
GRAIL (1) User Commands GRAIL (1)

NAME
Grail – finite-state machines and regular expression software

Grail is a collection of programs for processing finite-state machines and regular
expressions. At the user level, Grail consists of a set of filters that manipulate
machines and expressions. Machines can be minimized, made deterministic,
renumbered, reversed, executed (on some target string), enumerated, completed,
complemented, reduced to reachable sets, and converted to regular expressions.
Regular expressions can be converted to finite-state machines and have their
parenthesization minimized. There are also a set of predicate filters that test for
conditions such as determinism, completeness, isomorphism, and universality.
The use of these filters is described in the User’s Guide to Grail and in the asso-
ciated man pages.

Grail defines both conventional and extended finite-state machines. Extended
machines permit regular expressions as instruction labels, whereas conventional
machines permit only single symbols as instruction labels. For both types of
machines, Grail permits multiple start and final states.

Grail is based on a C++ class library that can be called directly from a a C++
program. The use of this class library is described in the Programmer’s Guide
to Grail.

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), xfm(5), re(5), fmcment(1), fmcomp(1), fmcat(1), fmcross(1), fmenum(1),
fmexec(1), fmmin(1), fmminrev(1), fmplus(1), fmreach(1), fmrenum(1),
fmreverse(1), fmstar(1), fmtore(1), fmunion(1), iscomp(1), isdeterm(1),
isempty(1), isomorph(1), isuniv(1), fmdeterm(1), recat(1), remin(1), restar(1),
retofm(1), reunion(1), xfmcat(1), xfmplus(1), xfmreach(1), xfmreverse(1),
xfmstar(1), xfmtore(1), xfmunion(1)

January 1994 Grail 1

fmcat (1) User Commands fmcat (1)

NAME
fmcat – catenate two machines

SYNOPSIS
fmcat fm1 fm2

fmcat fm2 <fm1

DESCRIPTION
fmcat computes the catenation of fm1 and fm2, writing the result on the standard
output. fm1 and fm2 need not be distinct. fmcat does not introduce empty-
string instructions. It catenates the machines by connecting the final states of
fm1 to the targets of start states in fm2, and appending any other instructions.
Before catenation, the states in fm2 are renumbered so there are no collisions
with states in fm1.

fm1 and fm2 must conform to the Grail format for machines.

EXAMPLES
% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

% fmcat dfm1 dfm1
(START) |- 0
0 a 1
1 b 2
2 a 4
4 b 5
5 -| (FINAL)

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

January 1994 Grail 1

fmcat (1) User Commands fmcat (1)

% fmcat nfm2 dfm1
(START) |- 1
1 a 2
1 a 3
1 a 4
2 a 6
3 a 6
4 a 6
6 b 7
7 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5)

January 1994 Grail 2

fmcment (1) User Commands fmcment (1)

NAME
fmcment – compute the complement of a machine

SYNOPSIS
fmcment fm

fmcment <fm

DESCRIPTION
fmcment computes the complement of fm and writes the result on the standard
output. fmcment performs subset construction if the machine is not determinis-
tic, and completion if the machine is incomplete.

fm must conform to the Grail format for machines.

The complement of a machine accepts any string not accepted by the original
machine. Complement is defined in terms of the underlying alphabet of the
machine. Since Grail machines do not contain a separate specification of their
underlying alphabet, fmcment assumes that the alphabet used in the input
machine is the underlying alphabet. Thus, fmcment computes the complement
only with respect to the symbols that appear in the original machine. In order to
compute complement with respect to an alphabet containing symbols that are not
in the original machine, it is necessary to add instructions from a start state to a
new non-final state, one instruction for each missing symbol. The new state
should be the source of no instructions.

EXAMPLES
% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

% fmcment dfm1
0 a 1
1 b 2
0 b 3
1 a 3
2 a 3
2 b 3
3 a 3
3 b 3
(START) |- 0

January 1994 Grail 1

fmcment (1) User Commands fmcment (1)

0 -| (FINAL)
1 -| (FINAL)
3 -| (FINAL)

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% fmcment <nfm2
0 a 1
1 a 2
2 a 2
(START) |- 0
0 -| (FINAL)
2 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5)

January 1994 Grail 2

fmcomp (1) User Commands fmcomp (1)

NAME
fmcomp – compute the completion of a machine

SYNOPSIS
fmcomp fm

fmcomp <fm

DESCRIPTION
fmcomp computes the completion of fm and writes the result on the standard
output.

fm must conform to the Grail format for machines.

A complete machine is one in which every state has a instruction on every sym-
bol in the alphabet. fmcomp completes its input by creating a new ‘sink’ state
that is used as the target of any missing instructions in the input machine.

EXAMPLES
% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

% fmcomp dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)
0 b 3
1 a 3
2 a 3
2 b 3
3 a 3
3 b 3

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)

January 1994 Grail 1

fmcomp (1) User Commands fmcomp (1)

3 -| (FINAL)
4 -| (FINAL)

% fmcomp <nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)
2 a 5
3 a 5
4 a 5
5 a 5

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5)

January 1994 Grail 2

fmcross (1) User Commands fmcross (1)

NAME
fmcross – compute the cross product of two machines

SYNOPSIS
fmcross fm1 fm2

fmcross fm2 <fm1

DESCRIPTION
fmcross computes the cross product of the machines fm1 and fm2, writing the
result machine on the standard output. Both machines may be specified on the
command line, or one may be read from standard input. fm2 can, if desired, be
the same file as fm1.

The result is not guaranteed to have a final state unless fm2 is the same as fm1.
Furthermore, the generated machine is not guaranteed to be complete, con-
nected, minimal, or deterministic.

If two machines are not specified, fmcross returns 0. fm1 and fm2 must conform
to the Grail format for machines.

The cross product contains a instruction of the form:
((xfm1,xfm2), label , (yfa1,yfa2))

for each pair of instructions in the input machines of the form
(xfm1, label , yfa1) ∈ fa1

(xfm2, label , yfa2) ∈ fa2

The state numbers in the output machines are computed from the input state
numbers as follows: so = sfm1 + ((max+1)*sfm2)

where so is the output state number, sfm2 is the state number of fm2, and max is

the maximum state number of fm1. Since the output state numbers have a
unique factorization in terms of input state numbers, it is possible to determine
from the output state which pair of input states it represents.

Computing the cross product of two finite-state machines generates their inter-
section; if the input machines are equivalent, then the result is the same as the
input. Computing the cross product of a nondeterministic machine with itself
produces a result that accepts the same language, but is substantially larger.
Recursive application of cross product results in an exponential growth in the
size of the machine. Thus one can generate large nondeterministic machines
with a known language; this may be useful for testing other filters.

January 1994 Grail 1

fmcross (1) User Commands fmcross (1)

fmcross requires space proportional to its result. Recursive cross product of
even the smallest nondeterministic machines more than four or five times will
consume tens of megabytes of memory.

EXAMPLES
This example computes the cross product of a simple nfm with itself:

% cat nfm
(START) |- 0
0 a 1
0 a 2
1 -| (FINAL)
2 -| (FINAL)

% fmcross nfm nfm
0 a 4
0 a 7
0 a 5
0 a 8
(START) |- 0
4 -| (FINAL)
7 -| (FINAL)
5 -| (FINAL)
8 -| (FINAL)

This example computes the cross product of two fms which have the property
that L1 in L2:

% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 c 3
3 -| (FINAL)

% cat dfm2
(START) |- 0
0 a 0
0 b 1
1 c 1
1 -| (FINAL)

January 1994 Grail 2

fmcross (1) User Commands fmcross (1)

% fmcross dfm1 dfm2
0 a 1
1 b 6
6 c 7
(START) |- 0
7 -| (FINAL)

This example shows the exponential increase in the size of cross product results,
using wc to compute the size of the machine file):

$ for i in 1 2 3 4
> do
> fmcross nfm nfm >tmp
> mv tmp nfm
> wc nfm
> done

9 27 97 nfm
33 99 381 nfm
513 1539 6925 nfm

131073 393219 2293773 nfm
$

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5)

January 1994 Grail 3

fmdeterm (1) User Commands fmdeterm (1)

NAME
fmdeterm – make a machine deterministic

SYNOPSIS
fmdeterm fm

fmdeterm <fm

DESCRIPTION
fmdeterm computes a deterministic machine from fm, using the subset construc-
tion method. In a small number of cases, this will cause an exponential increase
in the size of the machine.

fm must conform to the Grail format for machines.

EXAMPLES
% cat nfm1
(START) |- 1
1 a 2
1 a 3
2 b 2
3 b 3
2 c 4
3 c 5
4 d 4
5 d 5
4 -| (FINAL)
5 -| (FINAL)

% fmdeterm nfm1
(START) |- 0
0 a 1
1 b 1
1 c 2
2 d 2
2 -| (FINAL)

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4

January 1994 Grail 1

fmdeterm (1) User Commands fmdeterm (1)

2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% fmdeterm <nfm2
(START) |- 0
0 a 1
1 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), isdeterm(1)

January 1994 Grail 2

fmenum (1) User Commands fmenum (1)

NAME
fmenum – enumerate the language of a machine

SYNOPSIS
fmenum fa [num]

fmenum [num] <fm

DESCRIPTION
fmenum enumerates the language of fm and writes the strings on its standard
output. It produces 100 strings (or num strings, if num is specified) that belong
to the language of fm. fmenum can enumerate the language of both determinis-
tic and nondeterministic machines. fmenum produces strings in order of their
length, shortest first; within the same length, they are lexicographically ordered.

fm must conform to the Grail format for machines.

EXAMPLES
% cat nfm1
(START) |- 1
1 a 2
1 a 3
2 b 2
3 b 3
2 c 4
3 c 5
4 d 4
5 d 5
4 -| (FINAL)
5 -| (FINAL)

% fmenum 10 nfm1
ac
abc
acd
abbc
abcd
acdd
abbbc
abbcd
abcdd
acddd

January 1994 Grail 1

fmenum (1) User Commands fmenum (1)

% fmenum foobar <nfm1
fmenum: enumeration value foobar invalid

% fmenum 5 <nfm1
ac
abc
acd
abbc
abcd

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmexec(1)

January 1994 Grail 2

fmexec (1) User Commands fmexec (1)

NAME
fmexec – execute a machine on an input string

SYNOPSIS
fmexec [-d] fa string

fmexec [-d] string <fm

DESCRIPTION
fmexec tests string for acceptance in the language of the machine fm. If string is
accepted, fmexec returns 1 and writes accepted on its standard error; otherwise
it returns 0 and writes not accepted on its standard error. fmexec can execute
both deterministic and nondeterministic machines.

The -d option causes fmexec to print each instruction that it executes for each
character of string that is processed. In the case of nondeterministic machines,
fmexec will print the set of instructions that are executed for each character of
string.

fm must conform to the Grail format for machines. string should probably be
protected by double quotes.

EXAMPLES
% cat nfm1
(START) |- 1
1 a 2
1 a 3
2 b 2
3 b 3
2 c 4
3 c 5
4 d 4
5 d 5
4 -| (FINAL)
5 -| (FINAL)

% fmexec nfm1 "abc"
accepted

% fmexec nfm1 "abbbbbbbbbbcdddddddddddd"
accepted

% fmexec nfm1 "x"

January 1994 Grail 1

fmexec (1) User Commands fmexec (1)

not accepted

% fmexec -d "abbcd" <nfm1
on a take instructions
1 a 2
1 a 3
on b take instructions
2 b 2
3 b 3
on b take instructions
2 b 2
3 b 3
on c take instructions
2 c 4
3 c 5
on d take instructions
4 d 4
5 d 5
terminate on final states 4 5

accepted

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmenum(1)

January 1994 Grail 2

fmmin (1) User Commands fmmin (1)

NAME
fmmin – compute the minimal machine

SYNOPSIS
fmmin fm

fmmin <fm

DESCRIPTION
fmmin computes the minimal machine that accepts the same language as fm,
and writes the result on the standard output. fmmin returns 0 if the input
machine is non-deterministic. The machine can be made deterministic by first
filtering it with fmdeterm. fmmin uses Hopcroft’s partition algorithm. It does
not remove unreachable states.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm
(START) |- 0
0 a 1
0 b 2
1 c 1
2 c 2
1 d 3
2 d 4
3 -| (FINAL)
4 -| (FINAL)

% fmmin dfm
(START) |- 2
2 a 1
2 b 1
1 c 1
1 d 0
0 -| (FINAL)

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4

January 1994 Grail 1

fmmin (1) User Commands fmmin (1)

2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% cat nfm2 | fmdeterm | fmmin
(START) |- 1
1 a 0
0 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmminrev(1), fmdeterm(1)

January 1994 Grail 2

fmminrev (1) User Commands fmminrev (1)

NAME
fmminrev – compute the minimal machine

SYNOPSIS
fmminrev fm

fmminrev <fm

DESCRIPTION
fmminrev computes the minimal machine that accepts the same language as fm,
and writes the result on the standard output. fmminrev returns 0 if the input
machine is nondeterministic. The machine can be made deterministic by filter-
ing it with fmdeterm.

fmminrev computes the minimal machine by reversing, performing subset con-
struction (that is, by applying fmdeterm), reversing again, and performing sub-
set construction a final time). The result is guaranteed to be deterministic.

Machines can also be minimized by fmmin fa, which uses Hopcroft’s partition
method. fmmin and fmminrev should produce isomorphic results (that is,
identical up to state renumbering).

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm
(START) |- 0
0 a 1
0 b 2
1 c 1
2 c 2
1 d 3
2 d 4
3 -| (FINAL)
4 -| (FINAL)

% fmminrev <dfm
(START) |- 0
0 a 1
0 b 1
1 d 2
1 c 1
2 -| (FINAL)

January 1994 Grail 1

fmminrev (1) User Commands fmminrev (1)

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% cat nfm2 | fmdeterm | fmminrev
(START) |- 0
0 a 1
1 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmmin(1), fmreverse(1), fmdeterm(1), ismorph(1)

January 1994 Grail 2

fmplus (1) User Commands fmplus (1)

NAME
fmplus – compute ‘+’ of machine

SYNOPSIS
fmplus fm

fmplus <fm

DESCRIPTION
fmplus computes the ‘+’ of fm; that is, the machine accepting one or more
occurences of words accepted by fm. The result is written on standard output.

fmplus can be applied to either determinstic or nondeterministic machines. The
result is guaranteed to be nondeterministic.

fm must conform to the Grail format for machines.

fmplus computes ‘+’ by making all instructions to final states also go to start
states. The result has no empty-string instructions.

EXAMPLES
% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

% fmplus dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)
1 b 0

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% fmplus <nfm2

January 1994 Grail 1

fmplus (1) User Commands fmplus (1)

(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)
1 a 1

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5)

January 1994 Grail 2

fmreach (1) User Commands fmreach (1)

NAME
fmreach – compute the reachable subset of a machine

SYNOPSIS
fmreach fm

fmreach <fm

DESCRIPTION
fmreach finds all reachable states of fm and writes on its standard output only
instructions involving those states.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm4
(START) |- 0
0 a 1
0 g 0
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% fmreach <dfm4
(START) |- 0
0 a 1
0 g 0
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% cat dfm6
(START) |- 3
3 a 4

January 1994 Grail 1

fmreach (1) User Commands fmreach (1)

4 b 5
5 -| (FINAL)
1 a 2
2 b 6
6 -| (FINAL)

% fmreach dfm6
(START) |- 3
3 a 4
4 b 5
5 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), xfmreach(1)

January 1994 Grail 2

fmrenum (1) User Commands fmrenum (1)

NAME
fmrenum – renumber a machine

SYNOPSIS
fmrenum fm

fmrenum <fm

DESCRIPTION
fmrenum renumbers the states in fm according to a canonical numbering;
breadth-first and lexicographically on the instruction labels. The renumbered
machine is placed on standard output.

If isomorphic machines are canonically renumbered, they are identical.

fmrenum returns 0 and writes a message on standard error if fm is nondeter-
ministic. A machine can be made deterministic by filtering it with fmdeterm.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm2
(START) |- 3
3 a 4
4 b 5
5 -| (FINAL)

% fmrenum dfm2
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmdeterm(1)

January 1994 Grail 1

fmreverse (1) User Commands fmreverse (1)

NAME
fmreverse – reverse a machine

SYNOPSIS
fmreverse fm

fmreverse <fm

DESCRIPTION
fmreverse reverses the direction of all instructions in fm and writes the result on
standard output. All start states become final states and vice versa. The input
need not be deterministic. The output will be nondeterministic if fm contains
more than one final state (since a deterministic machine can have only one start
state).

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm5
(START) |- 0
0 a 1
1 c 2
2 e 3
3 -| (FINAL)
1 b 0
2 d 0

% fmreverse dfm5
0 -| (FINAL)
1 a 0
2 c 1
3 e 2
(START) |- 3
0 b 1
0 d 2

% cat nfm
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)

January 1994 Grail 1

fmreverse (1) User Commands fmreverse (1)

3 -| (FINAL)
4 -| (FINAL)

% fmreverse <nfm2
1 -| (FINAL)
2 a 1
3 a 1
4 a 1
(START) |- 2
(START) |- 3
(START) |- 4

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5)

January 1994 Grail 2

fmstar (1) User Commands fmstar (1)

NAME
fmstar – compute ‘*’ of a machine

SYNOPSIS
fmstar fm

fmstar <fm

DESCRIPTION
fmstar computes ‘*’ (also known as Kleene closure) of fm and writes the result
on standard output. The input need not be deterministic.

fm must conform to the Grail format for machines.

fmstar introduces no empty-string instructions. It first computes the ‘+’ of fm,
then it clones the start state and makes it a final state.

EXAMPLES
% cat dfm5
(START) |- 0
0 a 1
1 c 2
2 e 3
3 -| (FINAL)
1 b 0
2 d 0

% fmstar dfm5
0 a 1
1 c 2
2 e 3
3 -| (FINAL)
1 b 0
2 d 0
2 e 0
4 a 1
4 -| (FINAL)
(START) |- 4

January 1994 Grail 1

fmstar (1) User Commands fmstar (1)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmplus(1)

January 1994 Grail 2

fmtore (1) User Commands fmtore (1)

NAME
fmtore – convert a machine to a regular expression

SYNOPSIS
fmtore fm

fmtore <fm

DESCRIPTION
fmtore computes a regular expression that accepts the same language as fm, and
writes the result on standard output. The input need not be deterministic.

fmtore uses the state elimination method for producing the regular expression.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm5
(START) |- 0
0 a 1
1 c 2
2 e 3
3 -| (FINAL)
1 b 0
2 d 0

% fmtore <dfm5
a(ba)*c(da(ba)*c)*e

% cat nfm1
(START) |- 1
1 a 2
1 a 3
2 b 2
3 b 3
2 c 4
3 c 5
4 d 4
5 d 5
4 -| (FINAL)
5 -| (FINAL)

% fmtore nfm1

January 1994 Grail 1

fmtore (1) User Commands fmtore (1)

ab*cd*

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), re(5), retofm(1)

January 1994 Grail 2

fmunion (1) User Commands fmunion (1)

NAME
fmunion – compute the union of two machines

SYNOPSIS
fmunion fm1 fm2

fmunion fm2 <fm1

DESCRIPTION
fmunion computes the union of fm1 and fm2. This is done by renumbering the
states of fm2 and then appending its instructions to those of fm1. The input need
not be deterministic.

fm1 and fm2 must conform to the Grail format for machines.

EXAMPLES
% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

% cat dfm3
(START) |- 0
0 a 1
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% fmunion dfm1 dfm3
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)
(START) |- 3
3 a 4
3 b 7
4 c 5

January 1994 Grail 1

fmunion (1) User Commands fmunion (1)

5 d 6
6 -| (FINAL)
7 e 8
8 f 9
9 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmrenum(1)

January 1994 Grail 2

iscomp (1) User Commands iscomp (1)

NAME
iscomp – test for completeness

SYNOPSIS
iscomp fm

iscomp <fm

DESCRIPTION
iscomp tests fm for completeness (that every state has a instruction with every
instruction label). The input alphabet is considered to be the set of labels present
in the input machine. iscomp returns 1 and writes complete on standard output
if fm is complete; otherwise, it returns 0 and writes incomplete.

An incomplete machine can be made complete with fmcomp.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm3
(START) |- 0
0 a 1
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% iscomp dfm3
incomplete

% fmcomp dfm3 | iscomp
complete

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmcomp(1)

January 1994 Grail 1

isdeterm (1) User Commands isdeterm (1)

NAME
isdeterm – test machine for ‘determinism’

SYNOPSIS
isdeterm fm

isdeterm <fm

DESCRIPTION
isdeterm checks if fm is deterministic. isdeterm returns 1 and writes deter-
ministic on standard output if the input fm is deterministic; otherwise, it returns
0 and writes nondeterministic.

A nondeterministic machine can be made deterministic with fmdeterm.

fm must conform to the Grail format for machines.

EXAMPLES
% cat nfm1
(START) |- 1
1 a 2
1 a 3
2 b 2
3 b 3
2 c 4
3 c 5
4 d 4
5 d 5
4 -| (FINAL)
5 -| (FINAL)

% isdeterm nfm1
nondeterministic

% fmdeterm nfm1 | isdeterm
deterministic

AUTHORS
Darrell Raymond and Derick Wood

January 1994 Grail 1

isdeterm (1) User Commands isdeterm (1)

SEE ALSO
fm(5), fmdeterm(1)

January 1994 Grail 2

isempty (1) User Commands isempty (1)

NAME
isempty – test re for containment of empty set

SYNOPSIS
isempty re

isempty <re

DESCRIPTION
isempty tests re to see if it is the empty set. isempty returns 1 and writes is
empty set on standard output if re is the empty set; it returns 0 and writes is not
empty set otherwise.

re must conform to the Grail format for regular expressions.

EXAMPLES
% cat re1
{}

% isempty re1
is empty set

% cat re2
""
% isempty re2
is not empty set

% cat re3
(a+b)*(abc)

% isempty re3
is not empty set

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5), isnull(1)

January 1994 Grail 1

isnull (1) User Commands isnull (1)

NAME
isnull – test re for equivalence to empty string

SYNOPSIS
isnull re

isnull <re

DESCRIPTION
isnull tests re to see if it is the empty string. isnull returns 1 and writes is
empty string on standard Output if re is the empty string; it returns 0 and writes
is not empty string otherwise.

re must conform to the Grail format for regular expressions.

EXAMPLES
% cat re1
{}

% isnull re1
is not empty string

% cat re2
""
% isnull re2
is empty string

% cat re3
(a+b)*(abc)

% isnull re3
is not empty string

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5), isempty(1)

January 1994 Grail 1

isomorph (1) User Commands isomorph (1)

NAME
isomorph – test two machines for isomorphism

SYNOPSIS
isomorph fm1 fm2

isomorph fm2 <fm1

DESCRIPTION
isomorph tests fm1 and fm2 for isomorphism. isomorph returns 1 and writes
isomorphic on standard output if the two machines are isomorphic, and returns
0 and writes nonisomorphic otherwise.

If two machines are not input, isomorph writes a diagnostic on standard error
and returns 0. If either machine is not deterministic, isomorph returns -1 and
writes a diagnostic on its standard error. A machine can be made deterministic
by filtering it with fmdeterm.

Two machines are isomorphic if they are equivalent up to renumbering. Isomor-
phism is checked by applying canonical numbering to each machine and then
testing for identity.

fm1 and fm2 must conform to the Grail format for machines.

EXAMPLES

% cat dfm4
(START) |- 0
0 a 1
0 g 0
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% isomorph dfm4 dfm4
isomorphic

% cat dfm1
(START) |- 0

January 1994 Grail 1

isomorph (1) User Commands isomorph (1)

0 a 1
1 b 2
2 -| (FINAL)

% cat dfm2
(START) |- 3
3 a 4
4 b 5
5 -| (FINAL)

% isomorph dfm1 dfm2
isomorphic

% isomorph dfm1 dfm4
non-isomorphic

% isomorph dfm1 nfm1
second machine is not deterministic

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmdeterm(1), isdeterm(1)

January 1994 Grail 2

isuniv (1) User Commands isuniv (1)

NAME
isuniv – test machine for universality

SYNOPSIS
isuniv fa

isuniv <fa

DESCRIPTION
isuniv tests if fa is universal—that is, complete and all reachable states are also
final states. isuniv returns 1 and writes universal on standard output if the input
fa is universal; it returns 0 and writes nonuniversal otherwise.

fa must conform to the Grail format for machines.

EXAMPLES
% cat dfm6
(START) |- 0
0 a 1
0 b 2
0 -| (FINAL)
1 b 2
1 a 0
2 a 1
2 b 2
1 -| (FINAL)
2 -| (FINAL)

% isuniv dfm6
universal

% cat dfm1
(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

% isuniv dfm1
nonuniversal

January 1994 Grail 1

isuniv (1) User Commands isuniv (1)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmcomp(1)

January 1994 Grail 2

recat (1) User Commands recat (1)

NAME
recat – catenate two regular expressions

SYNOPSIS
recat re1 re2

recat re2 <re1

DESCRIPTION
recat catenates re1 with re2, and writes the result on standard output.

re1 and re2 must conform to the Grail format for regular expressions.

EXAMPLES
% cat re1
{}

% cat re2
""

% cat re3
(a+b)*(abc)

% recat re1 re3
{}

% recat re2 re3
(a+b)*abc

% recat re3 re3
(a+b)*abc(a+b)*abc

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5)

January 1994 Grail 1

remin (1) User Commands remin (1)

NAME
remin – produce minimal parenthesization of a regular expression

SYNOPSIS
remin re

remin <re

DESCRIPTION
remin produces the minimal parenthesization of re, and applies some simple
heuristics for minimizing the expression (removes subexpressions that are
catenated with the empty set, removes the empty string from catenations, and
removes redundant subexpressions in unions).

Any other Grail filter for regular expressions will remove superfluous
parenthesis, simply by virtue of reading and writing an expression.

re must conform to the Grail format for regular expressions.

EXAMPLES
% cat re1
{}

% remin <re1
{}

% cat re2
""

% remin re2
""
% cat re3
(a+b)*abc

% remin re3
(a+b)*abc

% cat re4
(((a)+(b))*)

% remin re4
(a+b)*

January 1994 Grail 1

remin (1) User Commands remin (1)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5)

January 1994 Grail 2

restar (1) User Commands restar (1)

NAME
restar – compute ‘*’ of a regular expression

SYNOPSIS
restar re

restar <re

DESCRIPTION
restar computes the Kleene star of re, and writes the result on standard output.

re must conform to the Grail format for regular expressions.

EXAMPLES
% cat re1
{}

% restar <re1
{}

% cat re2
""

% restar re2
""

% cat re3
(a+b)*(abc)

% restar <re3
((a+b)*abc)*

% cat re4
(((a)+(b))*)

% restar re4
(a+b)*

AUTHORS
Darrell Raymond and Derick Wood

January 1994 Grail 1

restar (1) User Commands restar (1)

SEE ALSO
re(5)

January 1994 Grail 2

retofm (1) User Commands retofm (1)

NAME
retofm – convert a regular expression to a machine

SYNOPSIS
retofm re

retofm <re

DESCRIPTION
retofm computes a finite-state machine that accepts the same language as re,
and writes it on standard output. The result is likely to be nondeterministic.

re must conform to the Grail format for regular expressions.

EXAMPLES

% cat re1
{}

% retofm <re1

% cat re2
""

% retofm <re2
(START) |- 0
0 -| (FINAL)

% cat re3
(a+b)*(abc)

% retofm re3
0 a 1
2 b 3
0 a 0
0 a 2
2 b 0
2 b 2
4 a 1
4 a 0
4 a 2
4 b 3

January 1994 Grail 1

retofm (1) User Commands retofm (1)

4 b 0
4 b 2
(START) |- 4
1 a 6
3 a 6
4 a 6
6 b 8
8 c 10
10 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5), fm(5), fmtore(1)

January 1994 Grail 2

reunion (1) User Commands reunion (1)

NAME
reunion – compute the disjunction of two regular expressions

SYNOPSIS
reunion re1 re2

reunion re2 <re1

DESCRIPTION
reunion computes re1 ‘or’ re2, and writes the result on standard output.

re1 and re2 must conform to the Grail format for regular expressions.

EXAMPLES
% cat re3
(a+b)*(abc)

% cat re2
""

% reunion re3 re2
(a+b)*abc+""

% cat re4
(((a)+(b))*)

% reunion re4 re3
(a+b)*+(a+b)*abc

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5)

January 1994 Grail 1

xfmcat (1) User Commands xfmcat (1)

NAME
xfmcat – catenate two extended machines

SYNOPSIS
xfmcat xfm1 xfm2

xfmcat xfm2 <xfm1

DESCRIPTION
xfmcat computes the catenation of xfm1 and xfm2, writing the result on the stan-
dard output. xfm1 and xfm2 need not be distinct. xfmcat does not introduce
empty-string instructions. It catenates th machines by connecting the final states
of xfm1 to the targets of start states in xfm2, and appending any other instruc-
tions. Before catenation, the states in xfm2 are renumbered so there are no colli-
sions with states in xfm1.

xfm1 and xfm2 must conform to the Grail format for extended machines. Since
every conventional machine is also an extended machine, xfmcat can be used to
catenate two conventional machines.

EXAMPLES
% cat xfm1
(START) |- 0
0 ab* 1
1 (c+d)* 2
2 -| (FINAL)

% xfmcat xfm1 xfa1
(START) |- 0
0 ab* 1
1 (c+d)* 2
2 ab* 4
4 (c+d)* 5
5 -| (FINAL)

% cat dfm4
(START) |- 0
0 a 1
0 g 0
0 b 4
1 c 2
2 d 3

January 1994 Grail 1

xfmcat (1) User Commands xfmcat (1)

3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% xfmcat dfm4 xfm1
(START) |- 0
0 a 1
0 g 0
0 b 4
1 c 2
2 d 3
4 e 5
5 f 6
3 ab* 8
6 ab* 8
8 (c+d)* 9
9 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), fmcat(1)

January 1994 Grail 2

xfmplus (1) User Commands xfmplus (1)

NAME
xfmplus – compute ‘+’ of an extended machine

SYNOPSIS
xfmplus xfm

xfmplus <xfm

DESCRIPTION
xfmplus computes the ‘+’ of xfm; that is, the machine accepting one or more
occurences of words accepted by xfm. The result is written on standard output.

fmplus computes ‘+’ by making all instructions to final states also go to start
states. The result has no empty-string instructions.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmplus can be used to compute
the ‘+’ of conventional machines.

EXAMPLES
% cat xfa3
(START) |- 0
0 a* 1
0 b* 2
0 c* 3
1 bb* 3
2 cc* 3
3 -| (FINAL)

% xfmplus xfa3
(START) |- 0
0 a* 1
0 b* 2
0 c* 3
1 bb* 3
2 cc* 3
3 -| (FINAL)
0 c* 0
1 bb* 0
2 cc* 0

% cat dfm4
(START) |- 0

January 1994 Grail 1

xfmplus (1) User Commands xfmplus (1)

0 a 1
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)

% xfmplus dfm3
(START) |- 0
0 a 1
0 b 4
1 c 2
2 d 3
3 -| (FINAL)
4 e 5
5 f 6
6 -| (FINAL)
2 d 0
5 f 0

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), fmplus(1)

January 1994 Grail 2

xfmreach (1) User Commands xfmreach (1)

NAME
xfmreach – compute the reachable subset of an extended machine

SYNOPSIS
xfmreach xfm

xfmreach <xfm

DESCRIPTION
xfmreach finds all reachable states of xfm and writes on its standard output only
instructions involving those states.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is an extended machine, xfmreach can also be used to com-
pute reachability for conventional machines.

EXAMPLES
% cat xfm1
(START) |- 0
0 ab* 1
1 (c+d)* 2
2 -| (FINAL)

% xfmreach xfm1
(START) |- 0
0 ab* 1
1 (c+d)* 2
2 -| (FINAL)

% cat dfm6
(START) |- 3
3 a 4
4 b 5
5 -| (FINAL)
1 a 2
2 b 6
6 -| (FINAL)

% xfmreach dfm6
(START) |- 3
3 a 4
4 b 5

January 1994 Grail 1

xfmreach (1) User Commands xfmreach (1)

5 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), fmreach(1)

January 1994 Grail 2

xfmreverse (1) User Commands xfmreverse (1)

NAME
xfmreverse – reverse an extended machine

SYNOPSIS
xfmreverse xfm

xfmreverse <xfm

DESCRIPTION
xfmreverse reverses the direction of all instructions in xfm and writes the result
on standard output. All start states become final states and vice versa. The out-
put will be non-deterministic if xfm contains more than one final state (a deter-
ministic machine can have only one start state).

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmreverse can also be used to
reverse conventional machines.

EXAMPLES
% cat xfm2

(START) |- 0
0 "" 1
1 a 2
0 b 2
2 -| (FINAL)

% xfmreverse xfm2
0 -| (FINAL)
1 "" 0
2 a 1
2 b 0
(START) |- 2

% cat dfm5
(START) |- 0
0 a 1
1 c 2
2 e 3
3 -| (FINAL)
1 b 0
2 d 0

January 1994 Grail 1

xfmreverse (1) User Commands xfmreverse (1)

% xfmreverse <dfm5
0 -| (FINAL)
1 a 0
2 c 1
3 e 2
(START) |- 3
0 b 1
0 d 2

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), fmreverse(1)

January 1994 Grail 2

xfmstar (1) User Commands xfmstar (1)

NAME
xfmstar – compute ‘*’ of an extended machine

SYNOPSIS
xfmstar xfm

xfmstar <xfm

DESCRIPTION
xfmstar computes ‘*’ (Kleene closure) of xfm and writes the result on standard
output.

xfmstar introduces no empty-string instructions. It first computes the ‘+’ of
xfm, then it clones the start state and makes it a final state.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmstar can be used to compute
‘*’ of conventional machines.

EXAMPLES
% cat xfa3
(START) |- 0
0 a* 1
0 b* 2
0 c* 3
1 bb* 3
2 cc* 3
3 -| (FINAL)

% xfmstar xfa3
0 a* 1
0 b* 2
0 c* 3
1 bb* 3
2 cc* 3
3 -| (FINAL)
0 c* 0
1 bb* 0
2 cc* 0
4 a* 1
4 b* 2
4 c* 3
4 c* 0

January 1994 Grail 1

xfmstar (1) User Commands xfmstar (1)

4 -| (FINAL)
(START) |- 4

% cat dfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% xfmstar <nfm2
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)
1 a 1
5 a 2
5 a 3
5 a 4
5 a 1
5 -| (FINAL)
(START) |- 5

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), xfmplus(1), fmstar(1)

January 1994 Grail 2

xfmtore (1) User Commands xfmtore (1)

NAME
xfmtore – convert an extended machine to a regular expression

SYNOPSIS
xfmtore xfm

xfmtore <xfm

DESCRIPTION
xfmtore computes a regular expression that accepts the same language as xfm,
and writes the result on standard output.

xfmtore uses the state elimination method for producing the regular expression.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmtore can be used to convert
conventional machines.

EXAMPLES
% cat xfm1
(START) |- 0
0 ab* 1
1 (c+d)* 2
2 -| (FINAL)

% xfmtore <xfm1
ab*(c+d)*

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% xfmtore nfm2
a

% cat xfa3
(START) |- 0
0 a* 1

January 1994 Grail 1

xfmtore (1) User Commands xfmtore (1)

0 b* 2
0 c* 3
1 bb* 3
2 cc* 3
3 -| (FINAL)

% xfmtore <xfm3
c*+a*bb*+b*cc*

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), re(5), fmtore(1), retofm(1)

January 1994 Grail 2

xfmunion (1) User Commands xfmunion (1)

NAME
xfmunion – compute the union of two extended machines

SYNOPSIS
xfmunion xfm1 xfm2

xfmunion xfm2 <xfm1

DESCRIPTION
xfmunion computes the union of xfm1 and xfm2. This is done by renumbering
the states of xfm2 and then simply appending its instructions to those of xfm1.

xfm1 and xfm2 must conform to the Grail format for extended machines. Since
every conventional machine is also an extended machine, xfmunion can also be
used to compute the union of conventional machines.

EXAMPLES
% cat xfa4
(START) |- 0
0 abc* 1
2 b+d 3
1 a(e+f) 4
4 -| (FINAL)

% xfmunion xfa4 <xfm4
(START) |- 0
0 abc* 1
2 b+d 3
1 a(e+f) 4
4 -| (FINAL)
(START) |- 5
5 abc* 6
7 b+d 8
6 a(e+f) 9
9 -| (FINAL)

% cat nfm2
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)

January 1994 Grail 1

xfmunion (1) User Commands xfmunion (1)

3 -| (FINAL)
4 -| (FINAL)

% xfmunion nfm2 xfa4
(START) |- 1
1 a 2
1 a 3
1 a 4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)
(START) |- 5
5 abc* 6
7 b+d 8
6 a(e+f) 9
9 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), fmunion(1)

January 1994 Grail 2

