n and k� That is� we increment k modulo�� after each input r and
increment n modulo N each time k reaches �� Now the invariant is given by

�r mod �N � �n � k

Based on this observation we obtain the following �rst derivation step�
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a!1

a!0

sa?1

sa?0
M
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L
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a! sa?

�a� Using dual�rail transition encoding �b� Using single�rail data bundling

Figure �
 Implementations of CELL�

ModC��N� r�� a��

� f �r mod �N � �n� k g

j� var n 
 int� k 
 bin 


initially n � �� k � � 


pref � � r�� k 
� �k� �� mod �

� if k � � then n 
� �n� �� mod N j k �� � then skip �
� if n �� � � k �� � then a 
� �
j n � � 	 k � � then a 
� �
� � a� �

�j

The next steps are now similar to the previous section� We introduce a modulo�N counter
and replace the statement n 
� �n� �� mod N by sr�� sa�� The conditions n �� � and n � � are
replaced by sa �� � and sa � � respectively� If we de�ne CELL� as follows

CELL��r� 
 un� a� 
 bin� sr� 
 un� sa� 
 bin�

� f by de�nition g

j� var k 
 bin 


initially sa � �� k � � 


pref � � r�� k 
� �k � �� mod �

� if k � � then sr�� sa� j k �� � then skip �

� if sa �� � � k �� � then a 
� �
j sa � � 	 k � � then a 
� �
� � a� �

�j

we obtain the parallel composition and subsequent network decomposition

ModC��N� r�� a��

� f def� of weave g
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j� chan sr 
 un� sa 
 bin 

 CELL��r�� a�� sr�� sa�� k ModC�N� sr�� sa�� �j

� f def� of decomposition g

� CELL��r�� a�� sr�� sa�� � ModC�N� sr�� sa�� �

Let us brie�y look at some implementations for CELL�� First� we observe that CELL�� after
some simpli�cation� can also be written as

pref � � r�� a��� r�� sr�� �sa��� a�� j sa��� a��� �

Apparently� we again need a modulo�� counter to record whether the input r� has to propagate
to output a�� or to output sr�� This observation then quickly leads to the implementations in
Figure ��
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Figure �
 Implementations for CELL�

��� What about odd N


So far we have presented two decompositions for even N � What about odd N� Although there
are some decompositions that apply to odd N only� we present a decomposition that applies
to any N � �� We try to decompose a modulo��N � �� counter into a modulo�N counter and
a small subcomponent� Again we keep track of two integers n and k� where we maintain the
invariant

�r mod �N � �� � n � k

Initially k � � and n � �� If k � � and an r is received� then k is set to �� If k � �� then for
each r received� n is incremented by one modulo N � When n becomes �� k is also set to zero�
This leads to the following derivation step�

ModC�N � �� r�� a��

� f �r mod �N � �� � n� k g
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j� var n 
 int� k 
 bin 


initially n � �� k � � 


pref � � r�� if k � � then n 
� �n � �� mod N j k � � then skip �

� if k � � � n �� � then k 
� �� a 
� �
j k � � 	 n � � then k 
� �� a 
� �
� � a� �

�j

Similar to the previous decompositions we introduce a modulo�N counter for incrementing
n modulo N and indicating whether n �� � or n � �� We then obtain the following parallel
composition and network decomposition�

ModC�N � �� r�� a��

� f intro� of mod�N counter� def� of parallel composition g

j� chan sr 
 un� sa 
 bin 

 CELL��r�� a�� sr�� sa�� k ModC�N� sr�� sa�� �j

� f def� of decomposition g

� CELL��r�� a�� sr�� sa�� � ModC�N� sr�� sa�� �

where CELL� is de�ned by

CELL��r� 
 un� a� 
 bin� sr� 
 un� sa� 
 bin�

� f by de�nition g

j� var k 
 bin 


initially sa � �� k � � 


pref � � r�� if k � � then sr�� sa� j k � � then skip �

� if k � � � sa �� � then k 
� �� a 
� �
j k � � 	 sa � � then k 
� �� a 
� �
� � a� �

�j

We give two implementations for CELL� without proof� In the case that binary channels
are implemented using a dual�rail transition encoding� CELL� can be implemented as given in
Figure ���a�� �Notice that the ��by�� join is used for implementing the binary variable k� An
iwire is used for the proper initialization�� In the case that single�rail data bundling is used for
implementing binary channels� CELL� can be implemented as given in Figure ���b��

��� What about Parallelism


All our decompositions thus far have a sequential behavior in the sense that all communication
actions �and even internal actions� are totally ordered� As such� our programs are not much
di�erent from a normal sequential program with procedure calls� How can we derive decom�
positions that exhibit parallel behavior� For example� would it be possible to introduce some
parallel behavior in our sequential decompositions without invalidating their correctness� There
are several ways to do this� We discuss two�

Observe our speci�cation of the modulo�N counter once more
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ModC�N 
 int � r� 
 un� a� 
 bin �

� f by de�nition g

j� var n 
 int 


initially n � � 


pref � � r�� n 
� �n� �� mod N �

if n �� � then a 
� � j n � � then a 
� � � � a�
�

�j

Notice that the value to be sent on channel a can be computed ahead of time� possibly before
r arrives� Only when r arrives the value of a is sent along channel a� and� in parallel� the
computation of the next value of a is initiated� In order to compute the value of a before r
arrives� we can put component P in front of ModC�N� sr�� sa���

P �r� 
 un� a� 
 bin� sr� 
 un� sa� 
 bin�

� f by de�nition g

pref� r� jj �sr�� sa��� �� a 
� sa� ��a�� r�� jj �sr�� sa��� ��

Initially� in parallel with receiving input r� the �rst value of a modulo�N counter is requested
and received via channels sr and sa respectively� After both input r and the �rst value on sa
have been received� the value of sa can be sent on channel a� In parallel with sending a and
receiving the next request r� the next value from the modulo�N counter is requested and received
on channels sr and sa� respectively� This behavior then repeats� It is not di�cult to see that
the modulo�N counter can be decomposed into a renaming of itself and component P �

ModC�N� r�� a��

� f def� of decomposition g

� P �r�� a�� sr�� sa�� � ModC�N� sr�� sa�� �



Parallel Program and Asynchronous Circuit Design ��

Since component P can be put in front of every modulo�N counter� it can also be put in front of
every CELL without changing the correctness of the decomposition� In this way we can obtain
decompositions where many communications may take place in parallel� Notice� however� that
the communication behavior on the pair of channels between any two adjacent cells remains
invariant when we insert component P between the cells
 after the insertion� actions from
di�erent pairs of channels can occur in parallel� but actions from the same pair still occur in the
same sequential order and the same values are communicated�

If we decide to implement binary channels by means of dual�rail transition encoding� then
component P can be implemented by a ��by�� join� a merge� and an iwire� See Figure ���a��
If we decide to implement binary channels by means of single�rail data bundling� then component
P can be implemented by a transition latch� a join� and an iwire� See Figure ���b��

M
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Figure ��
 Implementations for component P

Another way to introduce parallelism is to consider the speci�cation of each CELL in iso�
lation and to try changing or reordering the statements in the guarded command such that
communications on the channels r and a can be done in parallel with the communications on
channels sr and sa� In doing so we should not destroy the correctness of the decomposition� In
other words� if PCELL is the speci�cation obtained after changing CELL� then PCELL should
still satisfy the decompositions in which CELL is used� In order not to destroy the correctness
of the decomposition� we keep the communication behavior on the channels r and a invariant
and� for reasons of symmetry� also the communication behavior on the channels sr and sa�
Communications from di�erent pairs of channels� however� may overlap�

Based on these observations we try to specify the communication behavior of PCELLi as
follows�

PCELLi�r� 
 un � a� 
 bin� sr� 
 un � sa� 
 bin�

� f by de�nition g

j� var k 
 bin 


initially sa � �� k � � 


pref � if B�i then r� k �sr�� sa�� j � B�i then r� � � S�i�

�� if B�i then �a�� r�� k �sr�� sa�� j � B�i then �a�� r�� � � S�i ��
�j
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where S�i represents the statement that calculates the next value of a �possibly using some local
variables� and B�i is a guard� Notice that in each repetition step there is one pair of communica�
tions with the environment through a and r� and possibly one pair of communications with the
subcomponent through sr and sa� The occurrence of a communication with the subcomponent
depends on the value of B�i� We try to �nd appropriate values for B�i and S�i by changing the
speci�cation of CELLi� The speci�cation for PCELLi should still satisfy the decomposition for
the modulo�N counter in which CELLi was used�

As an example we consider CELL� once more�

CELL��r� 
 un� a� 
 bin� sr� 
 un� sa� 
 bin�

� f by de�nition g

j� var k 
 bin 


initially sa � �� k � � 


pref � � r�� k 
� �k � �� mod �

� if k � � then sr�� sa� j k �� � then skip �
� if sa �� � � k �� � then a 
� �
j sa � � 	 k � � then a 
� �
� � a� �

�j

We �rst switch k 
� �k��� mod � with the succeeding if ���� � thereby also changing the guards
of the selection�

pref � � r�� if k �� � then sr�� sa� j k � � then skip �

� k 
� �k � �� mod �
� if sa �� � � k �� � then a 
� �
j sa � � 	 k � � then a 
� �
� � a� �

After some unfolding and reordering we get a speci�cation of the desired form� where

B�� � �k �� ��

S�� � �k 
� �k � �� mod ��
if sa �� � � k �� � then a 
� �
j sa � � 	 k � � then a 
� �
� �

The other cells only require some unfolding and reordering of a�� r� to obtain the desired form�
We just give the outcome of this exercise here� For PCELL� we get

B�� � true

S�� � if sa � � then k 
� �k � �� mod � j sa �� � then skip �

� if sa �� � � k �� � then a 
� �
j sa � � 	 k � � then a 
� �
� �
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For PCELL� we get

B�� � �k � ��

S�� � � if k � � � sa �� � then k 
� �� a 
� �
j k � � 	 sa � � then k 
� �� a 
� �
� �

For each of the cells PCELLi� � � i � � we can try to �nd an implementation using a dual�
rail transition encoding for the binary channels� It turns out that PCELLi can be decomposed
into P and CELLi� for � � i � �� In other words� we can put the implementation of cell P in
front of the implementation for CELLi� and we get an implementation for PCELLi� These are
not the only implementations for PCELLi� however� For example� for PCELL� and PCELL�
some smaller implementations can be obtained� See Figures �� and ��� The veri�cation of these
implementations is left to the reader� Notice that the combinational logic in Figures ���b�
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and ���b� are straightforward implementations of the statements S�� and S��� Furthermore�
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the implementations for the control part correspond to the network given in Figure ��b�� The
condition B�i is the input to the select that controls the communications with the subcounter�
Notice also that if the data input to the select alternates in value� as is the case with S��� then
the select boils down to a toggle�

� Performance Analysis

By now we have many ways to decompose a modulo�N counter� How do we compare these
decompositions� Do there exist some measures for our parallel programs which are similar to
the running time or space complexity of an algorithm� Are �time� and �space� the only interesting
performance aspects� How do we measure each performance aspect�

We consider three performance criteria
 area complexity� power consumption� and response
time� For each performance criterion we give a performance measure� Our estimates for each of
these performance measures satisfy four properties� First� for all measures we only look to an
order�of�growth estimate� no estimates are given in terms of square millimeters� microwatts� or
nanoseconds� Second� our estimates are based on the program texts
 they do not rely on a speci�c
implementation of the basic cells� Third� certain conditions apply in order for our estimates to
be accurate �rst�order approximations� Some of these conditions are discussed later� Fourth�
calculating these estimates can be done on the back of an envelope� We emphasize once more that
our performance estimates are just �rst�order approximations� We should always be aware that
the hidden constants and second order terms can vary heavily among implementations� A more
detailed performance estimate will require further knowledge of the particular implementation�

As usual in the analysis of algorithms� we use the notations O� � and ! to denote an upper
bound� lower bound� and tight bound for the order of growth of a function�

��� Area Complexity

Our �rst performance criterion is area complexity� The area complexity is a rough estimate for
the area occupied by a physical implementation such as an integrated circuit� As a measure for
area complexity we take the number of �basic� components in the decomposition� Here� a basic
component can be any component as long as the number of states is bounded by a predetermined
constant� �Notice that for a given constant there can only be a bounded number of basic
components�� For regular implementations consisting of a linear array of basic components� like
our modulo�N counter implementations� our measure gives a good �rst�order approximation�
The accuracy of the estimate may change� however� when the connections among the basic
components become more complex�

Before we study the area complexity of some decompositions� let us make a list of the decom�
positions we have so far� Let ModC�N� and sModC�N� be abbreviations for ModC�N� r�� a��
and ModC�N� sr�� sa�� respectively� The cells have the usual input and output channels� We
take N � ��

ModC��N� � � CELL� � ModC�N� � ���

ModC��N� � � CELL� � sModC�N� � ���

ModC�N � �� � � CELL� � sModC�N� � ���
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ModC��N� � � PCELL� � sModC�N� � ���

ModC��N� � � PCELL� � sModC�N� � �	�

ModC�N � �� � � PCELL� � sModC�N� � ���

ModC�N� � � P � sModC�N� � �
�

First� we remark that the number of states of each cell is independent of N and therefore
bounded� Accordingly� we can consider these cells as �basic� components in our area complexity
analysis� Second� we remark that the decompositions ������� are similar to decompositions ����
���� as far as area complexity is concerned� Finally� we observe that it does not make sense to
use decomposition step �
� to obtain an e�cient area complexity� For these reasons� we only
concentrate on the �rst three decompositions�

With decomposition step ��� we can decompose any modulo�N counter for N � � into basic
components CELL� and a modulo�� counter� The area complexity of such a decomposition
is linear in N � that is !�N�� If we use decomposition step ��� or ��� when N is even and
decomposition step ��� whenN is odd� we obtain a decomposition into basic components CELL��
CELL�� CELL�� and a modulo�� counter with a logarithmic area complexity� that is� the area
complexity is !�logN�� �Notice that at least every other decomposition step is of the form ���
or ���� which gives the logarithmic complexity��

Is there a decomposition into basic components that has an area complexity that grows less
than logarithmic in N� In fact� what is the lower bound of the area complexity of the modulo�N
counter taken over all decompositions into basic components� It turns out that we cannot do
any better than logarithmic in N � Here is an argument why� Consider a network with k basic
components� and each component has at most q states for a given constant q� This network can
implement a speci�cation with at most O�qk� states� The modulo�N counter has !�N� states�
Consequently� any decomposition into basic components of the modulo�N counter has at least
 �logN� basic components� A similar reasoning can be applied to any speci�cation to obtain a
lower bound for the area complexity�

��� Power Consumption

Our second performance measure is power consumption� In physical terms� the power consump�
tion of an integrated circuit is the energy dissipated per time unit� Since in our abstract approach
there is no time metric� we consider the energy dissipated per external action� As a measure for
the energy we take the total number of communication actions in a behavior� Furthermore� in
this note we are not interested in incidental peaks in the power consumption
 we only consider
the power consumption over the long term� That is� we amortize all communication actions
over the external actions� Finally� since the power consumption may depend on what external
actions are performed by the environment� we assume a worst�case environment for our power
consumption analysis� A worst�case environment is an environment that communicates with the
implementation in such a way that the total number of communication actions is maximized
over the long term� For these reasons� we take as a measure for the power consumption the
total number of communication actions amortized over the external communication actions for
a worst�case environment� In order for this measure to be a good �rst�order approximation a
number of conditions must be satis�ed� Some of these conditions are discussed below�
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The power consumption of a circuit is determined by the dynamic and static power con�
sumption� The dynamic power consumption is dominated by the charging and discharging of
capacitances� The static power consumption in CMOS circuits is due to leakage current� Our
measure� which is based on counting communication actions� is intended to be an estimate of the
dynamic power consumption� In order for this �communication count� to be a good �rst�order
approximation for the power consumption� the static power consumption should be negligible to
the dynamic power consumption� This condition can be met in a CMOS implementation� if the
frequency at which the communication actions occur is high enough� If the frequency becomes
too low� static power consumption is no longer negligible �����

The second condition is that all voltage transitions in the implementation require about the
same amount of energy� The amount of energy needed for a transition depends on the load
capacitance� Load capacitances can vary orders of magnitudes in an integrated circuit� For
example� the load capacitance of a long wire with a large fan�out is much higher than the load
capacitance of a short wire with a fan�out of only one� In particular� in an implementation with
an irregular structure and large di�erences in capacitances� our estimate becomes inaccurate�

The third condition is that the power consumption of �CMOS implementations of� our basic
components is proportional to the number of external communication actions performed on it�
This assumption requires� for example� that the implementations of our basic components do
not exhibit any livelock or metastable behavior�

If one of the conditions above is not satis�ed� then the power consumption can only be
higher� In this respect� our measure will always give a lower bound for the order of growth of
the power consumption�

Let us return to de�ning the power consumption of a decomposition in terms of the �com�
munication count�� For a decomposition into basic components� the power consumption of a
behavior t is de�ned as the number of communication actions in t amortized over the number
of external communication actions in t� where t is �long enough�� We take the amortized power
consumption of a behavior in order to spread out evenly the cost of all communication actions
over the external communication actions� For example� initialization e�ects can be spread out
in this way over many external communication actions� If we de�ned the power consumption
of a behavior simply as the number of all communication actions divided by the external com�
munication actions� we could get extremely high power consumptions during initialization or
could even get division by zero� The power consumption of the decomposition is de�ned as the
maximum of the power consumptions over all behaviors of the decomposition� We say that the
decomposition has bounded power consumption if its power consumption is bounded from above
by a constant� These de�nitions have been inspired by ����

With these de�nitions we can calculate the power consumption for various decompositions�
As a �rst example� we take the decomposition where only decomposition step ��� �i�e�� CELL��
is used� Here are some behaviors of that decomposition

r�a�� r�r�a�a�� r�r�r�a�a�a�� � � �

where r� represents a communication on channel r between the environment and cell �� r�
represents a communication on channel r between cell � and cell �� etc� A similar meaning
applies to ai� See Figure �	� For the decomposition of a modulo�N counter� there are N � �
components CELL� and one modulo�� counter as end cell� The �rst external communication on
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Figure �	
 A linear array of cells

channel r propagates to cell � and then returns via channel a� the second external communication
propagates to cell � and then returns via the a channels� and so on� The N � �st and N �th
external communication propagate to the end cell and then return via the a channels� These
behaviors then repeat� So for every part of a behavior where �N external communication actions
�N on channel r and N on channel a� occur� there will be a total of

�
N��X
i��

�i� � 	�N � �� � �N � ���N � ��

external and internal communication actions� So the power consumption amortized over the
external communication actions for this part of the behavior is !�N�� Since every behavior
consists of a repetition of these part behaviors� every behavior has a power consumption of
!�N�� Consequently� the complete decomposition also has a power consumption of !�N��

Let us calculate the power consumption of a decomposition of the modulo�N counter where
only decomposition step ��� is used� In such a decomposition each external action on the r
channel propagates through the entire array of !�logN� cells to the end cell and then back
on the a channels� Consequently� every behavior has a power consumption of !�logN�� and
therefore this decomposition also has a power consumption of !�logN��

What would the power consumption be of a decomposition where only step ��� is used�
Notice that in this decomposition each cell propagates every other input r further in the linear
array of cells� So if in a communication behavior �k external communication actions take place�
at most �k�� communication actions take place between the �rst and second cell� at most �k�	
communication actions take place between the second and third cell� and so on� Consequently�
each communication behavior with �k external communication actions has a power consumption
of at most

�
�X
i��

�k��i���k � �

From this observation we may conclude that every behavior has a bounded power consumption�
and therefore the decomposition also has a bounded power consumption�

What would be the power consumption of a decomposition using step ��� for even N and step
��� for odd N� It turns out that such a decomposition also has bounded power consumption�
The argument why this is so is only a slight elaboration of the argument used in the previous
analysis� First we observe that for CELL� after any behavior the number of communication
actions on channels sr and sa is at most the number of communication actions on channels r
and a� Second� we observe that at most every other cell in the decomposition is of type CELL��
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This means that the total number of communication actions in the complete decomposition is at
most double that of a decomposition where only CELL� is used� Since a decomposition where
only CELL� is used has a bounded power consumption� a decomposition where CELL� is used
for even N and CELL� for odd N also has a bounded power consumption�

Can we improve any of these bounds if we use any of the steps ������� instead of �������
respectively� It turns out that none of these bounds improves� Notice that by using any of
the components PCELLi instead of CELLi� � � i � �� many actions can take place in parallel�
but the communication behavior between any two neighboring cells remains almost invariant
for a given external behavior� The only di�erence is that some extra internal communications
take place for computing some responses ahead of time� The number of extra internal actions
is at most O�L�� where L is the length of the array� Since we only consider long�term behaviors
where the number of external actions k � L� these extra communication actions are negligible
in calculating the power consumption� For these reasons the results of the analyses of the
�sequential� cells are still valid when using the �parallel� cells�

��� Response Time

Our third performance measure is the response time of a decomposition� The response time is
the delay between the receipt of an input and the production of the succeeding output� The
response time is always measured from the time the last input arrives that enables the production
of that output to the actual production of that output� We are particularly interested in the
worst�case response time�

In calculating the response time of a decomposition� we assume that the response times of
our basic components are bounded from above and below by �xed constants� Consequently�
all implementations of the basic components may not exhibit livelock� deadlock� or metastable
behavior� since then there is no guaranteed upper bound� We do not require that the response
times of basic components are constant� Response times may vary arbitrarily between lower and
upper bound� For example� response times may depend on the actual values of the data received�
like additionmay depend on the actual values added� Response times may also vary over di�erent
instances of the same basic component or may vary over time� These delay assumptions are more
general than the assumptions made in ����� for example� and may sometimes lead to results that
are too pessimistic� A more detailed performance analysis and optimization technique� which
is based on Martin�s design approach� is given by Burns in ���� Techniques for analyzing the
throughput and latency of micropipelines are proposed in ���� �
��

Let us see if we can calculate the response times of the various decompositions for the modulo�
N counter� If we only consider the steps �������� then the decompositions do not exhibit any
parallel behavior� Let us �rst consider a decomposition that uses only step ���� In the worst case
an input r propagates through all N � � cells to the end cell and then back� Consequently� this
decomposition has a response time that grows linearly with N � What is the response time of a
decomposition using only step ���� In such a decomposition every input propagates through all
!�logN� cells and then back� Consequently� the decomposition has a response time of !�logN��
A decomposition using only step ��� also has a response time of !�logN�� since in the worst
case an input r propagates through all !�logN� cells and then back�

Response time analysis is perhaps the most di�cult analysis to perform� in particular when
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there is a high degree of parallelism� In order to facilitate the analyses of decompositions using
steps �����
�� we present some theorems on response times for linear arrays of cells that exhibit
parallel behavior�

We consider a linear array of cells as given in Figure ��� We assume that each cell in the

r?

a!

sr

sa

Figure ��
 A linear array of cells

linear array has a communication behavior given by

pref�INIT � �� if B then �a�� r�� k �sr�� sa�� j not�B� then �a�� r�� � � S �� ���

where S represents the computation of the values to be communicated on a and sr� and INIT
is some initial behavior that can be represented by a proper �post�x� of the behavior in the
repetition� For example� INIT � r�� S or INIT � �r� k �sr�� sa���� S� The guard B depends
on the values that are communicated and possibly the values of the local variables� Since we
are only interested in when which communication action can occur� we have abstracted as much
as possible from the computation of the values that are communicated� There are two special
cases for the guards in which we are interested� One case is where B � true in each repetition
step� so in every repetition step there is a pair of communications on a and r and on sr and sa�
The other case is where at most every other repetition step B � true� More speci�cally� if Bi

represents the value of guard B in repetition step i� i � �� then we have

Bi � not�Bi��� for all i � �

In other words� if in a certain repetition step there is a pair of communications on sr and sa�
then in the next repetition step there are no communications on sr and sa�

Each cell has two outputs
 a and sr� For each of these outputs� each of the inputs can be
the last input to arrive that enables the production of that output� Accordingly� the response
times for a cell are denoted by

��r�� a��� ��sa�� a��� ��sa�� sr��� ��r�� sr��

The response time ��r�� a�� is the time it takes to produce output a� after input r� has been
received� where we assume that input r� is the last input that enables output a�� The other
response times are described similarly� The response times of the cells may vary� For example�
they may vary over di�erent instances of a cell� over time� or they may depend on the state of a
cell� We assume� however� that all response times � of each cell have upper bound " and lower
bound �� that is

� � � � "
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The end cell has a behavior given by

pref � � r�� a� �

The response time of this end cell is given by �L�r�� a��� We also assume that the response time
of the end cell has lower bound d and upper bound D� that is

d � �L � D

Finally we let R stand for the response time of the decomposition� Since we have chosen to
calculate the worst�case response time� R is the maximum of all R�i� i � �� where R�i is the
maximum delay between occurrence i of input r and output a in the decomposition� We have
the following theorems�

Theorem � If for all cells in the decomposition B � true in every repetition step� then

R � D � �L�"� ��

where L is the number of non�end cells in the linear array�

With the proper distribution of delays� this upper bound can indeed be attained� The delays
then should be independent of each other� Recall furthermore that delays may vary in �time
and space�� that is� in occurrence of an output and in instance of a component� The freedom of
varying delays independent of each other and in time and space may give a too pessimistic bound
for some applications� If more information is available about the possible delay distributions�
then tighter upper bounds may be obtained�

Theorem � If for all cells in the decomposition B � true in at most every other repetition
step� and D satis�es

D � "�"��� � �L� � �"L

then

R � "�"���

where L is the number of non�end cells in the linear array�

Notice that here the upper bound for the response time R is independent of L� the number
of cells in the array� The response time R only depends on the values of � and "� In other
words� the response time is bounded under any delay distribution �in time and space� and for
any length of the array� The requirement for D� the maximum response time for the end cell� is
easy to satisfy� For example� D � " will do for any L� For large L� however� D may be chosen
much larger such that still a bounded response time is guaranteed� �In fact D may increase
quadraticly with L�� This property can be exploited by taking� for large L� an end cell that is
very slow� but has a low power consumption� for example�

What is the response time for a decomposition using only PCELL�� Such a decomposition
has L � O�logN� cells� and each cell� except the end cell� is of the form ���� Furthermore�
in each repetition step there is a pair of communications with both neighbors� Consequently�
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Theorem � applies� From Theorem � we then derive that the decomposition has a response time
of at most O�logN�� if " �� �� If " � �� then the response time is bounded by the response
time of the end cell� �It can be proven that the upper bound of O�logN� can be attained� if the
distribution of the delays is such that� for example� ��s propagate twice as fast as ��s through
the cells��

In order to calculate the response time of a decomposition using only PCELL� we can apply
Theorem �� Notice that PCELL� communicates on channels sr and sa in at most every other
repetition step� We assume that the end cell has a response time of at most "� that is� D � "�
By Theorem � it now follows that this decomposition has a bounded response time�

For a decomposition using PCELL� for even N and CELL� for odd N � we can also use
Theorem � to conclude a bounded response time� This conclusion follows from looking at
the composite behavior of PCELL� followed by CELL�� Without proof we mention that this
behavior is also of the form ��� and has the property that at most every other repetition step
there is pair of communications on channels sr and sa�

There are many other combinations of decomposition steps we haven�t analyzed� For exam�
ple� what is the response time of a decomposition using PCELL� only� What is the response
time of a decomposition using PCELL� and PCELL�� Or� of a decomposition using PCELL�
and PCELL�� None of the two theorems directly applies to these decompositions� For most of
these combinations the analysis is non�trivial� Having more general theorems than the two we
presented would be helpful to calculate response times of such decompositions�
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� The Up�Down N Counter

	�� Speci�cation

An up�down counter is a component on which two operations can be performed
 an �up�� which
is an increment by one� and a �down�� which is a decrement by one� For each of those operations�
one of three replies will be sent back to the environment� The reply depends on the count and
the range of the counter� The count of the counter is the number of ups minus the number of
downs� The range of the up�down N counter is ����N �� where N � �� Initially� the count of the
counter is �� If after a down� the count of the up�down N counter reaches �� then the reply will
be �empty�� If after an up� the count of the up�down N counter reaches N � then the reply will
be �full�� Otherwise� the reply will be �ack�� In order for the count of the up�down N counter
to stay in the range ����N �� we assume that the environment will not attempt a down when the
count is � and will not attempt an up when the count is N � Notice that the environment is
informed after each operation whether the counter is empty� full� or neither� We stipulate that
initially the counter is empty�

Here is a speci�cation of the up�down N counter using guarded commands� We take the
following type de�nitions throughout these notes�

type ud � fup� downg
type efa � fempty� full � ackg

The speci�cation reads

UDC�N 
 int� r� 
 ud� a� 
 efa�

� f by de�nition g

j� var n 
 ����N � 


initially n � � 


pref � � r��

if r � up 	 n � N � � then a 
� full � n 
� n � �
j r � up 	 n � N � � then a 
� ack� n 
� n� �
j r � down 	 n � � then a 
� empty� n 
� n� �
j r � down 	 n � � then a 
� ack� n 
� n� �
� � a�
�

�j

For the repetition we have the invariant

n � ��r�up��r�down�

Notice that the two alternatives

r � down 	 n � �
r � up 	 n � N
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do not occur in the guarded selection� since we assume that the environment does not attempt
a down when the count is � and not attempt an up when the count is N � �By de�nition of the
guarded selection� the if ��� statement amounts to an abort in states where these alternatives
would apply��

The important property we should remember is the precondition for every output a


�a � full� � �n � N� 	 �a � empty� � �n � ��

Here is one special case of the up�down N counter� For N � � we have

pref � � r�up� a�full � r�down� a�empty �

Given the speci�cation of the up�down N counter we are asked to �nd an e�cient asyn�
chronous implementation for this component for any N � �� Try it� before reading any further�

	�� Related Work and Results

There are many implementations of up�down counters commercially available� �See� for example�
the data books of several manufacturers�� There are also many applications for an up�down
counter� For example� they can be used in any application that keeps track of a count within
a range ����N �� and where the only operations on the count are increments and decrements by
one and testing whether the value of the count is � or N � Applications that come to mind
immediately are semaphores� bounded stacks� and bounded queues�

There is also quite a rich literature on all sorts of counters� Designing synchronous imple�
mentations �as opposed to asynchronous implementations� of an up�down counter is usually
considered a standard exercise in almost every textbook on digital design� In ���� one can �nd
designs for many types of counters� including up�down counters� In ��	� a synchronous imple�
mentation of an up�down counter is discussed� where the output is available after a constant
number of clock cycles� This design� however� does not detect whether the counter is full� The
idea of this implementation is the same as the idea underlying our �rst design� In ��
� an up�
down �N counter is implemented by N identical modules� The output is also available after a
constant number of clock cycles under the assumption that the inputs can be broadcast to all
modules in a constant amount of time� In our designs no broadcast is needed� In ��
�� which is
based on ��	�� several up�down counter designs are presented� The counters are slightly di�erent
in the sense that they behave like modulo�N counters when an increment occurs in the full state�

Most counters described in the literature are counters that report the value of the count in
some radix representation after each operation� For the up�down counter� however� there is no
need to know the value of the count after each operation� The only information that is needed
is whether the count is equal to one of the two boundary values� and� if so� which one� It is�
however� possible to implement an up�down counter that is based on a counter that reports the
value of the count after each operation� From this value the response full� empty� or ack can be
calculated� This calculation must consider all digits in the radix representation� If you want to
obtain a bounded response time� it is hard to imagine that this could be achieved with such a
design�

Most published implementations we have found are synchronous implementations and are
based on some sort of binary representation of the count� As a consequence the clock frequency
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depends on the counter size N � For most designs this is due to the carry and borrow propagation
during increments and decrements ����� These carry and borrow propagations give a response
time that is at least logarithmic in N � Furthermore� every synchronous implementation based
on a binary representation of the count has to clock in each period about logN storage devices�
making the power consumption at least proportional to logN �

In conclusion� we have found that all published designs are clocked designs� have a logarithmic
area complexity� usually do not give a response time analysis� do not give a power consumption
analysis� and only apply to very few values ofN �usually only for values �k��� k � ��� We present
several designs for the up�down N counter that have an area complexity of logN � but unlike all
previously known designs� are unclocked� have a bounded response time� have a bounded power
consumption� and apply to any N � �� These bounds are asymptotically optimal�

	�� A First Decomposition

The derivation of our �rst decomposition is based on the usual binary representation of numbers�
Suppose the count is represented by k bits� k � �� An increment can be implemented by adding
� to the least signi�cant bit modulo �� where a carry may propagate possibly all the way to
the most signi�cant bit� Similarly� a decrement is implemented by subtracting � from the
least signi�cant bit modulo �� where a borrow may propagate possibly all the way to the most
signi�cant bit� Keeping track of whether the counter is full or empty can be done while returning
to the least signi�cant bit from a carry or borrow propagation� Assuming that the counter is
full when all bits are � and empty when all bits are �� then we can have the following scenario�
Each cell records whether the rest of the �more signi�cant� bits are all � �subcounter full�� all �
�subcounter empty�� or neither all � nor all �� After an increment to a cell� the response is �full�
if the subcounter is full and the new value of the bit is �� Similarly� after a decrement to a cell�
the response is �empty� if the subcounter is empty and the new value of bit is �� In all other
cases the response is �ack��

In order to give a formal derivation� we show that a �N �� counter can be decomposed into
an N counter and a cell� Let N � �� We �rst give the speci�cation of the �N � � counter� The
speci�cation for the cell will arise in the derivation�

UDC��N � � 
 int � r� 
 ud� a� 
 efa�

� f by de�nition g

j� var nn 
 ������N � ��� 


initially nn � � 


pref � � r��

if r � up 	 nn � �N then a 
� full � nn 
� nn � �
j r � up 	 nn � �N then a 
� ack� nn 
� nn� �
j r � down 	 nn � � then a 
� empty� nn 
� nn � �
j r � down 	 nn � � then a 
� ack� nn 
� nn� �
� � a�
�

�j



Parallel Program and Asynchronous Circuit Design 	�

In our �rst step we introduce binary variable k� representing the value of the bit in the cell� and
variable n� representing the count of the subcounter� The variables k and n are related to nn
by the invariant

P 
 nn � � � n � k 	 � � n � N 	 � � k � �

From this invariant we derive the following equivalences�

nn � �N � �n � N 	 k � ��

nn � �N � n �� N

nn � � � �n � � 	 k � ��

nn � � � n �� �

These observations then lead to the following program for UDC��N � �� r� a��

j� var nn 
 ������N � ���� n 
 ����N �� k 
 bin 


initially n � �� k � � 


pref � � r�

� if r � up 	 n � N 	 k � � then a 
� full � nn 
� nn � �
j r � up 	 n �� N then a 
� ack� nn 
� nn� �
j r � down 	 n � � 	 k � � then a 
� empty� nn 
� nn � �
j r � down 	 n �� � then a 
� ack� nn 
� nn� �
�

� if r � up 	 k � � then n 
� n� �
j r � down 	 k � � then n 
� n� �
j �r � up 	 k � �� or �r � down 	 k � �� then skip

�
� k 
� �k � �� mod �
� a�
�

�j

The alternative r � up 	 k � � corresponds to a carry propagation� here represented by
n 
� n � �� and the alternative r � down 	 k � � corresponds to a borrow propagation� here
represented by n 
� n � �� It is not di�cult to see that nn � � � n � k 	 � � k � � are indeed
invariants of this program� Let us check that � � n � N is an invariant of the program as well�
Because of the semantics of guarded selection� a postcondition for the �rst guarded selection�
which is the precondition for the second guarded selection� is

�r � up 	 k � � � n � N� 	 �r � down 	 k � � � n � ��

In other words� an increment to n is not done when n � N and a decrement to n is not done
when n � �� From this observation we may conclude that � � n � N is an invariant of the
repetition�

After the �rst derivation step� we can make a couple of observations� First� the variable
nn is a ghost variable
 it is never inspected and is only used for the correctness proof of the
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derivation step� Consequently� we can remove all statements involving nn from the program�
Second� we observe that the only operations on variable n are increments� decrements� and tests
whether n � � or n � N � These operations can be performed by an up�down N counter� For
this purpose we introduce an up�down N counter with input channel sr and output channel sa�
and whenever an increment to n is done we replace this statement by sr�up� sa�� whenever a
decrement to n is done we replace this statement by sr�down� sa�� After every communication
on channel sa we can then assert

�sa � full� � �n � N� 	 �sa � empty� � �n � ��

where n � ��sr�up��sr�down�� These observations then lead to the following parallel com�
position�

UDC��N � �� r�� a��

� f def� of UDC�N� sr�� sa��� see above g

j� chan sr 
 ud� sa 
 efa 


CELL��r�� a�� sr�� sa�� k UDC�N� sr�� sa��

�j

where CELL� is de�ned by

j� var k 
 bin 


initially sa � empty� k � � 


pref � � r�

� if r � up 	 sa � full 	 k � � then a 
� full
j r � up 	 sa �� full then a 
� ack
j r � down 	 sa � empty 	 k � � then a 
� empty

j r � down 	 sa �� empty then a 
� ack
�

� if r � up 	 k � � then sr�up� sa�
j r � down 	 k � � then sr�down� sa�
j �r � up 	 k � �� or �r � down 	 k � �� then skip
�

� k 
� �k � �� mod �
� a�
�

�j

Notice that CELL� will not attempt an sr�down when the subcounter is empty� nor will
CELL� attempt an sr�up when the subcounter is full� This property follows immediately from
the invariant � � n � N of the previous program�

Finally we observe that all conditions for decomposition are satis�ed� In particular� no
computation interference can occur
 in CELL� every output sr� is immediately followed by
input sa� and every output a� is immediately followed by input r�� Accordingly� we can write
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UDC��N � �� r�� a��

� f def� of decomposition g

� CELL��r�� a�� sr�� sa�� � UDC�N� sr�� sa�� �

	�� What about even N


In the previous section we derived a decomposition that applies to odd N only� If we need to
have a decomposition that applies to all N � we also need to �nd a decomposition that applies
to even N � Our next decomposition is a generalization of our �rst decomposition and is not
restricted to even N only�

The previous decomposition was based on the unique binary representation of each number�
The invariant we used there was

P 
 nn � � � n � k 	 � � n � N 	 � � k � �

where nn represents the count of the �N � � counter and n represents the count of the N
counter� What would happen if we enlarged the range of k� For example� what would change
in our derivation if we had � � k � K� It turns out that we need to change our derivation only
slightly� Let K � �� Our new invariant is

nn � � � n � k 	 � � n � N 	 � � k � K

From this invariant we derive the following equivalences�

�nn � �N �K � �� � �n � N 	 k � K � ��

�nn � �N �K � �� � �n �� N � k � K � ��

nn � � � �n � � 	 k � ��

nn � � � �n �� � � k � ��

These observations then lead to the following program�

UDC��N �K� r�� a��

� f for def� of CELL� see below g

� CELL��K 
 int � r�� a�� sr�� sa�� � UDC�N� sr�� sa�� �

where CELL� is de�ned by
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CELL��K 
 int � r� 
 ud� a� 
 efa � sr� 
 ud� sa� 
 efa�

� f by de�nition g

j� var k 
 ����K� 


initially sa � empty� k � � 


pref � � r�

� if r � up 	 sa � full 	 k � K � � then a 
� full
j r � up 	 �sa �� full � k � K � �� then a 
� ack
j r � down 	 sa � empty 	 k � � then a 
� empty
j r � down 	 �sa �� empty � k � �� then a 
� ack

�
� if r � up 	 k � K then sr�up� sa�
j r � down 	 k � � then sr�down� sa�
j �r � up 	 k �� K� or �r � down 	 k �� �� then skip

�
� if r � up 	 k �� K then k 
� k � �
j r � up 	 k � K then k 
� K � �
j r � down 	 k �� � then k 
� k � �
j r � down 	 k � � then k 
� �
�
� a�
�

�j

Now we have many decompositions that apply for even N � For example� we can use CELL� for
K � � or K � 	� when N is even� For odd N we also have many decompositions� We can use
CELL� for K � � or K � �� when N is odd� If we are restricted to using CELL� for values of
K � � and K � �� then any N counter for N � � can be decomposed using such cells� if we
have at least as end cells a � counter� a � counter� and a � counter� Notice that for N � �� we
have �N � � � 	 and �N � � � ��

For K � �� we have the usual binary number system� where each number has a unique
representation� For K � � we use a redundant binary number system� where the digits can
range from � to K inclusive� For example� for K � � the number 	 can be represented as ���
and as ��� �least signi�cant digit to the right�� This redundancy will pay o� later when we
examine the power consumption and response time�

	�� What about Parallelism


The next step in our derivation of an optimal design is the introduction of some parallelism�
We try to do so by allowing as much freedom as possible in the ordering of the communication
actions in a cell with the restrictions that the communication behavior on channels r and a
remains invariant and the communication behavior on channels sr and sa remains invariant�

We �rst introduce some parallelism in the speci�cation for CELL�� Let us consider the
speci�cation for CELL� once more�
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CELL��r� 
 ud� a� 
 efa� sr� 
 ud� sa� 
 efa�

� f by de�nition g

j� var k 
 bin 


initially sa � empty� k � � 


pref � � r�

� if r � up 	 sa � full 	 k � � then a 
� full
j r � up 	 sa �� full then a 
� ack
j r � down 	 sa � empty 	 k � � then a 
� empty

j r � down 	 sa �� empty then a 
� ack
�

� if r � up 	 k � � then sr�up� sa�
j r � down 	 k � � then sr�down� sa�
j �r � up 	 k � �� or �r � down 	 k � �� then skip
�
� k 
� �k � �� mod �
� a�
�

�j

Observe that although the value of a is calculated immediately after r has been received� it is
sent only after there has been a possible communication on the channels sr and sa� Immediately
after sending a the next request on channel r can be received� in order to avoid computation
interference� Is it possible to send a �and receive the next request on r� in parallel with sending
sr �and receiving sa�� Yes� that can be done� If we unfold the repetition a bit and reorder some
statements� we get the following program for PCELL�

PCELL��r� 
 ud� a� 
 efa � sr� 
 ud� sa� 
 efa�

� f by de�nition g

j� var k 
 bin 


initially sa � empty� k � � 


pref � r�� Sa�

�� if r � up 	 k � � then �a�� r�� k Sk k �sr�up� sa��
j r � down 	 k � � then �a�� r�� k Sk k �sr�down� sa��
j �r � up 	 k � �� or
�r � down 	 k � �� then �a�� r�� k Sk

�

� Sa
��

�j

where Sk � k 
� �k��� mod � and Sa is the statement that calculates the next value for a given
by
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Sa

� f by de�nition g

if r � up 	 sa � full 	 k � � then a 
� full
j r � up 	 sa �� full then a 
� ack
j r � down 	 sa � empty 	 k � � then a 
� empty

j r � down 	 sa �� empty then a 
� ack
�

It is not di�cult to verify that the communication behavior of CELL� and PCELL� is the
same if we look to the channels r and a only� Similarly� the communication behavior of CELL�
and PCELL� is the same if we look to the channels sr and sa only�

The same exercise can be performed on CELL�� If we name the resulting speci�cation
PCELL�� we get

PCELL��K 
 int � r� 
 ud� a� 
 efa� sr� 
 ud� sa� 
 efa�

� f by de�nition g

j� var k 
 ����K� 


initially sa � empty� k � � 


pref � r�� Sa�

�� if r � up 	 k � K then �a�� r�� k �k 
� K � �� k �sr�up� sa��
j r � down 	 k � � then �a�� r�� k �k 
� �� k �sr�down� sa��
j r � up 	 k �� K then �a�� r�� k �k 
� k � ��
j r � down 	 k �� � then �a�� r�� k �k 
� k � ��
�
� Sa
��

�j

where Sa is the appropriate statement calculating the next value of a�

	�� An Implementation

As an example of an implementation� we brie�y present one for PCELL� using data bundling�
As an encoding for the data type ud� we use a single wire and take by de�nition up � � and
down � �� As an encoding for the type efa we take two wires called f and e� Each value of type
efa is then encoded by a pair of binary values �f� e� in the following way�

full � ��� ��
empty � ��� ��
ack � ��� ��

The value ����� is not used� These encodings then quickly lead to the implementation of Figure �

for the up�down � counter�
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r?

a.f
a.e
a!

Figure �

 An implementation for UDC��� using data bundling

From the program for PCELL�� we derive that the �new� values for a � �a�f� a�e� and k can
be calculated as follows from the inputs r and sa � �sa�f� sa�e��

a�f 
� r 	 sa�f 	 �k

a�e 
� �r 	 sa�e 	 k

k 
� �k

The �new� value for sr is calculated as follows� If r and k are both zero or both one� then sr

becomes zero or one respectively� Otherwise� sr retains its �old� value� In other words� the �new�
value for sr is the majority of r� k� and the old value of sr� Furthermore� a communication with
the subcounter takes place only when r and k are both zero or both one� Therefore� we introduce
a binary variable prop �of propagate� to direct the communications with the subcounter� The
values for sr and prop are calculated as follows�

sr 
� maj�r� k� sr�

prop 
� �r 	 k� � ��r 	 �k�

where prop � � if there is a communication on the channel sr� and prop � � if there is no
communication on the channel sr�

The control part of the implementation consists of a join� a merge� a select� and some
wires� The control part is indicated with solid lines in Figure ��� The data part is indicated
by dashed lines in Figure ���

	�	 Performance Analysis

Before we are going to analyze the performance of some complete decompositions of the up�
down N counter� we give a brief summary of the possible decomposition steps� Below� UDC�N�
stands for UDC�N� r� 
 ud� a� 
 efa� and CELL��K� stands for CELL��K 
 int � r� 
 ud� a� 

efa � sr� 
 ud� sa� 
 efa�� A similar correspondence holds for PCELL��K�� �Recall that CELL�
is a special case of CELL��K�� viz�� CELL���� � CELL��

UDC��N � �� � � CELL���� � UDC�N� � ���

UDC��N � �� � � CELL���� � UDC�N� � ���

UDC��N � �� � � CELL���� � UDC�N� � ���

UDC��N � �� � � PCELL���� � UDC�N� � ���
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Figure ��
 An implementation of PCELL� using data bundling

UDC��N � �� � � PCELL���� � UDC�N� � �	�

UDC��N � �� � � PCELL���� � UDC�N� � ���

Let us consider the area complexity of some decompositions �rst� Our �rst observation is
that any of the cells above can be considered as a basic component� since the number of states
of each cell is bounded by some constant� which is independent of N � A similar remark can be
made for small counters� like the �� �� and � counter� Accordingly� a �rst�order estimate for
the area complexity can be obtained by counting the total number of cells and end cells of the
decomposition� The area complexity of some decompositions can now be calculated easily� A
decomposition of the up�down N counter using any of the cells CELL��K� or PCELL��K� for
K � �� �� � obviously has area complexity !�logN�� In a similar manner as for the modulo�N
counter� we can prove that this bound is optimal�

The analysis for the power consumption is a bit more di�cult� Let us �rst consider the
power consumption of a decomposition using only CELL����� This decomposition is based on
the usual binary number system� In the worst case a request propagates through all logN cells
and comes back� and this can happen repeatedly� For example� when the count of the counter
is �N � ���� �that is� the binary representation consists of all ones� except the most signi�cant
bit which is zero�� and the sequence r�up� a�ack� r�down� a�ack is performed repeatedly� Then�
for each request� each bit has to �ip once� Consequently� each external communication results
in !�logN� communications� and so the worst�case power consumption over all communication
behaviors is !�logN��

What is the power consumption of a decomposition using CELL���� and CELL���� with
UDC���� UDC���� or UDC��� as end cell� This decomposition uses a redundant binary repre�
sentation of the count� The important observation is that in both CELL���� and CELL���� in
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at most every other repetition step there will be a communication on the channels sr and sa�
Accordingly� if in a communication behavior �k external communication actions take place� at
most �k�� communication actions take place between the �rst and second cell� at most �k�	
communication actions take place between the second and third cell� and so on� Consequently�
each communication behavior with �k external communication actions has a power consumption
of at most

�
�X
i��

�k��i���k � �

From this observation we may conclude that every behavior has a bounded power consumption�
and therefore the decomposition using cells CELL��K� for K � �� � has a bounded power
consumption�

Would the power consumption change if we used a PCELL� instead of a CELL�� From the
programs for CELL� and PCELL� we derive that for each external behavior with �k actions�
the maximum number of internal communication actions that can take place in the parallel and
the sequential version are the same� The only di�erence is in the order in which the actions can
take place� For this reason� the results of the power consumption analyses for the sequential
version are also valid for the parallel version�

Finally we analyze the response time of some decompositions� The �sequential� decomposi�
tions are easy� A decomposition using any of the cells CELL� has logarithmic response time�
since in the worst case a request propagates through all !�logN� cells to the end cell and then
returns as an acknowledgement�

For the decomposition using the parallel versions of CELL�� we can use Theorems � and ��
We assume that the upper bounds and lower bounds for the response times of the cells �including
the end cells� are given by " and � respectively� Neither Theorem � nor � is directly applicable
to a decomposition using only PCELL����� However� if we assume that the environment gives
input requests according to a worst�case scenario� then after an initial behavior each cell will
communicate on channels r� a and sr� sa in each repetition step� According to Theorem �� this
decomposition then has a worst�case response time of O�logN� if " � �� In order to attain this
upper bound� however� we have to assume a very pessimistic delay distribution�

For PCELL���� and PCELL���� we observe that in at most every other repetition step there
is a pair of communications on sr and sa� Accordingly� Theorem � is applicable� and we conclude
that a decomposition using PCELL���� and PCELL���� has a bounded response time�

	 Concluding Remarks

We have illustrated some techniques in the design and performance analysis of asynchronous
circuits� The techniques were illustrated by means of two examples
 the modulo�N counter
and the up�down N counter� For both examples we derived several designs that have an area
complexity of !�logN�� a bounded power consumption� and a bounded response time� These
bounds are optimal� Although the exercises have given us some insights in the alternatives in
designing asynchronous circuits� there are still many problems that remain� We mention a few
of them�
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The �nal step of our derivations consisted of �nding circuit implementations for the cells�
Compared to many of the other steps in the design� this last step was rather large and often
ad hoc and without a proof� We did so� because the main emphasis of these notes was on the
design of the parallel program rather than on the design of circuit implementations for the cells�
In order to obtain a complete design method� however� it is important that this last step be
investigated more closely� and that a systematic method be found to translate our speci�cations
for the cells into circuit implementations� The choice of implementation for the data types will
undoubtedly play a large role in this step�

For all designs� we �rst started with the design of a sequential program and then transformed
this sequential program into a parallel program by reordering the communication actions� Can
this be done for every design� That is� for every parallel program� does there exist a sequential
program that can be transformed into the parallel program by reordering the statements and
communication actions� If so� do there exist some general techniques for reordering communi�
cation actions so as to obtain a parallel program�

The performance analyses raised some interesting questions as well� For the area complexity
we can compute a lower bound for any implementation of a component easily� For the power
consumption and response time this is a di�erent matter� How do we calculate the lower bounds
for the power consumption and response time for any implementation of a particular component�
For example� what is the lower bound of any implementation for an N �place stack or queue�
Knowing what the lower bound is of the power consumption of a component� we may able to
conclude whether we have found an optimal design� If not� we may want to search for a more
e�cient design�

Calculating the response time of an implementation was a nontrivial task� We gave some
theorems that were very useful� but these theorems applied only to linear arrays of cells and only
under certain conditions for the behavior of the cells� How do we calculate the response time for
other networks of cells or when the cell�s behavior does not satisfy these restricted conditions�

Finally� we mention the problem of formulating appropriate progress conditions� For any
design it is important to know whether progress is guaranteed or not� For example� a design
should be free from the danger of deadlock or livelock� Our correctness conditions are too weak
to guarantee progress in general� �See Section ����� Finding correctness conditions for progress
that have a proper justi�cation in the context of asynchronous circuit behaviors and� preferably�
are easy to work with is still an open problem�
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