
User�s Guide to Grail
Version ���

Darrell Raymond � Derick Wood y

January ����

�Department of Computer Science� University of Waterloo� Waterloo� Canada
yDepartment of Computer Science� University of Western Ontario� London� Canada

��

��

Contents

� Introduction� ��

� Objects� ��

� Filters� ��

��� Filters for standard machines� ��
��� Predicates for standard machines� ��
��� Filters for regular expressions� ��
��� Predicates for regular expressions� ��
��� Filters for extended machines� ��

� More examples� ��

��� Minimizing machines� ��
��� Executing machines� ��
��� Language equivalence is not identity� � � � � � � � � � � � � � � � � � � ��
��� Generating large machines� �	

� Implementation� �	

 Acknowledgements� ��

�

� Introduction�

Grail is a collection of programs for manipulating �nite�state machines and reg�
ular expressions� Using Grail you can convert regular expressions to �nite�state
machines and vice versa you can minimize machines make them deterministic
execute them on input strings enumerate their languages and perform many other
useful activities�

Each of Grail �s facilities is provided as a �lter that can be used as a standalone
program or in combination with other �lters� Most �lters take a machine or regular
expression as input and produce a new machine or expression as output� Expressions
and machines can be entered directly from the keyboard or �more usually� redirected
from �les� To convert a regular expression into a �nite�state machine for example
one might issue the following command�

� echo ��a�b���abc�� � retofm

� a 	

 b �

� a �

� a

 b �

 b

� a 	

� a �

� a

� b �

� b �

� b

�START� � �

	 a �

� a �

� a �

� b �

� c 	�

	� � �FINAL�

The �lter retofm converts its input regular expression to a nondeterministic �nite�
state machine which it prints on its standard output� The machine is speci�ed as
a list of instructions with some special pseudo�instructions to indicate the states
that are start and �nal�

The output of one �lter can be the input for another� for example we can convert
the machine back to a regular expression �the result is folded here to �t onto the
page��

� echo ��a�b���abc�� � retofm � fmtore

abc�aa�abc�b�b�aa�b��abc�b�b�aa�b��aa�abc�aa�b�b�aa�b��abc�

aa�b�b�aa�b��aa�abc

��

The �lter fmtore converts a machine to a regular expression� We may choose to
make the machine deterministic using the �lter fmdeterm before converting it to
a regular expression�

� echo ��a�b���abc�� � retofm � fmdeterm � fmtore

aa�b�aa�b�bb�aa�b��c�bb�aa�b�aa�b�bb�aa�b��c

We may choose to minimize the deterministic machine using the �lter fmmin before
converting it to a regular expression�

� echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmtore

b�aa�b�aa�b�bb�aa�b��c

We can test the membership of a string in the given language by executing it on
the machine�

� echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmexec �ababababc�

accepted

The �lter fmexec executes its input machine on an argument string and prints
accepted if the string is a member of the language of the machine� Finally we can
enumerate some of the strings in the language of the machine�

� echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmenum 	�

abc

aabc

babc

aaabc

ababc

baabc

bbabc

aaaabc

aababc

abaabc

The �lter fmenum enumerates the language of a machine shortest �rst and then in
lexicographical order� the argument 	� speci�es the number of strings to be printed�

� Objects�

Grail manages three types of objects� regular expressions conventional �nite�state
machines and extended �nite�state machines�

Regular expressions� Grail �s regular expressions are very similar to standard
regular expressions� Each of the following is a regular expression�

��

fg empty set
�� empty string
ab�AZ any single letter
xy catenation of two expressions
x � y union of two expressions
x� Kleene star

Grail follows the normal rules of precedence for regular expressions� Kleene star
is highest next is catenation and lowest is union� Parentheses can be used to
override precedence� Internally Grail stores regular expressions with the minimum
number of parentheses �even if you input it with redundant parentheses��

Finite�state machines� The conventional method for describing a �nite�state
machine is as a ��tuple of states labels instruction relation start state and �nal
states� In Grail however machines are represented completely by lists of instruc�
tions� The machine accepting the language ab for example is given as�

�START� � �

� a 	

	 b

 � �FINAL�

Each instruction is a triple that speci�es a source state a label and a sink
state� States are numbered with nonnegative integers and labels are single letters�
In addition the machine contains one or more pseudo�instructions to indicate the
start and �nal states� Pseudo�instructions use the special labels � and � which
can be thought of as end�markers on the input stream� The label � can appear only
with the �START� state and the label � can appear only with the �FINAL� state�
�START� can appear only as a source state of a pseudo�instruction and �FINAL�

can appear only as a target state of a pseudo�instruction�
Unlike the conventional model for machines Grail machines can have more than

one start state �and of course can have more than one �nal state�� Machines with
more than one start state are nondeterministic�

Transitions need not be ordered on input to Grail and are generally not ordered
when output by the various �lters�

Extended �nite�state machines� In addition to conventional �nite�state ma�
chines Grail supports extended machines� An extended �nite�state machine has
regular expressions as instruction labels� For example�

�START� � �

� ab� 	

	 �c�d�e�abc

 � �FINAL�

The pseudo�instructions are the same as for conventional �nite�state machines�
Any conventional machine is also an extended machine because a single�symbol

instruction label is also a regular expression� Thus any �lter for extended machines

��

can be applied to conventional machines� Filters for conventional machines can be
applied only to conventional machines�

For some problems it is easier to specify an extended machine than it is to
specify a conventional machine� However at present Grail does not support all
types of operation on extended machines� in particular subset construction �for
producing deterministic machines� and minimization are not supported�

� Filters�

The following list provides a brief description of the �lters provided by Grail � More
details on individual �lters can be found by consulting their man pages�

��� Filters for standard machines�

fmcment complement a machine
fmcomp complete a machine
fmcat catenate two machines
fmcross cross product of two machines
fmdeterm make a machine deterministic
fmenum enumerate strings in the language of a machine
fmexec execute of a machine on a given string
fmmin minimize a machine by Hopcroft�s method
fmminrev minimize of a machine by reversal
fmplus plus of a machine
fmreach reduce of a machine to reachable states and instructions
fmrenum renumber a machine
fmreverse reverse a machine
fmstar star of a machine
fmtore convert of a machine to regular expression
fmunion union of two machines

��� Predicates for standard machines�

The following �lters return � if the argument machine possesses the desired property
and � otherwise� A diagnostic message is also written on standard error�

iscomp test a machine for completeness
isdeterm test a machine for determinism
isomorph test two machines for isomorphism
isuniv test a machine for universality

��� Filters for regular expressions�

In addition to the basic construction operations for regular expressions �union
catenation and star� Grail also supports conversion of regular expressions to �nite�

��

state machines�

recat catenate two regular expressions
remin minimal bracketing of a regular expression
restar Kleene star of a regular expression
retofm convert a regular expression to a machine
reunion union of two regular expressions

��� Predicates for regular expressions�

Currently there are only two predicates provided for regular expressions�

isempty test for equivalence to empty set
isnull test for equivalence to empty string

��� Filters for extended machines�

Any of the �lters for extended machines can also be used for standard machines as
well�

xfmcat catenate two extended machines
xfmplus plus of an extended machine
xfmreach reduce an extended machine to reachable states and instructions
xfmreverse reverse an extended machine
xfmstar star of an extended machine
xfmtore convert an extended machine to a regular expression
xfmunion union of two extended machines

� More examples�

��� Minimizing machines�

There are two ways to minimize machines� The standard method is to minimize
by repeatedly partitioning the set of states according to di�erences in instruction
labels� This method is implemented in the Grail �lter fmmin� The second method
introduced by Brzozowski is to reverse the machine make it deterministic and
repeat these two steps� Using Grail we can show that this procedure results in an
isomorphic result�

��

� cat dfm

�START� � �

� a 	

� b �

	 c

 d �

� � �FINAL�

� e �

� f �

� � �FINAL�

� fmmin �dfm � �out

� fmreverse �dfm � fmdeterm � fmreverse � fmdeterm �out

� isomorph out out

isomorphic

Brzozowski�s minimization technique is implemented by the Grail �lter fmminrev�

��� Executing machines�

The �lter fmexec is used to execute a machine given an input string� By default
this �lter simply says whether a string is a member of the language of the machine�
For example we can apply fmexec to the machine of the last section�

� fmexec dfm �acd�

accepted

� fmexec d dfm �abc�

not accepted

If supplied with the d option �for �diagnostic�� fmexec will not only check for
acceptance but it will also indicate at each stage of execution which instruction is
being taken� Consider fmexec applied to the following machine�

� cat nfm

�START� � 	

	 a

	 a �

 b

� b �

 c �

� c �

� d �

� d �

� � �FINAL�

��

� � �FINAL�

� fmexec d nfm �abcd�

on a take instructions

	 a

	 a �

on b take instructions

 b

� b �

on c take instructions

 c �

� c �

on d take instructions

� d �

� d �

terminate on final states � �

accepted

��� Language equivalence is not identity�

One of the standard problems in textbooks on machines theory is to determine
whether two regular expressions denote the same language� This is di�cult because
unlike machines minimal regular expressions are not unique� One procedure for
checking language equivalence involves several steps� �i� convert the expressions to
nfms �ii� convert the nfms to dfms �iii� minimize the dfms �iv� test for isomorphism�
If done manually this is a tedious process� however it can be done easily with Grail

simply by combining the appropriate �lters� For example�

� echo ��rs�r��r� � retofm � fmdeterm � fmmin � �out	

� echo �r�sr�r��� � retofm � fmdeterm � fmmin � �out

� isomorph out	 out

isomorphic

The two expressions are of the same size are minimal �we determine this by inspec�
tion� and they denote the same language but they are not identical�

Non�identical but language�equivalent regular expressions can also be produced
by Grail without the user being aware of it� The order of instructions sometimes
a�ects the output of a particular �lter� Consider the following orderings of the same
set of instructions�

�	

dfm dfm� dfm�

� � �FINAL� � � �FINAL� 	 b �

	 b � �START� � �
 d �

 d � � g
 � a 	

 e � 	 c
 � g

�START� � �
 e � 	 c

� f � � f �
 e �

� g
 � a 	 � f �

	 c
 	 b � � � �FINAL�

� a 	
 d � �START� � �

The instructions de�ne the same machine� they are merely ordered di�erently�
This reordering a�ects Grail �s conversion of machines to regular expressions�

� fmtore �dfm

a�ba�c�eg��da��c�eg��ef

� fmtore �dfm

a�ba�cda�ce�ge��gda��ce�ge��f

� fmtore �dfm�

a�ba��c�da�ba��c��e�g�da�ba��c��e��f

The reason for the di�erence is the di�erent input orderings of the instructions�
fmtore generates regular expressions by means of state elimination� it successively
replaces states in the machine with a regular expression that captures that state�s
instructions� The input order of instructions determines the order in which states
are eliminated and hence the resulting form of the regular expression�

As with the previous example it is possible to test for language equivalence by
converting to machines minimizing and testing for isomorphism�

� fmtore �dfm	 � retofm � fmdeterm � fmmin �test	

� fmtore �dfm
 � retofm � fmdeterm � fmmin �test

� fmtore �dfm� � retofm � fmdeterm � fmmin �test�

� isomorph test	 test

isomorphic

� isomorph test
 test�

isomorphic

��� Generating large machines�

Our previous examples showed Grail �lters being used in pipelines� Grail �lters
can also be used in general purpose shell scripts� Since machines and expressions
are stored as text �les they can also be processed with standard �lters� In the
following session we output a machine �to display its content� then apply cross

��

product recursively to the machine using wc to compute the size of the resulting
machines�

� cat nfm

�START� � �

� a 	

� a

	 � �FINAL�

 � �FINAL�

� for i in 	
 � �

� do

� bin�fmcross nfm nfm �tmp

� mv tmp nfm

� wc nfm

� done

�
� �� nfm

�� �� ��	 nfm

�	� 	��� ��
� nfm

	�	��� ���
	�

����� nfm

�

As we recursively apply cross product the resulting machines grow in size very
rapidly� So does Grail �s use of memory� it requires almost �� Mbytes to compute
the last iteration of cross product�

The preceding script was written in the Bourne shell �sh� rather than the C�shell
�csh�� We could just as easily have called Grail �lters from ksh bash tcsh vi or
any other program that can launch processes as part of its activity�

The machines generated by cross product of a machine with itself have the
same language �as before we can determine this by making the result of the cross
product deterministic minimizing and checking for isomorphism�� Generating large
machines of known language is useful for evaluating the performance of other Grail

�lters�

� Implementation�

Grail is written in C��� It includes classes for regular expressions �re� and

standard finitestate machines �fm�� It also includes its own string�

list� and set classes� which are useful even for programming that does

not involve machines �the list and set classes are templates�� The class

library provides all the capabilities of the filters and more� accessible

directly from a C�� program� For more information on programming with

the Grail class library� consult the Programmer�s Guide to Grail�

��

� Acknowledgements�

This research was supported by grants from the Natural Sciences and Engineering

Research Council of Canada� and the Information Technology Research Centre

of Ontario� The first author was also supported by an IBM Canada Research

Fellowship�

Darrell Raymond can be reached at drraymon�daisy�uwaterloo�ca� Derick

Wood can be reached at dwood�csd�uwo�ca�

