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1 Introduction.

This document is about programming with the Grail class library. It describes how
to compile, test, and profile Grail, how to write C++ programs using Gra:l, and
how to modify and extend Grail. The appendices to this document specify each of
the classes in detail, with a brief description of all the functions and operators of
each class.

If you plan only to install Grail with its standard filters, then you need to read
only the first few sections of the document, which describe the organization of the file
system and how to go about compiling and testing Gra:l. It isn’t necessary to know
much about C++ in order to use Gra:l as shipped. If you intend to parameterize
Grail’s finite-state machines and expressions, or to write your own filters, then you
should read most of the document. In addition, you should ensure that you have a
good understanding of templates, since most of Grail’s classes are template classes.

This research was supported by grants from the Natural Sciences and Engineer-
ing Research Council of Canada, the Information Technology Research Centre of
Ontario, and by an IBM Canada Research Fellowship. The author can be reached
at drraymon@daisy.uwaterloo.ca.
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2

Working with Graul.

This section is about compiling, testing, profiling, and using Grail as it is shipped.

2.1

Organization of the files.

Grail is a self-contained package organized in the following directories:

2.2

bin

This directory contains symbolic links from each of the Grail filters to the
main executables (which are found in directory grail).

classes

This directory contains subdirectories for each of Grail’s classes. These classes
define the objects that Grail can manipulate. Most of the source code belongs
to classes.

grail

This directory contains source code for the main executables, and the corre-
sponding binary file. Grail filters are symbolically linked to these binaries.
1ib

This directory contains 1libgrail.a, the Grail library.

profiles

This directory contains profiling scripts, profiling machines, and the results of
previous profiling sessions.

tests

This directory contains test scripts, test machines, and the expected results
for each test.

Compiling.

Before compiling Grail, you need to specify which C++ compiler you’re using. In
the root-level Makefile you will find the following parameters:

# set CCC to your compiler’s path
ccc=cc

# set SYS to:

# XLC - if you’re using IBM’s x1C

# ATT - if you’re using USL’s Cfront
#SYS=XLC

SYS=ATT
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You need to set the CCC variable to the executable of your compiler (use a full
pathname if it isn’t in your $PATH). You should also uncomment the appropriate
SYS variable. Grail compiles cleanly under both IBM’s xIC 1.00 and USL’s cfront
3.0, but the two systems have slightly different requirements for inclusion of template
headers and for file suffixes. The SYS variable is used by scripts during the making of
Grail, to ensure that the right files are included and the right suffixes are generated.

After choosing a compiler and setting the appropriate variables, Grail is com-
piled by doing

make clean
make

from the root of the Gra:l filesystem. The make first compiles each of Grail’s
classes and creates the library. Then it compiles the filter programs fm.C, re.C,
and fmre.C, found in directory grail. This produces three executables. Finally,
each of the filters is created by symbolically linking files in the bin directory to the
appropriate executable in grail.

Each class is compiled separately. The Makefile for each class constructs a
single file containing all the individual functions for a class. This technique is
used for two reasons. First, it requires less time to compile one file than many
(mostly because of preprocessing costs). Second, some C++ compilers use the
source filename to construct an external entry point for the destructor function,
which could lead to linking problems if the same filename is used for some other class.
We avoid this problem by catenating all the function files into a single classname.C
file and then compiling classname.C. The disadvantage of this approach is that
compilation errors are relative to classname. C instead of to the original component
source files, which makes fixing bugs slightly more complicated.

Most of Grail’s classes are template classes. These templates aren’t compiled in
the initial class compilation phase, but rather are instantiated as needed during the
compilation of the filter programs fm.C, re.C, and fmre.C. Thus, the Makefiles
for these classes don’t call the C++ compiler, but simply create the class file.

Compiling Grail can take an hour or more, depending on system load, resources,
and the quality of the template instantiation in your C++ compiler. Most of the
compilation time is spent in template instantiation and linking.

2.3 Testing.

Grail has its own test system. The test system is useful as a check that Grail has
compiled correctly. It’s also useful as a preliminary check that modifications you
make to Grail don’t affect the correctness of its algorithms. Grail is tested by doing

make checkout

from the root of the Grail filesystem. The testing procedure checks all filters in
bin against the test objects. Testing scripts execute each filter with each test
object as input, and compare the result with a previously obtained result stored in
a subdirectory named for the filter; for example, fmtore is run against dfmi and
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the result compared with tests/fmtore/dfmi. If the result is identical, the script
proceeds to the next test; otherwise, the differences are printed and the whole test
result is placed in the directory errors. If tests are successfully completed, the
following output will be generated:

Testing fmcment on dfmi
Testing fmcment on dfm2
Testing fmcment on dfm3
Testing fmcment on dfm4
Testing fmcment on dfmb
Testing fmcment on dfmé
Testing fmcment on nfmi
Testing fmcment on nfm2
Testing fmcomp on dfmil
Testing fmcomp on dfm2
Testing fmcomp on dfm3
Testing fmcomp on dfm4

(No news is good news.) Some of the tests may put diagnostic messages on standard
error (for example, can’t minimize nfm) but this is normal output. If a filter fails
a test, the difference between the stored result and the computed result is displayed
and is saved in the errors directory. An error is saved in a file with the name
filter.object; for example, an error when running fmtore on nfm2 would result in
the file errors/fmtore.nfm2. Comparing errors/fmtore.nfm2 with fmtore/nfm2
will help you debug fmtore.

The output of test runs and the stored results are both sorted before comparison.
This avoids differences that result only from the order of the output. What it
does not avoid is differences that result from language-equivalent but non-identical
objects. The testing procedure can detect only non-identical output; it doesn’t test
for language equivalence. Thus, if you write a completely new conversion for finite-
state machines to regular expressions, for example, you should not expect that your
conversion will generate identical results for the test machines (though they should
be language equivalent).

The set of test cases includes some boundary cases and a few small examples.
We hope to expand the set of test cases in future versions of Grasl.

2.4 Profiling.

Grail has its own profiling system. This is useful for checking that ‘improvements’
to Grail actually do result in a performance benefit. Grazl is profiled by doing

make profile

from the root of the Grail filesystem. The results of profiling are given as a table
found in profiles/profile.results. The table looks like the following:



fmcment
fmcomp
fmcat
fmcross
fmdeterm
fmenum
fmmin
fmminrev
fmplus
fmreach
fmrenum
fmreverse
fmstar
fmtore
fmunion
iscomp
isdeterm
isomorph
isuniv
xfmcat
xfmreach
xfmplus
xfmstar
xfmtore
xfmunion

recat
remin
restar
retofm
reunion
isempty
isnull

total
1.02
1.03
1.08
1.20
1.04
1.08
0.90
1.07
1.04
1.05
1.10
1.15
1.04
1.30
1.14
1.16
1.11
1.09
1.16
1.08
1.05
1.04
1.04
1.30
1.14

total
0.98
1.02
1.02
0.99
0.98
1.02
1.02

dfm1
0.99
0.99
1.00
1.01
1.00
1.05
1.08
1.00
0.99
0.99
0.99
0.99
0.99
1.02
1.01
0.99
0.99
1.00
0.99
1.00
0.99
0.99
0.99
1.02
1.01

regl
0.98
0.98
0.98
0.99
0.98
0.98
0.98

dfm2 dfm3
1.00 1.00
1.01  1.00
1.01  1.01
1.02  1.03
1.01  1.00
1.01  1.01
1.09 1.11
1.00 1.00
1.01  1.00
1.01  1.00
1.01  1.01
1.04 1.02
1.01  1.00
1.25  1.15
1.03  1.02
1.02  1.01
1.02  1.01
1.01  1.02
1.02  1.01
1.01  1.00
1.01  1.00
1.01  1.00
1.01  1.00
1.25  1.15
1.02  1.01
reg2 reg3
0.98 0.98
1.04 1.02
1.04 1.02
0.99 0.99
0.98 0.98
1.04 1.02
1.04 1.02

nfm1
1.00
1.01
1.01
1.03
1.00
0.95
0.25
1.02
1.01
1.01
1.01
1.03
1.00
1.13
1.02
1.02
1.02
1.01
1.02
1.01
1.01
1.01
1.01
1.13
1.02

nfm?2
1.00
0.99
1.00
1.01
1.00
1.52
0.23
0.99
0.99
0.99
0.99
0.99
0.99
1.03
1.01
0.99
0.99
1.00
0.99
1.00
0.99
0.99
0.99
1.03
1.01

nfm3
1.03
1.04
1.09
1.25
1.04
1.18
1.03
1.12
1.04
1.05
1.12
1.16
1.04
1.30
1.18
1.19
1.12
1.13
1.19
1.10
1.05
1.04
1.04
1.30
1.19

nfm4
1.01
1.01
1.06
1.13
1.02
1.08
0.40
1.12
1.05
1.05
1.08
1.11
1.05
1.50
1.09
1.10
1.12
1.08
1.10
1.06
1.05
1.05
1.05
1.50
1.09
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profile.results shows the cost of each filter for several sample inputs. The
cost is shown as a ratio of the number of machine cycles used by the current imple-
mentation against a previously stored value. If the current version is significantly
different from the previous one the ratio of cycles will be larger or smaller than
1.0—larger if current implementation is less efficient, and smaller if the current im-
plementation is more efficient. The table shows the cycle ratio for each of a set of
test cases, and also the total cycle ratio over all cases; this latter value appears in
the leftmost column.
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In the example table, we see that overall the current implementation is slightly
less efficient than previous versions; it might suggest that the ‘improvement’ most
recently added is actually making things worse. It’s wise to use some care when
interpreting the profile results, however, both because the results are dependent on
the type of computer you use, and because the test machines are of different sizes. In
particular, nfm3 is ten times larger than the other test cases; thus, nfm3 accounts for
a disproportionate amount of the cycles in the overall total. Often, improvements
will make some cases worse and some better; for example, if your improvement
involves a substantial fixed overhead, you may notice the performance of the small
test cases is worse, while that of the large test cases is better.

The profiles directory contains scripts that automatically instrument and exe-
cute each filter (fmprofile, fm2profile, reprofile, re2profile, and xfm2profile;
the ‘2’ scripts are used for filters that take two arguments) and scripts that compute
the cycle ratio and produce a new profile.results file (fmdiff and rediff).

It’s possible to generate profiles of current Grail with respect to older ver-
sions. The profiles directory contains a collection of previous profile results,
named with a date and .profile suffix. Copying any of these files onto the file
current.profile and then doing make recompute will generate a new results file
that shows how Gra:l has improved since the date of the previous profile.

If you profile Grail over along period of time, you may wish to retain a history of
improvements. At each milestone, simply copy current.profile into a file named
with the date or some other identifying label. Note that it isn’t sufficient to save the
file profile.results. This file is derived data and contains only the cycle ratios.
The actual numbers of cycles are stored in files with a .profile suffix; they are the
files that must be retained.

Grail’s profiling mechanism is designed to work in environments that support
the pizie profiler (provided on DEC MIPS systems). The profile harness should
be easily extendible to other profilers. To make the profiling mechanism work with
other profilers, write new scripts fmprofile, fm2profile, reprofile, re2profile,
and xfm2profile. They must automatically generate instrumented versions of the
code, extract the number of cycles after running a profile, and properly update the
intermediate files.

2.5 Filters.

Grail provides 34 filters that can be used like any other command available at
shell level. In previous versions of Grail, each of these filters was represented by
a separate source code file and a separate executable. Structuring the filters in
this way led to very long compile times, since some compilers re-instantiate the
templates for each filter. Another problem with this approach is that the filter code
itself was duplicated many times.

In Version 2.0, we’ve taken a different approach. All filters that deal with one
type of object (that is, a machine or expression of a given type) are implemented by a
single executable. This executable determines which function to apply by checking
the name by which it was invoked. If the fm executable was invoked with the
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name fmdeterm, for example, then it would execute the conversion to deterministic
machines. The advantage of this technique is that it is easier and faster to copy or
rename a file than to recompile it. This is particularly true for the current version
of Grail, which makes extensive use of templates.

Each of the individual filters in Version 2.0 is actually a symbolic link from bin
to the appropriate executable in grail. Using symbolic links eliminates the cost of
storing multiple copies of the files.

2.6 Classes.

Grail employs 15 classes, organized in a relatively flat hierarchy:

fm

inst

list

re

set

state

string

subexp
null_exp
empty_set
empty_string
symbol_exp
cat_exp
plus_exp
star_exp

The main classes are fm (finite-state machines) and re (regular expressions).
These classes define the capabilities that make Grail useful for symbolic computa-
tion with machines and expressions.

There are two types of support classes. The first type implements the basic
container classes set, 1ist, and string. The second type implements substructures
of the main classes; state implements the states of a finite-state machine, inst
implements the instructions of a finite-state machine, and subexp implements the
subexpressions of a regular expression.

subexp is an abstract base class for the set of possible subexpressions. These in-
clude null expressions (null_exp), empty set expressions (empty_set), empty string
expressions (empty_string) single-symbol expressions (symbol_exp), catenation ex-
pressions (cat_exp), union expressions (plus_exp), and Kleene closure expressions
(star_exp). Null expressions represent neither empty sets nor empty strings; they
are an initialization expression that denote a regular expression with no content.

With the exception of state, all of Graul’s classes are templates that are instan-
tiated with the input alphabet of the machine, language, or expression. Grazl thus
provides wide flexibility in designing and executing machines.
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Here are some general comments about the design of the classes:

e All assignment and copying is deep; that is, the whole substructure of an
object is duplicated. None of Grail’s structures point to shared data. There
is no reference counting.

o There are no iterator classes. Utilities that want to iterate through a set or a
list simply use a loop over the selection operator.

e No implicit casts have been defined, and the number of copy constructors
(which act like implicit casts) is severely limited. This has been done to
ensure the strictest possible type checking.

Here are some general comments about the functions or design of each class.

o fm

Internally, fms are managed as sets of instructions including the pseudo-
instructions. Thus, some routines are more complicated than they should
be, because they must treat the pseudo-instructions as special cases. In a
future version of Grail, pseudo-instructions will be used only for input and
output, and not as an internal representation.

fm contains operations for ‘disjoint union’. These can be used for fast union
of machines that are known to be disjoint. The standard union operator
(operator+=) tests for membership before adding, while the disjoint union
does not. It is the programmer’s responsibility to check for disjointness.

fm contains operations for ‘selecting’ instructions based on their states or
labels. These operations will in future be moved to a class relation that will
support general-purpose project, select, and join operators.

® Tre

Why isn’t fmtore a member of fm, rather than of re? fmtore operates on an
fm<S> and generates an fm<re<S> >; if it was made a member of fm, it would
result in an infinite template instantiation (the generated fm<re<S> > would
itself be a target of fmtore, generating an fm<re<re<S > > >, that would
itself be a target of fmtore...).

e state

States in a finite-state machine are simple integers. The class state shifts all
integers by 2, to ensure that 0 and 1 are available to represent the start and
final pseudo-state, respectively.

e inst

inst looks for the pseudo-labels |- and -| on its input, and generates them
on output, but does not represent them internally.
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e subexp

subexp is an abstract base class. Most of its functions are pure virtual func-
tions.

e string

A string in Grail is not a char*. Even a string<char> is not a char#,
since it is not null-terminated. It is necessary to append a null character to a
string<char> to handle it with functions such as strcmp or printf.

string defines a function ptr() which returns the array pointer. This is a
trapdoor for potential problems, since the array can be arbitrarily modified
without the string object adjusting its size and maximum value. Use this
capability only for operations that do not perform update to the array.

The string comparison operators are defined such that strings will be ordered
first by size, then lexicographically within equal sizes. This differs from the
usual ordering, but is more appropriate for dealing with languages, where we
typically want to see the shortest words first.

e container classes

lists and sets are both implemented as arrays of objects. Most of their func-
tions are the same, though lists can be sorted and sets cannot. There are
efficient conversion operations from_ 1ist and from_set that simply adjust the
array pointers (and in the case of conversion from list, removes duplicates);
these conversion routines do not preserve the original 1ist or set.

list defines a comparison function that is static; this is so that it can be
passed to gsort.

set is inefficient. It does a linear scan to determine membership, so updates
are costly. This will be fixed in a future release.

set contains operations for ‘disjoint union’. These can be used for fast union of
sets that are known to be disjoint. The standard union operator (operator+=)
tests for membership before adding, while the disjoint union does not. It is
the programmer’s responsibility to check for disjointness.

o subezpressions

The subexpressions are null exp, empty_set, empty_string, symbol_exp,
cat_exp, plus_exp, and star_exp. These are all derived from subexp and
override its virtual functions as appropriate.

One complexity in the subexpressions is defining their comparison operators.
Individual subexpressions are ordered according to the following precedence:

empty_set < empty_string < symbol_exp < plus_exp < cat_exp < star_exp

Hence, empty_string: :operator>(const empty_set<S>&) should return 1,
since empty string expressions are always greater than empty set expressions.
We cannot simply compare the content of subexpression pointers, however,
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since function arguments are interpreted according to their apparent type, not
their actual type. Each subexpression therefore defines a set of functions of the
form compare xzy_exp. This function determines how a given subexpression
compares to an xyz expression. In effect, we are using two function calls (the
operator and the compare xyz_exp) to determine the actual types of both
arguments to the comparison operation.

Most subexpressions define a new_subexp() function, which is the actual con-
structor. This function is defined because it is not possible to have virtual
constructors. Similarly, the functions copy and clone are defined to provide
the effect of a virtual constructor. See the example in Stroustrup’s The C++
Programming Language, 2nd Edition on p. 217 for more information.

The null_exp class is the only subexpression that does not have a theoretical
analogue. It is used as an initialization class and as a return value (it can be
used when necessary to return something that has the type ‘regular expres-
sion’, but that actually indicates an error or other exceptional condition).

star_exp overloads the star operator of subexp and defines it as a no-op.
This has the effect of ensuring that a ‘starred’ expression is only starred once.
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3 Changing and extending Grail.

This section is about modifying and improving Gra:l, and making it useful in your
own applications.

3.1 Adding a new Grail filter.

Probably the easiest thing you can do is to create a new Grail filter. This filter
may simply combine existing Grail functions, or it may rely on new functionality
that you add to some of Grail’s classes. As an example, let us suppose you have
discovered a new operation on machines that you call ‘squeezing’. The way to add
this functionality to Grail is to add the squeezing code to grail/fm.C. ! fm.C is
essentially a large case statement that selects which action is to be executed based
on the value of its name; that is, based on the value of argv[0]. Simplified, fm.C

looks like:

main(argc, argv)

{
if (strcmp(my_name, "fmcment'") == 0)
{ // do complement operation }
if (strcmp(my_name, "fmcat") == 0)
{ // do catenation operation }
if (strcmp(my_name, "fmenum") == 0)
{ // do enumeration operation }
}

The variable my name is initialized to argv[0]. To make a ‘squeeze’ filter, you would
add something like:

if (strcmp(my_name, "fmsqueeze") == 0)
{
get_one(a, argc, argv)
a.squeeze();
cout << aj;
return 0;

}

Here the programmer has chosen fmsqueeze as the name of the filter. If the exe-
cutable is called with this name, then it will enter the body of the if statement.

If your new filter was to be applied to regular expressions, you would add the code to
grail/re.C.
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The function get_one is a utility function that obtains the input machine; it will
get input either from a file or from standard input (if ‘squeezing’ was a binary op-
eration, you would use the utility function get_two to get two finite-state machines
as arguments. The input machine is stored in a; the function squeeze is called, 2
the squeezed machine is printed on standard output, and the filter returns.

In addition to modifying grail/fm.C, you also need to add aline to the Makefile
to create a symbolic link from bin/fmsqueeze to the executable fm.out.

To fully integrate your filter with Grail, you should also add it to the profile and
test directories. To add the filter to the test directory, you need to do the following:

e Make a directory tests/fmsqueeze. This is where pre-computed results of
testing are kept.

e Modify tests/Makefile to run fmtest (or fm2test, if your filter takes two
arguments) on your filter.

e Run your filter on each of the test cases and carefully check the output. If
you’re certain that the results are correct, then store the output for each
test case in tests/fmsqueeze. (If you're not certain that the output is
correct, then by storing the output all you’re doing is giving future testers
a false sense of confidence.) Thus, the result of ‘squeezing’ dfmi should
be in tests/fmsqueeze/dfmil, the result of ‘squeezing’ dfm2 should be in
tests/fmsqueeze/dfm2, and so on.

e If you need to add some new test machines to test special conditions (for
example, an ‘unsqueezable’ machine) for your filter, it would be useful if you
also run all the other filters in Grail on this test case, check their results, and
add the output to the respective directories. This practice will increase the
value of the test system for the whole of Gra:l.

e Write a man page for your new filter.

To add your filter to the profile directory, add a line to profiles/Makefile so
that your filter will be profiled (use fmprofile if your filter uses only one argument,
and fm2profile if your filter uses two arguments). The next time you run the
profiler, the ratio shown for your filter for all test cases will be 0.0, because the
profiler has no baseline. The second time you run the profiler, however, you will
see some values (1.0 if you haven’t improved your filter in the meantime, and some
other non-zero value otherwise).

3.2 Parameterizing Grail with a new type.

One of the novel features that Grail provides is parameterizable machines and
expressions: You can create new functionality simply by specifying a different
type for the machines or expressions. As distributed, Grail implements fm<char>,

2 Assuming that you have added this function to the definition of the class fm; see Section 3.3
for information on how to do this.
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fm<re<char> >, and re<char>, but you can parameterize Grail with any base type,
any Grail class, or any class that you create. All of the functionality of Grazl is
carried over to your parameterized class.

Parameterizing should be the easiest way to modify Grail, but it isn’t. The
reason it isn’t is that template handling in most C++ compilers is still immature,
and it is necessary to manually instantiate some of the templates. Presently, there
are some files included by classes/re/re.h which define ‘bogus’ variables whose
only purpose is to instantiate needed templates. If you parameterize with your own
types, you will likely need to add some explicit instantiations to these files.

Parameterizing Grail is a new feature that hasn’t been fully explored. We
recommend that it be attempted only by experienced C++ programmers.

3.2.1 Parameterizing over a base type.

Suppose you want to create finite-state machines whose instruction labels are in-
stances of int. You can do this with the following steps.

o Make a copy of grail/fm.C. Call it grail/fmint.C.

e Edit fmint.C. Change all variables of type fm<char> to fm<int>. Remove
any of the filter definitions that you think aren’t applicable to ints.

o Define fm<int>::left delimiter and fm<int>::right delimiter. These
are two distinct characters which are used to delimit the printable representa-
tion of the type, and they will be used when outputting or inputting fm<int>s.
If these are not specified, they default to the space character. One possible
choice for delimiters is ¢ and ’.

e Edit grail/Makefile. Add a target so that fmint.C will be compiled. Add
a list of symbolic links from the bin directory to fmint.out. Be sure to use
names that are distinct from the existing links.

e Compile Grail (which, if you’ve done the previous steps correctly, will compile
your class and filters as well).

e If your compilation succeeds, and the filters operate properly, add test cases
and profile information as discussed in Section 3.1. Write man pages for the
fmint filters.

Remember that using a template inside a template is permitted, but you must leave
a space between end-brackets. That is,

fm<re<char> >
is valid, but

fm<re<char>>
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is not (the C++ parser thinks that >> is the ostream operator, not the end of the
template specification).

A similar process is used to parameterize re. The main difference is that you
will need to define the following characters and strings:

static char re_star<S>;

static char re_plus<S>;

static char re_cat<S>;

static char re_lparen<S>;

static char re_rparen<S>;

static char* re_estring<S>;

static char* re_eset<S>;

static char re_lambda<S>;

static char re_left_delimiter<S>;

static char re_right_delimiter<S>;
static char re_left_symbol_delimiter<S>;
static char re_right_symbol_delimiter<S>;

These variables are used to specify the operators and other special symbols that are
used in alphanumeric representations of re’s. The chars must be a single character;
the char*’s must be exactly two characters. The defaults for these symbols are as
given below:

re_star star operator (default is ‘*’)

re_plus union operator (default is ‘+’)

re_cat catenation operator (default is ‘0’)
re_lparen left parenthesis (default is ‘()
re_rparen right parenthesis (default is ¢)’)
re_estring empty string (default is <'"’)

re_eset empty set (default is ‘{}’)

re_lambda lambda symbol (default is ‘#’
re_left_delimiter left delimiter of an re (default is ¢ )
re_right_delimiter right delimiter of an re (default is ¢ )

re_left_symbol_delimiter left delimiter of a symbol (default is ‘0°)
re_right_symbol delimiter right delimiter of a symbol (default is ‘0’)

The default symbols are found in classes/re/std.h. You may add your own
definitions there, or put them in the header to your main routine.

There is one instance of each of these variables per parameterized class; so, there
is one re<char>: :re_star, one re<int>::re_star, and so on. These variables are
provided to permit you to define your own symbols, either because you prefer some
other delimiters or because one or more of the defaults is a valid symbol in the input
alphabet you want to use.

Note that the default symbol for catenation and the left delimiter are both 0. If
these values are specified (and only for the delimiters or catenation) then no output
is generated for those symbols.
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3.2.2 Parameterizing over your own types.

Parameterizing over your own types is much the same as parameterizing over base
types or Graiul types. However, there are two problems that are more likely to arise
with parameterization of your own types.

The first issue is the provision of minimally required functions and operators.
Grail’s templates (like those of any other C++ class library) operate on the as-
sumption that certain functions are defined by the type used for parameterization.
There is no way for us to arrange that you define these functions, but if they aren’t
defined (or if you define them ambiguously), then your compilation will fail at tem-
plate instantiation time. Consequently, we require as small a number of functions
as possible (all of them are operators):

If you have defined these operators for your type, it should instantiate without
trouble.

Even if all necessary operators are defined, you may misinterpret the results of
Grail’s operations. To understand this problem, let us look at fm<re<char> > in
some detail.

There are at least two possible ways to define the == operator for re<char>.
One way, based on identity, treats two re<char>s as equivalent only if they are
identical. The second way, based on language equivalence, treats two re<char>s
as equivalent only if they denote the same language. In general, the only feasible
way to determine language equivalence for regular expressions is to convert them
to finite-state machines, minimize the finite-state machines, and test the minimal
finite-state machines for identity. This test is an expensive proposition, so there is
some motivation for choosing to base equivalence on identity.

Grail, of course, has no way of knowing which choice you have made; indeed,
the whole point of parameterization is that it should not need to know which choice
you have made. Grail simply takes it for granted that the operator == will return
affirmatively if the two regular expressions are equivalent, and negatively otherwise.
But your choice of semantics for == will affect the outcome of Grail’s operations.
== is used in subset construction, for example, to cluster all states which are reach-
able on the same instruction label. If you’ve defined language equivalence as your
semantics, then Grail will treat the regular expressions a¢ and e¢*a(a+a) as equiv-
alent; if you’ve chosen identity as your semantics, then Grail will treat these two
expressions as distinct. Thus, the two semantics lead to different output.

Parameterization allows Grail to implement a collection of functions that are
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performed on ‘black boxes’, which you can instantiate with a type. Gra:l will
provide correct results, but only within the semantics you defined for the operators
of that type. If you choose to define identity semantics, don’t expect to get language
equivalence semantics in the result.

The same is true of the semantics of the other comparison operators <, >, and
1=,

3.3 Modifying Grail’s classes.

Modifying Grail’s classes can be straightforward, but it requires a good understand-
ing of three complicated areas: C++ templates, Grail’s existing structure, and the
theoretical properties of finite-state machines and regular expressions. Here are
some points to remember:

e Maintain the separation between a class’s interface and its implementation.
The class fm, for example, is implemented as a set of instructions, but this
should not be visible outside the class. As much as possible, ensure that the
interface is restricted to logical functionality.

e Remember that your new function must work regardless of the type of the
instruction label (or, for regular expressions, of the symbols of the alphabet).
Do not make assumptions that are true only of fixed types. Is your function
general enough to apply to a fm<re<fm<set<string> > > >7 If not, should
you rethink the function?

e Remember to run the tests on all Gra:l filters after you have made your
modifications.

e Ifyou create important new functionality, consider making it available through
a separate filter. Follow the procedure that we described in Section 3.1 on
making filters.

It would be convenient if your additions to Grail are consistent with the set of
conventions Grail uses for filenames.

We use two- or three-letter prefixes for filters. Regular expression filters use the
prefix re. Finite-state machine filters use the prefix fm. Filters that operate on
finite-state machine with regular expression labels (so-called eztended finite-state
machines) use the prefix xfm. We also use these prefixes as suffixes for commands
that convert from one type of object to another; for example, retofm. 2

Each class directory has a file classname.h that contains the class declaration.
The string class, for instance, is declared in the file string.h. This is the first
place to look for information about the class, since it contains declarations of all
the methods.

3All predicates begin with the prefix is. This is likely to be changed in the future, because it
does not distinguish between predicates for machines and predicates for expressions, and because
is’ is not the only type of predicate we want to support.
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Each of the functions defined for a class is contained in a separate function.cc
file. When the function is a function call with an alphanumeric name, its filename
is the same name (for compatibility with non-flexname file systems, long function
names are shortened to fit an 8-character limit). Hence, the function parse in
the class re is located in the file parse.cc. Since operator functions don’t have
alphabetic names, we’ve chosen to use the following standard alphabetic names for
operators:

<< ostream.cc
>> istream.cc

< 1t.cc

> gt.cc

== eq.cc

!= neq.cc

+= pluseq.cc

-= minuseq.cc
A= concat.cc
+ plus.cc

- minus.cc
[1 index.cc

We use classname.cc for constructors and ~classname.cc for destructors.
Constants, macros, and types that are specific to a class are kept in defs.h. The
set of system and local files that are necessary for compilation of functions are
specified in include.h.

3.4 Miscellaneous.

Some odds and ends:

e The template classes each contain a script mksys. This script merely converts
the suffix of the classname.C file to the appropriate suffix for the compiler as
determined by the SYS variable. This hack seems to be necessary because com-
pilers have different ideas about what suffixes they support during template
instantiation.

e The class headers include an #ifdef to ensure that a class is defined only
once. This hack should be avoidable by proper use of the #include facility,
but it doesn’t seem possible (again, due to how template instantiation works).

e The classes derived from subexp (namely, empty_set, empty_string, cat_exp,
plus_exp, symbol_exp, and star_exp) are accessed only within re, and indeed
should not even be visible outside subexp. Why then are these derived classes
not nested within subexp? The reason is that some compilers don’t implement
nested classes within templates.
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e Why haven’t we made Grail work with GNU C++? The main reason is that
Grail depends heavily on templates, and GNU’s support for templates is still
incomplete.

3.5 Changes in Version 2.0

This section describes the changes and improvements made since version 1.2.
1. Converted fa and trans to template classes.

2. Removed tset and xfa.

3. Cleaned up directories and files.

4. #ifdefs used to avoid duplicate definitions of classes
(seems to be required by template instantiation mechanism)

5. fa filters are all now symbolic links to one executable
that checks argv[0] to determine which operation to perform.

6. state::number made private.

7. Fixed trans comparison operators to avoid checking labels
for pseudo-transitions.

9. Removed fa::operator+=(trans&) (it had different semantics
from fa::operator+=(fa&), which could be confusing).

10. Filters renamed to use "fm'" prefix; fixed test cases.
11. isomorph does its own renumbering and sorting now.

12. Renamed "fa'" class to "fm"; renamed '"trans" class to "inst",
"regexp" class to '"re'"

13. re class rewritten; new classes: empty_set, empty_string,
cat_exp, plus_exp, star_exp, symbol_exp, subexp.

14. re filters are all now symbolic links to one executable
that checks argv[0] to determine which operation to perform.

15. xfm filters are all now symbolic links to one executable
that checks argv[0] to determine which operation to perform.

16. Made string parameterized; altered usage of string where



necessary to string<char>.
17. Rewrote retofm and fmtore.

18. Added various hacks to enable proper template instantiation
(grail/template.1, grail/template.2, note changes in re.h)

19. re now does not automatically "minimize" expressions; remin
has the "minimization" functionality.

3.6 Changes in Version 1.2

This section describes the changes and improvements made since version 1.0.
1. Compiles under x1C 1.00, AT&T 3.0, Watcom C++ 9.5.

2. Added set/gt.cc and set/lt.cc.

3. string::operator+= reallocation changed so that blocks

are always a power of 2. This seemed to fix a bug

when running fatore on RS/6000.

4. In string.h, fa.h, state.h, grail.h, use <iostream.h>
instead of <stream.h>.

5. Removed "form" from regexp/concat.cc, regexp/term.cc,
regexp/token.c.

6. End-of-function return values required for regexp/test*.cc.
7. Removed duplicate xfaplus from grail/Makefile.

8. Improved grail/Makefile to use default rules, removed
unnecessary operations.

9. Added "tempinc'" to clean targets so that x1C recompilation
proceeds correctly.

10. set/include.h and list/include.h designed to handle the
default requirements of x1C/Cfront template mechanisms

(for x1C, you include the template header file, for Cfront,
you don’t).

11. Added "XLC" and "ATT" defines to Makefile, tset.h.
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12. "delete [] p" removed from “tset(). It incorrectly duplicates
the functionality of “set(), causes a crash under Watcom 9.5
(discovered by Mark DeLaFranier of Watcom).

13. mksys scripts written for list, set (to provide correct
suffixes for x1C and Cfront).

14. Removed <libc.h>, substituted <stdlib.h>.

15. All grail filters given "return 0" at end of main; all
return values checked (and modified) for correctness.

16. from_set and from_list made members of list and set
respectively.

17. find_part removed from xfa.h.

18. list::compare() only; removed compare from all other classes;
compared contents of pointers instead of pointers.

19. list::< and list::>.

20. Removed print functions from set, tset, list; redefined
ostream operators.

21. converted Item::compare to list<Item>::compare in list::sort
22. note that tset:operator<< second argument must be const.
23. famin fixed; can’t treat min_by_partition result as boolean.

24. Added functions fa::deterministic_density, xfa::number_of_transitions,
xfa::number_of_labels, xfa::number_of_states.

25. For nfa’s, faenum computes deterministic density and
converts to deterministic automata if appropriate.

26. Purify’d. Fixed bugs in string::operator+=(const char*) and
ostream: :<<(ostream&, regexp&).
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A Catenation expressions: cat_exp

A.1 Definition

cat_exps are parameterizable catenation subexpressions of regular expressions. cat_exp
maintains two variables:

protected:

subexp<S>* left;
subexp<S>* right;

A.2 Public functions

cat_exp<S>& operator=(const cat_exp<S>& r) const

Assignment operator. Assigns the left and right of r to the left and right
of the invoking cat_exp.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare_cat_exp.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare_cat_exp.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare_cat_exp.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare _cat_exp.

int compare _cat_exp(const subexp<S>*,const subexp<S>*) const

Returns 1 if the invoking cat_exp is greater than the arguments, 0 if it is
equal, and —1 if it is less than the arguments.

int compare plus_exp(const subexp<S>#*,const subexp<S>*) const

Returns —1 (cat_exp is always less than plus_exp.)

int compare _star_exp(const subexp<S>*) const

Returns —1 (cat_exp is always less than star_exp.)

subexp<S>* clone()

Clone operation. Simulates virtual copy constructor.

int contains empty_string() const

Returns 1if 1eft or right contains the empty string, and returns 0 otherwise.
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int contains cat_exp() const

Returns 1 if left or right contains the empty set, and returns 0 otherwise.

void convert_subexp(fm<S>& a) const
Converts the invoking cat_exp into a fm and returns the result in a. Makes
calls to other subexpression classes.

void copy(const subexp<S>&)

Copy operation. Used by clone.

int is_empty_string() const

Returns 1 if left and right are the empty string, and returns 0 otherwise.

int is_cat_exp() const

Returns 1 if left or right contains the empty set, and returns 0 otherwise.
subexp<S>* minimize ()
Applies minimization heuristics.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new cat_exp.

void print(ostream& os, int i) const

Prints an alphanumeric representation of the invoking cat_exp on the stream
0s. The symbol for the union operation is defined in the variable re<S>: :re_cat.

int size() const

Returns 1 plus the size of 1eft and the size of right.

cat_exp()
Constructor. Assigns left and right to null_exp.

cat_exp(const re<S>& 1, const re<S>& r)

Copy constructor. Class clone on each of 1 and r.

cat_exp(const cat_exp<S>&)

Copy constructor. Calls clone.

~cat_exp()
Destructor. Explicitly calls the destructors for the left and right subexp.
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empty_sets are parameterizable empty set subexpressions of regular expressions.
empty_set maintains no variables; it simply exists to stand for an empty set, and

to define the value of some comparison functions.

B.2 Public functions

empty_set<S>%& operator=(const empty set<S>&)

Assignment operator. A no-op.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare empty_set.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare_empty_set.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare_empty_set.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare _empty_set.

subexp<S>* clone() const

Returns a new empty_set.

int compare_empty set() const

Returns 0 (every empty_set is equal to every other).

int compare_empty string() const

Returns —1 (every empty_set is less than every empty_string).

int compare _cat_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every empty_set is less than every cat_exp).

int compare plus_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every empty_set is less than every plus_exp).

int compare _star_exp(const subexp<S>*) const

Returns —1 (every empty_set is less than every star_exp).

int compare_symbol exp(const S&) const

Returns —1 (every empty_set is less than every symbol_exp).
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int contains_empty_set() const

Returns 1.

void convert_subexp(fm<S>& a) const

Converts the invoking empty_set into a fm and returns the result in a.

int is_empty _set() const

Returns 1.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new empty_set.

void print(ostream& os, int i) const
Prints an alphanumeric representation of the empty_set on the stream os.
The representation used is defined by the variable re<S>: :re_empty_set.
int size() const

Returns 1.

empty_set ()

Constructor. A no-op.

empty_set(const empty_set<S>&)
Copy constructor. A no-op.
~empty_set ()

Destructor. A no-op.
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C Empty string expressions: empty string

C.1 Definition

empty_strings are parameterizable empty string subexpressions of regular expres-
sions. empty_string maintains no variables; it simply exists to stand for an empty
string, and to define the value of some comparison functions.

C.2 Public functions

empty_string<S>& operator=(const empty_string<S>&)

Assignment operator. A no-op.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare _empty_string.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare_empty_string.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare_empty_string.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare_empty_string.

subexp<S>* clone() const

Returns a new empty_string.

int compare_empty string() const

Returns 0 (every empty_string is equal to every other).

int compare _cat_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every empty_string is less than every cat_exp).

int compare plus_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every empty_string is less than every plus_exp).

int compare _star_exp(const subexp<S>*) const

Returns —1 (every empty_string is less than every star_exp).

int compare_symbol exp(const S&) const

Returns —1 (every empty_string is less than every symbol_exp).

int contains empty_string() const

Returns 1.
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void convert_subexp(fm<S>& a) const

Converts the invoking empty_string into a fm and returns the result in a.

int is_empty_string() const

Returns 1.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new empty_string.

void print(ostream& os, int i) const
Prints an alphanumeric representation of the empty_string on the stream os.
The representation used is defined by the variable re<S>: :re empty_string.
int size() const

Returns 1.
empty_string()

Constructor. A no-op.
empty_string(const empty_string<S>&)

Copy constructor. A no-op.
~empty_string()

Destructor. A no-op.
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D Finite-state machines: fm

D.1 Definition

fms are parameterizable finite-state machines. fms consist of a set of instructions
whose label type is specified by the parameter.

fms can have multiple final states, as is customary, but they can also have mul-
tiple start states. By definition, any fm with more than one start state is nonde-
terministic. fms contain pseudo-instructions to denote the states that are start and
final.

fm maintains the following variables:

protected:

set<inst<Label> > arcs;

D.2 Public functions

fm<Label>& operator=(const fm<Label>& a)
Assignment operator. Checks for self-assignment, and then copies a to the
invoking fm.

int operator==(const fm<Label>& a)
Equivalence operator. Returns 1 if a is identical to the invoking machine,
and returns 0 otherwise. Note that this operator checks for identity, not for
language equivalence.

int operator!=(const fm<Label>& a)
Inequivalence operator. Returns 1 if a is different from the invoking machine,
and returns 0 otherwise. Note that this operator checks for identity, not
language equivalence.

fm<Label>& operator+=(const fm<Label>& a)

Returns the union of a with the invoking machine.

fm<Label>& operatorA=(const fm<Label>& a)
Catenation operator. Catenates a with the invoking machine. Computes the
Cartesian product of penultimate states of the invoking fm with the start
states of a. Does not introduce empty-string instructions.

fm<Label>& operator-=(const fm<Label>& a)
Difference operator. Deletes instructions in the invoking machine that are
also present in a.

inst<Label>& operator[](int i) const

Selection operator. Returns the ith instruction in the invoking machine.
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void cartesian(const set<state>&, const set<Label>&, const set<state>&)

Assigns the Cartesian product of the arguments to the invoking fm.

int canonical numbering()
Renumbers all states according to a breadth-first traversal of the fm. Will not
renumber a nondeterministic fm.

void clear()

Clears the set of arcs.

void complement ()
Complements the invoking fm. Assumes that the alphabet is defined by the
set of Labels already present in the fm.

void complete()

Completes the invoking fm—that is, it ensures that each state has a instruction
on each Label in the alphabet. Assumes that the alphabet is defined by the
set of Labels already present in the fm.

void cross_product(const fm<Label>&, fm<Label>)

Assigns the cross product of the two argument fms to the invoking fm.

fm<Label>& disjoint union(const fm<Label>& t)

Efficient union of t with the invoking fm. It is the programmer’s responsibility
to ensure that the two machines are disjoint.

fm<Label>& disjoint union(const inst<Label>& a)

Efficient union of a with the invoking fm. It is the programmer’s responsibility
to ensure that a is not contained in the invoking machine.

fm<Label>& empty_string machine()

Makes the invoking machine one that accepts only the empty string.

int enumerate(int i, set<string<Label> >& s) const

Generate the first i strings in the language of the machine and return them
in s. Strings are ordered first according to size, then lexicographically.

set<state>& finals(set<state>&) const

Return the set of final states in the invoking machine.

int is_complete() const

Returns 1 if the invoking machine is complete, and returns 0 otherwise.

int is_deterministic() const

Returns 1 if the invoking machine is deterministic, and returns 0 otherwise.
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int is_universal() const

Returns 1 if the invoking machine is universal, and returns 0 otherwise.

set<Label>& labels(set<Label>&) const

Return the set of Labels in the invoking machine.

fm<Label>& empty_string machine()

Makes the invoking machine one that accepts only the empty string.

state max_state()

Returns the maximum state.

int member of language(char* s, int d) const
Returns 1if s is a member of the language of the machine; returns 0 otherwise.
If d is 1, then the function prints diagnostic statements on standard output
describing its traversal of the machine.

fm<Label>& min by partition()
Minimizes the invoking machine according to Hopcroft’s partition method.
Should only be applied to deterministic machines.

int number of final states() const

Returns the number of final states in the invoking machine.

int number_of labels() const

Returns the number of distinct Labels in the invoking machine.

int number _of start_states() const

Returns the number of start states in the invoking machine.

int number_of states() const

Returns the number of states in the invoking machine.

int number of instructions() const
Returns the number of non-pseudo instructions in the invoking machine (the
total number of instructions can be found by executing arcs.size().

void plus()

Computes the ‘+’ of the invoking machine; that is, it converts the invoking
machine into one that accepts strings that are catenations of one or more
strings in the original machine.

void reachable_fm()

Reduces the invoking machine to the subset of instructions that correspond
to reachable states.
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void reachable states(set<state>& s) const

Computes the set of reachable states and assigns them to s.

void remove(const state& s)

Removes from the invoking machine any instruction that refers to state s.

void renumber(int i)

Renumbers the invoking machine by adding i to the states.

void reverse()
Reverses the invoking machine. Note that this may result in multiple start
states (and hence, a nondeterministic machine).

fm<Label>& select(const state& s, int w, fm<Label>& a) const
Returns in a the submachine consisting of instructions that refer to the state
s. w specifies that s is to be a source state, sink state, or either.

fm<Label>& select(const Label& 1, fm<Label>& a) const
Returns in a the submachine consisting of instructions whose Label is 1.

fm<Label>& select(const Label& 1, const state& s, int w, fm<Label>& a)
const
Returns in a the submachine consisting of instructions whose Label is 1 and
which refer to the state s. w specifies that s is to be either a source state or
a sink state.

fm<Label>& single(const Label& r)
Makes the invoking machine a single-instruction machine with the instruction
Label being r.

set<state>& sinks(set<state>& s) const
Returns the set of sink states in the invoking machine in s (a sink state is a
state on the right hand side of a regular instruction).

int size() const

Returns the size of the invoking machine.

set<state>& sources(set<state>& s) const

Returns the set of source states in the invoking machine in s (a source state
is a state on the left hand side of a regular instruction).

fm<Label>& star()

Computes ‘*’ of invoking machine; that is, it converts the invoking machine

into one that accepts strings that are catenations of zero or more strings in
the original machine.
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set<state>& starts(set<state>& s) const

Returns the set of start states of the invoking machine in s.

set<state>& states(set<state>&) const

Returns the set of states of the invoking machine in s.

fm<Label>& subset()

Converts the invoking (nondeterministic) machine into a deterministic ma-
chine by subset construction.

fm()

Constructor. A no-op.

fm(fm<Label>& a)

Copy constructor. Copies the set of instructions.

~fm()

Destructor. A no-op.

D.3 Private functions

int find part(set<set<state> >& p, state s)
Finds the member of the partition p containing the state s. Returns the
partition index if successful, and —1 otherwise. Used by min by _partition.
void merge_inverse(set<set<state> >& p, set<int>& k, set<state>& s)

Given a set of states s, merge it with the existing partition p. Adjusts the
index of partition elements (k) that must be processed in successive steps of
the minimization. Used by min by partition.

D.4 Friend functions

ostream& operator<<(ostream& os, const fm<Label>& s)

Outputs s on stream os.

istream& operator>>(istream& os, fm<Label>& s)

Inputs s from stream is.
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E Instructions: inst

E.1 Definition

insts are parameterizable instructions in a finite-state machine. Each instruction
consists of two states (a source state and a sink state) and the instruction label,
which is the template parameter.

inst provides support for pseudo-start and pseudo-final instructions. These
instructions use the form of an instruction to denote the start and final states in a
finite-state machine:

(START) |- 5
7 -1 (FINAL)

The instruction labels for these pseudo-instructions are purely decorative, but can
be thought of as ‘end markers’ on an input tape. The tokens (START) and (FINAL)
represent the pseudo-start and pseudo-final states, respectively (they are repre-
sented by state values of 1 and 0, respectively). inst maintains the following
private variables:

private:

state source; // source state
Label label; // instruction label
state sink; // sink state

The following public variables are maintained:

static char left_delimiter;
static char right_delimiter;

E.2 Public functions

inst<Label>& operator=(const inst<Label>& t)
Assignment operator. Checks for self assignment; then assigns components of
t to the invoking inst.

int operator==(const inst<Label>& t)
Returns 1 if source, sink, and label of the invoking inst are equivalent to
those of t and otherwise returns 0.

int operator!=(const inst<Label>& t)
Returns 0 if source, sink, and label are equivalent to those of t, and oth-
erwise returns 1.

void assign(const state& s1, const Label& r, const state& s2)

Assigns the argument values to the invoking inst.
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Label& get_label()
Returns label.

state& get_sink()
Returns sink.

state& get_source()

Returns source.

state is final()
Returns 1 if the invoking inst is a pseudo-final instruction, and otherwise
returns 0.

state is_start()
Returns 1 if the invoking inst is a pseudo-start instruction, and otherwise
returns 0.

state isnull()

Returns 1 if the invoking inst is a null instruction, and otherwise returns 0.

int labelis(const Label& 1)

Returns 1 if 1label is equivalent to 1, and 0 otherwise.

void make_final(const state& s)

Makes the invoking inst a pseudo-final instruction with a source of s.

void make_start(const state& s)

Makes the invoking inst a pseudo-start instruction with a sink of s.

void renumber(int bottom)

Renumbers the states in the invoking inst by adding bottom to their value.

void reverse()
Swap start and final states of the invoking inst. Converts pseudo-start
instructions to pseudo-final instructions and vice versa.

void null()

Makes the invoking inst null.

int sinkis(const state& s)
Returns 1 if sink of the invoking inst is equivalent to s, and returns 0
otherwise.

int sourceis(const state& s)

Returns 1 if source of the invoking inst is equivalent to s, and returns 0
otherwise.
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inst ()

Constructor. A no-op.

inst(const state& s1, const Label& r, const state& s2)

Constructor with initializers.

inst(const inst<Label>& t)

Copy constructor.

~inst ()

Destructor. A no-op.

E.3 Friend functions

ostream& operator<<(ostream& os, const inst& t)
Outputs t on stream os. Correctly handles pseudo-start and pseudo-final
instructions.

istream& operator>>(istream& os, inst& t)

Inputs t from stream is. Correctly handles pseudo-start and pseudo-final
instructions.
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F Lists: list

F.1 Definition

lists are parameterizable, dynamic, homogeneous lists of Items.

Each 1list stores its objects directly. If you want to use a list to share ob-
jects with some other container, you should declare a 1ist that stores pointers or
references to the objects you want to share. 1lists can contain multiple copies of a
object, and can be sorted. The order in which objects are appended to a 1list is
preserved.

It is possible to convert a 1ist to a set without copying all the elements. This
is because sets and lists are both implemented with a pointer to an array of the
contained objects; thus, it is possible to simply copy the pointer, and leave the
array intact. The from_set function converts a set to a 1ist. 1list maintains the
following variables:

protected:

Ttem* P; // array of Items

int max; // maximum size of array

int 8Z; // number of elements currently in array

Note that operator>> is not defined.

F.2 Public functions

void clear()

Sets the size to 0. Does not free any space used by current members.

int contain(const list<Item>& s) const
Checks to see if s is contained in the invoking 1ist. Returns 1if s is contained,
and returns 0 otherwise.

void intersect(const list<Item>& s1, const list<Item>& s2)
Clears the invoking 1ist, then adds any members belonging to the intersection
of 51 and s2.

int is_sorted()

Returns 1 if the invoking 1ist is sorted, and returns 0 otherwise.

static int compare(const Item*, const Item*)

Comparison of two Items. Returns 1 if the first argument is greater than the
second, 0 if the two arguments are equal, and —1 if the second argument is
greater than the first. This function is static so that its pointer can be passed
as an argument to gsort ().
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int member(const Item& s)

Returns 1 if s is a member of the invoking 1ist, and returns 0 otherwise.

list<Item>& operator=(const list<Item>& s)
Assignment operator. Checks for self-assignment, clears, and adds s to the
invoking list.

list<Item>& operator=(const Item& i)
Assignment operator. Checks for self-assignment, clears, and adds i to the
invoking list.

int operator==(const list<Item>& s) const
Equivalence operator. Returns 1 if s and the invoking list contain exactly
the same Items in the same order, and returns 0 otherwise.

int operator!=(const list<Item>& s) const
Inequivalence operator. Returns 1 if s and the invoking 1list do not contain
exactly the same Items in the same order, and returns 0 otherwise.

int operator<(const list<Item>& s) const

Less-than operator. Returns 1 if the invoking 1ist is less than s, and returns
0 otherwise. list a is less than list b if a has fewer members than b, or
if a; < b; and a; and b; are the smallest elements of a and b that are not
contained in both. This function is used when sorting collections of lists.

int operator>(const list<Item>&) const

Greater-than operator. Returns 1 if the invoking list is greater than s, and
returns 0 otherwise. list a is greater than list b if a has more members
than b, or if a; > b; and a; and b; are the smallest elements of a and b that
are not contained in both. This function is used when sorting collections of
lists.

void operator+=(const list<Item>& s)
Union operator. Checks for self assignment, and adds each member of s to
the invoking 1list.

void operator+=(Item q)

Union operator. Checks q for membership in the invoking 1list, allocates
additional space if necessary, then adds q. q is copied with the assignment
operator of the class Item.

void operator-=(const list<Item>& s)

Difference operator. Checks for self-deletion, and then deletes each member
of s from the invoking 1ist.
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void operator—-=(const Item& s)
Difference operator. Checks for membership of s in the invoking 1ist, and
then deletes it.
Item& operator[](int i) const
Selection operator. Returns the ith Item. Though currently implemented as
array selection, it need not be, and programmers should not depend on this.
void remove(int i)

Removes the ith Item from the invoking 1ist. This function is not defined as
an overloaded operator-=in order to avoid ambiguity; in particular, removing
the ith Item from a 1list of int would not be distinguishable from removing
i itself from the 1list.

int size() const

Returns the current size of the invoking list.

void sort() const
Sorts the Items of the invoking 1ist. Calls gsort () to do the sorting.

void unique() const

Removes duplicate Items from the invoking list. This function first sorts
the list, so the order of the Items is not retained.

void from set(set<Item>&)

Efficiently converts a set to a 1ist. Note that the set is no longer available
after this call; the array of Items in the set has been transferred directly to
the list.

list ()

Constructor. Allocates space and sets the size to 0.

list(const list<Item>& s)

Copy constructor. Allocates space and copies s to the invoking list.

~list()

Destructor. Deletes the array of Items.

F.3 External functions

ostream& operator<<(ostream& os, list<Item>& s

Outputs s on stream os.
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G Null expressions: null exp

G.1 Definition

null_exps are parameterizable null subexpressions of regular expressions. null_exp
are used as initializers for regular expressions when no other value is available.

G.2 Public functions

null_exp<S>& operator=(const null _exp<S>&)

Assignment operator. A no-op.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare null_exp.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare null_exp.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare null_exp.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare null_exp.

subexp<S>* clone() const

Returns a new null_exp.

int compare null_exp() const

Returns 0 (every null_exp is equal to every other).

int compare_empty set() const

Returns —1 (every null _exp is less than every empty_set).

int compare_empty string() const

Returns —1 (every null _exp is less than every empty_string).

int compare_cat_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every null _exp is less than every cat_exp).

int compare plus_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every null exp is less than every plus_exp).

int compare_star_exp(const subexp<S>*) const

Returns —1 (every null exp is less than every star_exp).



void convert_subexp(fm<S>& a) const

A no-op.

int is null exp() const

Returns 1.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new null_exp.

void print(ostream& os, int i) const
A no-op.
int size() const

Returns 0.

null_exp()

Constructor. A no-op.

null _exp(const null _exp<S>&)

Copy constructor. A no-op.

~null_exp()

Destructor. A no-op.

71
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H Union expressions: plus_exp

H.1 Definition

plus_exps are parameterizable union subexpressions of regular expressions (re).
plus_exp maintains two variables:

protected:

subexp<S>* left;
subexp<S>* right;

H.2 Public functions

plus_exp<S>& operator=(const plus_exp<S>& r) const

Assignment operator. Assigns the left and right of r to the left and right
of the invoking plus_exp.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare plus_exp.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare plus_exp.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare plus_exp.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare_plus_exp.

int compare plus_exp(const subexp<S>*, const subexp<S>*) const

Returns 0 if the invoking plus_exp is equal to the arguments, —1 if it is less
than the arguments, and 1 if it is greater than the arguments.

int compare_star_exp(const subexp<S>*) const

Returns —1 (every plus_exp is less than every star_exp).

subexp<S>* clone()

Clone operation. Simulates virtual copy constructor.

int contains empty_string() const

Returns 1 if the left or right contains the empty string, and returns 0
otherwise.

int contains plus_exp() const

Returns 1if the left or right contains the empty set, and returns 0 otherwise.



73

void copy(const subexp<S>&)

Copy operation. Used by clone.

int is_empty_string() const

Returns 1 if left and right are the empty string, and returns 0 otherwise.

int is_plus_exp() const

Returns 1if left and right contains the empty set, and returns 0 otherwise.

subset<S>* minimize()

Applies minimization heuristics.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new cat_exp.

void print(ostream& os, int i) const
Prints an alphanumeric representation of the plus_exp on the stream os. The
symbol for the union operation is defined in the variable re<S>: :re plus.
int size() const

Returns 1 plus the size of 1eft and the size of right.

plus_exp()
Constructor. Assigns left and right to null_exp.

plus_exp(const re<S>& 1, const re<S>& r)
Copy constructor. Copies the subexp* of 1 to 1left and the subexp* of r to
right.

plus_exp(const plus_exp<S>&)

Copy constructor. Calls clone.

~plus_exp()
Destructor. Explicitly calls the destructors for the left and right subexp.
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I Regular expressions: re

I.1 Definition

res are parameterizable regular expressions. re maintains the following variable:

protected:

subexp<S>* p;

A subexp is a subexpression (also a template class). There are several derivations

of subexp; p can point to any one of them. re also maintains the following static
variables:

public:

static
static
static
static
static
static
static
static
static
static
static
static

char
char
char
char
char

re_star;
re_plus;
re_cat;
re_lparen;
re_rparen;

char* re_estring;
char* re_eset;

char
char
char
char
char

re_lambda;
re_left_delimiter;
re_right_delimiter;
re_left_symbol_delimiter;
re_right_symbol_delimiter;

1.2 Public functions

re<S>& operator=(const re<S>& r)

Assignment operator. Checks for self-assignment, and then copies r to the
invoking fm.

re<S>& operator=(subexp<S>& r)

Assignment operator. Checks for self-assignment, and then copies r to the

invoking re. Actually just copies the subexpression pointer.

int operator==(const re<S>& r) const

Equivalence operator. Returns 1 if the invoking re is equal to r, and 0 other-
wise. Returns 0 if either re is null.

int operator!=(const re<S>& r) const

Inequivalence operator. Returns 1 if the invoking re is not equal to r, and 0
otherwise. Returns 0 if either re is null.
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int operator<(const re<S>& r) const
Less-than operator. Returns 1 if the invoking re is less than r, and 0 other-
wise. Returns 0 if either re is null.

int operator>(const re<S>& r) const
Greater-than operator. Returns 1 if the invoking re is greater than r, and 0
otherwise. Returns 0 if either re is null.

re<S>& operatorA(const re<S>& r)

Catenation operator. Catenates the invoking re with r.

re<S>& operator+(const re<S>%& r)

Union operator. Computes the union of the invoking re with r.

re<S>& operatorA=(const re<S>& r)
Catenation operator. Catenates the invoking re with r, without producing
an intermediate re.

re<S>& operator+=(const re<S>& r)
Union operator. Computes the union of the invoking re with r, without
producing an intermediate re.

void clear()

Clears the content of the re.

int contains empty_set() const
Returns 1 if the invoking re contains the empty set, and 0 otherwise. Returns
0 if the invoking re is null.

int contains empty_string() const
Returns 1 if the invoking re contains the empty string, and 0 otherwise.
Returns 0 if the invoking re is null.

void fmtore(fm<S>& a)

Converts finite-state machine a to an re, and returns it as the invoking re.

int is_empty_set() const
Returns 1 if the invoking re is the empty set, and 0 otherwise. Returns 0 if
the invoking re is null.

int is_empty_string() const
Returns 1 if the invoking re is the empty string, and 0 otherwise. Returns 0
if the invoking re is null.

int is null() const

Returns 1 if the invoking re is null (that is, uninitialized) and 0 otherwise.
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re<S>%& make empty string() const

Make the empty string re.

re<S>& make _empty set() const

Make the empty set re.

re<S>& make null exp() const

Makes the null (uninitialized) re.

re<S>& make_symbol(const S& s) const

Makes a single symbol re, using symbol s.

re<S>& minimize()
Applies minimization heuristics (removing subexpressions that are catenated
with empty_set, removing empty string from catenations, removing union
of equivalent expressions, eliminating unnecessary parentheses).

re<S>* parse(char* str, int* i, int size)
Parses the string str of size size, starting at position i, and returns the
corresponding subexp.

void print(ostream& os, int i) const
Prints an alphanumeric representation of the re on the stream os. i is the
priority used to determine whether the expression should be surrounded by
parentheses.

fm<S>& retofm() const
Converts the invoking re to a finite-state machine. Employs the convert_subexp
functions of the subexpressions of the invoking re.

int size() const

Returns the size of the invoking re.
re<S>& star()
Computes the Kleene star of the invoking re.

re<S>* term(char* str, int* i, int size)

Finds the next term in str starting from i, and returns a pointer to the
corresponding subexp. Used by parse.

token_type token(char* str, int& i)

Finds the next token in str starting from i, and returns an indicator of the
type of the token. Used by parse and term.

re()

Constructor. Initializes p to empty_set.
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re(const re<S>& a)

Copy constructor. Tests for equivalence, and then copies the subexpression
pointer.

~re()

Destructor. Explicitly deletes the subexpression through its pointer.

1.3 Friend functions

ostream& operator<<(ostream& os, const re<S>%& s)

Outputs s on stream os.

istream& operator>>(istream& os, re<S>& s)

Inputs s from stream is.
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J Sets: set

J.1 Definition

sets are parameterizable, dynamic, homogeneous sets of Items. Each set stores
its objects directly. If you want to use a set to share objects with some other
container, you should declare a set that stores pointers or references to the objects
you want to share.

It is possible to convert a set to a 1ist without copying all the elements. This
is because lists and setss are both implemented with a pointer to an array of
the contained objects; thus, it is possible to simply copy the pointer, and leave the
array intact. The from_1ist function converts a 1ist to a set.

set maintains the following variables:

protected:

Ttem* P; // array of Items

int max; // maximum size of array

int 8Z; // number of elements currently in array

Note that operator>> is not defined.

J.2 Public functions

set<Item>& operator=(const set<Item>& s)
Assignment operator. Checks for self-assignment; clears; adds s to the invok-
ing set.

set<Item>& operator=(const Item& i)
Assignment operator. Checks for self-assignment; clears; adds i to the invok-
ing set.

int operator==(const set<Item>& s) const
Equivalence operator. Returns 1 if s and the invoking set contain exactly the
same Items, and returns 0 otherwise.

int operator!=(const set<Item>& s) const
Inequivalence operator. Returns 1 if s and the invoking set do not contain
exactly the same Items, and and returns 0 otherwise.

int operator<(const set<Item>& s) const

Less-than operator. Returns 1 if the invoking set is less than s, and returns 0
otherwise. set a is less than set b if @ has fewer members than b, or if a; < b;
and a; and b; are the smallest elements of a and b that are not contained in
both. This function is used when sorting collections of sets.
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int operator>(const set<Item>&) const
Greater-than operator. Returns 1 if the invoking set is greater than s, and
returns 0 otherwise. set a is greater than set b if @ has more members than
b, or if a; > b; and a; and b; are the smallest elements of a and b that are not
contained in both. This function is used when sorting collections of sets.

void operator+=(const set<Item>& s)
Union operator. Checks for self assignment, and adds each member of s to
the invoking set.

void operator+=(Item q)
Union operator. Checks q for membership in the set, allocates additional
space if necessary, then adds q to the invoking set. q is copied with the
assignment operator of the class Item.

void operator-=(const set<Item>& s)
Difference operator. Checks for self-deletion, and then deletes each member
of s from the invoking set.

void operator—-=(const Item& s)
Difference operator. Checks for membership of s in the invoking set, and
then deletes it.

Item& operator[](int i) const
Selection operator. Returns the ith Item. Though currently implemented as
array selection, it need not be, and programmers should not depend on this.

void clear()

Sets the size to zero. Does not free any space used by current members.

int contain(const set<Item>& s) const
Checks to see if s is contained in the invoking set. Returns 1 if s is contained,
and returns 0 otherwise.

set<Item>& disjoint union(const set<Item>& s)

Computes a fast union of s with the invoking set, based on the assumption
that the two sets are disjoint. It is the programmer’s responsibility to ensure
that the sets are disjoint.

set<Item>& disjoint union(const Item& s)

Computes a fast union of s with the invoking set, based on the assumption
that s does not appear in the invoking set. It is the programmer’s responsi-
bility to ensure that s does not appear in the invoking set.
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void fromlist(list<Item>&)
Efficiently converts a list to a set. Duplicates are removed. Note that
the 1list is no longer available after this call; the array of Items has been
transferred directly to the set.

void intersect(const set<Item>& s1, const set<Item>& s2)
Clears the invoking set, then adds any members belonging to the intersection
of s1 and s2.

int member(const Item& s)
Checks for membership of s in the invoking set. Returns 1 if s is a member,
and returns 0 otherwise.

void remove(int i)

Removes the ith Item from the invoking set. This function is not an over-
loaded operator-=in order to avoid ambiguity; in particular, removing the
ith member of a set of int would not be distinguishable from removing I
itself from the set.

int size() const

Returns the current size of the invoking set.

set()

Constructor. Allocates space and sets the size to zero.

set(const set<Item>& s)

Copy constructor. Allocates space and copies s to the invoking set.

~sget()

Destructor. Deletes the array of Items.

J.3 External functions

ostream& operator<<(ostream& os, set<Item>& s

Outputs s on stream os.
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K Star expressions: star_exp

K.1 Definition

star_exps are parameterizable star (or closure) subexpressions of regular expres-
sions. star_exp maintains one variable:

protected:

subexp<S>* left;

K.2 Public functions

star_exp<S>& operator=(const star_exp<S>%& r) const

Assignment operator. Assigns left of r to the left of the invoking star_exp.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare_star_exp.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare_star_exp.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare_star_exp.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare _star_exp.

int compare _star_exp(const subexp<S>*) const

Returns —1 if the invoking star_exp is less than the argument, 0 if equal to
the argument, and 1 if greater than the argument.

subexp<S>* clone()

Clone operation. Simulates virtual copy constructor.
int contains empty_string() const

Returns 1 if 1eft contains the empty string, and returns 0 otherwise.
int contains star_exp() const

Returns 1 if 1eft contains the empty set, and returns 0 otherwise.

void convert_subexp(fm<S>& a) const

Converts the invoking star_exp into a fm and returns the result in a. Makes
calls to other subexpression classes.
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void copy(const subexp<S>&)

Copy operation. Used by clone.
int is_empty_string() const
Returns 1 if 1eft is the empty string, and returns 0 otherwise.

int is_star_exp() const

Returns 1 if 1eft is the empty set, and returns 0 otherwise.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new star_exp.

void print(ostream& os, int i) const

Prints an alphanumeric representation of the star_exp on the stream os. The
symbol for the star operation is defined in the variable re<S>: :re_star.

int size() const

Returns 1 plus the size of left.

subexp<S>* star()
Star operation. A no-op, since star of star is still star.
star_exp()

Constructor. Assigns left to null_exp.

star_exp(const re<S>& s)

Copy constructor. Assigns left of s to left.

star_exp(const star_exp<S>& s)

Copy constructor. Calls clone.

~star_exp()

Destructor. Explicitly calls the destructor for left.
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L States: state
L.1 Definition

states are the states of finite-state machines. This class is a simple wrapper for
ints. It exists for two reasons: first, to ensure that no code is written that embeds
knowledge of the representation of states—as might happen if states were repre-
sented as ints, for example. The second reason is to support the pseudo-states
(START) and (FINAL).

states can have the value of any non-negative integer. Internally, each state’s
value is offset by two; the values zero and one are reserved for the pseudo-start state
and pseudo-final state, respectively. There is also a null state, whose value is -1;
this state is used by functions whose return value is state, and who wish to signal
an exceptional condition.

state maintains the following private variable:

private:

int number; // state number

L.2 Public functions

void operator=(const state& s)

Assignment operator. Checks for self-assignment; copies s to the invoking
state.

void operator=(int& i)
Assignment operator. Copies the value of i to the invoking state.

int operator==(const state& s)

Returns 1 if the invoking state is equal to s; returns 0 otherwise.

int operator!=(const state& s)

Returns 1 if the invoking state is not equal to s; returns 0 otherwise.

int operator>(const state& s)

Returns 1 if the invoking state is strictly larger than s; returns 0 otherwise.
int operator>(int& i)

Returns 1 if the invoking state is strictly larger than i; returns 0 otherwise.
int operator<(const state& s)

Returns 1 if the invoking state is strictly smaller than s; returns 0 otherwise.
int operator<(int& i)

Returns 1 if the invoking state is strictly smaller than i; returns 0 otherwise.
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void operator+=(const state& s)

Adds value of s to the invoking state.
void operator+=(int& i)

Adds value of i to the invoking state.

void operator-=(const state& s)

Checks that the invoking state is greater than s, then subtracts the value of
s from the invoking state.

void operator-=(int& i)

Checks that the invoking state is greater than i, then subtracts the value of
i from the invoking state.

int is null() const

Returns 1 if the invoking state is null, and returns 0 otherwise.
int is _final() const

Returns 1 if the invoking state is pseudo-final, and returns 0 otherwise.
int is_start() const

Returns 1 if the invoking state is pseudo-start, and returns 0 otherwise.
void final()

Sets the invoking state to pseudo-final value.

void null()

Sets the invoking state to null.

void start()

Sets the invoking state to pseudo-start value.

int value() const

Returns integer value of the invoking state.

state()

Constructor. Sets number to 0.

state(const state& s)

Copy constructor. Copies value of s to the invoking state.

~state()

Destructor. A no-op.



L.3 Friend functions

ostream& operator<<(ostream& os, const state& s)

Outputs s on stream os.

istream& operator>>(istream& os, state& s)

Inputs s from stream is.
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M Strings: string
M.1 Definition

strings are parameterizable dynamic arrays of symbols. Grail's strings use a
slightly unconventional notion of order; strings are ordered first according to size
and then lexicographically. This is done in order to make it easier to enumerate the
strings belonging to languages.

strings are not null-terminated, as are char *s. string maintains the following
private variables:

private:

S* c; // pointer to characters

int SZ; // current length of string
int max; // length of allocated space

The character string c¢ is null-terminated for consistency with the standard string
package.

M.2 Public functions

void operator=(const string<S>& s)
Assignment operator. Checks for self-assignment, clears, and then assigns s
to the invoking string.

void operator=(const S* s)

Assignment operator. Clears, then assigns s to the invoking string.

int operator==(const string<S>& s)
Equivalence operator. Returns 1 if s is identical to the invoking string, and
returns 0 otherwise.

int operator==(const S* s)
Equivalence operator. Returns 1 if s is identical to the invoking string, and
returns 0 otherwise.

int operator<(const string<S>& s)
Less-than operator. Returns 1 if invoking string is less than s, and returns
0 otherwise. (strings are ordered first by size, then lexicographically.)

int operator>(const string<S>& s)

Greater-than operator. Returns 1 if invoking string is greater than s, and
returns 0 otherwise. (strings are ordered first by size, then lexicographically.)
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int operator!=(const string<S>& s)

Inequivalence operator. Returns 1 if s is different from the invoking string,
and returns 0 otherwise.

int operator!=(const S* s

Inequivalence operator. Returns 1 if s is different from the invoking string,
and returns 0 otherwise.

int operator+=(const string<S>& str)

Catenation operator. Append str to the invoking string.

int operator+=(const S* str)

Catenation operator. Append str to the invoking string.

int operator+=(const char& ch)

Catenation operator. Append the character ch to the invoking string.

S& operator[](int& i) const

Selection operator. Returns the ith S in the string.

S* ptr() const

Returns a pointer to the S array.

void clear()

Sets the current length to 0.

int isnull()

Returns 1 if the invoking string is empty, and returns 0 otherwise.

int size() const

Returns the current size of the invoking string.

int truncate(int x)

Truncation. Sets size to x (x may be zero).
string()

Constructor. Allocates space and sets size to zero.
string(const string<S>& s)

Copy constructor. Allocates space and copies s to the invoking string.
~string()

Destructor. Deletes space occupied by c.
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M.3 Friend functions

ostream& operator<<(ostream& os, const string<S>& s)

Outputs s on stream os.

istream& operator>>(istream& os, string& s)

Inputs s from stream is. Treats either whitespace or pairs of " as string
delimiters.
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N Subexpressions: subexp

N.1 Definition

subexps are parameterizable subexpressions of regular expressions (subexp). subexp
is the abstract base class for empty_set, empty_string, symbol_exp, plus_exp,
cat_exp, star_exp). subexp is an abstract base class and cannot be instantiated.

Many of the functions of subexp return 0 as a default value. These functions
are overridden as appropriate by the derived classes.

N.2 Public functions

virtual int operator==(const subexp<S>* r) const = 0
Pure virtual function.

virtual int operator!=(const subexp<S>* r) const = 0
Pure virtual function.

virtual int operator<(const subexp<S>* r) const = 0
Pure virtual function.

virtual int operator>(const subexp<S>* r) const = 0

Pure virtual function.

subexp<S>* operatorA(subexp<S>& r)

Catenation operator. Catenates the invoking subexp with r.

subexp<S>* operator+(subexp<S>& r)

Union operator. Computes the union of the invoking subexp with r.

virtual int compare null exp() const

Returns 1.

virtual int compare empty_string() const

Returns 1.

virtual int compare_empty_set() const

Returns 1.

virtual int compare_symbol_exp(const S&) const

Returns 1.

virtual int compare _cat_exp(const subexp<S>*, const subexp<S>*) const

Returns 1.
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virtual int compare plus_exp(const subexp<S>*, const subexp<S>*) const
Returns 1.

virtual int compare star_exp(const subexp<S>*) const
Returns 1.

virtual subexp<S>* clone()

Clone operation. Simulates virtual copy constructor.

virtual int contains empty set() const
Returns 0.

virtual int contains empty string() const
Returns 0.

virtual void convert_subexp(fm<S>&) const = 0

Pure virtual function.

void copy(const subexp<S>&)
Copy operation. Used by clone.

virtual int is_empty_set() const
Returns 0.

virtual int is_empty_string() const
Returns 0.

virtual subexp<S>* minimize()

Returns this.

virtual subexp<S>* new_subexp()

Creation function. Simulates virtual constructor.

virtual void print(ostream& os, int i) const = 0

Pure virtual function.

virtual int size() const = 0

Pure virtual function.

virtual subexp<S>#* star()

Computes the Kleene star of the invoking subexp.

subexp ()
Constructor. A no-op. Protected (to ensure that instances of subexp are not
created)

virtual ~subexp()

Destructor. A no-op.
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O Symbol expressions: symbol _exp

0.1 Definition

symbol_exps are parameterizable symbol subexpressions of regular expressions. symbol_exp
maintains one variable:

protected:

S content;

0.2 Public functions

int operator=(const symbol_exp& s)

Assignment operator. Assigns s’s content to content.

int operator==(const subexp<S>* r) const

Equivalence operator. Calls the argument’s compare_symbol_exp.

int operator!=(const subexp<S>* r) const

Inequivalence operator. Calls the argument’s compare_symbol_exp.

int operator<(const subexp<S>* r) const

Less-than operator. Calls the argument’s compare_symbol_exp.

int operator>(const subexp<S>* r) const

Greater-than operator. Calls the argument’s compare_symbol_exp.

compare_symbol _exp(const S& s) const

Returns 0 if s == content, —1if 8 < content, and 1if s > content

compare_cat_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every symbol_exp is less than every cat_exp).

compare_plus_exp(const subexp<S>*, const subexp<S>*) const

Returns —1 (every symbol_exp is less than every plus_exp).

compare_star_exp(const subexp<S>*) const

Returns —1 (every symbol_exp is less than every star_exp).

subexp<S>* clone()

Clone operation. Simulates virtual copy constructor.

void contains symbol(const S&) const

Returns 1 if content is equal to s, and returns 0 otherwise.
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void convert_subexp(fm<S>& a) const

Converts the invoking symbol_exp into a £fm and returns the result in a.

void copy(const subexp<S>&)

Copy operation. Used by clone.

subexp<S>* new_subexp()

Creation function. Simulates virtual constructor. Returns new symbol_exp.

void print(ostream& os, int i) const
Prints an alphanumeric representation of the symbol _exp on the stream os.
Requires that the symbol class define operator <<.

int size() const

Returns 1.

symbol_exp()

Constructor. A no-op.

symbol_exp(const S& s)
Copy constructor. Assigns content to s. Requires that the symbol class
define operator =.

symbol_exp(const symbol_exp& s)

Copy constructor. Calls clone.

~symbol_exp()

Destructor. A no-op.



