
Programmer�s Guide to Grail
Version ���

Darrell Raymond �

January ����

�Department of Computer Science� University of Waterloo� Waterloo� Canada

��

��

��

Contents

� Introduction� ��

� Working with Grail � ��

��� Organization of the �les� ��
��� Compiling� ��
��� Testing� �	
��� Pro�ling� �

��	 Filters� ��
��
 Classes� ��

� Changing and extending Grail � ��

��� Adding a new Grail �lter� ��
��� Parameterizing Grail with a new type� � � � � � � � � � � � � � � � � � ��
��� Modifying Grail �s classes� ��
��� Miscellaneous� ��
��	 Changes in Version ��� 	�
��
 Changes in Version ��� 	�

A Catenation expressions� cat exp ��

A�� De�nition � 	�
A�� Public functions � 	�

B Empty set expressions� empty set ��

B�� De�nition � 		
B�� Public functions � 		

C Empty string expressions� empty string ��

C�� De�nition � 	

C�� Public functions � 	

D Finite	state machines� fm �

D�� De�nition � 	�
D�� Public functions � 	�
D�� Private functions �
�
D�� Friend functions �
�

E Instructions� inst ��

E�� De�nition �
�
E�� Public functions �
�
E�� Friend functions �

��

F Lists� list ��

F�� De�nition �

F�� Public functions �

F�� External functions �
�

G Null expressions� null exp ��

G�� De�nition �
�
G�� Public functions �
�

H Union expressions� plus exp ��

H�� De�nition �
�
H�� Public functions �
�

I Regular expressions� re ��

I�� De�nition �
�
I�� Public functions �
�
I�� Friend functions �

J Sets� set �

J�� De�nition �
�
J�� Public functions �
�
J�� External functions ��

K Star expressions� star exp
�

K�� De�nition ��
K�� Public functions ��

L States� state
�

L�� De�nition ��
L�� Public functions ��
L�� Friend functions �	

MStrings� string
�

M�� De�nition �

M�� Public functions �

M�� Friend functions ��

N Subexpressions� subexp

N�� De�nition ��
N�� Public functions ��

O Symbol expressions� symbol exp
�

O�� De�nition ��
O�� Public functions ��

��

� Introduction�

This document is about programming with the Grail class library� It describes how
to compile� test� and pro�le Grail � how to write C�� programs using Grail � and
how to modify and extend Grail � The appendices to this document specify each of
the classes in detail� with a brief description of all the functions and operators of
each class�

If you plan only to install Grail with its standard �lters� then you need to read
only the �rst few sections of the document� which describe the organization of the �le
system and how to go about compiling and testing Grail � It isn�t necessary to know
much about C�� in order to use Grail as shipped� If you intend to parameterize
Grail �s �nite�state machines and expressions� or to write your own �lters� then you
should read most of the document� In addition� you should ensure that you have a
good understanding of templates� since most of Grail �s classes are template classes�

This research was supported by grants from the Natural Sciences and Engineer�
ing Research Council of Canada� the Information Technology Research Centre of
Ontario� and by an IBM Canada Research Fellowship� The author can be reached
at drraymon�daisy�uwaterloo�ca�

��

� Working with Grail �

This section is about compiling� testing� pro�ling� and using Grail as it is shipped�

��� Organization of the �les�

Grail is a self�contained package organized in the following directories�

� bin

This directory contains symbolic links from each of the Grail �lters to the
main executables �which are found in directory grail��

� classes

This directory contains subdirectories for each of Grail �s classes� These classes
de�ne the objects that Grail can manipulate� Most of the source code belongs
to classes�

� grail

This directory contains source code for the main executables� and the corre�
sponding binary �le� Grail �lters are symbolically linked to these binaries�

� lib

This directory contains libgrail�a� the Grail library�

� profiles

This directory contains pro�ling scripts� pro�ling machines� and the results of
previous pro�ling sessions�

� tests

This directory contains test scripts� test machines� and the expected results
for each test�

��� Compiling�

Before compiling Grail � you need to specify which C�� compiler you�re using� In
the root�level Makefile you will �nd the following parameters�

� set CCC to your compiler�s path

CCC�CC

� set SYS to�

� XLC � if you�re using IBM�s xlC

� ATT � if you�re using USL�s Cfront

�SYS�XLC

SYS�ATT

�	

You need to set the CCC variable to the executable of your compiler �use a full
pathname if it isn�t in your �PATH�� You should also uncomment the appropriate
SYS variable� Grail compiles cleanly under both IBM�s xlC ���� and USL�s cfront
���� but the two systems have slightly di�erent requirements for inclusion of template
headers and for �le su�xes� The SYS variable is used by scripts during the making of
Grail � to ensure that the right �les are included and the right su�xes are generated�

After choosing a compiler and setting the appropriate variables� Grail is com�
piled by doing

make clean

make

from the root of the Grail �lesystem� The make �rst compiles each of Grail �s
classes and creates the library� Then it compiles the �lter programs fm�C� re�C�
and fmre�C� found in directory grail� This produces three executables� Finally�
each of the �lters is created by symbolically linking �les in the bin directory to the
appropriate executable in grail�

Each class is compiled separately� The Makefile for each class constructs a
single �le containing all the individual functions for a class� This technique is
used for two reasons� First� it requires less time to compile one �le than many
�mostly because of preprocessing costs�� Second� some C�� compilers use the
source �lename to construct an external entry point for the destructor function�
which could lead to linking problems if the same �lename is used for some other class�
We avoid this problem by catenating all the function �les into a single classname�C
�le and then compiling classname�C� The disadvantage of this approach is that
compilation errors are relative to classname�C instead of to the original component
source �les� which makes �xing bugs slightly more complicated�

Most of Grail �s classes are template classes� These templates aren�t compiled in
the initial class compilation phase� but rather are instantiated as needed during the
compilation of the �lter programs fm�C� re�C� and fmre�C� Thus� the Makefiles
for these classes don�t call the C�� compiler� but simply create the class �le�

Compiling Grail can take an hour or more� depending on system load� resources�
and the quality of the template instantiation in your C�� compiler� Most of the
compilation time is spent in template instantiation and linking�

��� Testing�

Grail has its own test system� The test system is useful as a check that Grail has
compiled correctly� It�s also useful as a preliminary check that modi�cations you
make to Grail don�t a�ect the correctness of its algorithms� Grail is tested by doing

make checkout

from the root of the Grail �lesystem� The testing procedure checks all �lters in
bin against the test objects� Testing scripts execute each �lter with each test
object as input� and compare the result with a previously obtained result stored in
a subdirectory named for the �lter� for example� fmtore is run against dfm	 and

�

the result compared with tests
fmtore
dfm	� If the result is identical� the script
proceeds to the next test� otherwise� the di�erences are printed and the whole test
result is placed in the directory errors� If tests are successfully completed� the
following output will be generated�

Testing fmcment on dfm	

Testing fmcment on dfm�

Testing fmcment on dfm�

Testing fmcment on dfm

Testing fmcment on dfm�

Testing fmcment on dfm�

Testing fmcment on nfm	

Testing fmcment on nfm�

Testing fmcomp on dfm	

Testing fmcomp on dfm�

Testing fmcomp on dfm�

Testing fmcomp on dfm

�

�

�

�No news is good news�� Some of the tests may put diagnostic messages on standard
error �for example� can�t minimize nfm� but this is normal output� If a �lter fails
a test� the di�erence between the stored result and the computed result is displayed
and is saved in the errors directory� An error is saved in a �le with the name
filter�object� for example� an error when running fmtore on nfm� would result in
the �le errors
fmtore�nfm�� Comparing errors
fmtore�nfm�with fmtore
nfm�

will help you debug fmtore�
The output of test runs and the stored results are both sorted before comparison�

This avoids di�erences that result only from the order of the output� What it
does not avoid is di�erences that result from language�equivalent but non�identical
objects� The testing procedure can detect only non�identical output� it doesn�t test
for language equivalence� Thus� if you write a completely new conversion for �nite�
state machines to regular expressions� for example� you should not expect that your
conversion will generate identical results for the test machines �though they should
be language equivalent��

The set of test cases includes some boundary cases and a few small examples�
We hope to expand the set of test cases in future versions of Grail �

��� Pro�ling�

Grail has its own pro�ling system� This is useful for checking that �improvements�
to Grail actually do result in a performance bene�t� Grail is pro�led by doing

make profile

from the root of the Grail �lesystem� The results of pro�ling are given as a table
found in profiles
profile�results� The table looks like the following�

�

total dfm� dfm� dfm� nfm� nfm� nfm� nfm�
fmcment ���� ���� ���� ���� ���� ���� ���� ����
fmcomp ���� ���� ���� ���� ���� ���� ���� ����
fmcat ���� ���� ���� ���� ���� ���� ���� ���

fmcross ���� ���� ���� ���� ���� ���� ���	 ����
fmdeterm ���� ���� ���� ���� ���� ���� ���� ����
fmenum ���� ���	 ���� ���� ���	 ��	� ���� ����
fmmin ���� ���� ���� ���� ���	 ���� ���� ����
fmminrev ���
 ���� ���� ���� ���� ���� ���� ����
fmplus ���� ���� ���� ���� ���� ���� ���� ���	
fmreach ���	 ���� ���� ���� ���� ���� ���	 ���	
fmrenum ���� ���� ���� ���� ���� ���� ���� ����
fmreverse ���	 ���� ���� ���� ���� ���� ���
 ����
fmstar ���� ���� ���� ���� ���� ���� ���� ���	
fmtore ���� ���� ���	 ���	 ���� ���� ���� ��	�
fmunion ���� ���� ���� ���� ���� ���� ���� ����
iscomp ���
 ���� ���� ���� ���� ���� ���� ����
isdeterm ���� ���� ���� ���� ���� ���� ���� ����
isomorph ���� ���� ���� ���� ���� ���� ���� ����
isuniv ���
 ���� ���� ���� ���� ���� ���� ����
xfmcat ���� ���� ���� ���� ���� ���� ���� ���

xfmreach ���	 ���� ���� ���� ���� ���� ���	 ���	
xfmplus ���� ���� ���� ���� ���� ���� ���� ���	
xfmstar ���� ���� ���� ���� ���� ���� ���� ���	
xfmtore ���� ���� ���	 ���	 ���� ���� ���� ��	�
xfmunion ���� ���� ���� ���� ���� ���� ���� ����

total reg� reg� reg�
recat ���� ���� ���� ����
remin ���� ���� ���� ����
restar ���� ���� ���� ����
retofm ���� ���� ���� ����
reunion ���� ���� ���� ����
isempty ���� ���� ���� ����
isnull ���� ���� ���� ����

profile�results shows the cost of each �lter for several sample inputs� The
cost is shown as a ratio of the number of machine cycles used by the current imple�
mentation against a previously stored value� If the current version is signi�cantly
di�erent from the previous one the ratio of cycles will be larger or smaller than
����larger if current implementation is less e�cient� and smaller if the current im�
plementation is more e�cient� The table shows the cycle ratio for each of a set of
test cases� and also the total cycle ratio over all cases� this latter value appears in
the leftmost column�

��

In the example table� we see that overall the current implementation is slightly
less e�cient than previous versions� it might suggest that the �improvement� most
recently added is actually making things worse� It�s wise to use some care when
interpreting the pro�le results� however� both because the results are dependent on
the type of computer you use� and because the test machines are of di�erent sizes� In
particular� nfm� is ten times larger than the other test cases� thus� nfm� accounts for
a disproportionate amount of the cycles in the overall total� Often� improvements
will make some cases worse and some better� for example� if your improvement
involves a substantial �xed overhead� you may notice the performance of the small
test cases is worse� while that of the large test cases is better�

The profiles directory contains scripts that automatically instrument and exe�
cute each �lter �fmprofile� fm�profile� reprofile� re�profile� and xfm�profile�
the ��� scripts are used for �lters that take two arguments� and scripts that compute
the cycle ratio and produce a new profile�results �le �fmdiff and rediff��

It�s possible to generate pro�les of current Grail with respect to older ver�
sions� The profiles directory contains a collection of previous pro�le results�
named with a date and �profile su�x� Copying any of these �les onto the �le
current�profile and then doing make recompute will generate a new results �le
that shows how Grail has improved since the date of the previous pro�le�

If you pro�le Grail over a long period of time� you may wish to retain a history of
improvements� At each milestone� simply copy current�profile into a �le named
with the date or some other identifying label� Note that it isn�t su�cient to save the
�le profile�results� This �le is derived data and contains only the cycle ratios�
The actual numbers of cycles are stored in �les with a �profile su�x� they are the
�les that must be retained�

Grail �s pro�ling mechanism is designed to work in environments that support
the pixie pro�ler �provided on DEC MIPS systems�� The pro�le harness should
be easily extendible to other pro�lers� To make the pro�ling mechanism work with
other pro�lers� write new scripts fmprofile� fm�profile� reprofile� re�profile�
and xfm�profile� They must automatically generate instrumented versions of the
code� extract the number of cycles after running a pro�le� and properly update the
intermediate �les�

��� Filters�

Grail provides �� �lters that can be used like any other command available at
shell level� In previous versions of Grail � each of these �lters was represented by
a separate source code �le and a separate executable� Structuring the �lters in
this way led to very long compile times� since some compilers re�instantiate the
templates for each �lter� Another problem with this approach is that the �lter code
itself was duplicated many times�

In Version ���� we�ve taken a di�erent approach� All �lters that deal with one
type of object �that is� a machine or expression of a given type� are implemented by a
single executable� This executable determines which function to apply by checking
the name by which it was invoked� If the fm executable was invoked with the

��

name fmdeterm� for example� then it would execute the conversion to deterministic
machines� The advantage of this technique is that it is easier and faster to copy or
rename a �le than to recompile it� This is particularly true for the current version
of Grail � which makes extensive use of templates�

Each of the individual �lters in Version ��� is actually a symbolic link from bin

to the appropriate executable in grail� Using symbolic links eliminates the cost of
storing multiple copies of the �les�

��� Classes�

Grail employs �	 classes� organized in a relatively �at hierarchy�

fm

inst

list

re

set

state

string

subexp

null exp

empty set

empty string

symbol exp

cat exp

plus exp

star exp

The main classes are fm ��nite�state machines� and re �regular expressions��
These classes de�ne the capabilities that make Grail useful for symbolic computa�
tion with machines and expressions�

There are two types of support classes� The �rst type implements the basic
container classes set� list� and string� The second type implements substructures
of the main classes� state implements the states of a �nite�state machine� inst
implements the instructions of a �nite�state machine� and subexp implements the
subexpressions of a regular expression�

subexp is an abstract base class for the set of possible subexpressions� These in�
clude null expressions �null exp�� empty set expressions �empty set�� empty string
expressions �empty string� single�symbol expressions �symbol exp�� catenation ex�
pressions �cat exp�� union expressions �plus exp�� and Kleene closure expressions
�star exp�� Null expressions represent neither empty sets nor empty strings� they
are an initialization expression that denote a regular expression with no content�

With the exception of state� all of Grail �s classes are templates that are instan�
tiated with the input alphabet of the machine� language� or expression� Grail thus
provides wide �exibility in designing and executing machines�

��

Here are some general comments about the design of the classes�

� All assignment and copying is deep� that is� the whole substructure of an
object is duplicated� None of Grail �s structures point to shared data� There
is no reference counting�

� There are no iterator classes� Utilities that want to iterate through a set or a
list simply use a loop over the selection operator�

� No implicit casts have been de�ned� and the number of copy constructors
�which act like implicit casts� is severely limited� This has been done to
ensure the strictest possible type checking�

Here are some general comments about the functions or design of each class�

� fm

Internally� fms are managed as sets of instructions including the pseudo�
instructions� Thus� some routines are more complicated than they should
be� because they must treat the pseudo�instructions as special cases� In a
future version of Grail � pseudo�instructions will be used only for input and
output� and not as an internal representation�

fm contains operations for �disjoint union�� These can be used for fast union
of machines that are known to be disjoint� The standard union operator
�operator��� tests for membership before adding� while the disjoint union
does not� It is the programmer�s responsibility to check for disjointness�

fm contains operations for �selecting� instructions based on their states or
labels� These operations will in future be moved to a class relation that will
support general�purpose project� select� and join operators�

� re

Why isn�t fmtore a member of fm� rather than of re� fmtore operates on an
fm�S� and generates an fm�re�S� �� if it was made a member of fm� it would
result in an in�nite template instantiation �the generated fm�re�S� � would
itself be a target of fmtore� generating an fm�re�re�S � � �� that would
itself be a target of fmtore�����

� state

States in a �nite�state machine are simple integers� The class state shifts all
integers by �� to ensure that � and � are available to represent the start and
�nal pseudo�state� respectively�

� inst

inst looks for the pseudo�labels �� and �� on its input� and generates them
on output� but does not represent them internally�

��

� subexp

subexp is an abstract base class� Most of its functions are pure virtual func�
tions�

� string

A string in Grail is not a char�� Even a string�char� is not a char��
since it is not null�terminated� It is necessary to append a null character to a
string�char� to handle it with functions such as strcmp or printf�

string de�nes a function ptr�� which returns the array pointer� This is a
trapdoor for potential problems� since the array can be arbitrarily modi�ed
without the string object adjusting its size and maximum value� Use this
capability only for operations that do not perform update to the array�

The string comparison operators are de�ned such that strings will be ordered
�rst by size� then lexicographically within equal sizes� This di�ers from the
usual ordering� but is more appropriate for dealing with languages� where we
typically want to see the shortest words �rst�

� container classes

lists and sets are both implemented as arrays of objects� Most of their func�
tions are the same� though lists can be sorted and sets cannot� There are
e�cient conversion operations from list and from set that simply adjust the
array pointers �and in the case of conversion from list� removes duplicates��
these conversion routines do not preserve the original list or set�

list de�nes a comparison function that is static� this is so that it can be
passed to qsort�

set is ine�cient� It does a linear scan to determine membership� so updates
are costly� This will be �xed in a future release�

set contains operations for �disjoint union�� These can be used for fast union of
sets that are known to be disjoint� The standard union operator �operator���
tests for membership before adding� while the disjoint union does not� It is
the programmer�s responsibility to check for disjointness�

� subexpressions

The subexpressions are null exp� empty set� empty string� symbol exp�
cat exp� plus exp� and star exp� These are all derived from subexp and
override its virtual functions as appropriate�

One complexity in the subexpressions is de�ning their comparison operators�
Individual subexpressions are ordered according to the following precedence�

empty set � empty string � symbol exp � plus exp � cat exp � star exp

Hence� empty string��operator��const empty set�S��� should return ��
since empty string expressions are always greater than empty set expressions�
We cannot simply compare the content of subexpression pointers� however�

��

since function arguments are interpreted according to their apparent type� not
their actual type� Each subexpression therefore de�nes a set of functions of the
form compare xzy exp� This function determines how a given subexpression
compares to an xyz expression� In e�ect� we are using two function calls �the
operator and the compare xyz exp� to determine the actual types of both
arguments to the comparison operation�

Most subexpressions de�ne a new subexp�� function� which is the actual con�
structor� This function is de�ned because it is not possible to have virtual
constructors� Similarly� the functions copy and clone are de�ned to provide
the e�ect of a virtual constructor� See the example in Stroustrup�s The C��
Programming Language� �nd Edition on p� ��
 for more information�

The null exp class is the only subexpression that does not have a theoretical
analogue� It is used as an initialization class and as a return value �it can be
used when necessary to return something that has the type �regular expres�
sion�� but that actually indicates an error or other exceptional condition��

star exp overloads the star operator of subexp and de�nes it as a no�op�
This has the e�ect of ensuring that a �starred� expression is only starred once�

��

� Changing and extending Grail �

This section is about modifying and improving Grail � and making it useful in your
own applications�

��� Adding a new Grail �lter�

Probably the easiest thing you can do is to create a new Grail �lter� This �lter
may simply combine existing Grail functions� or it may rely on new functionality
that you add to some of Grail �s classes� As an example� let us suppose you have
discovered a new operation on machines that you call �squeezing�� The way to add
this functionality to Grail is to add the squeezing code to grail
fm�C� � fm�C is
essentially a large case statement that selects which action is to be executed based
on the value of its name� that is� based on the value of argv���� Simpli�ed� fm�C
looks like�

main�argc� argv�

�

�

�

if �strcmp�my�name� �fmcment�� �� ��

�

 do complement operation �

if �strcmp�my�name� �fmcat�� �� ��

�

 do catenation operation �

if �strcmp�my�name� �fmenum�� �� ��

�

 do enumeration operation �

�

�

�

The variable my name is initialized to argv���� To make a �squeeze� �lter� you would
add something like�

if �strcmp�my�name� �fmsqueeze�� �� ��

�

get�one�a� argc� argv�

a�squeeze��

cout �� a

return �

�

Here the programmer has chosen fmsqueeze as the name of the �lter� If the exe�
cutable is called with this name� then it will enter the body of the if statement�

�If your new �lter was to be applied to regular expressions� you would add the code to

grail�re�C�

��

The function get one is a utility function that obtains the input machine� it will
get input either from a �le or from standard input �if �squeezing� was a binary op�
eration� you would use the utility function get two to get two �nite�state machines
as arguments� The input machine is stored in a� the function squeeze is called� �

the squeezed machine is printed on standard output� and the �lter returns�
In addition to modifying grail
fm�C� you also need to add a line to the Makefile

to create a symbolic link from bin
fmsqueeze to the executable fm�out�
To fully integrate your �lter with Grail � you should also add it to the pro�le and

test directories� To add the �lter to the test directory� you need to do the following�

� Make a directory tests
fmsqueeze� This is where pre�computed results of
testing are kept�

� Modify tests
Makefile to run fmtest �or fm�test� if your �lter takes two
arguments� on your �lter�

� Run your �lter on each of the test cases and carefully check the output� If
you�re certain that the results are correct� then store the output for each
test case in tests
fmsqueeze� �If you�re not certain that the output is
correct� then by storing the output all you�re doing is giving future testers
a false sense of con�dence�� Thus� the result of �squeezing� dfm	 should
be in tests
fmsqueeze
dfm	� the result of �squeezing� dfm� should be in
tests
fmsqueeze
dfm�� and so on�

� If you need to add some new test machines to test special conditions �for
example� an �unsqueezable� machine� for your �lter� it would be useful if you
also run all the other �lters in Grail on this test case� check their results� and
add the output to the respective directories� This practice will increase the
value of the test system for the whole of Grail �

� Write a man page for your new �lter�

To add your �lter to the pro�le directory� add a line to profiles
Makefile so
that your �lter will be pro�led �use fmprofile if your �lter uses only one argument�
and fm�profile if your �lter uses two arguments�� The next time you run the
pro�ler� the ratio shown for your �lter for all test cases will be ���� because the
pro�ler has no baseline� The second time you run the pro�ler� however� you will
see some values ���� if you haven�t improved your �lter in the meantime� and some
other non�zero value otherwise��

��� Parameterizing Grail with a new type�

One of the novel features that Grail provides is parameterizable machines and
expressions� You can create new functionality simply by specifying a di�erent
type for the machines or expressions� As distributed� Grail implements fm�char��

�Assuming that you have added this function to the de�nition of the class fm� see Section ���

for information on how to do this�

�	

fm�re�char� �� and re�char�� but you can parameterize Grail with any base type�
any Grail class� or any class that you create� All of the functionality of Grail is
carried over to your parameterized class�

Parameterizing should be the easiest way to modify Grail � but it isn�t� The
reason it isn�t is that template handling in most C�� compilers is still immature�
and it is necessary to manually instantiate some of the templates� Presently� there
are some �les included by classes
re
re�h which de�ne �bogus� variables whose
only purpose is to instantiate needed templates� If you parameterize with your own
types� you will likely need to add some explicit instantiations to these �les�

Parameterizing Grail is a new feature that hasn�t been fully explored� We
recommend that it be attempted only by experienced C�� programmers�

����� Parameterizing over a base type�

Suppose you want to create �nite�state machines whose instruction labels are in�
stances of int� You can do this with the following steps�

� Make a copy of grail
fm�C� Call it grail
fmint�C�

� Edit fmint�C� Change all variables of type fm�char� to fm�int�� Remove
any of the �lter de�nitions that you think aren�t applicable to ints�

� De�ne fm�int���left delimiter and fm�int���right delimiter� These
are two distinct characters which are used to delimit the printable representa�
tion of the type� and they will be used when outputting or inputting fm�int�s�
If these are not speci�ed� they default to the space character� One possible
choice for delimiters is ! and ��

� Edit grail
Makefile� Add a target so that fmint�C will be compiled� Add
a list of symbolic links from the bin directory to fmint�out� Be sure to use
names that are distinct from the existing links�

� Compile Grail �which� if you�ve done the previous steps correctly� will compile
your class and �lters as well��

� If your compilation succeeds� and the �lters operate properly� add test cases
and pro�le information as discussed in Section ���� Write man pages for the
fmint �lters�

Remember that using a template inside a template is permitted� but you must leave
a space between end�brackets� That is�

fm�re�char� �

is valid� but

fm�re�char��

�

is not �the C�� parser thinks that �� is the ostream operator� not the end of the
template speci�cation��

A similar process is used to parameterize re� The main di�erence is that you
will need to de�ne the following characters and strings�

static char re�star�S�

static char re�plus�S�

static char re�cat�S�

static char re�lparen�S�

static char re�rparen�S�

static char� re�estring�S�

static char� re�eset�S�

static char re�lambda�S�

static char re�left�delimiter�S�

static char re�right�delimiter�S�

static char re�left�symbol�delimiter�S�

static char re�right�symbol�delimiter�S�

These variables are used to specify the operators and other special symbols that are
used in alphanumeric representations of re�s� The chars must be a single character�
the char��s must be exactly two characters� The defaults for these symbols are as
given below�

re star star operator �default is ����
re plus union operator �default is ����
re cat catenation operator �default is ����
re lparen left parenthesis �default is ����
re rparen right parenthesis �default is ����
re estring empty string �default is �����
re eset empty set �default is �fg��
re lambda lambda symbol �default is ���
re left delimiter left delimiter of an re �default is � ��
re right delimiter right delimiter of an re �default is � ��
re left symbol delimiter left delimiter of a symbol �default is ����
re right symbol delimiter right delimiter of a symbol �default is ����

The default symbols are found in classes
re
std�h� You may add your own
de�nitions there� or put them in the header to your main routine�

There is one instance of each of these variables per parameterized class� so� there
is one re�char���re star� one re�int���re star� and so on� These variables are
provided to permit you to de�ne your own symbols� either because you prefer some
other delimiters or because one or more of the defaults is a valid symbol in the input
alphabet you want to use�

Note that the default symbol for catenation and the left delimiter are both �� If
these values are speci�ed �and only for the delimiters or catenation� then no output
is generated for those symbols�

�

����� Parameterizing over your own types�

Parameterizing over your own types is much the same as parameterizing over base
types or Grail types� However� there are two problems that are more likely to arise
with parameterization of your own types�

The �rst issue is the provision of minimally required functions and operators�
Grail �s templates �like those of any other C�� class library� operate on the as�
sumption that certain functions are de�ned by the type used for parameterization�
There is no way for us to arrange that you de�ne these functions� but if they aren�t
de�ned �or if you de�ne them ambiguously�� then your compilation will fail at tem�
plate instantiation time� Consequently� we require as small a number of functions
as possible �all of them are operators��

�

��

"�

�

�

��

��

If you have de�ned these operators for your type� it should instantiate without
trouble�

Even if all necessary operators are de�ned� you may misinterpret the results of
Grail �s operations� To understand this problem� let us look at fm�re�char� � in
some detail�

There are at least two possible ways to de�ne the �� operator for re�char��
One way� based on identity� treats two re�char�s as equivalent only if they are
identical� The second way� based on language equivalence� treats two re�char�s
as equivalent only if they denote the same language� In general� the only feasible
way to determine language equivalence for regular expressions is to convert them
to �nite�state machines� minimize the �nite�state machines� and test the minimal
�nite�state machines for identity� This test is an expensive proposition� so there is
some motivation for choosing to base equivalence on identity�

Grail � of course� has no way of knowing which choice you have made� indeed�
the whole point of parameterization is that it should not need to know which choice
you have made� Grail simply takes it for granted that the operator �� will return
a�rmatively if the two regular expressions are equivalent� and negatively otherwise�
But your choice of semantics for �� will a�ect the outcome of Grail �s operations�
�� is used in subset construction� for example� to cluster all states which are reach�
able on the same instruction label� If you�ve de�ned language equivalence as your
semantics� then Grail will treat the regular expressions a and a�a�a�a� as equiv�
alent� if you�ve chosen identity as your semantics� then Grail will treat these two
expressions as distinct� Thus� the two semantics lead to di�erent output�

Parameterization allows Grail to implement a collection of functions that are

��

performed on �black boxes�� which you can instantiate with a type� Grail will
provide correct results� but only within the semantics you de�ned for the operators
of that type� If you choose to de�ne identity semantics� don�t expect to get language
equivalence semantics in the result�

The same is true of the semantics of the other comparison operators �� �� and
"��

��� Modifying Grail 	s classes�

Modifying Grail �s classes can be straightforward� but it requires a good understand�
ing of three complicated areas� C�� templates� Grail �s existing structure� and the
theoretical properties of �nite�state machines and regular expressions� Here are
some points to remember�

� Maintain the separation between a class�s interface and its implementation�
The class fm� for example� is implemented as a set of instructions� but this
should not be visible outside the class� As much as possible� ensure that the
interface is restricted to logical functionality�

� Remember that your new function must work regardless of the type of the
instruction label �or� for regular expressions� of the symbols of the alphabet��
Do not make assumptions that are true only of �xed types� Is your function
general enough to apply to a fm�re�fm�set�string� � � �� If not� should
you rethink the function�

� Remember to run the tests on all Grail �lters after you have made your
modi�cations�

� If you create important new functionality� consider making it available through
a separate �lter� Follow the procedure that we described in Section ��� on
making �lters�

It would be convenient if your additions to Grail are consistent with the set of
conventions Grail uses for �lenames�

We use two� or three�letter pre�xes for �lters� Regular expression �lters use the
pre�x re� Finite�state machine �lters use the pre�x fm� Filters that operate on
�nite�state machine with regular expression labels �so�called extended �nite�state
machines� use the pre�x xfm� We also use these pre�xes as su�xes for commands
that convert from one type of object to another� for example� retofm� �

Each class directory has a �le classname�h that contains the class declaration�
The string class� for instance� is declared in the �le string�h� This is the �rst
place to look for information about the class� since it contains declarations of all
the methods�

�All predicates begin with the pre�x is� This is likely to be changed in the future� because it

does not distinguish between predicates for machines and predicates for expressions� and because

�is� is not the only type of predicate we want to support�

��

Each of the functions de�ned for a class is contained in a separate function�cc
�le� When the function is a function call with an alphanumeric name� its �lename
is the same name �for compatibility with non��exname �le systems� long function
names are shortened to �t an ��character limit�� Hence� the function parse in
the class re is located in the �le parse�cc� Since operator functions don�t have
alphabetic names� we�ve chosen to use the following standard alphabetic names for
operators�

�� ostream�cc

�� istream�cc

� lt�cc

� gt�cc

�� eq�cc

"� neq�cc

�� pluseq�cc

�� minuseq�cc

�� concat�cc

� plus�cc

� minus�cc

�� index�cc

We use classname�cc for constructors and �classname�cc for destructors�
Constants� macros� and types that are speci�c to a class are kept in defs�h� The
set of system and local �les that are necessary for compilation of functions are
speci�ed in include�h�

��� Miscellaneous�

Some odds and ends�

� The template classes each contain a script mksys� This script merely converts
the su�x of the classname�C �le to the appropriate su�x for the compiler as
determined by the SYS variable� This hack seems to be necessary because com�
pilers have di�erent ideas about what su�xes they support during template
instantiation�

� The class headers include an �ifdef to ensure that a class is de�ned only
once� This hack should be avoidable by proper use of the �include facility�
but it doesn�t seem possible �again� due to how template instantiation works��

� The classes derived from subexp �namely� empty set� empty string� cat exp�
plus exp� symbol exp� and star exp� are accessed only within re� and indeed
should not even be visible outside subexp� Why then are these derived classes
not nested within subexp� The reason is that some compilers don�t implement
nested classes within templates�

	�

� Why haven�t we made Grail work with GNU C��� The main reason is that
Grail depends heavily on templates� and GNU�s support for templates is still
incomplete�

��� Changes in Version ��

This section describes the changes and improvements made since version ����

	� Converted fa and trans to template classes�

�� Removed tset and xfa�

�� Cleaned up directories and files�

� �ifdefs used to avoid duplicate definitions of classes

�seems to be required by template instantiation mechanism�

�� fa filters are all now symbolic links to one executable

that checks argv��� to determine which operation to perform�

�� state��number made private�

#� Fixed trans comparison operators to avoid checking labels

for pseudo�transitions�

$� Removed fa��operator���trans�� �it had different semantics

from fa��operator���fa��� which could be confusing��

	�� Filters renamed to use �fm� prefix fixed test cases�

		� isomorph does its own renumbering and sorting now�

	�� Renamed �fa� class to �fm� renamed �trans� class to �inst��

�regexp� class to �re��

	�� re class rewritten new classes� empty�set� empty�string�

cat�exp� plus�exp� star�exp� symbol�exp� subexp�

	
� re filters are all now symbolic links to one executable

that checks argv��� to determine which operation to perform�

	�� xfm filters are all now symbolic links to one executable

that checks argv��� to determine which operation to perform�

	�� Made string parameterized altered usage of string where

	�

necessary to string�char��

	#� Rewrote retofm and fmtore�

	%� Added various hacks to enable proper template instantiation

�grail
template�	� grail
template��� note changes in re�h�

	$� re now does not automatically �minimize� expressions remin

has the �minimization� functionality�

��� Changes in Version ���

This section describes the changes and improvements made since version ����

	� Compiles under xlC 	���� AT�T ���� Watcom C�� $���

�� Added set
gt�cc and set
lt�cc�

�� string��operator�� reallocation changed so that blocks

are always a power of �� This seemed to fix a bug

when running fatore on RS
�����

� In string�h� fa�h� state�h� grail�h� use �iostream�h�

instead of �stream�h��

�� Removed �form� from regexp
concat�cc� regexp
term�cc�

regexp
token�c�

�� End�of�function return values required for regexp
test��cc�

#� Removed duplicate xfaplus from grail
Makefile�

%� Improved grail
Makefile to use default rules� removed

unnecessary operations�

$� Added �tempinc� to clean targets so that xlC recompilation

proceeds correctly�

	�� set
include�h and list
include�h designed to handle the

default requirements of xlC
Cfront template mechanisms

�for xlC� you include the template header file� for Cfront�

you don�t��

		� Added �XLC� and �ATT� defines to Makefile� tset�h�

	�

	�� �delete �� p� removed from &tset��� It incorrectly duplicates

the functionality of &set��� causes a crash under Watcom $��

�discovered by Mark DeLaFranier of Watcom��

	�� mksys scripts written for list� set �to provide correct

suffixes for xlC and Cfront��

	
� Removed �libc�h�� substituted �stdlib�h��

	�� All grail filters given �return �� at end of main all

return values checked �and modified� for correctness�

	�� from�set and from�list made members of list and set

respectively�

	#� find�part removed from xfa�h�

	%� list��compare�� only removed compare from all other classes

compared contents of pointers instead of pointers�

	$� list��� and list����

��� Removed print functions from set� tset� list redefined

ostream operators�

�	� converted Item��compare to list�Item���compare in list��sort

��� note that tset�operator�� second argument must be const�

��� famin fixed can�t treat min�by�partition result as boolean�

�
� Added functions fa��deterministic�density� xfa��number�of�transitions�

xfa��number�of�labels� xfa��number�of�states�

��� For nfa�s� faenum computes deterministic density and

converts to deterministic automata if appropriate�

��� Purify�d� Fixed bugs in string��operator���const char�� and

ostream�����ostream�� regexp���

	�

A Catenation expressions� cat exp

A�� De�nition

cat exps are parameterizable catenation subexpressions of regular expressions� cat exp

maintains two variables�

protected�

subexp�S�� left

subexp�S�� right

A�� Public functions

cat exp�S�� operator��const cat exp�S�� r� const

Assignment operator� Assigns the left and right of r to the left and right

of the invoking cat exp�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare cat exp�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare cat exp�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare cat exp�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare cat exp�

int compare cat exp�const subexp�S���const subexp�S��� const

Returns � if the invoking cat exp is greater than the arguments� � if it is
equal� and �� if it is less than the arguments�

int compare plus exp�const subexp�S���const subexp�S��� const

Returns �� �cat exp is always less than plus exp��

int compare star exp�const subexp�S��� const

Returns �� �cat exp is always less than star exp��

subexp�S�� clone��

Clone operation� Simulates virtual copy constructor�

int contains empty string�� const

Returns � if left or right contains the empty string� and returns � otherwise�

	�

int contains cat exp�� const

Returns � if left or right contains the empty set� and returns � otherwise�

void convert subexp�fm�S�� a� const

Converts the invoking cat exp into a fm and returns the result in a� Makes
calls to other subexpression classes�

void copy�const subexp�S���

Copy operation� Used by clone�

int is empty string�� const

Returns � if left and right are the empty string� and returns � otherwise�

int is cat exp�� const

Returns � if left or right contains the empty set� and returns � otherwise�

subexp�S�� minimize��

Applies minimization heuristics�

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new cat exp�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the invoking cat exp on the stream
os� The symbol for the union operation is de�ned in the variable re�S���re cat�

int size�� const

Returns � plus the size of left and the size of right�

cat exp��

Constructor� Assigns left and right to null exp�

cat exp�const re�S�� l� const re�S�� r�

Copy constructor� Class clone on each of l and r�

cat exp�const cat exp�S���

Copy constructor� Calls clone�

�cat exp��

Destructor� Explicitly calls the destructors for the left and right subexp�

		

B Empty set expressions� empty set

B�� De�nition

empty sets are parameterizable empty set subexpressions of regular expressions�
empty set maintains no variables� it simply exists to stand for an empty set� and
to de�ne the value of some comparison functions�

B�� Public functions

empty set�S�� operator��const empty set�S���

Assignment operator� A no�op�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare empty set�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare empty set�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare empty set�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare empty set�

subexp�S�� clone�� const

Returns a new empty set�

int compare empty set�� const

Returns � �every empty set is equal to every other��

int compare empty string�� const

Returns �� �every empty set is less than every empty string��

int compare cat exp�const subexp�S��� const subexp�S��� const

Returns �� �every empty set is less than every cat exp��

int compare plus exp�const subexp�S��� const subexp�S��� const

Returns �� �every empty set is less than every plus exp��

int compare star exp�const subexp�S��� const

Returns �� �every empty set is less than every star exp��

int compare symbol exp�const S�� const

Returns �� �every empty set is less than every symbol exp��

	

int contains empty set�� const

Returns ��

void convert subexp�fm�S�� a� const

Converts the invoking empty set into a fm and returns the result in a�

int is empty set�� const

Returns ��

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new empty set�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the empty set on the stream os�
The representation used is de�ned by the variable re�S���re empty set�

int size�� const

Returns ��

empty set��

Constructor� A no�op�

empty set�const empty set�S���

Copy constructor� A no�op�

�empty set��

Destructor� A no�op�

	

C Empty string expressions� empty string

C�� De�nition

empty strings are parameterizable empty string subexpressions of regular expres�
sions� empty string maintains no variables� it simply exists to stand for an empty
string� and to de�ne the value of some comparison functions�

C�� Public functions

empty string�S�� operator��const empty string�S���

Assignment operator� A no�op�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare empty string�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare empty string�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare empty string�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare empty string�

subexp�S�� clone�� const

Returns a new empty string�

int compare empty string�� const

Returns � �every empty string is equal to every other��

int compare cat exp�const subexp�S��� const subexp�S��� const

Returns �� �every empty string is less than every cat exp��

int compare plus exp�const subexp�S��� const subexp�S��� const

Returns �� �every empty string is less than every plus exp��

int compare star exp�const subexp�S��� const

Returns �� �every empty string is less than every star exp��

int compare symbol exp�const S�� const

Returns �� �every empty string is less than every symbol exp��

int contains empty string�� const

Returns ��

	�

void convert subexp�fm�S�� a� const

Converts the invoking empty string into a fm and returns the result in a�

int is empty string�� const

Returns ��

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new empty string�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the empty string on the stream os�
The representation used is de�ned by the variable re�S���re empty string�

int size�� const

Returns ��

empty string��

Constructor� A no�op�

empty string�const empty string�S���

Copy constructor� A no�op�

�empty string��

Destructor� A no�op�

	�

D Finite�state machines� fm

D�� De�nition

fms are parameterizable �nite�state machines� fms consist of a set of instructions
whose label type is speci�ed by the parameter�

fms can have multiple �nal states� as is customary� but they can also have mul�
tiple start states� By de�nition� any fm with more than one start state is nonde�
terministic� fms contain pseudo�instructions to denote the states that are start and
�nal�

fm maintains the following variables�

protected�

set�inst�Label� � arcs

D�� Public functions

fm�Label�� operator��const fm�Label�� a�

Assignment operator� Checks for self�assignment� and then copies a to the
invoking fm�

int operator���const fm�Label�� a�

Equivalence operator� Returns � if a is identical to the invoking machine�
and returns � otherwise� Note that this operator checks for identity� not for
language equivalence�

int operator"��const fm�Label�� a�

Inequivalence operator� Returns � if a is di�erent from the invoking machine�
and returns � otherwise� Note that this operator checks for identity� not
language equivalence�

fm�Label�� operator���const fm�Label�� a�

Returns the union of a with the invoking machine�

fm�Label�� operator���const fm�Label�� a�

Catenation operator� Catenates a with the invoking machine� Computes the
Cartesian product of penultimate states of the invoking fm with the start
states of a� Does not introduce empty�string instructions�

fm�Label�� operator���const fm�Label�� a�

Di�erence operator� Deletes instructions in the invoking machine that are
also present in a�

inst�Label�� operator���int i� const

Selection operator� Returns the ith instruction in the invoking machine�

�

void cartesian�const set�state��� const set�Label��� const set�state���

Assigns the Cartesian product of the arguments to the invoking fm�

int canonical numbering��

Renumbers all states according to a breadth��rst traversal of the fm� Will not
renumber a nondeterministic fm�

void clear��

Clears the set of arcs�

void complement��

Complements the invoking fm� Assumes that the alphabet is de�ned by the
set of Labels already present in the fm�

void complete��

Completes the invoking fm�that is� it ensures that each state has a instruction
on each Label in the alphabet� Assumes that the alphabet is de�ned by the
set of Labels already present in the fm�

void cross product�const fm�Label��� fm�Label��

Assigns the cross product of the two argument fms to the invoking fm�

fm�Label�� disjoint union�const fm�Label�� t�

E�cient union of t with the invoking fm� It is the programmer�s responsibility
to ensure that the two machines are disjoint�

fm�Label�� disjoint union�const inst�Label�� a�

E�cient union of a with the invoking fm� It is the programmer�s responsibility
to ensure that a is not contained in the invoking machine�

fm�Label�� empty string machine��

Makes the invoking machine one that accepts only the empty string�

int enumerate�int i� set�string�Label� �� s� const

Generate the �rst i strings in the language of the machine and return them
in s� Strings are ordered �rst according to size� then lexicographically�

set�state�� finals�set�state��� const

Return the set of �nal states in the invoking machine�

int is complete�� const

Returns � if the invoking machine is complete� and returns � otherwise�

int is deterministic�� const

Returns � if the invoking machine is deterministic� and returns � otherwise�

�

int is universal�� const

Returns � if the invoking machine is universal� and returns � otherwise�

set�Label�� labels�set�Label��� const

Return the set of Labels in the invoking machine�

fm�Label�� empty string machine��

Makes the invoking machine one that accepts only the empty string�

state max state��

Returns the maximum state�

int member of language�char� s� int d� const

Returns � if s is a member of the language of the machine� returns � otherwise�
If d is �� then the function prints diagnostic statements on standard output
describing its traversal of the machine�

fm�Label�� min by partition��

Minimizes the invoking machine according to Hopcroft�s partition method�
Should only be applied to deterministic machines�

int number of final states�� const

Returns the number of �nal states in the invoking machine�

int number of labels�� const

Returns the number of distinct Labels in the invoking machine�

int number of start states�� const

Returns the number of start states in the invoking machine�

int number of states�� const

Returns the number of states in the invoking machine�

int number of instructions�� const

Returns the number of non�pseudo instructions in the invoking machine �the
total number of instructions can be found by executing arcs�size���

void plus��

Computes the ��� of the invoking machine� that is� it converts the invoking
machine into one that accepts strings that are catenations of one or more
strings in the original machine�

void reachable fm��

Reduces the invoking machine to the subset of instructions that correspond
to reachable states�

�

void reachable states�set�state�� s� const

Computes the set of reachable states and assigns them to s�

void remove�const state� s�

Removes from the invoking machine any instruction that refers to state s�

void renumber�int i�

Renumbers the invoking machine by adding i to the states�

void reverse��

Reverses the invoking machine� Note that this may result in multiple start
states �and hence� a nondeterministic machine��

fm�Label�� select�const state� s� int w� fm�Label�� a� const

Returns in a the submachine consisting of instructions that refer to the state
s� w speci�es that s is to be a source state� sink state� or either�

fm�Label�� select�const Label� l� fm�Label�� a� const

Returns in a the submachine consisting of instructions whose Label is l�

fm�Label�� select�const Label� l� const state� s� int w� fm�Label�� a�

const

Returns in a the submachine consisting of instructions whose Label is l and
which refer to the state s� w speci�es that s is to be either a source state or
a sink state�

fm�Label�� single�const Label� r�

Makes the invoking machine a single�instruction machine with the instruction
Label being r�

set�state�� sinks�set�state�� s� const

Returns the set of sink states in the invoking machine in s �a sink state is a
state on the right hand side of a regular instruction��

int size�� const

Returns the size of the invoking machine�

set�state�� sources�set�state�� s� const

Returns the set of source states in the invoking machine in s �a source state
is a state on the left hand side of a regular instruction��

fm�Label�� star��

Computes ��� of invoking machine� that is� it converts the invoking machine
into one that accepts strings that are catenations of zero or more strings in
the original machine�

�

set�state�� starts�set�state�� s� const

Returns the set of start states of the invoking machine in s�

set�state�� states�set�state��� const

Returns the set of states of the invoking machine in s�

fm�Label�� subset��

Converts the invoking �nondeterministic� machine into a deterministic ma�
chine by subset construction�

fm��

Constructor� A no�op�

fm�fm�Label�� a�

Copy constructor� Copies the set of instructions�

�fm��

Destructor� A no�op�

D�� Private functions

int find part�set�set�state� �� p� state s�

Finds the member of the partition p containing the state s� Returns the
partition index if successful� and �� otherwise� Used by min by partition�

void merge inverse�set�set�state� �� p� set�int�� k� set�state�� s�

Given a set of states s� merge it with the existing partition p� Adjusts the
index of partition elements �k� that must be processed in successive steps of
the minimization� Used by min by partition�

D�� Friend functions

ostream� operator���ostream� os� const fm�Label�� s�

Outputs s on stream os�

istream� operator���istream� os� fm�Label�� s�

Inputs s from stream is�

�

E Instructions� inst

E�� De�nition

insts are parameterizable instructions in a �nite�state machine� Each instruction
consists of two states �a source state and a sink state� and the instruction label�
which is the template parameter�

inst provides support for pseudo�start and pseudo��nal instructions� These
instructions use the form of an instruction to denote the start and �nal states in a
�nite�state machine�

�START� �� �

�� �FINAL�

The instruction labels for these pseudo�instructions are purely decorative� but can
be thought of as �end markers� on an input tape� The tokens �START� and �FINAL�

represent the pseudo�start and pseudo��nal states� respectively �they are repre�
sented by state values of � and �� respectively�� inst maintains the following
private variables�

private�

state source

 source state

Label label

 instruction label

state sink

 sink state

The following public variables are maintained�

static char left�delimiter

static char right�delimiter

E�� Public functions

inst�Label�� operator��const inst�Label�� t�

Assignment operator� Checks for self assignment� then assigns components of
t to the invoking inst�

int operator���const inst�Label�� t�

Returns � if source� sink� and label of the invoking inst are equivalent to
those of t and otherwise returns ��

int operator"��const inst�Label�� t�

Returns � if source� sink� and label are equivalent to those of t� and oth�
erwise returns ��

void assign�const state� s	� const Label� r� const state� s��

Assigns the argument values to the invoking inst�

	

Label� get label��

Returns label�

state� get sink��

Returns sink�

state� get source��

Returns source�

state is final��

Returns � if the invoking inst is a pseudo��nal instruction� and otherwise
returns ��

state is start��

Returns � if the invoking inst is a pseudo�start instruction� and otherwise
returns ��

state is null��

Returns � if the invoking inst is a null instruction� and otherwise returns ��

int labelis�const Label� l�

Returns � if label is equivalent to l� and � otherwise�

void make final�const state� s�

Makes the invoking inst a pseudo��nal instruction with a source of s�

void make start�const state� s�

Makes the invoking inst a pseudo�start instruction with a sink of s�

void renumber�int bottom�

Renumbers the states in the invoking inst by adding bottom to their value�

void reverse��

Swap start and �nal states of the invoking inst� Converts pseudo�start
instructions to pseudo��nal instructions and vice versa�

void null��

Makes the invoking inst null�

int sinkis�const state� s�

Returns � if sink of the invoking inst is equivalent to s� and returns �
otherwise�

int sourceis�const state� s�

Returns � if source of the invoking inst is equivalent to s� and returns �
otherwise�

inst��

Constructor� A no�op�

inst�const state� s	� const Label� r� const state� s��

Constructor with initializers�

inst�const inst�Label�� t�

Copy constructor�

�inst��

Destructor� A no�op�

E�� Friend functions

ostream� operator���ostream� os� const inst� t�

Outputs t on stream os� Correctly handles pseudo�start and pseudo��nal
instructions�

istream� operator���istream� os� inst� t�

Inputs t from stream is� Correctly handles pseudo�start and pseudo��nal
instructions�

F Lists� list

F�� De�nition

lists are parameterizable� dynamic� homogeneous lists of Items�
Each list stores its objects directly� If you want to use a list to share ob�

jects with some other container� you should declare a list that stores pointers or
references to the objects you want to share� lists can contain multiple copies of a
object� and can be sorted� The order in which objects are appended to a list is
preserved�

It is possible to convert a list to a set without copying all the elements� This
is because sets and lists are both implemented with a pointer to an array of the
contained objects� thus� it is possible to simply copy the pointer� and leave the
array intact� The from set function converts a set to a list� list maintains the
following variables�

protected�

Item� p

 array of Items

int max

 maximum size of array

int sz

 number of elements currently in array

Note that operator�� is not de�ned�

F�� Public functions

void clear��

Sets the size to �� Does not free any space used by current members�

int contain�const list�Item�� s� const

Checks to see if s is contained in the invoking list� Returns � if s is contained�
and returns � otherwise�

void intersect�const list�Item�� s	� const list�Item�� s��

Clears the invoking list� then adds any members belonging to the intersection
of s	 and s��

int is sorted��

Returns � if the invoking list is sorted� and returns � otherwise�

static int compare�const Item�� const Item��

Comparison of two Items� Returns � if the �rst argument is greater than the
second� � if the two arguments are equal� and �� if the second argument is
greater than the �rst� This function is static so that its pointer can be passed
as an argument to qsort���

�

int member�const Item� s�

Returns � if s is a member of the invoking list� and returns � otherwise�

list�Item�� operator��const list�Item�� s�

Assignment operator� Checks for self�assignment� clears� and adds s to the
invoking list�

list�Item�� operator��const Item� i�

Assignment operator� Checks for self�assignment� clears� and adds i to the
invoking list�

int operator���const list�Item�� s� const

Equivalence operator� Returns � if s and the invoking list contain exactly
the same Items in the same order� and returns � otherwise�

int operator"��const list�Item�� s� const

Inequivalence operator� Returns � if s and the invoking list do not contain
exactly the same Items in the same order� and returns � otherwise�

int operator��const list�Item�� s� const

Less�than operator� Returns � if the invoking list is less than s� and returns
� otherwise� list a is less than list b if a has fewer members than b� or
if ai � bi and ai and bi are the smallest elements of a and b that are not
contained in both� This function is used when sorting collections of lists�

int operator��const list�Item��� const

Greater�than operator� Returns � if the invoking list is greater than s� and
returns � otherwise� list a is greater than list b if a has more members
than b� or if ai � bi and ai and bi are the smallest elements of a and b that
are not contained in both� This function is used when sorting collections of
lists�

void operator���const list�Item�� s�

Union operator� Checks for self assignment� and adds each member of s to
the invoking list�

void operator���Item q�

Union operator� Checks q for membership in the invoking list� allocates
additional space if necessary� then adds q� q is copied with the assignment
operator of the class Item�

void operator���const list�Item�� s�

Di�erence operator� Checks for self�deletion� and then deletes each member
of s from the invoking list�

�

void operator���const Item� s�

Di�erence operator� Checks for membership of s in the invoking list� and
then deletes it�

Item� operator���int i� const

Selection operator� Returns the ith Item� Though currently implemented as
array selection� it need not be� and programmers should not depend on this�

void remove�int i�

Removes the ith Item from the invoking list� This function is not de�ned as
an overloaded operator�� in order to avoid ambiguity� in particular� removing
the ith Item from a list of int would not be distinguishable from removing
i itself from the list�

int size�� const

Returns the current size of the invoking list�

void sort�� const

Sorts the Items of the invoking list� Calls qsort�� to do the sorting�

void unique�� const

Removes duplicate Items from the invoking list� This function �rst sorts
the list� so the order of the Items is not retained�

void from set�set�Item���

E�ciently converts a set to a list� Note that the set is no longer available
after this call� the array of Items in the set has been transferred directly to
the list�

list��

Constructor� Allocates space and sets the size to ��

list�const list�Item�� s�

Copy constructor� Allocates space and copies s to the invoking list�

�list��

Destructor� Deletes the array of Items�

F�� External functions

ostream� operator���ostream� os� list�Item�� s

Outputs s on stream os�

�

G Null expressions� null exp

G�� De�nition

null exps are parameterizable null subexpressions of regular expressions� null exp

are used as initializers for regular expressions when no other value is available�

G�� Public functions

null exp�S�� operator��const null exp�S���

Assignment operator� A no�op�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare null exp�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare null exp�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare null exp�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare null exp�

subexp�S�� clone�� const

Returns a new null exp�

int compare null exp�� const

Returns � �every null exp is equal to every other��

int compare empty set�� const

Returns �� �every null exp is less than every empty set��

int compare empty string�� const

Returns �� �every null exp is less than every empty string��

int compare cat exp�const subexp�S��� const subexp�S��� const

Returns �� �every null exp is less than every cat exp��

int compare plus exp�const subexp�S��� const subexp�S��� const

Returns �� �every null exp is less than every plus exp��

int compare star exp�const subexp�S��� const

Returns �� �every null exp is less than every star exp��

�

void convert subexp�fm�S�� a� const

A no�op�

int is null exp�� const

Returns ��

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new null exp�

void print�ostream� os� int i� const

A no�op�

int size�� const

Returns ��

null exp��

Constructor� A no�op�

null exp�const null exp�S���

Copy constructor� A no�op�

�null exp��

Destructor� A no�op�

�

H Union expressions� plus exp

H�� De�nition

plus exps are parameterizable union subexpressions of regular expressions �re��
plus exp maintains two variables�

protected�

subexp�S�� left

subexp�S�� right

H�� Public functions

plus exp�S�� operator��const plus exp�S�� r� const

Assignment operator� Assigns the left and right of r to the left and right

of the invoking plus exp�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare plus exp�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare plus exp�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare plus exp�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare plus exp�

int compare plus exp�const subexp�S��� const subexp�S��� const

Returns � if the invoking plus exp is equal to the arguments� �� if it is less
than the arguments� and � if it is greater than the arguments�

int compare star exp�const subexp�S��� const

Returns �� �every plus exp is less than every star exp��

subexp�S�� clone��

Clone operation� Simulates virtual copy constructor�

int contains empty string�� const

Returns � if the left or right contains the empty string� and returns �
otherwise�

int contains plus exp�� const

Returns � if the left or right contains the empty set� and returns � otherwise�

�

void copy�const subexp�S���

Copy operation� Used by clone�

int is empty string�� const

Returns � if left and right are the empty string� and returns � otherwise�

int is plus exp�� const

Returns � if left and right contains the empty set� and returns � otherwise�

subset�S�� minimize��

Applies minimization heuristics�

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new cat exp�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the plus exp on the stream os� The
symbol for the union operation is de�ned in the variable re�S���re plus�

int size�� const

Returns � plus the size of left and the size of right�

plus exp��

Constructor� Assigns left and right to null exp�

plus exp�const re�S�� l� const re�S�� r�

Copy constructor� Copies the subexp� of l to left and the subexp� of r to
right�

plus exp�const plus exp�S���

Copy constructor� Calls clone�

�plus exp��

Destructor� Explicitly calls the destructors for the left and right subexp�

�

I Regular expressions� re

I�� De�nition

res are parameterizable regular expressions� re maintains the following variable�

protected�

subexp�S�� p

A subexp is a subexpression �also a template class�� There are several derivations
of subexp� p can point to any one of them� re also maintains the following static
variables�

public�

static char re�star

static char re�plus

static char re�cat

static char re�lparen

static char re�rparen

static char� re�estring

static char� re�eset

static char re�lambda

static char re�left�delimiter

static char re�right�delimiter

static char re�left�symbol�delimiter

static char re�right�symbol�delimiter

I�� Public functions

re�S�� operator��const re�S�� r�

Assignment operator� Checks for self�assignment� and then copies r to the
invoking fm�

re�S�� operator��subexp�S�� r�

Assignment operator� Checks for self�assignment� and then copies r to the
invoking re� Actually just copies the subexpression pointer�

int operator���const re�S�� r� const

Equivalence operator� Returns � if the invoking re is equal to r� and � other�
wise� Returns � if either re is null�

int operator"��const re�S�� r� const

Inequivalence operator� Returns � if the invoking re is not equal to r� and �
otherwise� Returns � if either re is null�

	

int operator��const re�S�� r� const

Less�than operator� Returns � if the invoking re is less than r� and � other�
wise� Returns � if either re is null�

int operator��const re�S�� r� const

Greater�than operator� Returns � if the invoking re is greater than r� and �
otherwise� Returns � if either re is null�

re�S�� operator��const re�S�� r�

Catenation operator� Catenates the invoking re with r�

re�S�� operator��const re�S�� r�

Union operator� Computes the union of the invoking re with r�

re�S�� operator���const re�S�� r�

Catenation operator� Catenates the invoking re with r� without producing
an intermediate re�

re�S�� operator���const re�S�� r�

Union operator� Computes the union of the invoking re with r� without
producing an intermediate re�

void clear��

Clears the content of the re�

int contains empty set�� const

Returns � if the invoking re contains the empty set� and � otherwise� Returns
� if the invoking re is null�

int contains empty string�� const

Returns � if the invoking re contains the empty string� and � otherwise�
Returns � if the invoking re is null�

void fmtore�fm�S�� a�

Converts �nite�state machine a to an re� and returns it as the invoking re�

int is empty set�� const

Returns � if the invoking re is the empty set� and � otherwise� Returns � if
the invoking re is null�

int is empty string�� const

Returns � if the invoking re is the empty string� and � otherwise� Returns �
if the invoking re is null�

int is null�� const

Returns � if the invoking re is null �that is� uninitialized� and � otherwise�

re�S�� make empty string�� const

Make the empty string re�

re�S�� make empty set�� const

Make the empty set re�

re�S�� make null exp�� const

Makes the null �uninitialized� re�

re�S�� make symbol�const S� s� const

Makes a single symbol re� using symbol s�

re�S�� minimize��

Applies minimization heuristics �removing subexpressions that are catenated
with empty set� removing empty string from catenations� removing union
of equivalent expressions� eliminating unnecessary parentheses��

re�S�� parse�char� str� int� i� int size�

Parses the string str of size size� starting at position i� and returns the
corresponding subexp�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the re on the stream os� i is the
priority used to determine whether the expression should be surrounded by
parentheses�

fm�S�� retofm�� const

Converts the invoking re to a �nite�state machine� Employs the convert subexp

functions of the subexpressions of the invoking re�

int size�� const

Returns the size of the invoking re�

re�S�� star��

Computes the Kleene star of the invoking re�

re�S�� term�char� str� int� i� int size�

Finds the next term in str starting from i� and returns a pointer to the
corresponding subexp� Used by parse�

token type token�char� str� int� i�

Finds the next token in str starting from i� and returns an indicator of the
type of the token� Used by parse and term�

re��

Constructor� Initializes p to empty set�

re�const re�S�� a�

Copy constructor� Tests for equivalence� and then copies the subexpression
pointer�

�re��

Destructor� Explicitly deletes the subexpression through its pointer�

I�� Friend functions

ostream� operator���ostream� os� const re�S�� s�

Outputs s on stream os�

istream� operator���istream� os� re�S�� s�

Inputs s from stream is�

�

J Sets� set

J�� De�nition

sets are parameterizable� dynamic� homogeneous sets of Items� Each set stores
its objects directly� If you want to use a set to share objects with some other
container� you should declare a set that stores pointers or references to the objects
you want to share�

It is possible to convert a set to a list without copying all the elements� This
is because lists and setss are both implemented with a pointer to an array of
the contained objects� thus� it is possible to simply copy the pointer� and leave the
array intact� The from list function converts a list to a set�

set maintains the following variables�

protected�

Item� p

 array of Items

int max

 maximum size of array

int sz

 number of elements currently in array

Note that operator�� is not de�ned�

J�� Public functions

set�Item�� operator��const set�Item�� s�

Assignment operator� Checks for self�assignment� clears� adds s to the invok�
ing set�

set�Item�� operator��const Item� i�

Assignment operator� Checks for self�assignment� clears� adds i to the invok�
ing set�

int operator���const set�Item�� s� const

Equivalence operator� Returns � if s and the invoking set contain exactly the
same Items� and returns � otherwise�

int operator"��const set�Item�� s� const

Inequivalence operator� Returns � if s and the invoking set do not contain
exactly the same Items� and and returns � otherwise�

int operator��const set�Item�� s� const

Less�than operator� Returns � if the invoking set is less than s� and returns �
otherwise� set a is less than set b if a has fewer members than b� or if ai � bi

and ai and bi are the smallest elements of a and b that are not contained in
both� This function is used when sorting collections of sets�

�

int operator��const set�Item��� const

Greater�than operator� Returns � if the invoking set is greater than s� and
returns � otherwise� set a is greater than set b if a has more members than
b� or if ai � bi and ai and bi are the smallest elements of a and b that are not
contained in both� This function is used when sorting collections of sets�

void operator���const set�Item�� s�

Union operator� Checks for self assignment� and adds each member of s to
the invoking set�

void operator���Item q�

Union operator� Checks q for membership in the set� allocates additional
space if necessary� then adds q to the invoking set� q is copied with the
assignment operator of the class Item�

void operator���const set�Item�� s�

Di�erence operator� Checks for self�deletion� and then deletes each member
of s from the invoking set�

void operator���const Item� s�

Di�erence operator� Checks for membership of s in the invoking set� and
then deletes it�

Item� operator���int i� const

Selection operator� Returns the ith Item� Though currently implemented as
array selection� it need not be� and programmers should not depend on this�

void clear��

Sets the size to zero� Does not free any space used by current members�

int contain�const set�Item�� s� const

Checks to see if s is contained in the invoking set� Returns � if s is contained�
and returns � otherwise�

set�Item�� disjoint union�const set�Item�� s�

Computes a fast union of s with the invoking set� based on the assumption
that the two sets are disjoint� It is the programmer�s responsibility to ensure
that the sets are disjoint�

set�Item�� disjoint union�const Item� s�

Computes a fast union of s with the invoking set� based on the assumption
that s does not appear in the invoking set� It is the programmer�s responsi�
bility to ensure that s does not appear in the invoking set�

��

void from list�list�Item���

E�ciently converts a list to a set� Duplicates are removed� Note that
the list is no longer available after this call� the array of Items has been
transferred directly to the set�

void intersect�const set�Item�� s	� const set�Item�� s��

Clears the invoking set� then adds any members belonging to the intersection
of s	 and s��

int member�const Item� s�

Checks for membership of s in the invoking set� Returns � if s is a member�
and returns � otherwise�

void remove�int i�

Removes the ith Item from the invoking set� This function is not an over�
loaded operator�� in order to avoid ambiguity� in particular� removing the
ith member of a set of int would not be distinguishable from removing I

itself from the set�

int size�� const

Returns the current size of the invoking set�

set��

Constructor� Allocates space and sets the size to zero�

set�const set�Item�� s�

Copy constructor� Allocates space and copies s to the invoking set�

�set��

Destructor� Deletes the array of Items�

J�� External functions

ostream� operator���ostream� os� set�Item�� s

Outputs s on stream os�

��

K Star expressions� star exp

K�� De�nition

star exps are parameterizable star �or closure� subexpressions of regular expres�
sions� star exp maintains one variable�

protected�

subexp�S�� left

K�� Public functions

star exp�S�� operator��const star exp�S�� r� const

Assignment operator� Assigns left of r to the left of the invoking star exp�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare star exp�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare star exp�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare star exp�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare star exp�

int compare star exp�const subexp�S��� const

Returns �� if the invoking star exp is less than the argument� � if equal to
the argument� and � if greater than the argument�

subexp�S�� clone��

Clone operation� Simulates virtual copy constructor�

int contains empty string�� const

Returns � if left contains the empty string� and returns � otherwise�

int contains star exp�� const

Returns � if left contains the empty set� and returns � otherwise�

void convert subexp�fm�S�� a� const

Converts the invoking star exp into a fm and returns the result in a� Makes
calls to other subexpression classes�

��

void copy�const subexp�S���

Copy operation� Used by clone�

int is empty string�� const

Returns � if left is the empty string� and returns � otherwise�

int is star exp�� const

Returns � if left is the empty set� and returns � otherwise�

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new star exp�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the star exp on the stream os� The
symbol for the star operation is de�ned in the variable re�S���re star�

int size�� const

Returns � plus the size of left�

subexp�S�� star��

Star operation� A no�op� since star of star is still star�

star exp��

Constructor� Assigns left to null exp�

star exp�const re�S�� s�

Copy constructor� Assigns left of s to left�

star exp�const star exp�S�� s�

Copy constructor� Calls clone�

�star exp��

Destructor� Explicitly calls the destructor for left�

��

L States� state

L�� De�nition

states are the states of �nite�state machines� This class is a simple wrapper for
ints� It exists for two reasons� �rst� to ensure that no code is written that embeds
knowledge of the representation of states�as might happen if states were repre�
sented as ints� for example� The second reason is to support the pseudo�states
�START� and �FINAL��

states can have the value of any non�negative integer� Internally� each state�s
value is o�set by two� the values zero and one are reserved for the pseudo�start state
and pseudo��nal state� respectively� There is also a null state� whose value is ���
this state is used by functions whose return value is state� and who wish to signal
an exceptional condition�

state maintains the following private variable�

private�

int number

 state number

L�� Public functions

void operator��const state� s�

Assignment operator� Checks for self�assignment� copies s to the invoking
state�

void operator��int� i�

Assignment operator� Copies the value of i to the invoking state�

int operator���const state� s�

Returns � if the invoking state is equal to s� returns � otherwise�

int operator"��const state� s�

Returns � if the invoking state is not equal to s� returns � otherwise�

int operator��const state� s�

Returns � if the invoking state is strictly larger than s� returns � otherwise�

int operator��int� i�

Returns � if the invoking state is strictly larger than i� returns � otherwise�

int operator��const state� s�

Returns � if the invoking state is strictly smaller than s� returns � otherwise�

int operator��int� i�

Returns � if the invoking state is strictly smaller than i� returns � otherwise�

��

void operator���const state� s�

Adds value of s to the invoking state�

void operator���int� i�

Adds value of i to the invoking state�

void operator���const state� s�

Checks that the invoking state is greater than s� then subtracts the value of
s from the invoking state�

void operator���int� i�

Checks that the invoking state is greater than i� then subtracts the value of
i from the invoking state�

int is null�� const

Returns � if the invoking state is null� and returns � otherwise�

int is final�� const

Returns � if the invoking state is pseudo��nal� and returns � otherwise�

int is start�� const

Returns � if the invoking state is pseudo�start� and returns � otherwise�

void final��

Sets the invoking state to pseudo��nal value�

void null��

Sets the invoking state to null�

void start��

Sets the invoking state to pseudo�start value�

int value�� const

Returns integer value of the invoking state�

state��

Constructor� Sets number to ��

state�const state� s�

Copy constructor� Copies value of s to the invoking state�

�state��

Destructor� A no�op�

�	

L�� Friend functions

ostream� operator���ostream� os� const state� s�

Outputs s on stream os�

istream� operator���istream� os� state� s�

Inputs s from stream is�

�

M Strings� string

M�� De�nition

strings are parameterizable dynamic arrays of symbols� Grail�s strings use a
slightly unconventional notion of order� strings are ordered �rst according to size
and then lexicographically� This is done in order to make it easier to enumerate the
strings belonging to languages�

strings are not null�terminated� as are char �s� stringmaintains the following
private variables�

private�

S� c

 pointer to characters

int sz

 current length of string

int max

 length of allocated space

The character string c is null�terminated for consistency with the standard string
package�

M�� Public functions

void operator��const string�S�� s�

Assignment operator� Checks for self�assignment� clears� and then assigns s
to the invoking string�

void operator��const S� s�

Assignment operator� Clears� then assigns s to the invoking string�

int operator���const string�S�� s�

Equivalence operator� Returns � if s is identical to the invoking string� and
returns � otherwise�

int operator���const S� s�

Equivalence operator� Returns � if s is identical to the invoking string� and
returns � otherwise�

int operator��const string�S�� s�

Less�than operator� Returns � if invoking string is less than s� and returns
� otherwise� �strings are ordered �rst by size� then lexicographically��

int operator��const string�S�� s�

Greater�than operator� Returns � if invoking string is greater than s� and
returns � otherwise� �strings are ordered �rst by size� then lexicographically��

�

int operator"��const string�S�� s�

Inequivalence operator� Returns � if s is di�erent from the invoking string�
and returns � otherwise�

int operator"��const S� s

Inequivalence operator� Returns � if s is di�erent from the invoking string�
and returns � otherwise�

int operator���const string�S�� str�

Catenation operator� Append str to the invoking string�

int operator���const S� str�

Catenation operator� Append str to the invoking string�

int operator���const char� ch�

Catenation operator� Append the character ch to the invoking string�

S� operator���int� i� const

Selection operator� Returns the ith S in the string�

S� ptr�� const

Returns a pointer to the S array�

void clear��

Sets the current length to ��

int is null��

Returns � if the invoking string is empty� and returns � otherwise�

int size�� const

Returns the current size of the invoking string�

int truncate�int x�

Truncation� Sets size to x �x may be zero��

string��

Constructor� Allocates space and sets size to zero�

string�const string�S�� s�

Copy constructor� Allocates space and copies s to the invoking string�

�string��

Destructor� Deletes space occupied by c�

��

M�� Friend functions

ostream� operator���ostream� os� const string�S�� s�

Outputs s on stream os�

istream� operator���istream� os� string� s�

Inputs s from stream is� Treats either whitespace or pairs of � as string
delimiters�

��

N Subexpressions� subexp

N�� De�nition

subexps are parameterizable subexpressions of regular expressions �subexp�� subexp
is the abstract base class for empty set� empty string� symbol exp� plus exp�
cat exp� star exp�� subexp is an abstract base class and cannot be instantiated�

Many of the functions of subexp return � as a default value� These functions
are overridden as appropriate by the derived classes�

N�� Public functions

virtual int operator���const subexp�S�� r� const � �

Pure virtual function�

virtual int operator"��const subexp�S�� r� const � �

Pure virtual function�

virtual int operator��const subexp�S�� r� const � �

Pure virtual function�

virtual int operator��const subexp�S�� r� const � �

Pure virtual function�

subexp�S�� operator��subexp�S�� r�

Catenation operator� Catenates the invoking subexp with r�

subexp�S�� operator��subexp�S�� r�

Union operator� Computes the union of the invoking subexp with r�

virtual int compare null exp�� const

Returns ��

virtual int compare empty string�� const

Returns ��

virtual int compare empty set�� const

Returns ��

virtual int compare symbol exp�const S�� const

Returns ��

virtual int compare cat exp�const subexp�S��� const subexp�S��� const

Returns ��

��

virtual int compare plus exp�const subexp�S��� const subexp�S��� const

Returns ��

virtual int compare star exp�const subexp�S��� const

Returns ��

virtual subexp�S�� clone��

Clone operation� Simulates virtual copy constructor�

virtual int contains empty set�� const

Returns ��

virtual int contains empty string�� const

Returns ��

virtual void convert subexp�fm�S��� const � �

Pure virtual function�

void copy�const subexp�S���

Copy operation� Used by clone�

virtual int is empty set�� const

Returns ��

virtual int is empty string�� const

Returns ��

virtual subexp�S�� minimize��

Returns this�

virtual subexp�S�� new subexp��

Creation function� Simulates virtual constructor�

virtual void print�ostream� os� int i� const � �

Pure virtual function�

virtual int size�� const � �

Pure virtual function�

virtual subexp�S�� star��

Computes the Kleene star of the invoking subexp�

subexp��

Constructor� A no�op� Protected �to ensure that instances of subexp are not
created�

virtual �subexp��

Destructor� A no�op�

��

O Symbol expressions� symbol exp

O�� De�nition

symbol exps are parameterizable symbol subexpressions of regular expressions� symbol exp

maintains one variable�

protected�

S content

O�� Public functions

int operator��const symbol exp� s�

Assignment operator� Assigns s�s content to content�

int operator���const subexp�S�� r� const

Equivalence operator� Calls the argument�s compare symbol exp�

int operator"��const subexp�S�� r� const

Inequivalence operator� Calls the argument�s compare symbol exp�

int operator��const subexp�S�� r� const

Less�than operator� Calls the argument�s compare symbol exp�

int operator��const subexp�S�� r� const

Greater�than operator� Calls the argument�s compare symbol exp�

compare symbol exp�const S� s� const

Returns � if s �� content� �� if s � content� and � if s � content

compare cat exp�const subexp�S��� const subexp�S��� const

Returns �� �every symbol exp is less than every cat exp��

compare plus exp�const subexp�S��� const subexp�S��� const

Returns �� �every symbol exp is less than every plus exp��

compare star exp�const subexp�S��� const

Returns �� �every symbol exp is less than every star exp��

subexp�S�� clone��

Clone operation� Simulates virtual copy constructor�

void contains symbol�const S�� const

Returns � if content is equal to s� and returns � otherwise�

��

void convert subexp�fm�S�� a� const

Converts the invoking symbol exp into a fm and returns the result in a�

void copy�const subexp�S���

Copy operation� Used by clone�

subexp�S�� new subexp��

Creation function� Simulates virtual constructor� Returns new symbol exp�

void print�ostream� os� int i� const

Prints an alphanumeric representation of the symbol exp on the stream os�
Requires that the symbol class de�ne operator ���

int size�� const

Returns ��

symbol exp��

Constructor� A no�op�

symbol exp�const S� s�

Copy constructor� Assigns content to s� Requires that the symbol class
de�ne operator ��

symbol exp�const symbol exp� s�

Copy constructor� Calls clone�

�symbol exp��

Destructor� A no�op�

