
Grail� Engineering Automata in C��
Version ���

Darrell Raymond � Derick Wood y

January ����

�Department of Computer Science� University of Waterloo� Waterloo� Canada
yDepartment of Computer Science� University of Western Ontario� London� Canada

�



�

Contents

� Introduction �

� A brief introduction to Grail � �

� Grail�s design� �

� A short history of Grail �

	 Related software systems ��

� Some empirical lessons� ��

��� How do I obtain Grail� � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Acknowledgements� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 References �	



�

� Introduction

I saw the Holy Grail� All pall	d in crimson samite�

Tennyson� Holy Grail

They seemed to seek some Hofbrauhaus of the
spirit like a grail� hold a krug of Munich beer like
a chalice�

T� Pynchon� V

This equipment can be used to counter heat

seeking missiles such as the Soviet SA
� Grail
shoulder
�red weapon� now extensively deployed
in Third World countries�

Daily Telegraph� Nov� ��� �
��� ����

We can	t go doddering across Malaya behind an
inspired crackpot following the Holy Grail� can we�

H�M� Tomlinson� Gallions Reach

Grail is a symbolic computation environment for �nite
state machines� regular
expressions� and other formal language theory objects� Using Grail� one can input
machines or expressions� convert them from one form to the other� minimize� make
deterministic� complement� and perform many other operations� Grail is intended
for use in teaching� for research into the properties of machines� and for e�cient
computation with machines�
This paper provides a basic introduction to Grail and describes some of its

history and development� If you want to use Grail� you should also consult the
User�s Guide to Grail and the man pages for the individual �lters� If you are
installing Grail� or if you want to write C�� programs that use Grail� consult the
Programmer�s Guide to Grail�

Grail is written in C��� It can be accessed either through a process library or
through a C�� class library� The process library is used much like other �lters� from
a command shell� a user can execute processes on �les or input streams� generating
output that can be �ltered by other processes� The C�� class library can be
compiled into applications that need direct access to Grail� or that wish to minimize
the costs of stream I�O�
The name �grail	 isn	t necessarily an acronym� though it could be� In the past� we

have sometimes suggested that Grail stands for something like �Grammars� regular
expressions� automata� languages	 �we	ve never come up with something convincing



�

for the i��� It	s probably just as reasonable to think of our Grail experience as a
search for the hofbrauhaus of formal language theory�

� A brief introduction to Grail �

The primary objects in version ��� of Grail are parameterizable �nite
state machines
and regular expressions� By �parameterizable	� we mean that Grail supports regular
expressions and machines whose input alphabet is de�ned by the user�
The standard regular expressions in Grail look much the same as they do else


where� Grail supports catenation� union� and Kleene star for regular expressions�
along with parentheses to specify precedence� The following are examples of regular
expressions acceptable to Grail �

a�b

��a�bcde���c��

��

���a

The expression fg denotes the empty set� and the expression �� denotes the empty
string� In these examples� the ASCII characters are the alphabet� but it is possible to
parameterize Grail 	s regular expressions to accept other alphabets� such as integers�
strings� regular expressions� or user
de�ned classes and types�
A deterministic �nite
state machine �usually called an automaton� is generally

speci�ed by a �
tuple�

� Q��� �� s� F �

where Q is the set of states� � is the input alphabet� � is a partial relation � �
Q � � � fQg� s � Q is the start state� and F � Q is a set of �nal states� To
simplify input in Grail � we represent machines as sets of instructions� A machine
that accepts the language ab� for example� is speci�ed by�

�START� �	 



 a �

� b �

� 	� �FINAL�

Each instruction is a triple consisting of a source state� an instruction symbol�
and the corresponding target state� The start and �nal states of the machine are
indicated by means of special pseudo�instructions� whose labels are special symbols
that can be thought of as endmarkers on the input tape� The states �START�
and �FINAL� are pseudo�states� they simply indicate that the other state in the
instruction is a start or �nal state� The set of �non
pseudo� instructions is an
enumeration of the instruction relation� The alphabet of the machine is given
implicitly� it is the set of symbols that appear in �non
pseudo� instructions� Grail 	s



�

machines di�er from conventional machines in that we permit multiple start states
as well as multiple �nal states�
As with regular expressions� Grail supports the parameterization of �nite
state

machines� it is possible to de�ne the input alphabet to be an arbitrary C�� type
or class� Grail prede�nes one such extension which we call extended �nite�state

machines� these are machines which have regular expressions as instruction labels�
When compiled� Grail is a set of �lters that can be combined using a command

shell� such as sh or csh� Most processes take a machine or regular expression as
input� and produce a machine or regular expression as output� Regular expressions
and machines can be entered directly from the keyboard or �more usually� redirected
from �les� To convert a regular expression into a �nite
state machine� for example�
one might issue the following command�


 echo ��a�b���abc�� � retofm

whose output would be


 a �

� b �


 a 



 a �

� b 


� b �

� a �

� a 


� a �

� b �

� b 


� b �

�START� �	 �

� a �

� a �

� a �

� b �

� c �


�
 	� �FINAL�

The �lter retofm converts an input regular expression into a nondeterministic �nite

state machine� which it prints on its standard output� This output can be the input
for another �lter� for example� a �lter that converts the machine back into a regular
expression �folded here to �t onto the page��


 echo ��a�b���abc�� � retofm � fmtore

abc�aabc�aa�aabc�ba�aabc�babc�a�b�ba�a��ba�aabc�a�b�ba�a��

babc�b�b�ba�a��ba�aabc�b�b�ba�a��babc�aa�a�b�ba�a��ba�aabc

�aa�a�b�ba�a��babc�ba�a�b�ba�a��ba�aabc�ba�a�b�ba�a��babc

Any number of �lters can be applied to such a stream� We may choose to make the
machine deterministic before converting it to a regular expression�



�


 echo ��a�b���abc�� � retofm � fmdeterm � fmtore

aa�b�aa�b�bb�aa�b��c�bb�aa�b�aa�b�bb�aa�b��c

Or we may choose to minimize the deterministic machine before converting it to a
regular expression�


 echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmtore

b�aa�b�aa�b�bb�aa�b��c

This set of pipelines illustrates a range of possibilities for developing regular ex

pressions for a given language� As a teaching tool� the preceding examples show
that algorithms that preserve language equivalence do not preserve identity �it also
emphasizes the point that manually checking for language equivalence is hopeless
except for very simple languages�� As a software tool� the above sequence is useful
for generating variants of a single language that can be used as test cases�
For those who want to avoid the cost of I�O implicit in the use of the �lter

approach� Grail can also be accessed directly as a C�� library� The �lter command


 echo ��a�b���abc�� � retofm � fmdeterm � fmmin � fmtore

can also be written directly in C���

�include �grail�h�

main��

�

re�char� r�

fm�char� a�

char� example � ��a�b���abc��n��

istrstream�example� strlen�example�� �� r�

a � r�retofm���

r�fmtore�a�subset���min�by�partition����

cout �� r �� ��n��

�

In the above program� the istrstream function is used to convert an internal string
into input to be read as a regular expression� the retofm function converts the ex

pression into a machine� and the machine is made deterministic �via subset�� min

imized �via min by partition�� and converted back to an expression �via fmtore��

� Grail�s design�

Most tools for working with machines and expressions are designed for a speci�c
application� such as program parsing� Grail� on the other hand� is designed to be a
general
purpose package for symbolic computation with machines and expressions�
We intend Grail to �eventually� �ll all of the following needs�



�

� research

Grail should facilitate the theoretical and practical investigation of machines
and expressions� and the development of new algorithms for processing them�
Grail has already been useful in investigating the properties of subset con

struction�����

� education

Grail should facilitate teaching about machines� In part� it should do this by
making it easier to experiment with machines� but we also hope that Grail will
add a leavening of engineering to a subject that is mostly taught as theoretical
mathematics� Grail has seen some use in undergraduate teaching�

� application

Grail should facilitate the use of machines in solving applied problems� such
as protocol testing� embedded state machines� executing concurrent processes�
parsing� string searching� and any other application that can be described by
machines or expressions� Currently this aspect of Grail is underexplored�

The key theme of Grail	s design is modularity� We seek modularity not just
because it is the generally accepted route to a good software design� but because we
expect that adding new facilities to Grail and developing new uses for Grail will be
the most common activity of both its users and its designers� Modularity in Grail
arises in four important areas�

� philosophy

Other approaches to software for machines assume that minimal� deterministic
machines are the desired end result of all processing� In Grail we do not
make this assumption� we treat machines and expressions as equal �rst
class
objects� Programmers will �nd in Grail a collection of useful tools and a
number of ways to connect the tools to address new and interesting problems
in formal language theory� Moreover� we intend to make many algorithms and
implementations of algorithms accessible within Grail� both the �apparently�
ine�cient as well as the e�cient� in order to facilitate experimentation and
study� as well as to generate test cases�

� process
based software

Instead of developing yet another language for writing machine programs�
Grail is based on a set of individual processes that can be accessed by any
command shell or any program that is capable of launching processes� Pro

cesses are modules whose encapsulation is enforced by the operating system� a
process
based approach encourages programmers to develop simple� generally

applicable tools� A second advantage of this approach is that it is easy to
distribute computation� by using the capabilities of rsh to set up internet
pipes� we can run processes on di�erent machines� A third advantage is that
a process
based approach separates language issues from machines processing�



�

It also leverages users	 knowledge of shell programming� rather than requiring
users to learn a new language� users can exploit sh� csh� ksh� bash� perl� and
many other languages�

� textual interchange

A multiple
process design requires some form of interprocess communication�
since processes cannot access each others	 data� We use a textual description of
machines and regular expressions as the intermediary for Grail� Each process
reads a textual description of the input machine� converts it into an internal
form� processes it� and writes a textual description of an output machine�
The advantage of this approach is that the input and output can be read�
edited� and manipulated by standard utilities such as vi� sort and wc� One
disadvantage is the extra cost of encoding and decoding between the language
and internal forms�

� C�� class library

C�� encourages encapsulation and the de�nition of interfaces� and hence
encourages modularity in low
level code� In addition� we make extensive use
of template classes� which in e�ect de�ne operations on �black boxes	 that are
ready to be instantiated with the user	s choice of modules�

Grail	s �� �lters are brie�y described in Table ��

� A short history of Grail

Grail was preceded by two packages written at the University of Waterloo� The
earlier e�ort was Leiss	s REGPACK����� a package written in �
�� to support experi

mentation and research with �nite
state machines� REGPACK� written in SPITBOL�
supported the conversion of nondeterministic machines to deterministic machines�
minimization of deterministic machines� and construction of syntactic monoids�
While REGPACK did not directly in�uence the current e�ort� it is interesting to
note that Leiss	s goal of an environment for experimentation with machines is still
one of our primary goals�
A program with more direct in�uence on Grail was Howard Johnson	s INR����

INR was developed because of Johnson	s interest in rational relations and their
use in de�ning string similarity���� INR takes rational relations �including regular
expressions� as input and converts them into �nite
state machines� which can then
be manipulated in various ways� INR can produce single
 or multiple
tape machines�
the latter are useful for describing transducers� since one tape can be considered an
output tape for the other �input� tapes�
Johnson made special e�orts to ensure that INR was a highly e�cient and pow


erful tool for managing machines� His goal was the e�ective processing of machines
with thousands of states and instructions� As a result� INR is written very com

pactly in C� and is especially e�cient in handling potentially costly tasks such as
memory allocation� subset construction� and minimization of machines� The basic






fmcment complement a machine
fmcomp complete a machine
fmcat catenate two machines
fmcross cross product of two machines
fmdeterm make a machine deterministic
fmenum enumerate strings in the language of a machine
fmexec execute a machine on a given string
fmmin minimize a machine by Hopcroft	s method
fmminrev minimize a machine by reversal
fmplus plus of a machine
fmreach reduce a machine to reachable states and instructions
fmrenum canonical renumbering of a machine
fmreverse reverse a machine
fmstar star of a machine
fmtore convert a machine to regular expression
fmunion union of two machines
iscomp test a machine for completeness
isdeterm test a machine for determinism
isomorph test two machines for isomorphism
isuniv test a machine for universality
isempty test for equivalence to empty set
isnull test for equivalence to empty string
recat catenate two regular expressions
remin minimal bracketing of a regular expression
restar Kleene star of a regular expression
retofm convert a regular expression to a machine
reunion union of two regular expressions
xfmcat catenate two extended machines
xfmplus plus of an extended machine
xfmreach reduce extended machine to reachable states and instructions
xfmreverse reverse an extended machine
xfmstar star of an extended machine
xfmtore convert an extended machine to a regular expression
xfmunion union of two extended machines

Table �� Grail �lters



��

algorithms for handling such tasks are well known� but there has been relatively lit

tle attention paid to e�cient implementation of these algorithms� Johnson took the
trouble to develop e�cient implementations� with the result that INR was the only
software system capable of handling the transduction of the Oxford English Dictio�

nary���� Even today� many of INR	s capabilities are more advanced than those of
other software �though we like to think that Grail is catching up�� The present ef

fort has borrowed INR	s philosophy of combining powerful capabilities with e�cient
design� as well as its notation for machines�
The �rst project to actually use the name �Grail	 was a joint e�ort between

Howard Johnson� Carl
Johan Seger� and Derick Wood� This project extended INR

to handle context
free grammars and machines with regular expressions as instruc

tion labels� Software developed for this project consisted of a layer of code that
used INR as an underlying computational engine� After some work� this e�ort was
discontinued�
The Grail project was resuscitated by the present authors in �

�� We began

with the observation that some issues were not satisfactorily handled either by INR
or �old Grail�	 The �rst issue was obscurity� In pursuit of e�ciency� INR had become
a somewhat complex and monolithic piece of code� The layer of software added by
�old Grail	 merely increased the complexity� because it was not easily maintainable or
modi�able� The lack of documentation for INR and �old Grail	 made this software
di�cult to understand for anyone other than its programmers� Thus� the �rst
order of business was to develop software that was more approachable and better
documented� to improve maintainability and robustness� and to ensure that many
programmers could work on the software�
The second issue was modularity� Much of the di�culty of building upon INR

was a result of its tightly connected structure� Adding a new algorithm for sub

set construction� for example� required knowing much about the internals of INR�
including its data structures� memory allocation� parser� and so on� We wanted
a software environment in which programmers could work on algorithms without
having to learn too much about the details of the existing code� This meant that
we would have to build the software in a modular fashion� devising interfaces at
several levels�
The third issue was generality� Like most systems that have appeared since� INR

assumed that the user wanted to input regular expressions and receive deterministic�
minimized machines as output� This bias resulted in a system that could not accept
machines as input and produce regular expressions as output� We wanted Grail to
be a general purpose manipulation language� in which one could convert machines
and expressions freely� with user control over minimization and determinism�



��

Grail version ��� was written in C� and consisted of the following �lters�

cross compute the cross product of two machines
lreverse reverse the input machine using empty
string instructions
min minimize the input machine by Hopcroft	s partition algorithm
min� minimize the input machine by reversal and subset construction
percent compute the alternation �i�e� �ab��� of two machines
plus compute star�� of the machine
quest compute the machine��
reverse reverse the input machine
star compute the Kleene star of the input machine
subset subset construction of the input machine
union compute the union of two machines

These �lters accessed a library of functions that did most of the actual work
�the �lters themselves were essentially simple I�O routines�� The library contained
procedures for handling I�O and for processing machines� The idea behind this
decomposition was that the �lters should be e�cient enough for most problems
involving machines� for very large or complex problems� a competent C programmer
could access the library directly and thereby avoid any ine�ciency introduced by
process communication�
While the �lters were reasonably successful� the library was not� Our C code

was not particularly reliable� readable� or reusable� This latter problem was irritat

ing both aesthetically and as a pure engineering problem� Operations on machines
and regular expressions involve frequent manipulation of container structures such
as sets and relations� it would be both elegant and e�cient to use a single im

plementation of these structures for many di�erent contents� Using C� however�
one can provide this generality only by giving up strict type checking� In spite
of these problems� version ��� did support a signi�cant research project on subset
construction�����
We decided to switch to C�� to re
implement Grail� We made this choice of

language under the impression that we would develop an elegant class hierarchy that
would greatly increase code reuse and the overall robustness of the system� C�� has
led to much better clarity and robustness� but not because of the class hierarchy�
in fact� Grail makes relatively little use of inheritance� Instead� we have found
that C��	s strict type checking and encapsulation have been its most important
contributions to better code� C��	s template facility in particular is indispensable
to Grail�
Versions ��� through ��� of Grail saw the development of our C�� class library�

which included the classes set� list� string� regexp� trans �transition�� state�
fa� tset �sets of transitions�� and xfa �extended �nite machine�� This latter class
de�nes machines that have regular expressions as transition labels� The set and
list classes are template classes� they and xfa were our �rst attempt to take
serious advantage of C��	s ability to support code reuse� In addition to rewriting
our existing code in C��� we also added more functionality�the number of �lters
jumped from �� to ��� Version ��� introduced an automatic testing facility that



��

was used to check that changes to code still resulted in working �lters� Version
��� introduced an automatic pro�ling facility that was used to test that purported
improvements actually did lead to more e�cient code� Version ��� was subjected to
quality checks� both through the use of Purify and through correcting the bugs and
inconsistencies that were discovered by compiling the code with two C�� compilers
that are more strict than USL	s cfront�
The most recent version of Grail is Version ���� The main di�erence between

Version ��� and previous versions is the added support for parameterizable ma

chines and expressions� Parameterizable �nite
state machines can take any type as
instruction label� and parameterizable regular expressions can take any type as a
symbol class� Version ��� thus dispenses with the distinction between xfa and fa
�each is an instance of the new parameterizable machine class fm�� and has extended
the reach of the regexp class �now called re� beyond strings of ASCII alphabetic
characters� Version ��� also dispenses with the class tset and makes string a
parameterized class� Despite its increased functionality� the source code for Ver

sion ��� is smaller than the source code of Version ��� a nice example of how it is
sometimes advantageous to solve a more general problem�

� Related software systems

Recently� several systems for computing with machines have appeared in the liter

ature or have been made available over the internet�
Champarnaud	s AUTOMATE system� written in C� supports �nite
state ma


chines and �nite semigroups���� It can compute deterministic minimal machines�
syntactic monoids� and transition monoids of regular languages�
The AMORE system� written in C� supports �nite
state machines� regular ex


pressions� and syntactic monoids���� It can produce minimal DFAs� handle �
NFAs�
and perform various tests on syntactic monoids �for example� star
freeness� �nite

ness� and co�niteness�� AMORE can also display its machines graphically�
Both AMORE and AUTOMATE have goals similar to those of Grail to serve

as a research environment� to facilitate the study of machine implementations� and
to provide a package for executing machines for other purposes �such as validat

ing concurrent programs�� Where Grail di�ers is in its emphasis on providing a
full symbolic computing environment� in its provision of both �lters and a class
library� and in the fact that Grail does not attempt to provide its own graphical
user interface or programming language� AMORE and AUTOMATE appear to be
monolithic programs that attempt to provide a single interface to the user�
One use of machines is for hardware veri�cation and protocol checking� FANCY�

the Finite AutomatoN Checker of nancY� is Stefan Krischer	s tool for formal hard

ware veri�cation� It provides equivalence and inclusion checking for �nite
state
machines and is accessible through a graphical user interface�
FADELA����� the Finite Automaton DEbugging LAnguage� is a project directed

by Gjalt de Jong� FADELA is designed to investigate �
regular languages �that
is� regular languages whose words are of in�nite length�� FADELA supports the



��

production of deterministic M!uller machines� and can convert these machines into
regular expressions� FADELA also supports other operations on machines including
minimization and complement�
An interesting experience is the development of machine tools in Nuprl� a proof

language based on the lambda calculus�
�� De�nitions were constructed in Nuprl
for �nite sets� strings� tuples� and deterministic machines� Nuprl was then able to
construct a proof of the pumping lemma� The main point of this work was not the
development of an environment for manipulating machines� but an illustration of
the utility of the Nuprl proof development system�
We know of three other systems whose motivation was primarily pedagogical�

An early e�ort was GRAMPA� which was only partially implemented���� More
recently� Hannay has built a Hypercard
based system for simulating machines����
This program appears to be useful for introductory teaching purposes� and for
simulating small machines� FLAP� the Formal Languages and Automata Package�
comes from Rensselaer Polytechnic Institute� FLAP supports the drawing and
execution of �nite
state machines� pushdown machines and Turing machines� FLAP
can handle nondeterministic machines� provides the ability to step through the
execution of a machine� and supports paper output�������
In addition to these systems� there is a vast amount of work on using grammars

and machines in applications� Many operating system utilities understand a lim

ited form of regular expression� for example� and almost every text editor provides
general
purpose search
and
replace capabilities� The machines used in such tools
are generally custom built� or perhaps adapted from custom code� operating sys

tems have yet to o�er a standard machine package in the same way that they o�er
a standard sorting and searching routines�

� Some empirical lessons�

Developing Grail has taught us much about implementing algorithms for machines�
C�� is an important contributor to the robustness of the code� mainly because of
strict type checking� The C�� compiler has resisted many questionable constructs
that were unquestioningly accepted by C� Consequently� programming bugs and
errors less frequently show up in low
level operations� When bugs do appear� they
are now almost always incorrect speci�cations of algorithms�

Grail has also taught us some lessons that apply to the construction of mathe

matical libraries in general� One lesson is that a library of routines is only half the
battle� the other half is in developing a library of test data� and in the provision of a
mechanism for automatic testing and performance evaluation� In the early stages of
development� Grail	s �lters were tested with simple machines and the results were
checked by hand� As the pace of development increased� however� this was no longer
su�cient� one cannot very well test tens of programs on each of several test cases
by hand� and one cannot test very large machines or expressions by hand at all�
since the probability of a manual error in checking soon becomes higher than the
probability of an error in the code� Thus� it becomes necessary to automate testing�



��

Automation is also essential in performance evaluation� which relies on large inputs
in order to thoroughly exercise the code� One approach to generating large test
cases is to apply �lters that generate non
isomorphic machines that are language
equivalent� Repeatedly converting between machine and regular expression� for ex

ample� will result in a large machine that accepts a known language� Hence� the
result of processing such an machine can be tested by minimizing and comparing
it to the known minimal machine� Another related tactic is to repeatedly take the
cross product of a nondeterministic machine with itself� there will be an exponential
blowup in the size of the result� which is still language equivalent with the original�
A second important lesson is that a sound theoretical understanding of an algo


rithm is not the same as a sound implementation� To paraphrase a popular saying�
a little knowledge of worst
case performance is a dangerous thing� Algorithms that
have bad worst case performance may be quite acceptable for most practical uses�
Subset construction� in particular� is exponential in the worst case� but empirical
study shows that the number of machines that exhibit this behaviour is small�����
Moreover� it appears to be predictable from the input whether an exponential result
is likely to occur� Since most users do not want to store or further use exponential
output� predicting this result may be su�cient�
On the other hand� a sloppy implementation of a well
known algorithm with

reasonable average case performance may be unacceptable for every large input�
Linear
time algorithms can easily become quadratic
time if careful attention is not
paid to problems such as the proper management of sets�

��� How do I obtain Grail�

Grail is available without charge to researchers and students� or anyone who wishes
to use the software for their own private education� Version ��� of Grail can be
obtained by anonymous ftp at daisy�uwaterloo�ca ���
�
��������� in directory
nih� you should download grail��
�tar�Z for source code and documentation�
and grail��
�sun�tar�Z for Sparc binaries�

Grail is not in the public domain� It cannot be sold� used for commercial pur

poses� or included as part of a commercial product without our permission�

��� Acknowledgements�

This research was supported by grants from the Natural Sciences and Engineering
Research Council of Canada� and the Information Technology Research Centre of
Ontario� The �rst author was also supported by an IBM Canada Research Fellow

ship� We would like to thank Howard Johnson for his assistance and encouragement�
Darrell Raymond can be reached at drraymon�daisy�uwaterloo�ca� Derick

Wood can be reached at dwood�csd�uwo�ca�



��

	 References

�� K�R� Barnes� "Exploratory Steps Towards a Grammatical Manipulation Package
�GRAMPA��# M�Sc� Thesis� McMaster University� Hamilton� Canada ��
����

�� D� Caugherty and S� Rodger� "NPDA� A Tool for Visualizing and Simulating
Nondeterministic Pushdown Automata�# Proceedings of the DIMACS Work�

shop on Computational Support for Discrete Mathematics� �to appear��

�� J�M� Champarnaud and G� Hansel� "AUTOMATE� A Computing Package for
Automata and Finite Semigroups�# Journal of Symbolic Computation �� pp��
�

��� ��

���

�� D�G� Hannay� "Hypercard Automata Simulation� Finite
State� Pushdown� and
Turing Machines�# SIGSCE Bulletin ����� pp���
�� �June �

���

�� V� Jansen� A� Pottho�� W� Thomas� and U� Wermuth� "A Short Guide to the
AMORE System�# Aachener Informatik�Berichte ������Lehrstuhl f!ur Infor

matik II� Universitat Aachen� �January �

���

�� J�H� Johnson� "Formal Models for String Similarity�# Research report CS
��
���
Department of Computer Science� University of Waterloo� Waterloo� Canada
�November �
����

�� J�H� Johnson� "INR� A Program for Computing Finite Automata�# unpublished
manuscript� Department of Computer Science� University of Waterloo� Wa

terloo� Canada �January �
����

�� R� Kazman� "Structuring the Text of the Oxford English Dictionary Through
Finite State Transduction�# Research report CS
��
��� Department of Com

puter Science� University of Waterloo� Waterloo� Canada �June �
����


� C� Kreitz� "Constructive Automata Theory Implemented with the Nuprl Proof
Development System�# Technical report TR
��
��
� Department of Computer
Science� Cornell University� Ithaca� New York �September �
����

��� E� Leiss� "REGPACK� An Interactive Package for Regular Languages and Fi

nite Automata�# Research report CS
��
��� Department of Computer Science�
University of Waterloo� Waterloo� Canada �October �
����

��� T�K�S� Leslie� "E�cient Approaches to Subset Construction�# Research report
CS

�
�
� Department of Computer Science� University of Waterloo� Water

loo� Canada �April �

���

��� M� LoSacco and S� Rodger� "FLAP� A Tool for Drawing and Simulating Au

tomata�# ED�MEDIA ��� World Conference on Educational Multimedia and

Hypermedia� pp����
��� �June �

���



��

��� J�G�N�M� van der Zanden� "FADELA� Finite Automata DEbugging LAnguage�#
Master	s thesis� Department of Electrical Engineering� Eindhoven University
of Technology� Eindhoven� The Netherlands �August �

���


