GRAIL (1) User Commands GRAIL (1)

NAME
Grail —finite-state machines and regular expression software

Grail isacollection of programs for processing finite-state machines and regular
expressions. At the user level, Grail consists of a set of filters that manipulate
machines and expressions. Machines can be minimized, made deterministic,
renumbered, reversed, executed (on some target string), enumerated, completed,
complemented, reduced to reachable sets, and converted to regular expressions.
Regular expressions can be converted to finite-state machines and have their
parenthesization minimized. There are also a set of predicate filters that test for
conditions such as determinism, completeness, isomorphism, and universality.
The use of thesefiltersis described in the User’s Guide to Grail and in the asso-
ciated man pages.

Grail defines both conventional and extended finite-state machines. Extended
machines permit regular expressions as instruction labels, whereas conventional
machines permit only single symbols as instruction labels. For both types of
machines, Grail permits multiple start and final states.

Grail is based on a C++ class library that can be called directly from a a C++
program. The use of this class library is described in the Programmer’s Guide
to Grail.

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), xfm(5), re(5), fmcment(1), fmcomp(1), fmcat(1), fmcross(1), fmenum(1),
fmexec(1), fmmin(1), fmminrev(l), fmplus(l), fmreach(1), fmrenum(l),
fmreverse(1), fmstar(1), fmtore(1), fmunion(1l), iscomp(l), isdeterm(1),
isempty(1), isomorph(1), isuniv(1l), fmdeterm(1), recat(1), remin(1), restar(1),
retofm(1), reunion(l), xfmcat(1), xfmplus(l), xfmreach(1), xfmreverse(1),
xfmstar(1), xfmtore(1), xfmunion(1)

January 1994 Grail 1

fmcat (1) User Commands fmcat (1)

NAME
fmcat — catenate two machines

SYNOPSIS
fmcat fm1 fm2

fmcat fm2 <fm1l

DESCRIPTION
fmcat computes the catenation of fml and fm2, writing the result on the standard
output. fml and fm2 need not be distinct. fmcat does not introduce empty-
string instructions. It catenates the machines by connecting the final states of
fml to the targets of start states in fm2, and appending any other instructions.
Before catenation, the states in fm2 are renumbered so there are no collisions
with statesin fml.

fml and fm2 must conform to the Grail format for machines.

EXAMPLES
% cat dfnml
(START) |- O
0al
1 b2
2 -| (FINAL)

% fncat df ml df ml
(START) |- O

ar~rDNEFLO
'O TOD
OabrDNBE

| (FI'NAL)

% cat nfnR
(START) |- 1
a2

a3

a4
-| (FI'NAL)
-| (FI'NAL)
- (FI'NAL)

AWONR R

January 1994 Grail 1

fmcat (1) User Commands fmcat (1)

% fncat nfn2 dfml

(START) |- 1
1la?2
1 a3
l1ad4
2 a6
3 aéb6
4 a 6
6 b7
7 -] (FINAL)
AUTHORS
Darrell Raymond and Derick Wood
SEE ALSO
fm(5)

January 1994 Grail 2

fmecment (1) User Commands fmcment (1)

NAME
fmcment — compute the complement of a machine

SYNOPSIS
fmcment fm

fmcment <fm

DESCRIPTION
fmcment computes the complement of fm and writes the result on the standard
output. fmcment performs subset construction if the machine is not determinis-
tic, and completion if the machine isincomplete.

fm must conform to the Grail format for machines.

The complement of a machine accepts any string not accepted by the original
machine. Complement is defined in terms of the underlying alphabet of the
machine. Since Grail machines do not contain a separate specification of their
underlying aphabet, fmcment assumes that the alphabet used in the input
machine is the underlying alphabet. Thus, fmcment computes the complement
only with respect to the symbols that appear in the original machine. In order to
compute complement with respect to an a phabet containing symbols that are not
in the original machine, it is necessary to add instructions from a start state to a
new non-final state, one instruction for each missing symbol. The new state
should be the source of no instructions.

EXAMPLES
% cat dfnml
(START) |- O
0al
1 b2
2 -| (FINAL)

% f ncnent df mil
0

T OO 9 TTQ®
WWWWWN -

w

1
0
1
2
2
3
3
(START) |- O

January 1994 Grail 1

fmecment (1)

AUTHORS

User Commands

0 -| (FINAL)
1 -| (FINAL)
3 -| (FINAL)

% cat nfnR
(START) |- 1
1a?

1 a3
1 a4
2 -| (FINAL)

3 -| (FINAL)

4 -| (FINAL)

% f ncnent <nf n2

(START) |- O
0 -| (FINAL)
2 -| (FINAL)

Darrell Raymond and Derick Wood

SEE ALSO

fm(s)

January 1994

Grail

fmcment (1)

fmcomp (1) User Commands fmcomp (1)

NAME
fmcomp — compute the completion of a machine

SYNOPSIS
fmcomp fm

fmcomp <fm

DESCRIPTION
fmcomp computes the completion of fm and writes the result on the standard
output.

fm must conform to the Grail format for machines.

A complete machine is one in which every state has ainstruction on every sym-
bol in the alphabet. fmcomp completes its input by creating a new ‘sink’ state
that is used as the target of any missing instructions in the input machine.

EXAMPLES
% cat dfnml
(START) |- O
0al
1 b2
2 -| (FINAL)

% f nconp df ml
(START) |- O
0a1il
2

(FI NAL)

WWMNNPFPONPR
T T 9T ' T

January 1994 Grail 1

fmcomp (1)

AUTHORS

User Commands

3 -| (FINAL)
4 -| (FINAL)

% f nconp <nf n
(START) |- 1
a2

a3

a4
-] (FI'NAL)
| (FINAL)
| (FINAL)

ORARWNRNWNER PR P
1

O o !
g oo o

Darrell Raymond and Derick Wood

SEE ALSO

fm(s)

January 1994

Grail

fmcomp (1)

fmcross(1) User Commands fmcross(1)

NAME
fmcross — compute the cross product of two machines

SYNOPSIS
fmecross fm1 fm2

fmeross fm2 <fm1

DESCRIPTION
fmcross computes the cross product of the machines fml and fm2, writing the
result machine on the standard output. Both machines may be specified on the
command line, or one may be read from standard input. fm2 can, if desired, be
the samefile asfml.

The result is not guaranteed to have a final state unless fm2 is the same as fml.
Furthermore, the generated machine is not guaranteed to be complete, con-
nected, minimal, or deterministic.

If two machines are not specified, fmcr oss returns 0. fm1 and fm2 must conform
to the Grail format for machines.

The cross product contains ainstruction of the form:
((Xm1.Xrm2), 1abel, (Ya1,Yra2))

for each pair of instructions in the input machines of the form

(Xfmzy label, yfaz) 0 fa2

The state numbers in the output machines are computed from the input state
numbers asfollows: s, = Sinp + ((Max+1)* Sgo)

where s, is the output state number, Sy, is the state number of fm2, and max is

the maximum state number of fml. Since the output state numbers have a
unique factorization in terms of input state numbers, it is possible to determine
from the output state which pair of input states it represents.

Computing the cross product of two finite-state machines generates their inter-
section; if the input machines are equivalent, then the result is the same as the
input. Computing the cross product of a nondeterministic machine with itself
produces a result that accepts the same language, but is substantialy larger.
Recursive application of cross product results in an exponentia growth in the
size of the machine. Thus one can generate large nondeterministic machines
with aknown language; this may be useful for testing other filters.

January 1994 Grail 1

fmcross(1)

User Commands

fmcross(1)

fmcross requires space proportiona to its result. Recursive cross product of
even the smallest nondeterministic machines more than four or five times will
consume tens of megabytes of memory.

EXAMPLES

This example computes the cross product of a simple nfm with itself:

% cat nfm
(START) |- O
0alil

0
1
2

a
- |
- |

2
(F1 NAL)
(F1 NAL)

% fncross nfm nfm
0 a4

0
0
0
(
4
7
5
8

SR I

o o1 N

START) |- 0

(FI NAL)
(FI NAL)
(FI NAL)
(FI NAL)

This example computes the cross product of two fms which have the property
that Ly inLy:

January 1994

% cat dfml
(START) |- O
0al

1
2
3

'O T

2
3
(FI NAL)

% cat dfnR
(START) |- O

(FI NAL)

Grail

fmcross(1) User Commands fmcross(1)

% fncross df ml df n2

0al
1 b6
6 c 7
(START) |- O
7 -| (FINAL)

This example shows the exponential increase in the size of cross product results,
using wc to compute the size of the machinefile):

$ for i inl12 34

> do

> fncross nfmnfm >tnp

> m/ tmp nfm

> we nfm

> done
9 27 97 nfm
33 99 381 nfm

513 1539 6925 nfm
131073 393219 2293773 nfm

$
AUTHORS
Darrell Raymond and Derick Wood
SEE ALSO
fm(5)

January 1994 Grail 3

fmdeterm (1) User Commands fmdeterm (1)

NAME
fmdeterm — make a machine deterministic

SYNOPSIS
fmdeterm fm

fmdeterm <fm

DESCRIPTION
fmdeter m computes a deterministic machine from fm, using the subset construc-
tion method. In asmall nhumber of cases, thiswill cause an exponential increase
in the size of the machine.

fm must conform to the Grail format for machines.

EXAMPLES
% cat nfml
(START) |- 1

a

' OO0 000 TD
OO WDNWDN

(F1 NAL)
(F1 NAL)

OO WNWNEPREP

% f ndet er m nf mL
(START) |- O
0

NN PP

January 1994 Grail 1

fmdeterm (1)

AUTHORS

User Commands

2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% f ndet er m <nf n2
(START) |- O
0al

1 -] (FINAL)

Darrell Raymond and Derick Wood

SEE ALSO

fm(5), isdeterm(1)

January 1994

Grail

fmdeterm (1)

fmenum (1) User Commands fmenum (1)

NAME
fmenum — enumerate the language of a machine

SYNOPSIS
fmenum fa [num]

fmenum [num] <fm

DESCRIPTION
fmenum enumerates the language of fm and writes the strings on its standard
output. It produces 100 strings (or num strings, if num is specified) that belong
to the language of fm. fmenum can enumerate the language of both determinis-
tic and nondeterministic machines. fmenum produces strings in order of their
length, shortest first; within the same length, they are lexicographically ordered.

fm must conform to the Grail format for machines.

EXAMPLES
% cat nfml
(START) |- 1

a

' OO0 000 TD
OO WDNWDN

(FI NAL)
(FI NAL)

OO WNWNEPREP

% f menum 10 nfnmil
ac
abc
acd
abbc
abcd
acdd
abbbc
abbcd
abcdd
acddd

January 1994 Grail 1

fmenum (1) User Commands fmenum (1)

% f menum f oobar <nfml
f menum enunerati on val ue foobar invalid

% f mrenum 5 <nf mlL

ac

abc

acd

abbc

abcd
AUTHORS

Darrell Raymond and Derick Wood

SEE ALSO

fm(5), fmexec(1)

January 1994 Grail 2

fmexec(1) User Commands

NAME
fmexec — execute a machine on an input string

SYNOPSIS
fmexec [-d] fa string
fmexec [-d] string <fm
DESCRIPTION

fmexec(1)

fmexec tests string for acceptance in the language of the machine fm. If string is
accepted, fmexec returns 1 and writes accepted on its standard error; otherwise
it returns O and writes not accepted on its standard error. fmexec can execute

both deterministic and nondeterministic machines.

The -d option causes fmexec to print each instruction that it executes for each
character of string that is processed. In the case of nondeterministic machines,
fmexec will print the set of instructions that are executed for each character of

string.
fm must conform to the Grail format for machines. string should probably be
protected by double quotes.
EXAMPLES
% cat nfml
(START) |- 1
1la?2
1 a3
2 b2
3 b3
2c 4
3cb5
4 d 4
5d5
4 -| (FINAL)
5 -] (FINAL)

% f mexec nfnl "abc

accept ed

% f mexec nfml "abbbbbbbbbbcdddddddddddd”

accept ed

% fmexec nfnml "X

January 1994 Grail

fmexec(1) User Commands fmexec(1)

not accepted

% f mexec -d "abbcd" <nfml
on a take instructions

1a?
1 a3
on b take instructions
2 b2
3 b3
on b take instructions
2 b2
3 b3
on ¢ take instructions
2 c 4
3cbh
on d take instructions
4.d 4
5d5
termnate on final states 4 5
accept ed
AUTHORS
Darrell Raymond and Derick Wood
SEE ALSO

fm(5), fmenum(1)

January 1994 Grail 2

fmmin(1) User Commands fmmin(1)

NAME
fmmin — compute the minimal machine

SYNOPSIS
fmmin fm

fmmin <fm

DESCRIPTION
fmmin computes the minimal machine that accepts the same language as fm,
and writes the result on the standard output. fmmin returns O if the input
machine is non-deterministic. The machine can be made deterministic by first
filtering it with fmdeterm. fmmin uses Hopcroft’s partition algorithm. It does
not remove unreachabl e states.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfm
(START) |- O
al

'O 0 00T
A WNEDN

| (FI'NAL)
-| (FI'NAL)

A WMNEFELPNEFLOO

% fmmin dfm
(START) |- 2

January 1994 Grail 1

fmmin(1) User Commands fmmin(1)

2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% cat nfn2 | fndeterm| fmmn
(START) |- 1

lado0

0 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmminrev(1), fmdeterm(1)

January 1994 Grail 2

fmminrev (1)

NAME

fmminrev — compute the minimal machine

SYNOPSIS

User Commands

fmminrev fm

fmminrev <fm

DESCRIPTION

fmminrev (1)

fmminrev computes the minimal machine that accepts the same language as fm,
and writes the result on the standard output. fmminrev returns 0 if the input
machine is nondeterministic. The machine can be made deterministic by filter-
ing it with fmdeter m.

fmminrev computes the minimal machine by reversing, performing subset con-
struction (that is, by applying fmdeter m), reversing again, and performing sub-
set construction afinal time). The result is guaranteed to be deterministic.

Machines can aso be minimized by fmmin fa, which uses Hopcroft’s partition
method. fmmin and fmminrev should produce isomorphic results (that is,
identical up to state renumbering).

fm must conform to the Grail format for machines.

EXAMPLES

January 1994

% cat df m
(START) |- O
al

'O 0 00T
A WNEDN

| (FI'NAL)
-| (FI NAL)

A WMNEFELPNREFLOO

% f mm nrev <dfm
(START) |- O

Grail

fmminrev (1) User Commands fmminrev (1)

% cat nfnP
(START) |- 1
l1a?2

1 a3
1ai4
2 -] (FINAL)

3 -] (FINAL)

4 -| (FINAL)

% cat nfrm2 | fndeterm | fmmnrev
(START) |- O

0al1l

1 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmmin(1), fmreverse(1), fmdeterm(1), ismorph(1)

January 1994 Grail 2

fmplus(1)

NAME

User Commands

fmplus— compute ‘' +' of machine

SYNOPSIS

fmplus fm

fmplus <fm

DESCRIPTION

fmplus(1)

fmplus computes the ‘+ of fm; that is, the machine accepting one or more
occurences of words accepted by fm. The result is written on standard output.

fmplus can be applied to either determinstic or nondeterministic machines. The

result is guaranteed to be nondeterministic.

fm must conform to the Grail format for machines.

fmplus computes ‘+' by making al instructions to final states also go to start

states. The result has no empty-string instructions.

EXAMPLES

January 1994

% cat dfnml
(START) |- O
0al

1 b2

2 -| (FINAL)

% f npl us df ml
(START) |- O
0a1il
1b2
2 -| (FINAL)
1bo0

% f npl us <nf n2

Grail

fmplus(1)

AUTHORS

User Commands

START)

oo
ENRNN)

N

=

(F1 NAL)
(F1 NAL)
(F1 NAL)

PRAWONR R R
ml
'—\

Darrell Raymond and Derick Wood

SEE ALSO

fm(s)

January 1994

Grail

fmplus(1)

fmreach (1) User Commands fmreach (1)

NAME
fmreach — compute the reachable subset of a machine

SYNOPSIS
fmreach fm

fmreach <fm

DESCRIPTION
fmreach finds al reachable states of fm and writes on its standard output only
instructions involving those states.

fm must conform to the Grail format for machines.

EXAMPLES
% cat df md
(START) |- O
0

WNPS~OPF

(FI NAL)
5
6

' D ' OO0 QO

0
0
1
2
3
4
5
6

(F1 NAL)

% fnreach <df m4
(START) |- O
a

WNPS~OPF

| (FINAL)
5
6
| (FINAL)

OO, WNEFLOOO
' ThD ' OO0 TQ

% cat df nb
(START) |- 3
3 a4

January 1994 Grail 1

fmreach (1)

AUTHORS

User Commands

4 b5

5 -] (FINAL)
1a?

2 b6

6 -| (FINAL)
% f nreach df nb
(START) |- 3
3 a4

4 b5

5 -] (FINAL)

Darrell Raymond and Derick Wood

SEE ALSO

fm(5), xfmreach(1)

January 1994

Grail

fmreach (1)

fmrenum (1) User Commands fmrenum (1)

NAME
fmrenum — renumber a machine

SYNOPSIS
fmrenum fm

fmrenum <fm

DESCRIPTION
fmrenum renumbers the states in fm according to a canonica numbering;
breadth-first and lexicographically on the instruction labels. The renumbered
machineis placed on standard output.

If isomorphic machines are canonically renumbered, they are identical.

fmrenum returns O and writes a message on standard error if fm is nondeter-
ministic. A machine can be made deterministic by filtering it with fmdeter m.

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfnR
(START) |- 3
3 a4
4 b5
5 -] (FINAL)

% f nr enum df n2
(START) |- O
0al

1 b2

2 -| (FINAL)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmdeterm(1)

January 1994 Grail 1

fmreverse(1) User Commands fmreverse(1)

NAME
fmreverse — reverse amachine

SYNOPSIS
fmreverse fm

fmreverse <fm

DESCRIPTION
fmrever se reverses the direction of all instructions in fm and writes the result on
standard output. All start states become final states and vice versa. The input
need not be deterministic. The output will be nondeterministic if fm contains
more than one final state (since a deterministic machine can have only one start
state).

fm must conform to the Grail format for machines.

EXAMPLES
% cat dfnb
(START) |- O
0al

c 2

D
w

| (FI'NAL)
0
0

NEF,WNPRE

b
d

% f nr ever se df nb
0 -] (FINAL)

® 0 QD
N - O

START) |- 3
b
d

QO™ WN Pk

1
2
% cat nfm

(START) |- 1

January 1994 Grail 1

fmreverse(1)

AUTHORS

User Commands

3 -| (FINAL)
4 -| (FINAL)

% f nreverse <nfnR
1 -] (FINAL)

2 al

3al

4 al

(START) |- 2
(START) |- 3
(START) |- 4

Darrell Raymond and Derick Wood

SEE ALSO

fm(s)

January 1994

Grail

fmreverse(1)

fmstar (1) User Commands fmstar (1)

NAME
fmstar — compute ‘*’ of amachine
SYNOPSIS
fmstar fm
fmstar <fm
DESCRIPTION
fmstar computes ‘*’ (also known as Kleene closure) of fm and writes the result
on standard output. The input need not be deterministic.
fm must conform to the Grail format for machines.
fmstar introduces no empty-string instructions. It first computes the ‘+' of fm,
then it clonesthe start state and makes it afinal state.
EXAMPLES
% cat df nb
(START) |- O
0al1l
lc?2
2e3
3 -| (FINAL)
1boO
2dO0
% f st ar df nb
0al1l
lc?2
2e3
3 -| (FINAL)
1boO
2dO0
2e0
4 al
4 -| (FINAL)
(START) |- 4

January 1994 Grail 1

fmstar (1) User Commands fmstar (1)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmplus(1)

January 1994 Grail 2

fmtore(1) User Commands fmtore(1)

NAME
fmtore — convert a machine to aregular expression
SYNOPSIS
fmtore fm
fmtore <fm
DESCRIPTION
fmtor e computes a regular expression that accepts the same language as fm, and
writes the result on standard output. The input need not be deterministic.
fmtor e uses the state elimination method for producing the regular expression.
fm must conform to the Grail format for machines.
EXAMPLES
% cat df nb
(START) |- O
0a1il
lc?2
2e3
3 -] (FINAL)
1bo0
2do0

% fm ore <df nb
a(ba)*c(da(ba)*c)*e

% cat nfml
(START) |- 1
a

' OO0 0 0T0CCTD
OO WDNWDN

(F1 NAL)
(F1 NAL)

OO WNWNEPREP

% fnmore nfml

January 1994 Grail 1

fmtore(1) User Commands fmtore(1)

ab*cd*
AUTHORS
Darrell Raymond and Derick Wood
SEE ALSO

fm(5), re(5), retofm(1)

January 1994 Grail 2

fmunion (1) User Commands fmunion (1)

NAME
fmunion — compute the union of two machines

SYNOPSIS
fmunion fm1 fm2

fmunion fm2 <fm1

DESCRIPTION
fmunion computes the union of fml and fm2. This is done by renumbering the
states of fm2 and then appending its instructions to those of fm1. The input need
not be deterministic.

fml and fm2 must conform to the Grail format for machines.

EXAMPLES
% cat dfnml
(START) |- O
0al
1 b2
2 -| (FINAL)

% cat df nB
(START) |- O

WN b~

(FI NAL)
5
6

' D ' OO0 T D

OO, WNE, OO

(F1 NAL)

% f muni on df nl df n8
(START) |- O

0al

1 b2

2 -| (FINAL)

START) |- 3

January 1994 Grail 1

fmunion (1)

AUTHORS

User Commands

Darrell Raymond and Derick Wood

SEE ALSO

fm(5), fmrenum(1)

January 1994

Grail

fmunion (1)

iscomp (1) User Commands iscomp (1)

NAME
iscomp — test for compl eteness

SYNOPSIS
iscomp fm

iscomp <fm

DESCRIPTION
iscomp tests fm for completeness (that every state has a instruction with every
instruction label). The input alphabet is considered to be the set of 1abels present
in the input machine. iscomp returns 1 and writes complete on standard output
if fmis complete; otherwise, it returns 0 and writesincomplete.

An incomplete machine can be made complete with fmcomp.
fm must conform to the Grail format for machines.

EXAMPLES
% cat df nB
(START) |- O

WN b~

(FI NAL)
5
6

OO, WNE, OO
'O ' OO0 T

(F1 NAL)

% i sconp df nB
i nconmpl et e

% fnconp dfnB | isconp
conpl ete

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmcomp(1)

January 1994 Grail 1

isdeterm (1) User Commands isdeterm (1)

NAME
isdeterm — test machine for ‘ determinism’

SYNOPSIS
isdeterm fm

isdeterm <fm

DESCRIPTION
isdeterm checks if fm is deterministic. isdeterm returns 1 and writes deter-
ministic on standard output if the input fm is deterministic; otherwise, it returns
0 and writes nondeter ministic.

A nondeterministic machine can be made deterministic with fmdeter m.
fm must conform to the Grail format for machines.

EXAMPLES
% cat nfml
(START) |- 1

a

OO0 0 O0TcCUoOw
OO WDNWDN

-| (FI'NAL)
-| (FI'NAL)

OO WNWNEPEP

% i sdet er m nf mL
nondet erm ni stic

% fndetermnfml | isdeterm
determnistic

AUTHORS
Darrell Raymond and Derick Wood

January 1994 Grail 1

isdeterm (1) User Commands isdeterm (1)

SEE ALSO
fm(5), fmdeterm(1)

January 1994 Grail 2

isempty (1) User Commands isempty (1)

NAME
isempty — test re for containment of empty set

SYNOPSIS
isempty re

isempty <re

DESCRIPTION
isempty tests re to see if it is the empty set. isempty returns 1 and writes is
empty set on standard output if reis the empty set; it returns O and writesis not
empty set otherwise.

re must conform to the Grail format for regular expressions.

EXAMPLES
% cat rel

{}

% isenpty rel
is empty set

% cat re2

% i senpty re2
is not enpty set

% cat re3
(atb) *(abc)

% i senpty re3
is not enpty set

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5), isnull(1)

January 1994 Grail 1

isnull (1) User Commands isnull (1)

NAME
isnull —test re for equivalence to empty string
SYNOPSIS
isnull re
isnull <re
DESCRIPTION
isnull tests re to see if it is the empty string. isnull returns 1 and writes is
empty string on standard Output if reis the empty string; it returns O and writes
isnot empty string otherwise.
re must conform to the Grail format for regular expressions.
EXAMPLES
% cat rel
{}
% isnull rel
is not enpty string
% cat re2
% isnull re2
is empty string
% cat re3
(atb) *(abc)
% isnull re3
is not enpty string
AUTHORS
Darrell Raymond and Derick Wood
SEE ALSO

re(5), isempty(1)

January 1994 Grail 1

isomorph (1) User Commands isomorph (1)

NAME
isomorph — test two machines for isomorphism

SYNOPSIS
isomor ph fm1 fm2

isomor ph fm2 <fm1

DESCRIPTION
isomor ph tests fm1 and fm2 for isomorphism. isomorph returns 1 and writes
isomor phic on standard output if the two machines are isomorphic, and returns
0 and writes nonisomor phic otherwise.

If two machines are not input, isomor ph writes a diagnostic on standard error
and returns 0. If either machine is not deterministic, isomorph returns -1 and
writes a diagnostic on its standard error. A machine can be made deterministic
by filtering it with fmdeter m.

Two machines are isomorphic if they are equivalent up to renumbering. |somor-
phism is checked by applying canonical numbering to each machine and then
testing for identity.

fml and fm2 must conform to the Grail format for machines.

EXAMPLES
% cat df md
(START) |- O
0

WNPS~OPF

(F1 NAL)

5
6

' D ' OO0 QO

0
0
1
2
3
4
5
6

(FI' NAL)

% i sonmor ph df mt df md
i sonor phi ¢

% cat df ml
(START) |- O

January 1994 Grail 1

isomorph (1)

AUTHORS

User Commands

1
2

0
1
2 -] (FINAL)

' T O

% cat dfnR
(START) |- 3
3 a4

4 b5

5 -] (FINAL)

% i sonmor ph df mL df n2
i sonor phi ¢

% i sonmor ph df mL df md
non-i sonor phi c

% i sonmor ph df mL nf ml

second machine is not determnistic

Darrell Raymond and Derick Wood

SEE ALSO

fm(5), fmdeterm(1), isdeterm(1)

January 1994

Grail

isomorph (1)

isuniv (1) User Commands isuniv (1)

NAME
isuniv — test machine for universality

SYNOPSIS
isuniv fa

isuniv <fa

DESCRIPTION
isuniv tests if fa is universal—that is, complete and all reachable states are also
final states. isuniv returns 1 and writes univer sal on standard output if the input
faisuniversal; it returns 0 and writes nonuniver sal otherwise.

fa must conform to the Grail format for machines.

EXAMPLES
% cat dfnb
(START) |- O
0al
Ob 2

| (FI'NAL)

| (FI'NAL)
-| (FI'NAL)

NFNNEFE RO

% i suni v df nb
uni ver sal

% cat dfnml
(START) |- O
0al

1 b2

2 -| (FINAL)

% i suniv df ml
nonuni ver sal

January 1994 Grail 1

isuniv (1) User Commands isuniv (1)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
fm(5), fmcomp(1)

January 1994 Grail 2

recat (1) User Commands recat (1)

NAME
recat — catenate two regular expressions

SYNOPSIS
recat rel re2

recat re2 <rel

DESCRIPTION
recat catenatesrel with re2, and writes the result on standard outpuit.

rel and re2 must conform to the Grail format for regular expressions.

EXAMPLES
% cat rel

{}

% cat re2

% cat re3
(atb) *(abc)

%recat rel re3

{}

%recat re2 re3
(at+b) *abc

% recat re3 re3

(atb) *abc(a+b) *abc

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5)

January 1994 Grail 1

remin(1) User Commands remin(1)

NAME

remin — produce minimal parenthesization of aregular expression
SYNOPSIS

remin re

remin <re
DESCRIPTION

remin produces the minimal parenthesization of re, and applies some simple
heuristics for minimizing the expression (removes subexpressions that are
catenated with the empty set, removes the empty string from catenations, and
removes redundant subexpressionsin unions).

Any other Grail filter for regular expressions will remove superfluous
parenthesis, simply by virtue of reading and writing an expression.
re must conform to the Grail format for regular expressions.

EXAMPLES
% cat rel

{}

%remn <rel

{}

% cat re2

%remn re2

% cat re3
(at+b) *abc

%remn re3
(at+b) *abc

% cat re4

(((a)+(b))™)

%remn re4
(at+b)*

January 1994 Grail 1

remin(1) User Commands remin(1)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5)

January 1994 Grail 2

restar (1) User Commands restar (1)

NAME

restar —compute ‘*’ of aregular expression
SYNOPSIS

restar re

restar <re
DESCRIPTION

restar computes the Kleene star of re, and writes the result on standard output.
re must conform to the Grail format for regular expressions.

EXAMPLES
% cat rel

{}

%restar <rel

{}

% cat re2

% restar re2

% cat re3
(atb) *(abc)

% restar <re3
((a+b)*abc) *

% cat re4d

(((a)+(b))*)

%restar re4
(a+b)*

AUTHORS
Darrell Raymond and Derick Wood

January 1994 Grail 1

restar (1) User Commands restar (1)

SEE ALSO
re(5)

January 1994 Grail 2

retofm (1) User Commands retofm (1)

NAME

retofm — convert aregular expression to a machine
SYNOPSIS

retofm re

retofm <re
DESCRIPTION

retofm computes a finite-state machine that accepts the same language as re,
and writesit on standard output. Theresult islikely to be nondeterministic.

re must conform to the Grail format for regular expressions.

EXAMPLES

% cat rel

{}

%retofm<rel

% cat re2

% retofm<re2

(START) |- O
0 -| (FINAL)
% cat re3

(atb) *(abc)

%retofmre3

0al
2 b3
0ado
0 a?z2
2bo0
2 b2
4 al
4 a0
4 a 2
4 b 3

January 1994 Grail 1

retofm (1)

AUTHORS

User Commands

4 bo0
4 b 2
(START) |- 4
1 a6
3 a6
4 a6
6 b8
8 ¢ 10
10 -| (FINAL)

Darrell Raymond and Derick Wood

SEE ALSO

re(5), fm(5), fmtore(1)

January 1994

Grail

retofm (1)

reunion (1) User Commands reunion (1)

NAME
reunion — compute the disjunction of two regular expressions

SYNOPSIS
reunion rel re2

reunion re2 <rel

DESCRIPTION
reunion computesrel ‘or’ re2, and writes the result on standard output.

rel and re2 must conform to the Grail format for regular expressions.

EXAMPLES
% cat re3
(atb) *(abc)

% cat re2

% reunion re3 re2
(at+b) *abc+""

% cat re4

(((a)+(b))™)

% reunion red4 re3
(at+b) *+(a+b) *abc

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
re(5)

January 1994 Grail 1

xfmcat (1)

NAME

xfmcat — catenate two extended machines

SYNOPSIS

User Commands

xfmcat xfm1 xfm2

xfmcat xfm2 <xfml

DESCRIPTION

xfmcat (1)

xfmcat computes the catenation of xfm1 and xfm2, writing the result on the stan-
dard output. xfml and xfm2 need not be distinct. xfmcat does not introduce
empty-string instructions. It catenates th machines by connecting the final states
of xfml to the targets of start states in xfm2, and appending any other instruc-
tions. Before catenation, the states in xfim2 are renumbered so there are no colli-
sions with states in xfm1.

xfml and xfm2 must conform to the Grail format for extended machines. Since
every conventional machine is also an extended machine, xfmcat can be used to
catenate two conventional machines.

EXAMPLES

January 1994

% cat xfml
(START) |- O
0 ab* 1

1 (c+d)* 2
2 -] (FINAL)
% xfncat xfnml xfal
(START) |- O
0 ab* 1

1 (c+d)* 2
2 ab* 4

4 (c+d)* 5
5 -] (FINAL)
% cat dfnd
(START) |- O
0

N, OO
o 0 TcQ YW
WNPOPR

Grail

xfmcat (1)

AUTHORS

User Commands

| (FI'NAL)
5
6

3
4
5
6 -| (FINAL)

1= @ !

% xfncat df mgd xfml
(START) |- O
0 a

DO QO O TQ
OOTWNIMOPR

ab* 8
ab* 8
(c+d)* 9

0
0
1
2
4
5
3
6
8
9 -| (FINAL)

Darrell Raymond and Derick Wood

SEE ALSO

xfm(5), fmcat(1)

January 1994

Grail

xfmcat (1)

xfmplus(1)

NAME

xfmplus — compute ‘' +' of an extended machine

SYNOPSIS

User Commands

xfmplus xfm

xfmplus <xfm

DESCRIPTION

xfmplus(1)

xfmplus computes the ‘+' of xfm; that is, the machine accepting one or more
occurences of words accepted by xfm. The result is written on standard output.

fmplus computes ‘+' by making al instructions to final states also go to start

states. The result has no empty-string instructions.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machineis also an extended machine, xfmplus can be used to compute
the‘+ of conventional machines.

EXAMPLES

January 1994

% cat xfa3
(START) |- O
0 a* 1

b* 2

c* 3

bb* 3

cc* 3

- (FI'NAL)

WNEF, OO

% xf npl us xfa3
(START) |- O
0 a*r 1

b* 2

c* 3

bb* 3

cc* 3

-1 (FINAL)
c* 0

bb* 0

cc* 0

NPFPOWNEOO

% cat df md
(START) |- O

Grail

xfmplus(1) User Commands xfmplus(1)

WN b~

(F1 NAL)
5
6

' D ' OO0 T D

0
0
1
2
3
4
5
6

(FI NAL)

% xf npl us df nB
(START) |- O
al

wWN b

(F1 NAL)

o O

(FI NAL)

OaNOOOODWNEOO
0o ' SO ' OO0 T

[eNe)

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), fmplus(1)

January 1994 Grail 2

xfmreach (1) User Commands xfmreach (1)

NAME
xfmreach — compute the reachable subset of an extended machine

SYNOPSIS
xfmreach xfm

xfmreach <xfm

DESCRIPTION
xfmreach finds al reachable states of xfm and writes on its standard output only
instructions involving those states.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is an extended machine, xfmreach can also be used to com-
pute reachability for conventional machines.

EXAMPLES
% cat xfml
(START) |- O
0 ab* 1
1 (c+d)* 2
2 -| (FINAL)
% xf nmreach xfml
(START) |- O
0 ab* 1
1 (c+d)* 2
2 -| (FINAL)
% cat dfnb
(START) |- 3
3 a4
4 b5
5 -] (FINAL)
1a?
2 b6
6 -| (FINAL)
% xf nr each df n6
(START) |- 3
3 a4
4 b5

January 1994 Grail 1

xfmreach (1) User Commands xfmreach (1)

5 -| (FINAL)
AUTHORS
Darrell Raymond and Derick Wood
SEE ALSO

xfm(5), fmreach(1)

January 1994 Grail 2

xfmreverse(1) User Commands xfmreverse(1)

NAME
xfmreverse — reverse an extended machine

SYNOPSIS
xfmreverse xfm

xfmreverse <xfm

DESCRIPTION
xfmr ever se reverses the direction of al instructions in xfm and writes the result
on standard output. All start states become final states and vice versa. The out-
put will be non-deterministic if xfm contains more than one fina state (a deter-
ministic machine can have only one start state).

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmr ever se can also be used to
reverse conventional machines.

EXAMPLES
% cat xfnR
(START) |- O
o"" 1
1a?
Ob 2
2 -| (FINAL)
% xf nr everse xfnR
0 -| (FINAL)
1""0
2 al
2bo0
(START) |- 2
% cat dfnb
(START) |- O
0al
1c 2
2 e 3
3 -| (FINAL)
1bo0
2do0

January 1994 Grail 1

xfmreverse(1)

AUTHORS

User Commands

% xf nr ever se <df nb

0 -| (FINAL)
1ad0
2c 1l
3e?2
(START) |- 3
Ob1
0d2

Darrell Raymond and Derick Wood

SEE ALSO

xfm(5), fmreverse(1)

January 1994

Grail

xfmreverse(1)

xfmstar (1)

NAME

xfmstar — compute ‘*’ of an extended machine

SYNOPSIS

xfmstar xfm

xfmstar <xfm

DESCRIPTION

User Commands

xfmstar (1)

xfmstar computes ‘*’ (Kleene closure) of xfm and writes the result on standard

output.

xfmstar introduces no empty-string instructions. It first computes the ‘+' of

xfm, then it clones the start state and makesit afinal state.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmstar can be used to compute
** of conventional machines.

EXAMPLES

January 1994

% cat xfa3
(START) |- O

0 a*
b*
C*

WNEF, OO

a*
b*
C*

C*

a*
b*
C*
C*

A BRABRAANPFPOWMNPFPOOOY

bb*
cc*

bb*
cc*

bb*
cc*

1

2

3
3
3
(FI NAL)

o xf met ar xf a3

1
2
3

3

3

(F1 NAL)
0

0

0

O WN k-

Grail

xfmstar (1)

AUTHORS

User Commands

4 -| (FINAL)
(START) |- 4

% cat dfnR
(START) |- 1
1a?

1 a3
1 a4
2 -| (FINAL)
3 -| (FINAL)
4 -| (FINAL)

% xf st ar <nf nR

| (FI'NAL)

1
1
1
2
3
4
1
5
5
5
5
5
(START) |- 5

Darrell Raymond and Derick Wood

SEE ALSO

xfm(5), xfmplus(1), fmstar(1)

January 1994

Grail

xfmstar (1)

xfmtore(1) User Commands xfmtore(1)

NAME
xfmtore — convert an extended machine to aregular expression

SYNOPSIS
xfmtore xfm

xfmtore <xfm

DESCRIPTION
xfmtore computes a regular expression that accepts the same language as xfm,
and writes the result on standard output.

xfmtor e uses the state elimination method for producing the regular expression.

xfm must conform to the Grail format for extended machines. Since every con-
ventional machine is also an extended machine, xfmtor e can be used to convert
conventional machines.

EXAMPLES
% cat xfnml
(START) |- O
0 ab* 1
1 (c+d)* 2
2 -] (FINAL)

% xfnt ore <xfml
ab* (c+d)*

% cat nfnR
(START) |- 1
a2

a3

a4

-| (FI'NAL)
-| (FI'NAL)
- (FI'NAL)

AWONR R

% xfntore nfnR
a

% cat xfa3

(START) |- O
0 a* 1

January 1994 Grail 1

xfmtore(1) User Commands xfmtore(1)

b* 2
c* 3
bb* 3
cc* 3
-| (FINAL)

WNEF, OO

% xf nt ore <xfnB
c*+a*bb*+b*cc*

AUTHORS
Darrell Raymond and Derick Wood

SEE ALSO
xfm(5), re(5), fmtore(1), retofm(1)

January 1994 Grail 2

xfmunion (1) User Commands xfmunion (1)

NAME
xfmunion — compute the union of two extended machines

SYNOPSIS
xfmunion xfm1l xfm2

xfmunion xfm2 <xfm1

DESCRIPTION
xfmunion computes the union of xfm1 and xfm2. This is done by renumbering
the states of xfm2 and then simply appending its instructions to those of xfm1.

xfml and xfm2 must conform to the Grail format for extended machines. Since
every conventional machine is also an extended machine, xfmunion can aso be
used to compute the union of conventional machines.

EXAMPLES
% cat xfa4
(START) |- O
0 abc* 1
2 b+d 3
1 a(etf) 4
4 -| (FINAL)
% xf muni on xfa4 <xfmt
(START) |- O
0 abc* 1
2 b+d 3
1 a(etf) 4
4 -| (FINAL)
(START) |- 5
5 abc* 6
7 b+d 8
6 a(e+f) 9
9 -| (FINAL)
% cat nfnR
(START) |- 1
1a?2
1 a3
1 a4
2 -| (FINAL)

January 1994 Grail 1

xfmunion (1)

AUTHORS

User Commands

3 -| (FINAL)
4 -| (FINAL)

% xf muni on nf 2 xf a4
(START) |- 1

| (FINAL)
-] (FI'NAL)
-] (FINAL)
START) |- 5
abc* 6
b+d 8
a(e+f) 9
-1 (FINAL)

OCOoO~NOOT PR WNRERPRLPR

Darrell Raymond and Derick Wood

SEE ALSO

xfm(5), fmunion(1)

January 1994

Grail

xfmunion (1)

