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Abstract

This thesis addresses two problems in VLSI design� constrained via minimization	

which aims at minimizing the number of vias between routing layers	 and con�

strained logic encoding	a problem fundamental to the design of synchronous� and

hazard�free asynchronous� circuits� We show that these two problems have the same

combinatorial structure� which can be captured by a new graph�theoretic model�

called signed hypergraph� They can be formulated as two new optimization problems�

namely maximum balance and minimum covering� related to a balance property of

signed hypergraphs�

On the theoretical side� we establish a structural characterization of balanced

signed hypergraphs� We then prove that both maximum balance and minimum cov�

ering are NP�complete� We present an integer linear programming formulation for

maximum balance of signed hypergraphs� and a polynomial�size linear programming

formulation for the case of planar signed graphs� We show that maximum balance in

a planar signed hypergraph reduces to the minimum hypergraph T �join in its planar

dual� We address the problem of modeling signed hypergraphs by real�weighted hy�

pergraphs or graphs� We settle a conjecture of Lengauer which states that a clique is

a best approximate model for a hyperedge� even if dummy vertices are allowed� We

present a local search algorithm for the maximum balance problem� with one pass

running in linear time� We describe a simple greedy peeling heuristic for minimum

covering� We prove that greedy peeling has a guaranteed performance bound for

solving a class of VLSI optimization problems of the so�called cluster�cover structure�

On the practical side� our work on constrained via minimization breaks new ground

for the case of k�way splits 
k � �� with a compact reduction to graph T �joins and a

polynomial�size linear programming formulation� For the case of multi�way splits 
k �

��� it provides a direct and e�cient local search for timing�driven layer assignment and

an optimal modeling scheme for good approximation algorithms� For logic synthesis�

we present a uni�ed approach to optimum state assignment for synchronous and

hazard�free asynchronous circuit design� We have implemented our results as two

experimental CAD tools� As demonstrated on a set of industry benchmarks� our

tools outperform existing tools in terms of both solution quality and CPU time�
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Chapter �

Introduction

In this chapter we describe the motivations for this work� summarize our results� and

outline the organization of this thesis�

��� Two VLSI Synthesis Problems

Our research has been motivated by the following two problems in very large scale

integrated 
VLSI� circuit design�

The Optimal Layer Assignment Problem
 Given a collection of nets after

physical placement and routing� each net consisting of wire segments that elec�

trically connect a set of terminals� �nd an assignment of wire segments to two

layers so that the number of vias is minimized�

The Constrained Encoding Problem
 Given a set S � fs�� ���� smg of m states�

�nd an encoding � of S into a set f�
s��� �����
sm�g of m binary k�tuples 
k�bit

vectors�� in such a way that all the constraints 
de�ned below� are satis�ed and

k is minimized� A constraint� also known as a �partial	 dichotomy� requires that

�
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a subset P of S be distinguished from a disjoint subset Q of S by at least one

bit� i�e�� that bit must have the value � for all the states in P and � for all the

states in Q� or vice versa�

The optimal layer assignment problem was �rst addressed by Hashimoto and

Stevens in the design of printed circuit boards 
PCB� ����� Considerable progress has

been made on this problem in the past two decades� On the practical side� owing to the

importance of via minimization in improving circuit yield and reliability� researchers

in computer�aided design 
CAD� have developed a number of heuristics� for channel

routing ����� knock�knee routing ������ and general gridless routing ������ On the

theoretical side� it has been established that a special case of layer assignment is an

application of planar max cut and matching theory ��� ��� ��� ���� ����� Although

the complexity issue of the general case has perplexed computer scientists for quite a

while� the problem was �nally proved to be NP�complete ���� ���� ����� Nevertheless�

a precise mathematical model and mathematical tools were still lacking for the general

problem� As a consequence� the complexity analysis was rather involved� the problem

was understood in a rather ad hoc fashion� and the heuristics were not robust� CAD

tools on via minimization are not yet common in the marketplace�

The constrained encoding problem was �rst studied by Tracey in ���� ����� and

was once considered well solved ������ The problem arises in many contexts of the

synthesis of asynchronous �nite state machines 
FSMs�� as pointed out by Tracey and

Unger in the ����s� and by a number of other researchers later on ��� ����� However�

because the commercial activities in the design of sequential circuits are dominated

by the synchronous 
clock�based� design style� constrained encoding has not been

considered a real problem for CAD engineers� This scenario has changed very recently

for two reasons� The �rst is a discovery that the optimum synthesis of synchronous

�nite state machines is related to constrained encoding ����� ����� The second is a

remarkable revival of interest in the asynchronous design style ���� ���� The methods



���� A GRAPH�THEORETIC FRAMEWORK �

developed in the ����s	when tens of variables were considered large	are no longer

practical for problems arising from VLSI design�

The development of concise mathematical models� the study of their basic struc�

tures� the search for e�cient solution methods that can handle large problems and

additional requirements� and the development of practical CAD tools� for these two

VLSI synthesis problems� are the scope of this thesis�

��� A Graph�Theoretic Framework

A central concept in this thesis is a notion of signed hypergraph� Like a graph� a

hypergraph consists of vertices and edges� in a hypergraph� however� each edge may

be incident with more than two vertices� A signed hypergraph is a hypergraph in

which each edge�vertex incidence is assigned a polarity 
� or ��� Thus we may talk

about the set of vertices positively 
negatively� incident with an edge� and about the

set of edges positively 
negatively� incident with a vertex�

An edge e of a signed hypergraph is said to be balanced by a bipartition if all

the vertices positively incident with e are in one block of the bipartition� and all the

vertices negatively incident with e are in the other block� We de�ne the following two

optimization problems�

�� The maximum balance problem is to �nd a bipartition such that the number of

balanced edges is maximized�

�� The minimum covering problem is to �nd a minimal number of bipartitions

such that each edge is balanced by at least one bipartition�

Two fundamental observations� as will be established later in this thesis� are that

� the optimal layer assignment problem can be exactly and easily formulated as

the maximum balance problem in a �planar� signed hypergraph� and
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� the constrained encoding problem turns out to be the minimum covering prob�

lem�

Therefore� the notion of signed hypergraph provides an abstract and uni�ed graph�

theoretic framework for studying the two VLSI synthesis problems�

The notion of signed hypergraph turns out to be a new and unexplored concept

in graph theory� Therefore� a main focus of this thesis is to study certain theoreti�

cal properties of signed hypergraphs� and to investigate how to solve the maximum

balance problem and the minimum covering problem e�ectively and e�ciently�

��� Results of this Thesis

The nature of this research is to bridge the gap between theory and practice� Some

theoretical aspects of signed hypergraphs will be investigated� in order to reveal cer�

tain combinatorial structure that can lead to e�cient and reliable algorithms for

solving real VLSI synthesis problems� However� no attempt will be made to study

theoretical properties that appear to have no immediate applications� On the other

hand� the two practical problems will be treated completely and precisely� and the al�

gorithms developed will be implemented and evaluated with respect to real industrial

benchmarks� Physical details and system�level issues in VLSI synthesis are outside

the scope of this thesis�

The results in this thesis can be interpreted both from the theoretical side in terms

of signed hypergraphs� and from the practical side in terms of VLSI synthesis� On

the theoretical side� we obtain the following results�

�� We give a structural characterization of the edge balance property� We show

that there exists a bipartition that balances all the edges if and only if a signed

hypergraph is free of negative cycles� 
A negative cycle is a cycle that involves

an odd number of negative edge�vertex incidences��



���� RESULTS OF THIS THESIS �

�� We prove that both the maximum balance problem and the minimum covering

problem are NP�complete� We also give a clear boundary that separates out

the cases solvable in polynomial time�

�� We pay special attention to the maximum balance problem in a planar signed

hypergraph� which corresponds to a formulation of the optimal layer assignment

problem� For the case of planar signed graphs� we reduce maximum balance to

minimum graph T �join� which is solved in polynomial time� We also show

how to reduce maximum balance in a planar signed hypergraph to the so�

called hypergraph T �join� based on which we develop a pseudo�polynomial�time

algorithm�

�� Given a signed hypergraph� we de�ne the cost of a bipartition� or cut� to be

the total weight associated with all unbalanced edges� We study the following

question� Given a signed hypergraph� does there exist a weighted hypergraph�

or a weighted signed graph� or a weighted graph that has the same set of vertices

and the same cut property� By �the same cut property�� we mean that the same

cut in the two graphs has the same cost� We show that there is the following

�cut hierarchy� of graphs�

positive�weighted signed hypergraph

� critical signed hypergraph

� real�weighted hypergraph

� positive�weighted hypergraph

� real�weighted signed graph

� positive�weighted signed graph

� real�weighted graph

� positive�weighted graph�

Here� critical signed hypergraphs are a class of signed hypergraphs as de�ned

in Chapter ���� By �� we mean that the graph in either side can be converted

to the graph in the other side with the same cut property� By �� we mean that
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the graph in the left side can be converted to the graph in the right side with

the same cut property� but the reverse is not true�

Furthermore� we generalize the notion of cut�equivalence to min�cut equivalence�

This is motivated by adding �dummy� vertices� We de�ne the cost of a cut to

be the minimal cost among a set of cuts that di�er only in dummy vertices� We

show the existence of the following �min�cut hierarchy��

positive�weighted signed hypergraph

� critical signed hypergraph

� real�weighted hypergraph

� real�weighted signed graph

� positive�weighted signed graph

� real�weighted graph

� positive�weighted hypergraph

� positive�weighted graph�

Here� for �� we are able to show a transformation of the graph on the left side

to the graph on the right side with the same cut property� but we do not know

whether the reverse is true or not�

�� We show that� for an arbitrary hypergraph� there exists no positive�weighted

graph that has the same min�cut property� This reveals the inherent di�culty

of formulation of the optimum layer assignment problem by existing graph con�

cepts� We settle a conjecture of Lengauer ���� on hypergraph modeling� there

is no min�cut model that can have a smaller approximation error than that

of a complete graph� By using mathematical programming� we derive a planar

min�cut model for hyperedges with degree no greater than �� This leads to good

approximation algorithms for maximum balance of a planar signed hypergraph�

�� We present a local search heuristic to solve the maximum balance problem in

a general signed hypergraph� The heuristic is a generalization of the work of

Fiduccia and Matheyses on netlist partitioning� with one pass running in linear
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time�

�� We describe a simple heuristic� called greedy peeling� for solving the minimum

covering problem� We prove that the greedy peeling heuristic is most likely a

best�possible approximation algorithm� Furthermore� we show that greedy peel�

ing yields guaranteed performance bounds for partial constrained encoding	a

variation of the minimum covering problem�

�� We present a mathematical programming formulation of the maximum balance

problem� In the planar case� we derive a polynomial�size linear programming

formulation� We propose a novel technique that reduces the number of inequal�

ities signi�cantly�

Our ultimate goal is to search for e�cient and reliable algorithms for solving the

optimal layer assignment problem and the constrained encoding problem� To this

end� the theory and heuristics developed in this thesis have been implemented and

evaluated on industrial benchmarks� On the practical side� we have obtained the

following results�

�� It is the �rst time that the optimal layer assignment problem for two�layer rout�

ing is studied in a precise mathematical framework� This leads to a simple proof

of its NP�completeness� and a novel reduction to planar T �joins� the reduction

reveals the more essential structure of the optimal layer assignment problem�

Using the model of signed hypergraph� we have developed a program� called PO


LAR�� for Performance�drivenOptimal LayerAssignment of two�layer Routings�

POLAR� accepts a signed hypergraph description of a two�layer routing� It at�

tempts to �nd an optimal solution� by using either an exact method based on

mathematical programming� or a fast heuristic method based on local search�

POLAR� has been tested on several practical routing examples� and has demon�

strated its superior performance in searching for optimum solutions and in han�

dling various practical constraints�
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��� It is the �rst time that a graph�theoretic framework has been established for

studying the constrained encoding problem� A package� called ENCORE� has

been developed for sequential logic synthesis� The core of ENCORE is the

greedy peeling heuristic for minimum covering� ENCORE has been applied to

a variety of practical problem instances� including a number of examples in the

literature� and industrial benchmarks from the Microelectronics Center of North

Carolina 
MCNC�� ENCORE
s performance is considerably better than that of

other tools�

��� Organization of the Thesis

The thesis is intended to be useful to CAD engineers who develop computer programs

for VLSI layout synthesis and VLSI logic synthesis� and to computer scientists and

mathematicians who are interested in pursing further some theoretic issues arising

from this study� To achieve this dual goal� we present theoretical results in a formal

and abstract way enriched by intuitive examples� We describe practical applications�

omitting physical details but focusing on pertinent information that de�nes the prob�

lems�

Our research involves graph theory and combinatorial optimization ���� ��� ����

mathematical programming and polyhedral combinatorics ���� ��� ��� ����� algorithm

design and NP�complexity theory ��� ���� VLSI layout design ���� ����� and VLSI

sequential logic synthesis ���� ����� However� for the most part� the thesis is self�

contained�

This thesis is organized as follows� In the �rst six chapters� we concentrate on

the development of concepts and tools within the framework of signed hypergraphs�

In the last two chapters� we return to the two practical problems� and show how

to formulate and to solve them in the framework established� More speci�cally� in

Chapter �� we formally introduce the notion of signed hypergraph and then focus on
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certain theoretical aspects of signed hypergraphs� including the structural theorem�

the duality theorem� and the proof of NP�completeness of the maximum balance

and minimum covering problems� In Chapter �� we study the maximum balance

problem in planar signed hypergraphs� Chapter � explores the cut hierarchy of signed

hypergraphs and settles the problem of modeling signed hypergraphs by graphs� In

Chapter �� we describe a local search heuristic for solving the maximum balance

problem in general signed hypergraphs� Chapter � is devoted to a greedy heuristic for

minimum covering and the analysis of its performance bounds� In Chapter �� we apply

the mathematical programming approach� Chapter � presents an application to the

optimal layer assignment problem� In Chapter �� we describe how various sequential

logic synthesis problems are related to constrained encoding� and then describe the

ENCORE program for sequential logic synthesis� Chapter �� summarizes the thesis

and describes some open problems�
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Theory of Signed Hypergraphs

In this chapter� we formally de�ne the notions of signed hypergraph and balance�

We present characterizations of the balance property of signed hypergraphs� describe

some related optimization problems� and investigate their complexity�

��� Terminology and Notation

A signed hypergraphH is an ordered triple� 
V 
H�� E
H�� �H� 	 or simply 
V�E� ���

if H is understood 	 consisting of a set V of elements� called vertices� a set E� disjoint

from V � of elements called edges� and an incidence function � � V 	 E 
 f��� �� �g�

The incidence matrix of a signed hypergraph H � 
V�E� �� is a jV j 	 jEj matrix

� � 
�ij�

where �ij � �
vi� ej�� and jV j 
jEj� denotes the number of vertices 
edges� of H�

Clearly� each signed hypergraph has a unique incidence matrix� and each 
������

matrix corresponds to an incidence matrix of a signed hypergraph�

�We follow here the notation of Bondy and Murty ���� because the use of triples provides a simple

way of specifying signed hypergraphs�

��



���� TERMINOLOGY AND NOTATION ��

The dual H� � 
V �� E�� ��� of a signed hypergraph H � 
V�E� �� is a signed

hypergraph where V � � E� E� � V � and �� is the transpose of �� Consequently�


H��� � H�

If e is an edge and v a vertex such that �
v� e� �� �� then v is said to be incident

with e and vice versa� More speci�cally� if �
v� e� � �� v is positively incident with

e� if �
v� e� � ��� v is negatively incident with e� The incidence function permits an

edge and a vertex to meet only once� Thus no edge can connect a vertex to itself� i�e��

�self�loops� are not allowed in signed hypergraphs� Two or more vertices are said to

be adjacent if they are incident with the same edge� The degree d
v� of a vertex v in H

is the number of edges of H incident with v� We denote by �V the maximum degree

of the vertices of H� The degree d
e� of an edge e in H is the number of vertices of

H incident with e� We denote by �E the maximum degree of the edges of H�
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� �
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�
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a� 
b�

Figure ���� 
a� A signed hypergraph H� 
b� its incidence matrix�

A signed hypergraph H degenerates to a signed graph if d
e� � � for every edge

e 
 E� It degenerates to a hypergraph if �
v� e� 
 f�� �g for all v 
 V and e 
 E�

Finally� a signed hypergraph H degenerates to a graph if �
v� e� 
 f�� �g and d
e� � ��

for all v 
 V and e 
 E� We usually denote a 
signed� graph by G� and write V 
G��

E
G�� and �G� etc�

A signed hypergraph is shown in Fig� ���� where a circle represents a vertex� and a
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small solid circle 
called edge node� with several line segments attached to it represents

an edge� The graph obtained by treating edge nodes in the same way as the vertices

of H is called the underlying graph of H� Figures ��� and ��� are two more examples

of signed hypergraphs� where the signed hypergraph in Fig� ��� is the dual of the

signed hypergraph in Fig� ����
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Figure ���� A signed hypergraph H�� 
b� its incidence matrix�

The underlying graph of a signed hypergraph has the property that all the vertices

are partitioned into two subsets 
the set of hypergraph vertices and the set of edge

nodes� such that every edge connects one vertex from each subset� such a graph is

called bipartite in graph theory� Each signed hypergraph has a unique underlying
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bipartite graph� and each bipartite graph corresponds to the underlying graph of a

signed hypergraph� Thus we may use three terminologies 	 signed hypergraphs�


����� matrices� and �� 
edge�� weighted bipartite graphs 	 interchangeably�

A graph is said to be planar if it is possible to embed it in a plane so that no two

edges intersect� A signed hypergraph is planar if its underlying graph is planar� For

example� signed hypergraphs in Fig� ���� Fig� ���� and Fig� ��� are planar�

A signed hypergraph H
�

is a subhypergraph of H 
written H
�

� H� if V 
H
�

� �

V 
H�� E
H
�

� � E
H�� and �H
� is the restriction of �
H� to V 
H

�

� 	 E
H
�

�� For

example� H
�

de�ned by V 
H
�

� � fv�� v�� v�g� E
H
�

� � fe�� e�� e�g� and

�H
� �

�
BBBB�
�� � �

�� � �

� �� �

�
CCCCA

is a subhypergraph of H de�ned in Fig� ���� Note that� in terms of the incidence

matrix� the restriction of �H to V 
H
�

� 	 E
H
�

� is obtained by crossing out those

rows of �H that are not in V 
H
�

� and those columns of �H that are not in E
H
�

�� A

spanning subhypergraph H
�

of H is a subhypergraph with V 
H
�

� � V 
H��

Suppose that V
�

is a nonempty subset of V � A subhypergraph of H � 
V�E� ��

induced by vertex set V
�

is the subhypergraph whose vertex set is V
�

and whose

edge set is the set of those edges of H that are incident only with vertices in V ��

it is denoted by H
V
�

�� We also say that H
V
�

� is a vertex
induced subhypergraph

of H� For example� the subhypergraph of H in Fig� ��� induced on the vertex set

V
�

� fv�� v�� v�g is the triple 
V
�

� E
�

� �
�

� where E
�

� fe�� e�� e�g and

�� �

�
BBBB�
�� � �

�� � �

� �� �

�
CCCCA �

Note that the vertex�induced subhypergraphH
V �V
�

� is the subhypergraph obtained

from H by deleting the vertices in V
�

together with all their incident edges�
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Suppose that E
�

is a nonempty subset of E� A subhypergraph of H � 
V�E� ��

induced by edge set E
�

is the subhypergraph whose vertex set is the set of vertices

incident with edges in E
�

and whose edge set is E
�

� it is denoted by H
E
�

�� We also

say that H
E
�

� is an edge
induced subhypergraph of H� The spanning subhypergraph

with edge set E � E
�

� written as H
E �E
�

�� is the subhypergraph obtained from H

by deleting the edges in E
�

� For example� the subhypergraph H
E � fe�g� of H in

Fig� ��� is the triple 
V
�

� E
�

� �
�

� de�ned below�

V
�

� fv�� v�� v�� v�g�

E
�

� fe�� e�� e�� e�g�

�
�

�

�
BBBBBBB�

�� � � �

�� � � �

� �� �� �

� � � �

�
CCCCCCCA
�

Let q � � be an integer� A path of length q is de�ned to be a sequence


v�� e�� v�� e�� ���� vq� eq� vq���

such that

�i � � � i � q � vi �� vi��� �
vi� ei� �� �� and �
vi��� ei� �� ��

The sign of a path is equal to
qY

i��

�
vi� ei��
vi��� ei��

A positive �negative	 path is a path with positive 
negative� sign� A cycle is a path in

which vq�� � v�� note that the length of any cycle is necessarily greater than �� An odd

�even	 cycle is a cycle with odd 
even� length� For example� for the signed hypergraph

of Fig ���� the path 
v�� e�� v�� e�� v�� is negative� Cycles 
v�� e�� v�� e�� v�� e�� v�� and


v�� e�� v�� e�� v�� e�� v�� are negative� whereas the cycle


v�� e�� v�� e�� v�� e�� v�� e�� v�� e�� v�� e�� v��
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is positive�

A bipartition � of H is a separation of V into a pair of subsets� say 
V�� V��� such

that V� � V� � V and V� � V� � �� Here V� and V� are called blocks of �� The block

containing vertex v will be denoted by �
v�� An edge e is balanced by a bipartition �

if the following condition is satis�ed�

�v�� v� 
 V� �
v�� e� � �
v�� e� �� � implies �
v�� � �
v��� 
����

�
v�� e� � ��
v�� e� �� � implies �
v�� �� �
v��� 
����

For example� in Fig� ���� bipartition 
fv�� v�g� fv�� v�g� balances edges e� and e�� but

not edges e�� e� and e�� bipartition 
fv�� v�� v�g� fv�g� balances edges e�� e�� e� and

e�� but not edge e��

A bipartition is said to balance a signed hypergraph if it balances all of its edges�

A signed hypergraph is said to be balanced if there exists a bipartition that balances

all the edges� For example� bipartition 
fv�� v�� v�g� fv�g� balances the subhypergraph

H
E � fe�g� of H in Fig� ���� hence this subhypergraph is balanced�

��� Fundamental Characterizations

In this section� we present some characterizations of the balance property of signed

hypergraphs�

Proposition �
�
� Every subhypergraph of a balanced signed hypergraph is balanced�

Proof� Every edge of the subhypergraph is balanced by the bipartition that

balances the original signed hypergraph� �

Theorem �
�
� �Structure Theorem�

A signed hypergraph is balanced if and only if it is free of negative cycles�
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Proof� We �rst prove the only if part� Suppose that a signed hypergraph H

is balanced� then there exists a bipartition � such that� for each edge e 
 E
H��

�
v�� e� � �
v�� e� �� � implies that v� and v� are in the same block of �� and

�
v�� e� � ��
v�� e� �� � implies that v� and v� are in di�erent blocks� We say that

a path is cut by � if there exists a path segment of the form vieivi�� such that vi

and vi�� belong to di�erent blocks of �� Then the sign of any cycle in H may be

determined by counting the number of times the cycle is cut by �� Since a cycle can

only be cut by a bipartition an even number of times� every cycle must be positive�

We prove the if part by construction� Suppose that we are given a signed hyper�

graph H that is free of negative cycles� We construct a bipartition � � 
X�Y � as

follows� Arbitrarily select a vertex v and assign it to the block X� Since H is free of

negative cycles� for each pair of vertices v and v
�

� all paths joining v and v
�

have the

same sign� Search H in a depth��rst manner and calculate the sign of any path from

v to v
�

� If the sign is positive� then v
�

is in X� otherwise v
�

is in Y �

We claim that all the edges in H are balanced by �� By construction� for each

edge e 
 E
H� which connects vertices v� and v�� �
v�� e� � �
v�� e� �� � implies that

the path joining v� and v� is positive� and thus that v� and v� are in the same block

of �� If �
v�� e� � ��
v�� e� �� �� then the path joining v� and v� is negative� and

v� and v� are in di�erent blocks of �� Therefore edge e is balanced by �� and H is a

balanced signed hypergraph� �

The construction used in the proof above gives a linear�time algorithm for checking

whether a signed hypergraph is balanced� We state this observation as a corollary�

Corollary �
�
� Checking the balance of a signed hypergraph takes linear time�

Theorem �
�
� �Duality Theorem�

The dual of a balanced signed hypergraph is balanced�
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Proof� By Theorem ������ a signed hypergraph is balanced if and only if it is free

of negative cycles� Since a signed hypergraph and its dual have the same underlying

bipartite graph� cycles in a signed hypergraph have a one�to�one correspondence with

cycles in its dual� Thus the dual of a balanced signed hypergraph is also free of

negative cycles� and it is therefore balanced� �

��� The Maximum Balance Problem and its Complexity

In this section� we study the following problem� Given a signed hypergraph� �nd a

bipartition such that the number of balanced edges is maximized� This is called the

maximum balance problem� It is a natural graph�theoretic formulation of the optimal

layer assignment problem of two�layer routings in VLSI layout synthesis ������ In

fact� it was this reason that motivated us to introduce signed hypergraphs and to

study their structural properties�

The main result of this section is the NP�completeness of the maximum balance

problem� more precisely� we establish a clear boundary between polynomial�time solv�

able cases and the general NP�complete case� In addition� the complexity of the �dual�

of the maximum balance problem and the complexity of the maximum balance prob�

lem in a planar signed hypergraph are investigated�

Before we prove the NP�completeness results� we �rst make the following observa�

tions� Given a signed hypergraph H� the maximum balance problem is that of �nding

a bipartition � such that the number of balanced edges is maximized� From the def�

inition of balance� the spanning subhypergraph of H with the set of edges balanced

by � is balanced� In other words� after the set E
�

of edges that are not balanced by

� is removed� the remaining signed hypergraph H
E � E
�

� is balanced� By Theo�

rem ������ H
E � E
�

� is free of negative cycles� By Corollary ������ the construction

for H
E � E
�

� of a bipartition � that balances all the edges in E � E
�

takes linear
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time� Therefore� an alternative formulation of the maximum balance problem� which

is of the same time complexity as the original� is as follows�

Given a signed hypergraph H � 
V�E� ��� �nd a set E
�

� E with mini�

mum cardinality such that H
E �E
�

� is free of negative cycles�

Following the terminology of Yannakakis ������ we call this the edge
deletion balance

problem for a signed hypergraph� The corresponding decision problem is� Given H

and an integer k � �� does there exist a set E
�

of k edges such that H
E�E
�

� is free

of negative cycles�

A key to our proof of the NP�completenesses of the maximum balance problem and

its variants is provided by Lemmas ����� and ������ which state some properties of the

following construction� Given a graph G � 
V�E� ��� construct a signed hypergraph

H with the same set of vertices and the same set of edges� For each pair of vertices

vi and vj in G joined by an edge e in E� set �H
vi� e� � � and �H
vj� e� � �� in H�

We refer to this as the sign construction� The sign construction takes linear time�

Since d
e� � � for every e 
 E in G� H so constructed is in fact a signed graph� i�e��

�E � �� An example of the sign construction is given in Fig� ����

v� v� v�
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v� v� v�
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Figure ���� An illustration of the sign construction�
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Lemma �
�
� Let G be a graph� and H any corresponding signed hypergraph obtained

by the sign construction� Then there exists a set E
�

of k edges in G such that G
E�E
�

�

is bipartite if and only if there exists a set of k edges in H such that H
E � E
�

� is

free of negative cycles�

Proof� Let e be an arbitrary edge in H� and let v� and v� be two vertices incident

with e� By the construction of H� we always have �
v�� e��
v�� e� � ��� Therefore

the sign of any cycle in H is determined by the number of edges in the cycle� It is

positive if the cycle is even� and it is negative otherwise� Thus H is free of negative

cycles� if and only if G is free of odd cycles� It is well known that G is free of odd

cycles if and only if G is bipartite ����� �

Similarly� we have the following result�

Lemma �
�
� Let G be a graph� and H any corresponding signed hypergraph obtained

by the sign construction� Then there exists a set V
�

of k vertices in G such that

G
V � V
�

� is bipartite if and only if there exists a set of k vertices in H such that

H
V � V
�

� is free of negative cycles�

Theorem �
�
� The edge
deletion balance problem for a signed hypergraph H �


V�E� �� is NP
complete even if �a	 �E � � and �V � �� and �b	 �E � � and

�V � ��

Proof� We �rst show that the edge�deletion balance problem is in NP� Given a

set E
�

of k edges� checking whether H
E �E
�

� is free of negative cycles is equivalent

to checking whether a bipartition exists that balance all the edges in E�E
�

� this can

be done in linear time by Corollary ������

The NP�hardness of the edge�deletion balance problem for signed hypergraphs

with �E � � and �V � � is proved by showing that the problem can be reduced in

polynomial time from the following problem� which was proved to be NP�complete

by Garey� Johnson and Stockmeyer ����� and Yannakakis ������
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Edge�Deletion Bipartite Problem�

Instance� A graph G � 
V�E� �� with d
v� � � for every vertex v 
 V �

and an integer k�

Question� Does there exist a set E
�

of k edges such that G
E �E
�

� is

bipartite�

Given a graph G � 
V�E� �� with d
v� � � for every vertex v 
 V � we use the sign

construction to generate a signed hypergraph H� Since d
v� � � for every v 
 V in G�

the signed hypergraph H so constructed has �E � � and �V � �� By Lemma ������

there exists a set E
�

of k edges in G such that G
E � E
�

� is bipartite if and only

if there exists a set of k edges in H such that H
E � E
�

� is free of negative cycles�

Therefore the problem for a signed hypergraph with �E � � and �V � � is NP�hard�

To prove the NP�hardness of the maximum balance problem for a signed hyper�

graph with�E � � and�V � �� we use the �dual� of the edge�deletion bipartite prob�

lem 	 the vertex�deletion bipartite problem� which was proved to be NP�complete

by Choi� Nakajima and Rim �����

Vertex�Deletion Bipartite Problem�

Instance� A graph G � 
V�E� �� with d
v� � � for every vertex v 
 V �

and an integer k�

Question� Does there exist a set V
�

of k vertices such that G
V � V
�

�

is bipartite�

Given a graph with d
v� � � for every vertex v 
 V � we apply the sign construction

to generate a signed hypergraph 
V 
H�� E
H�� �H�� We then construct the dual H
�

of H� Since d
v� � � for every vertex v 
 V � H� is such that �V � � and �E � ��

We claim that there exists a set V
�

of k vertices in G such that G
V � V
�

� is

bipartite if and only if there exists a set E
�

of k edges in H� such that H�
E �E
�

� is

balanced� By Lemma ������ there exists a set V
�

of k vertices in G such that G
V �V
�

�
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Figure ���� An example of the dual construction�

is bipartite if and only if there exists a set V
�

of k edges in H such that H
V � V
�

�

is balanced� See Fig� ���� By Theorem ������ there exists a set V
�

of k vertices in H

such that H
V � V
�

� is balanced� if and only if there exists a set E
�

of k edges in H�

such that H�
E �E
�

� is balanced� See Fig� ���� Thus the claim is indeed true� Both

the sign construction and the dual construction take linear time� �

The �dual� of the edge�deletion balance problem is the vertex
deletion balance

problem�

Given a signed hypergraph H � 
V�E� ��� �nd a set V
�

� V with mini�

mum cardinality such that H
V � V
�

� is balanced�

As a corollary of Theorems ����� and ������ we have the following result�

Corollary �
�
� The vertex
deletion balance problem for a signed hypergraph is NP


complete even if �a	 �E � � and �V � �� and �b	 �E � � and �V � ��

To complete our analysis� we consider the cases that are not known to be NP�

complete� For the general signed hypergraph� it is easy to see that the case with�E �
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� and �V � � can be solved in linear time� This leads to a complete understanding

of the complexity of the maximum balance problem in a general signed hypergraph�

as illustrated in Fig� ����

NP-Complete

P �E

�V

�

�

�

� � �

Figure ���� Complexity of the maximum balance problem�

In the rest of this section� we consider the e�ect of planarity on the complexity

of the maximum balance problem� This is motivated by the fact that the layer

assignment problem of integrated circuit layout gives rise to signed hypergraphs that

are usually planar�

According to Choi� Nakajima and Rim ����� the vertex�deletion bipartite problem

when restricted to a planar graph is still NP�complete when �V � �� By using the

same constructions and arguments as in the proof of Theorem ������ and noting that

the dual of a planar signed hypergraph is planar� we have the following result�

Theorem �
�
� The edge
deletion balance problem is NP
complete for a planar signed

hypergraph with �E � ��

Corollary �
�
� The vertex
deletion balance problem is NP
complete for a planar

signed hypergraph with �V � ��

For the maximum balance problem of planar signed hypergraphs with �E � ��

we will develop polynomial�time algorithms in the next chapter� A complete picture
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of the complexity results for maximum balance in planar signed hypergraphs is in

Fig� ����

NP-Complete

P
P NP-Complete

�E

�V

�

�

�

� � ����

�

�

�

�V

�E


a� edge deletion 
b� vertex deletion

Figure ���� Complexity of planar maximum balance�

��� The Minimum Covering Problem and its Complexity

In this section� we consider the following problem� Given a signed hypergraph� �nd

a minimal number of bipartitions such that each edge is balanced by at least one

bipartition� This is called the minimum covering problem� It is a natural graph�

theoretic formulation of the constrained encoding problem arising in various contexts

of VLSI logic synthesis 
see Chapter ��� The main result of this section is the NP�

completeness of the minimum covering problem�

We introduce a notion of set decomposition� If E is a set� a decomposition of E

is a set fEi� i � �� ���� kg of subsets Ei of E such that �k
i��Ei � E� If E is a set of

edges of a signed hypergraph H� and fEi� i � �� ���� kg is a decomposition of E� then

fH
Ei�� i � �� ���� kg is also called a decomposition of H�

By Theorem ������ the subhypergraph induced by the set of edges that are bal�

anced by a bipartition is balanced� i�e�� free of negative cycles� Thus an alternative
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formulation of the minimum covering problem is as follows�

Given a signed hypergraph H � 
V�E� ��� �nd a decomposition fHi� i �

�� ���� kg of H such that 
a� Hi is balanced and 
b� k is minimized�

This is the balanced subhypergraph decomposition problem� If k � �� the problem

degenerates to that of testing whether a signed hypergraph H is balanced� which is

solvable in linear time� If k � jEj� the problem can also be solved in linear time by

simply choosing each edge as a signed hypergraph�

Theorem �
�
� The balanced subhypergraph decomposition problem for a signed hy


pergraph is NP
complete�

Proof� We �rst show that the balanced subhypergraph decomposition problem

is in NP� Given a signed hypergraph H and a set fHi� i � �� ���� kg� we can verify

in time polynomial in the size of the problem� i�e�� in the size of H plus fHi� i �

�� ���� kg� whether Hi is balanced for all i and whether fHi� i � �� ���� kg is indeed a

decomposition of H�

To prove the NP�hardness� we show that the problem is polynomial�time reducible

from the following known NP�complete problem �����

Graph K�Colorability Problem

Instance� A graph G � 
V�E� ��� and an integer � � K � jV j�

Question� Does there exist a mapping f � V 
 f�� ����Kg such that� for

each edge e incident with vertices vi and vj� f
vi� �� f
vj��

If K is restricted so that K � �k� � � k � log� jV j� this is the graph �
k�colorability

problem� Since the graph K�colorability problem remains NP�complete for any �xed

K	for example� the graph ��colorability problem is NP�complete	 the graph �k�

colorability problem is also NP�complete�
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We now show that the graph �k�colorability problem is equivalent to the following

problem�

Bipartite Subgraph Decomposition Problem

Instance� A graph G � 
V�E� �� and an integer k� � � k � log� jV j�

Question� Does there exist a decomposition fGi� i � �� ���� kg of G such

that Gi is bipartite for all i�

In other words� a graph is �k�colorable� if and only if it can be decomposed into k

bipartite subgraphs�

v�

�

v�
�� �

v�

�

v�
�� �

�

�

��

�� ��

��

Figure ���� A four�coloring of a graph�

First� suppose that a graph G is decomposable into a set Gi� i � �� ���k� of bipartite

subgraphs� and that 
V �
i � V

�
i � is a bipartition of Gi such that no edge connects a

vertex in V �
i to a vertex in V �

i � We then assign to any vertex v a k�bit binary

number with the ith bit determined as follows� It is � if v is in V �
i � and it is �

otherwise� Since any edge e is contained in at least one bipartite subgraph� the

binary numbers assigned in this way to the two vertices incident to e di�er in at

least one bit� This leads to a valid �k�coloring� For example� in Fig� ���� graph G is

decomposed into two bipartite subgraphs� G� induced by those edges labeled by ��

and G� induced by those edges labeled by �� Subgraph G� is bipartite with respect to

bipartition 
fv�� v�g� fv�� v�g�� Thus � is assigned to v� and v�� and � to v� and v� for

the �rst bit� Subgraph G� is bipartite with respect to bipartition 
fv�� v�g� fv�� v�g��
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Thus � is assigned to v� and v�� and � to v� and v� for the second bit� This results

in a four�coloring of graph G� 
v�� v�� v�� v�� to 
��� ��� ��� ���� In summary� if G is

decomposable into k bipartite subgraphs� then it is �k�colorable�

Conversely� suppose that a graph G is �k�colorable� The �k colors can be rep�

resented by k�bit binary numbers� Then the two numbers assigned to two vertices

incident to an edge di�er in at least one bit� We say that the edge is separated by that

bit� In Fig� ���� the bits that separate an edge are marked� for example� the edge that

joins v� and v� is separated by bits � and �� All the edges separated by the same bit

induce a subgraph� thus there is a total of k subgraphs� According to the de�nition

of coloring� each edge is separated by at least one bit� and hence contained in at least

one subgraph� Therefore� the set of k subgraphs is a decomposition of the original

graph� From the construction� the bit value assigned to consecutive vertices in every

cycle must alternate between � and �� That means that every cycle in each subgraph

is of even length� therefore each subgraph is bipartite�

Altogether� we have shown that a graph is �k�colorable� if and only if it can be

decomposable into k bipartite subgraphs� Since the graph �k�colorability problem is

NP�complete� so is the bipartite subgraph decomposition problem� Now we only need

to show that the bipartite subgraph decomposition problem can be transformed into

the balanced subhypergraph decomposition problem in polynomial time� This follows

immediately from the sign construction of a signed hypergraph from a given graph�

and from Lemma ������ �

��� Signed Graphs and Balanced ������ Matrices

To our knowledge� the notion of signed hypergraph has not previously appeared in the

literature� However� the equivalent concepts of 
����� matrices and of �� weighted


or called directed� bipartite graphs are important concepts in the area of mathemat�

ical programming� In the graph�theoretical community� there have been studies on
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such topics as signed graphs ����� In this section� we provide a brief summary of these

concepts� Our emphasis is on their relations with signed hypergraphs�

Harary�s Signed Graphs

In the study of certain phenomena in social psychology� Harary ���� conceived

the notion of signed graph and it balance� A signed graph G consists of a set V of

vertices together with two disjoint subsets E� and E� of the set of unordered pairs of

vertices� The elements of the sets E� and E� are called positive edges and negative

edges respectively� A cycle of a signed graph is positive if the number of negative

edges involved is even� otherwise it is negative� A signed graph is balanced if all of

its cycles are positive� Harary proved the following theorem� A signed graph G is

balanced if and only if its vertex set V can be partitioned into two disjoint subsets

V� and V� in such a way that each positive edge of G joins two vertices of the same

subset and each negative edge joins two vertices of di�erent subsets�

Clearly� our notions of signed hypergraph and the sign of a cycle� and our structure

theorem generalize nh counterparts above� One slight di�erence is that we de�ne the

concept of balance in terms of bipartitions instead of cycles� This is because the

VLSI synthesis problems that we are interested in are naturally stated in terms of

bipartitions� The absence of negative cycles is thus a structural property of these

problems�

We make several remarks� First� our proof of the structure theorem is simple

and provides a linear�time algorithm for balance testing� Second� as shown in Chap�

ter �� problems de�ned over signed graphs can be transformed exactly to problems

in terms of weighted graphs� In this sense� signed graphs have the same �expressive�

power as ordinary graphs� Signed hypergraphs� however� provide more expressive

power than ordinary graphs� as we shall see in Chapter �� Finally� we note some

recent work by Zaslavsky on characterization ����� and orientation embedding �����

of signed graphs� by Hoede on related marked graphs ����� and by Boros� Crama and
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Hammer on the relation between maximum balance of signed graphs and quadratic

��� optimization �����

Restricted Unimodularity and Balanced 
����� Matricesy

A matrix is totally od 
TU� if every square submatrix has determinant ����� It

is well known that integer programs whose constraint matrices have the TU property

can be solved optimally by relaxing the integrality restriction� This is important since

integer programs are NP�complete� whereas their relaxations 
linear programs� are

polynomial�time solvable�

A very simple su�cient condition for total unimodularity is called restricted total

unimodularity� A 
����� matrix � is restricted totally od if and only if the corre�

sponding �� edge�weighted bipartite graph G of � is free of �negative� cycles� Here

a �negative� cycle is one with the sum of its weights of all involved edges congruent

to � modulo � according to Conforti and Rao ����� Alternatively� Yannakakis �����

de�ned the sign of a cycle to be the product of the signs of its edges� with the sign of

an edge determined as follows� Suppose that G is bipartite with respect to bipartition


V �� V ��� where V � and V � are two sets of vertices corresponding to all the edges

and all the vertices� respectively� Then an edge is directed from a vertex vi in V �

to a vertex vj in V � if �ij � �� and to a vertex vi in V � from a vertex vj in V � if

�ij � ��� Such a directed bipartite graph is called a matrix digraph by Yannakakis�

Let C be a cycle� we traverse C in one direction� assign a �sign� �� to an edge e if e

has the same direction� and assign a �sign� �� to e if e has the opposite direction�

Instead of associating signs with edges in �� edge�weighted bipartite graph G as

above� we can equivalently associate signs to �path segments� in the corresponding

signed hypergraph as follows� The sign of a path segment viejvi�� is �� times the

product of �
vi� ej� and �
vi��� ej�� This is similar to our de�nition in Section ����

whether the sign of a path segment viejvi�� is � times the product of �
vi� ej� and

yThe author thanks Anna Lubiw for bringing this work to his attention�
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�
vi��� ej�� But this apparently slight di�erence leads to very distinct results� bal�

ance testing is much simpler than restricted�unimodularity testing� As shown in

Theorem ������ for balance testing� the absence of negative cycles can be checked by

�nding a bipartition� which is essentially one pass of depth��rst search� For unimod�

ularity testing� the absence of �negative� cycles needs an examination of the entire

cycle space� a much more involved process ���� �����

Unimodularity testing for a signed graph G can be done by balance testing of

its �negation� G� The negation G of G is the same as G except that the sign of

each edge is the negation of the original sign 
here we use nh notion�� It follows

from Theorem ����� that� balance testing of G amounts to testing whether the set

of vertices can be partitioned into two subsets so that any two vertices joined by a

positive edge in G are in the same subset and any two vertices joined by a negative

edge in G are in di�erent subsets� In terms of G� this amounts to testing whether

the set of vertices can be partitioned into two subsets so that any two vertices joined

by a negative edge are in the same subset and any two vertices joined by a positive

edge are in di�erent subsets� In terms of the incidence matrix � of G� which has

two nonzero entries in each column� � is totally od if and only if the set of rows can

be partitioned into two subsets� so that for every column with two �
s or two ��
s�

one nonzero entry is in each subset� and for every column with an � and a ��� both

nonzero entries are in the same subset� This is a well�known result in mathematical

programming �����

Very recently� Conforti and Cornu�ejols ���� reported that balanced 
����� matrices

de�ned by Truemper ����� are a superclass of totally unimodular matrices� A balanced


����� matrix is a 
����� matrix in which for every submatrix with exactly two

nonzero entries per row and per column� the sum of the entries is a multiple of ��

In terms of the corresponding �� edge�weighted bipartite graph� a 
����� matrix is

balanced if and only if the sum of the weights of the edges in every chordless cycle

is a multiple of �� The problem of how to recognize such balanced 
����� matrices
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remains open�

��� Summary

In this chapter� we introduced the notion of signed hypergraph� We de�ned the con�

cepts of edge
balance and negative cycle� We gave characterizations of the edge�

balance property� the structure theorem and the duality theorem� We introduced

two optimization problems� maximum balance and minimum covering� The two

problems are natural models of two VLSI synthesis problems respectively� however�

the graph�theoretic formulations have not been explored in the past� The main scope

of this thesis is the study of the complexity� solution methods� and applications of

these problems�

The complexity issues were another focus of this chapter� We established that

both the maximum balance problem and the minimum covering problem are NP�

complete� Moreover� we have shown that the maximum balance problem remains

NP�complete even for planar signed hypergraphs�

The notion of signed hypergraph was �rst introduced by us in the study of the

VLSI via minimization problem ������ It happens to be a generalization of the notion

of signed graph introduced by Harary in the mid ����s for studying certain phenomena

in social physiology ����� The structure theorem is thus a generalization of Harary
s

theorem of signed graphs� The proof given here indeed provides a simple proof of

Harary
s original theorem�
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Maximum Balance in Planar

Signed Hypergraphs

One motivation of studying the maximum balance problem comes from the need to

design e�cient algorithms for the optimum layer assignment problem in VLSI layout

design� since the former is a rigorous graph�theoretic formulation of the latter� There

are four practical aspects of the formulation that may be helpful in designing e�cient

algorithms� First� optimum layer assignment gives rise to signed hypergraphs that are

planar� Second� most of the edges in the resulting signed hypergraph connect only two

vertices� In other words� hyperedges are rare� Third� all hyperedges have weight ��

and all edges with degree two have small integer weights� which are usually �� Finally�

the number of edges that must be removed to balance the resulting signed hypergraph

is usually signi�cantly smaller than the total number of edges�

This chapter is devoted to algorithm development for the maximum balance prob�

lem in planar signed hypergraphs� In particular� we will reduce the maximum balance

problem in a planar signed hypergraph to a so�called hypergraph T �join problem in its

planar dual� Although the notion of hypergraph T �join is new� its restriction	graph

T �join	has been well�studied in combinatorial optimization� There are polynomial�

��
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time algorithms for �nding a minimum T �join� Such algorithms can be generalized

to hypergraph T �joins to yield pseudo�polynomial�time algorithms�

��� Planar Duals and Marked Hypergraphs

In this section� we show that the maximum balance problem in a planar signed hy�

pergraph can be simpli�ed by exploiting planarity� Speci�cally� we show that the

problem reduces to the so�called minimum matching set problem in its planar dual�

Consider a planar signed hypergraph embedded in the plane�� Such a planar

signed hypergraph partitions the plane into a number of connected regions� called

faces� Figure ���
a� shows a planar signed hypergraph H with four faces� f�� f�� f��

and f�� We also refer to the cycle that forms the boundary of a given face as a face�

For example� f� in Fig� ���
a� corresponds to the cycle v�e�v�e�v�e�v��

A positive �negative	 face is a face 
i�e�� a cycle� with positive 
negative� sign� In

Fig� ���
a�� faces f� and f� are negative� whereas faces f� and f� are positive�

Each planar signed hypergraph has exactly one unbounded face� called the exterior

face� in Fig� ���� f� is the exterior face� All other faces are called interior faces� We

say that the exterior face encloses a set of interior faces� Similarly� we also say that a

cycle encloses a set of faces� For example� cycle v�e�v�e�v�e�v� encloses faces f� and

f��

Proposition �
�
� For a planar signed hypergraph H� the sign of a cycle is equal to

the product of the signs of all the faces that are enclosed by the cycle�

Proof� We view a planar signed hypergraph as its underlying bipartite graph�

each edge in this bipartite graph is associated with either �� or ��� Given a cycle

�In this thesis	 when we speak of a planar signed hypergraph	 we mean a planar signed hyper


graph embedded in the plane� Such an embedding is normally given in the applications we have in

mind ������
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that encloses a set of faces� we refer to edges in the cycle as boundary edges� and to

edges in the faces but not in the cycle as internal edges� Since each internal edge is

used by exactly two faces� the product of the signs of all the faces enclosed by the

cycle is equal to the product of the signs of boundary edges� i�e�� the sign of the cycle�

�

For example� in Fig� ���
a�� cycle C � v�e�v�e�v�e�v� encloses two faces f� and f��

It is easy to verify that the sign of C is equal to the product of the signs of f� and

f�� which is negative� The sign of f� is equal to the product of the signs of f�� f� and

f�� This leads to the following proposition�

Proposition �
�
� A planar signed hypergraph has an even number of negative faces�

Proof� By Proposition ������ the sign of the exterior face is determined by the

number of negative faces enclosed� it is positive if it encloses an even number of

negative faces� otherwise negative� Thus the total number of negative faces is even�

�

A face is said to be incident with the vertices and edges in its boundary� When

an edge is incident with more than one face� we say that the edge separates the faces

incident with it� For example� in Fig� ���
a�� edge e� separates faces f� and f�� and

edge e� separates faces f�� f� and f�� It can be seen that the number of faces separated

by an edge is less than or equal to the degree of the edge�

Now we consider how to balance a planar signed hypergraph H� This is equivalent

to having H
E�E�� free of negative faces� since H is planar� hence we are interested

in faces and edges� Further� by Proposition ������ the sign of the resulting face after

the removal of an edge is the product of the signs of all the faces separated by the

edge� i�e�� it is independent of the sign of the edge� This gives rise to the notion of

planar dual�
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Let H be a planar signed hypergraph� the planar dual H� of H is de�ned as

follows� corresponding to each face f of H there is a vertex f� of H�� Corresponding

to edge e of H that separates two or more faces� there is an edge e� of H�� a set

of vertices in H� are joined by edge e� if and only if their corresponding faces are

separated by edge e in H� Associated with each vertex f� in H� is a sign that is the

sign of its corresponding face f in H�

For example� the planar dual H� of the planar signed hypergraph H in Fig� ���
a�

is shown in Fig� ���
c��

One can verify that edges in H incident with only one face are not of interest�

For example� the planar dual H�
� of the planar signed hypergraph H� in Fig� ���
a�

is shown in Fig� ���
b� 
signs are omitted here�� We note that edges e� and e�
 in H�

do not have counterparts in H�
� �

The planar dual of a planar signed hypergraph is a hypergraph in which each

vertex is associated with either a positive sign or a negative sign� Such hypergraphs

are called marked hypergraphs� following Beineke and Harary ���� who invented the

notion of marked graphs in the modeling of relations between persons in psychology�

In a marked hypergraph� vertices associated with a positive 
negative� sign are called

positive �negative	 vertices�

The marked hypergraph as the planar dual of a planar signed hypergraph has

several properties� First� it is planar� Second� it is connected� i�e�� for every pair of

vertices u and v� there exists a path with u and v as end�vertices� Furthermore� by

Proposition ������ it has an even number of negative vertices�

Before we get into the formulation of the maximum balance problem of a planar

signed hypergraph H in terms of its planar dual H�� we describe the following result

regarding bounds on solutions to our problem�

Proposition �
�
� Let G be a planar signed graph with n faces and k negative faces�
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Let m be the minimum number of edges needed to remove in order to balance H� Then

�
�
k � m � n�

Proof� We �rst prove that m � n� Clearly� we can delete one edge from each face

to make all the faces positive� By Proposition ������ all the cycles in G are positive�

Let E
�

be such a set of deleted edges� then m � jE
�

j � n and H
E �E
�

� is balanced�

We now prove that m � �
�
k� Since each edge is adjacent with at most two faces�

the deletion of an edge will make at most � negative faces positive� There are k

negative faces� So the number of edges needed to remove in order to balance G is at

least �
�
k� �

Since the optimum layer assignment problem gives rise to a signed hypergraph with

a majority of edges having degree �� the bounds above have practical implications� In

terms of layer assignment� m is the number of real vias� and n 
the number of faces�

is related to the number of potential vias 
jEj� through the Euler formula�

n � the number of potential vias � the number of clusters 
vertices� � ��

Practically� in order to achieve a global via reduction� the number of potential vias

chosen is usually much greater than the number of real vias m ������ Therefore� k is

also much smaller than n� This observation will be used later in Section ��� in �nding

a practically e�cient algorithm for optimum layer assignment�

Now we consider how to formulate the maximum balance problem of a planar

signed hypergraph H in its planar dual H�� We need to remove a set E� of edges

such that H
E � E�� is free of negative faces� By Lemma ������ any negative face f

can be eliminated if and only if it is merged with an odd number of negative faces�

We assume that Ef is the set of edges that need to be removed for eliminating f �

and that E�
f is the corresponding set of edges in H�� Then H�
E�

f � is a connected

subhypergraph that contains an even number of negative vertices� we call such a

subhypergraph a matching component� Given a marked hypergraph H � 
V�E� ��
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with an even�cardinality set T � V of vertices� a matching set M is a set of edges such

that 
a� H
M� consists of a set of matching components� and 
b� T � V 
H
M���

For example� consider H� in Fig� ��� with T � ff�� � f
�
�g� Then fe

�
�g� fe

�
�g� fe

�
�� e

�
�g�

and any subset of edges that contains any of the three subsets above� are matching

sets of hH�� T i�

Therefore� the maximum balance problem in a planar signed hypergraph is equiv�

alent to the following problem� Given a planar marked hypergraph H � 
V�E� ��

with T � V consisting of an even number of negative vertices� �nd a matching set

having minimum cardinality� We will call this the minimum matching set problem in

a planar marked hypergraph�

By Theorem ������ the maximum balance problem in a planar signed hypergraph

is NP�complete� we thus have the following complexity result�

Theorem �
�
� The minimum matching set problem is NP
complete if  E � ��

even for planar marked hypergraphs�

��� Reduction to Hypergraph T �Joins

In this section� we �rst generalize a known graph�theoretic notion of T �join to marked

hypergraphs� We then observe that a T �join in a marked hypergraph is a matching

set� and thus show that the minimum matching set problem reduces to the minimum

hypergraph T �join problem� The signi�cance of this reduction lies in the fact that

the minimum graph T �join problem can be solved e�ciently�

We recall the notion of graph T �join ����� Let G � 
V�E� �� be a graph and let

T � V be of even cardinality� A graph T 
join of hG�T i is de�ned to be a subset of

the edges that meets each vertex of T an odd number of times and that meets each

vertex of V � T an even number of times� Figure ��� illustrates two examples of
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a� 
b�

Figure ���� Examples of graph T �joins�

graph T �joins� where shaded cycles represent the vertices in T � and edges represented

by bold�faced lines form a T �join� This graphical convention is adopted from now

on for illustrating T �joins� We note that� if we are given a graph G � 
V�E� �� and

T � V � then a T �join of hG�T i that meets each vertex exactly once is known as perfect

matching	a concept of fundamental importance in graph theory and combinatorial

optimization ���� ����

We now consider how to generalize the notion of T �join to marked hypergraphs�

Let H � 
V�E� �H� be a marked hypergraph with T � V of even cardinality� and

G � 
V � E�F� �G� be its underlying bipartite graph� A graph T �join of hG�T i is a

set F� � F of edges that meets each vertex of T in G an odd number of times and

that meets each vertex of 
V � E� � T in G an even number of times� A hypergraph

T 
join of hH�T i is de�ned to be E � V 
G
F���� i�e�� the subset of edges in H that

are �used� by a T �join in the underlying graph of H� A T �join in the underlying

graph is called the underlying graph T 
join of a hypergraph T �join� For example� in

the marked hypergraph in Fig� ���� all hypergraph T �joins are fe��g� fe
�
�g� fe

�
�� e

�
�g�

fe��� e
�
�� e

�
�g� fe

�
�� e

�
�� e

�
�� e

�
�g� and fe

�
�� e

�
�� e

�
�� e

�
�� e

�
�g�

We make a remark on our de�nition of hypergraph T �join� On the one hand�

when H � 
V�E� �� is a graph� our de�nition degenerates to the known notion of

graph T �join� On the other hand� a hypergraph T �join may meet a vertex in T an

even number of times� For example� fe��� e
�
�� e

�
�g is a hypergraph T �join� which meets

f�� twice� It may also meet a vertex in V � T an odd number of times� For example�

fe��� e
�
�g is a hypergraph T �join that meets f

�
� once�
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Now we are ready to make some observations about the relation between T �joins

and matching sets in a marked hypergraph�

Proposition �
�
� A T 
join is a matching set�

Proof� We �rst note that the subhypergraph induced by a hypergraph T �join

contains the set of all vertices 
except those vertices that represent hypergraph edges�

in the subgraph G induced by the underlying graph T �join� Since all the negative

vertices are contained in G� it is su�cient to show that G consists of a set of connected

components each containing an even number of negative vertices� By the de�nition

of graph T �join� all negative vertices have odd degree and all positive vertices have

even degree� It is well known that� in any graph� the number of vertices of odd degree

is even ����� thus the number of negative vertices in each component is even� �

Proposition �
�
� A minimal matching set is a T 
join�

Proof� Let H � 
V�E� �� be a marked hypergraph T � V of even cardinality�

and let M be a minimal matching set� Consider the underlying graph G of H
M��

There exists a set of graph T �joins of hG�T i� Each such graph T �join� in turn� de�nes

a hypergraph T �join M
�

� By Proposition ������ any hypergraph T �join is a matching

set� Since M is a minimal matching set� M
�

must be the same as M � ThereforeM is

a T �join� �

It follows immediately from Propositions ����� and ����� that the minimum match�

ing set problem is reduced to the following problem� Given a hypergraph H �


V�E� �� and T � V of even cardinality� �nd a hypergraph T �join having minimum

cardinality� We will call this the minimum hypergraph T 
join problem�

For example� consider the marked hypergraph H� in Fig� ��� with T � ff�� � f
�
�g�

Optimal solutions to the minimum hypergraph T �join problem are fe��g and fe
�
�g�
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Since the minimum matching set problem in a planar marked hypergraph is NP�

complete� we have the following complexity result�

Theorem �
�
� The minimum hypergraph T 
join problem is NP
complete if  E � ��

even for planar marked hypergraphs�

��� On Hypergraph T �Join Algorithms

We have shown that the maximum balance problem in a planar signed hypergraph

reduces to the minimum hypergraph T �join problem in its planar dual� This obser�

vation leads to two important results� First� when  E � �� the maximum balance

problem reduces to the minimum graph T �join problem in a planar graph� There are

many e�cient polynomial algorithms available for �nding minimum graph T �joins�

for examples� see Barahona ���� Edmonds and Johnson ����� and Seb!o ������ In Sec�

tion ���� we have observed that the number of T vertices is much smaller than the

total number of vertices for the problems arising from optimum layer assignment�

We thus prefer a simple graph T �join algorithm due to Edmonds and Johnson �����

First calculate the distances between all the pairs of vertices in T � then construct

a complete weighted graph with T as the vertex set� with weights determined by

shortest distances� and �nally �nd the minimum weighted perfect matching in the

complete weighted graph� Since the best known algorithms for minimum weighted

perfect matching run in O
jT j�� time� the total cost is O
jV jjT j� jT j��� Since jT j is

signi�cantly smaller than jV j for the optimum layer assignment problem� our algo�

rithm practically improves the best known algorithm for optimum layer assignment�

which runs in O
jV j
�

� log jV j� ����� Also� the algorithm in ���� is di�cult to implement�

Next� the observation above gives rise to pseudo�polynomial algorithms for the

minimum hypergraph T �join problem� which is NP�complete for  E � �� The basic

idea is to introduce additional vertices for hyperedges with degree greater than ��
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The resulting graph G is similar to the underlying graph� We denote the set of

additional vertices by S and call them S�vertices� Let G be a graph and T � V 
G�

and S � V 
G� where jT j is even and T �S � �� We would like to �nd a graph T �join

with the minimum cost� where the cost is calculated as the number of distinct edges

used by a graph T �join� except that all the edges incident with the same S�vertex

are counted as � 
corresponding to one hyperedge�� We need to �nd all jSj distinct

smallest graph T �joins� and then to re�calculate the cost of each graph T �join based

on its usage of vertices incident to S�vertices� The k�th smallest graph T �join can be

found in a similar way to �nding the k�th shortest path� Although this extension is

naive� it works well for the optimum layer assignment problem� which gives rise to

signed hypergraphs with only few hyperedges�

��� Summary

In this chapter� we have shown that the maximum balance problem in a planar signed

hypergraph reduces to a generalized version of a well�known graph�theoretic problem

in its planar dual� That is �nding a minimum graph T �join� a problem known to be

polynomially solvable� Its generalization� the minimum hypergraph T �join problem�

has been solved here in pseudo�polynomial time by extending graph T �join algorithms�



Chapter �

Modeling of Signed Hypergraphs

We consider a weighted signed hypergraph where each edge e is associated with a real

number we� The maximum balance problem in a weighted signed hypergraph is to �nd

a bipartition such that its cost	the total weight associated with all the unbalanced

edges	is minimized� We consider the 
weighted� maximum balance problem in this

chapter� since it generalizes several known graph�theoretic problems as summarized

in Table �����

Table ���� Degenerate cases of maximum balance�

� � f�� �g  E � �  E � �

we real hypergraph partitioning max cut

we � � netlist partitioning min cut

When � 
 f�� �g� the maximum balance problem degenerates to the hypergraph

bipartitioning problem ����� Further� if we � � for all edges e� the problem is known as

netlist partitioning� an important problem in VLSI design ���� ����� When � 
 f�� �g

�Some practical motivations for considering the weighted version of the problem will be presented

in Chapters � and 
�

��
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and  E � �� the maximum balance problem degenerates to the maximum cut 
or max

cut� problem ������ Further� if w
e� � � for all edges e� the problem is traditionally

called the minimum cut 
or min cut� problem �����

One natural question is whether it is possible to represent the maximum balance

problem in a general signed hypergraph by one of the known graph�theoretic problems

above� If this were the case� then we could make use of a rich body of known theoretic

and algorithmic results� and even some existing software packages�

In the previous chapter� we have developed a polynomial�time algorithm for the

maximum balance problem in planar signed graphs� Noticing that the case of  E � �

can be reduced to the case of  E � �� an interesting question is whether there exists

a similar reduction for a signed hypergraph with  E � �� Such a reduction does not

exist unless P � NP � since we have shown that the maximum balance problem in

planar signed hypergraphs is NP�complete for  E � �� As a consequence� the best we

can expect are approximate reductions� One motivation of this chapter is to look for

a good approximate reduction that gives rise to e�cient approximation algorithms�

critical signed hypergraphs

positive-weighted

real-weighted

graphs
signed

graphs

signed hypergraphs

hypergraphs

Figure ���� Structure hierarchy of signed hypergraphs�

In general� we are interested here in the expressive power of signed hypergraphs�

We have encountered four types of graphs� namely� signed hypergraphs� hypergraphs�

signed graphs� and graphs� The introduction of signed hypergraphs� hypergraphs�
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and signed graphs provides a more e�cient way for representing and solving certain

classes of practical problems� The structure hierarchy of these �graphs� is illustrated

in Fig� ���� 
Critical signed hypergraph are de�ned in Section ����� The question is

whether we really need all of them from the theoretical point of view� The study in

this chapter is thus partly inspired by� and also parallels� the researches by theoretical

computer scientists on the computational power of various computing machines� such

as �nite state automata� push�down automata� Turing machines ����� The property of

signed hypergraphs that of interest to us here is the bipartition that has the minimal

cost� Since bipartitions are often called cuts in graph theory� the goal of this chapter

is to study the cut hierarchy of signed hypergraphs�

��� Notion of Min�Cut Modeling

Let H � 
V�E� �� be a signed hypergraph� Let � � 
V �� V �� be a cut 
bipartition�

of V � We use cost
��H� to denote the cost of cut �� i�e�� the number of unbalanced

edges� If there is a weight associated with each edge in H� then cost
��H� is the total

weight associated with all the unbalanced edges of ��

A restriction of � to Va� Va � V 
H�� denoted by � � Va� is obtained from � by

removing those vertices not belonging to Va� For example� let � � 
fv�� v�� v�g� fv�g��

Va � fv�� v�� v�g� and Vb � fv�� v�� v�g� then � � Va � 
fv�� v�g� fv�g�� � � Vb �


fv�� v�� v�g� �g��

Let H� � 
V�� E�� ��� be a subhypergraph of H� Let H� � 
V�� E�� ��� be a

signed hypergraph such that V� � V�� The replacement of H� in H by H� is a signed

hypergraph H
�

obtained from H by removing all the edges in E� and inserting all the

edges in E�� Figure ��� illustrates an example of replacement� For every cut � of H�

there exists a set of cuts in H
�

whose restrictions are ��

Let H� and H� be two signed hypergraphs with V 
H�� � V 
H��� Let H be a
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signed hypergraph that contains H� as a subhypergraph� Let H
�

be the replacement

of H� in H by H�� Then signed hypergraph H� is said to be a min
cut model of H�

if� for every signed hypergraph H and every pair of cuts �� and �� of H�

cost
���H� � cost
���H� implies

minfcost
�
�

��H
�

�j�
�

� � V � ��g � minfcost
�
�

��H
�

�j�
�

� � V � ��g�

and

cost
���H� � cost
���H� implies

minfcost
�
�

��H
�

�j�
�

� � V � ��g � minfcost
�
�

��H
�

�j�
�

� � V � ��g�

In particular� if V� � V�� then H� is said to be a cut model of H�� Vertices in V� are

called active vertices� and those in V� � V� are dummy vertices�

Table ���� Cuts in a signed hypergraph H�

cut unbalanced edges cost


fv�g� fv�� v�� v�g� e�� e�� e�� e�� e� �


fv�g� fv�� v�� v�g� e�� e�� e� �


fv�g� fv�� v�� v�g� e�� e� �


fv�g� fv�� v�� v�g� e� �


fv�� v�g� fv�� v�g� e�� e�� e� �


fv�� v�g� fv�� v�g� e� �


fv�� v�g� fv�� v�g� e�� e�� e�� e� �


fv�� v�� v�� v�g� �� e�� e�� e� �

For example� for the signed hypergraph H in Fig� ���� there are � cuts as listed

in Table ���� For the signed hypergraph H
�

in Fig� ���� there are �� cuts as listed in

Table ���� In Table ���� the second� the third� and the fourth columns� list all �� cuts

in H
�

� their unbalanced edges� and their costs� respectively� The �rst column gives
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the cuts restricted to V 
H�� The �fth column lists the min�cost associated with all

the cuts that have the same restrictions� Clearly� the min�cost associated with each

restricted cut has the same cost as the original cut in Table ���� Therefore H� is a

min�cut model of H�� where vertex v� is a dummy vertex�

Table ���� Cuts in a signed hypergraph H
�

�

cut restricted to V 
H� cut in H
�

unbalanced edges cost min�cost


fv�g� fv�� v�� v�g� 
fv�g� fv�� v�� v�� v�g� e�� e�� e�� e�� e�� e� � �


fv�� v�g� fv�� v�� v�g� e�� e�� e�� e�� e	 �


fv�g� fv�� v�� v�g� 
fv�g� fv�� v�� v�� v�g� e�� e�� e� � �


fv�� v�g� fv�� v�� v�g� e�� e�� e�� e	 �


fv�g� fv�� v�� v�g� 
fv�g� fv�� v�� v�� v�g� e�� e	� e� � �


fv�� v�g� fv�� v�� v�g� e�� e� �


fv�g� fv�� v�� v�g� 
fv�g� fv�� v�� v�� v�g� e� � �


fv�� v�g� fv�� v�� v�g� e�� e�� e	� e� �


fv�� v�g� fv�� v�g� 
fv�� v�g� fv�� v�� v�g� e�� e�� e�� e� � �


fv�� v�� v�g� fv�� v�g� e�� e�� e	 �


fv�� v�g� fv�� v�g� 
fv�� v�g� fv�� v�� v�g� e�� e�� e	� e� � �


fv�� v�� v�g� fv�� v�g� e� �


fv�� v�g� fv�� v�g� 
fv�� v�g� fv�� v�� v�g� e�� e�� e�� e� � �


fv�� v�� v�g� fv�� v�g� e�� e�� e�� e	� e� �


fv�� v�� v�� v�g� �� 
fv�� v�� v�� v�g� fv�g� e�� e�� e�� e	 � �


fv�� v�� v�� v�� v�g� �� e�� e�� e� �

Figure ��� gives an example of a cut model� Unmarked edges are assumed to have

weight �� It can be veri�ed that any cut in H has the same cost as the corresponding
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cut in H
�

� For example� for the cut 
fv�g� fv�� v�� v�g�� the cost in H is � as shown

in Table ���� In H
�

� the unbalanced edges are e�� e�� e�� e	 and e� for a total cost of

� � � � � � �
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�

H H�

H� H
�

Figure ���� Illustration of a cut�model�

The following proposition follows immediately from the de�nition of min�cut

model�

Proposition �
�
� Let H� and H� be two signed hypergraphs with V 
H�� � V 
H���

Then H� is a min
cut model of H� if and only if� for every pair of cuts �� and �� in
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H��

minfcost
�
�

��H��j�
�

� V 
H�� � ��g �minfcost
�
�

��H��j�
�

� V 
H�� � ��g

� cost
���H�� � cost
���H���

Finding the min�cut model for a speci�c graph is not of much interest� More

interesting is an algorithm that takes H� as the input and outputs the min�cut model

H�� Thus we can speak of asymptotic growth of min�cut modeling in the same way

as we do for algorithms ��� ���� In this sense� we say that H� is a polynomial min�cut

model of H�� if H� is a min�cut model of H� and the size of H� is polynomial in the

size of H��

��� Modeling of Signed Hypergraphs

In this section� we �rst show that� for any signed hypergraph� there exists a real�

weighted hypergraph as its cut model� This construction may be exponential� the

question whether there exists a polynomial cut model remains open� We then present

a simple construction of a polynomial cut model for a special class of signed hy�

pergraphs� called �critical�� For a special class of �critical� signed hypergraphs	


unsigned� hypergraphs� we describe a construction that gives rise to real�weighted

graphs as polynomial min�cut models�

Theorem �
�
� For any signed hypergraph� there exists a real
weighted hypergraph

as its cut model�

Proof� It is su�cient to show that there exists a cut model for any edge in a

signed hypergraph� Let H� be a signed hypergraph consisting of only edge e with a

set V of k vertices� We may assume that k � �� since the case of k � � is trivial� Our
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cut model will be a real�weighted hypergraph H�� we will assume that H� contains

all the edges that correspond to subsets of V with two or more vertices� The total

number of edges in H� is thus

kX
i��

C i
k � �

k � k � ��

where C i
k denotes the number of distinct combinations of i elements chosen from a

set of k elements� Associated with each edge in H� is a real weight whose value is to

be determined� hence there are �k � k � � variables in total� By Proposition ������ if

we can �nd a weighting such that the di�erence between the costs of any two cuts in

H� is the same as the di�erence between the costs of the two corresponding cuts in

H�� then there exists a cut model� Since the total number of possible cuts on H� is

�k��� there are �k�� � � equations to be satis�ed� Because the number of variables is

always greater than the number of equations for k � �� such a weighting is possible�

The theorem is thus proved� �

v� � � v�

�

v�

�

v�

v� v�

v�

v�

� �

��

�

�

�

�

�
�

�
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�
�

�

�


a�


b�

Figure ���� The cut model of an edge with degree four�
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To illustrate the proof used for Theorem ������ we consider cut modeling of a

signed hyperedge with degree four 
k � ��� We assume its cut model as illustrated

in Fig� ���
b�� there are �k � k � � � �� edges� each joining a subset of two or

more vertices� Clearly� if we choose edge weights in such a way that bipartition


fv�� v�g� fv�� v�g� has cost zero� and all the others have cost one� then the conditions

in Proposition ����� are satis�ed� We thus have a system of �k�� � � equations� as

listed below�


fv�g�fv�� v�� v�g�


fv�g�fv�� v�� v�g�


fv�g�fv�� v�� v�g�


fv�g�fv�� v�� v�g�


fv�� v�g�fv�� v�g�


fv�� v�g�fv�� v�g�


fv�� v�g�fv�� v�g�


fv�� v�� v�� v�g� ��

�
BBBBBBBBBBBBBBBBBBBBB�

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

�
CCCCCCCCCCCCCCCCCCCCCA

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

w��

w��

w��

w��

w��

w��

w���

w���

w���

w���

w����

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�

�
BBBBBBBBBBBBBBBBBBBBB�

�

�

�

�

�

�

�

�

�
CCCCCCCCCCCCCCCCCCCCCA

�

One can verify that the following weighting is a solution�

w�� � w�� �
�

�
� w�� � w�� � w�� � w�� � ��

w��� � w��� � w��� � w��� � �
�

�
� w���� � ��

The construction above may require an exponential number of edges with nonzero

weights� We do not know whether there exists a solution with O
k� nonzeros to the

set of 
�k�� � �� equations needed in the construction� However� for a class of signed

hypergraphs� called �critical�� we are able to give a polynomial cut model�
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An edge e is said to be critical if there exists at most one edge�vertex incidence

that is di�erent from all the other incidences for this edge� A signed hypergraph that

consists of only critical edges is called a critical signed hypergraph�

�

� � � �

e

v�

v� v� vk�� vk

e�

e�

v�

v� v� vk�� vk

�

��


a� 
b�

Figure ���� Cut modeling of a critical edge�

Any critical edge with only positive or negative edge�vertex incidences is replaced

by an 
unsigned� hyperedge with the same weight� The cut model for the other case

of critical edges is illustrated in Fig� ���� It uses one edge weighted �� to join all the

vertices� and one edge weighted � to join the vertices with the same sign� Clearly�

in Fig� ���
a�� the cut 
fv�g� fv�� ���� vkg� has cost �� and all other cuts have cost ��

In Fig� ���
b�� the cut 
fv�g� fv�� ���� vkg� has cost ��� and all other cuts have cost ��

Therefore� by Proposition ������ Fig� ���
a� and Fig� ���
b� are cut models of each

other� Further� these cut models are polynomial�

Any signed hypergraph with  E � � is critical� it can be replaced by a real�

weighted hypergraph cut model with size polynomial in terms of the original signed

hypergraph� A special case is the class of signed graphs� As a result� signed graphs

do not have more expressive power than real�weighted graphs under the cut model�

Conversely� for any real�weighted hypergraph� we can construct a positive�weighted

critical signed hypergraph as its cut model� for a positive�weighted edge� we replace it
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by an edge whose edge�vertex incidences are the same 
either � or ���� for a negative�

weighted edge� we use the reverse of the construction illustrated in Fig� ���� Each

time a negative�weighted edge with degree k is replaced by a signed edge with degree

k and another negative�weighted edge with degree k� �� as illustrated in Fig� ���� It

can be veri�ed that

� in Fig� ���
a�� the cut that partitions all the vertices into the same block has

cost �� all other cuts have cost ���

� in Fig� ���
b�� the cut that partitions all the vertices into the same block has

cost �� all other cuts have cost ��

Therefore� by Proposition ������ Fig� ���
a� and Fig� ���
b� are cut models of each

other� We then use this construction for the edge of degree k�� in Fig� ���
b�� Recur�

sive applications of the construction k times give rise to a critical signed hypergraph

that is a cut model of the original negative�weighted edge� Since there are k edges in

the resulting critical signed hypergraph� the construction above yields a polynomial

cut model�

e ��

v�

v� v� vk�� vk

�

� � � �

e�

e�

v�

v� v� vk�� vk

��

�


a� 
b�

Figure ���� Cut modeling of a negative�weighted edge�

As the result of the two constructions above� we have the following result�
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Theorem �
�
� Real
weighted hypergraphs and positive
weighted critical signed hy


pergraphs are polynomial cut models of each other�

Further� by Theorems ����� and and ������ we have the following corollary�

Corollary �
�
� For any signed hypergraph� there exists a positive
weighted critical

signed hypergraph as its cut model�

To complete our discussion over the relation between signed hypergraphs and

critical signed hypergraphs� we introduce an operation of �ipping� For an edge 
a

vertex� in a signed hypergraph� a �ipping operation switches all the positive incidences

with all the negative ones for that edge 
vertex�� Figure ��� illustrates an example

of edge �ipping� An interesting property of �ipping is that the maximum balance

problem is invariant under �ipping�

v� � �
v�

�

v�

e
v�

� �

v�

�

v�

e

Figure ���� Illustration of edge �ipping�

Proposition �
�
� There exist signed hypergraphs that are not transformable into

critical under �ipping�

Proof� We prove this by an example� Consider a signed hypergraph H with

� vertices and �� edges	all the edges with degree �� i�e�� all the edges with no �
s

and any choice of ��� Clearly H contains non�critical edges� Edge �ipping does not

change whether an edge is critical� Vertex �ipping leaves H invariant� �

To conclude this section� we describe a construction that leads to real�weighted

graphs as polynomial min�cut models for hypergraphs� The construction is due to
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Ihler� Wagner� and Wagner ����� and is illustrated in Fig� ��� for a hyperedge of

degree k 
k � ��� The active vertices are v� to vk� The dummy vertices are p� to pk

and n� to nk� Edges from vi to ni are weighted N � �
k � ���k� edges from vi to

pi are weighted P � �� All other edges have a small positive weight ��k� It can be

veri�ed that

� the min cut that partitions all active vertices into one block also partitions all

dummy vertices into the same block� thus it has cost ��

� every other min cut 
with respect to active vertices� always unbalances all the

edges weighted N � balances all the edges weighted P � and unbalances k
k � ��

edges weighted p� Therefore the cost of each min cut is kN � k
k � ��p � ��

By Proposition ������ this construction gives rise to a polynomial min�cut model�
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Figure ���� Min�cut modeling of a hyperedge by a real�weighted graph�

��� Min�Cut Model with Positive Weights

In this section� we consider min�cut modeling in which only positive weights are al�

lowed� We show that there is no positive�weighted hypergraph as a min�cut model for

a signed hypergraph and that there is no positive�weighted graph as a min�cut model

for a hypergraph� We then study the problem of modeling a hyperedge by a positive�

weighted graph� where weights are chosen to minimize the approximation error� We
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prove that a complete graph 
called clique� is indeed the best graph structure for a

min�cut model of a hyperedge� This settles a conjecture by Lengauer ���� ���� We

then compare several schemes for choosing edge weights�

Theorem �
�
� There does not exist a positive
weighted hypergraph as a min
cut

model for a signed hypergraph�

Proof� It is su�cient to show that there does not exist a positive�weighted graph

as a min�cut model for a signed graph� By Theorem ������ for any signed graph there

exists a real�weighted graph as its cut model� So we only need to show there is no

positive�weighted graph as a min�cut model for a real�weighted graph� We consider

an edge e joining vi and vj with weight ��� The cost of cut 
fvig� fvjg� is ��� The

cost of cut 
fvi� vjg� �� is �� Any positive�weighted graph G 
with dummy vertices�

that involves vertices vi and vj will induce positive costs for cuts whose restrictions

are 
fvig� fvjg�� and zero min�cut cost for cuts whose restrictions are 
fvi� vjg� ��� By

Proposition ������ G could not be a min�cut model of the original edge e� Thus this

theorem is proved� �

Theorem �
�
� There exists no positive
weighted graph as a min
cut model for a

hyperedge of degree k� k � �� Furthermore� the best approximate min
cut model with

positive weights is a clique�

Proof� Suppose that there exists a min�cut model� which is a positive�weighted

graph G with a set A of k active vertices and with a set D of an arbitrary number

of dummy vertices� For each bipartition 
S� T � of A� we introduce a pair 
s� t� of

vertices with s connecting to all the vertices in the S group and t connecting to all

the vertices in the T group� In total� we need to introduce �k such pairs�

Because G is a graph with positive�weighted edges� the well�known max��ow"min�

cut theorem applies ����� Thus for each 
s� t� pair� the minimum cut separating s from
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T verticesS vertices

ts

Figure ���� An illustration of a �ow network�

t is equal to the maximum �ow between s and t� Any �ow network with source s

and target t� where s connects a set of S vertices and t connects a set of T vertices�

is equivalent to a complete bipartite �ow network 
ignoring 
s� t�� as illustrated in

Fig� ���� In summary� for all 
s� t� pairs� the resulting �ow network is exactly a

complete graph 
clique� involving S � T � A vertices�

We need to determine edge weights 
called capacities in network theory ����� in

such a way that the �ow between each 
s� t� pair is exactly one� Again� we apply the

max��ow"min�cut theorem� The corresponding problem is to determine edge weights

in a clique so that every cut has cost �� One can easily verify that this is impossible

for k � �� Hence the theorem is proved� �

Now we consider how to choose edge weights for a clique so as to minimize the

approximation error� Since all edges are symmetric� they are assumed to have the

same weight� We have two alternatives for choosing weights� The �rst one is to enable

the cost of bisection of the clique to be � and the costs of all the other cuts to be

as close to � 
from below� as possible� this is a best underestimation of the original

hyperedge� The solutions will provide a lower bound on the cut cost of the original

hyperedge� The other one is to have the cost of separating one vertex from all the

others to be �� and the cost of all the others as close to � 
from above� as possible�

this is a best overestimation of the original hyperedge�
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Now we consider how to measure the approximation error� We assume a to be the

edge weight� Let si denote the approximation error� measuring how far the weight of

cut i is away from �� let s� denote the maximum approximation error� let p� denote

the probability of having the maximum error� and let s denote the mean error� There

are m � �k�� cuts for a hyperedge of degree k� Then we have the following results�

� Underestimation�

s� � �� 
k � ��a�

p� �
k

�k��
�

s �
�

�k

k��X
i��


�� i
k � i�a�C i
k�

� Overestimation�

s� � d
k

�
eb
k

�
ca� ��

p� �
�

�k��
C
b k
�
c

k �

s �
�

�k

k��X
i��


i
k � i�a� ��C i
k�

There have been three schemes for choosing a� as proposed by Stevens and van�

Cleemput ������ by Xiong and Kuh ������ and by Vannelli and Hadley ������ The �rst

two schemes were developed in the study of the via minimization problem� and were

chosen intuitively�

The weighting of Stevens and vanCleemput is determined in such a way that the

cost of the cut that bipartitions the clique into two groups with one group containing

only one vertex is exactly the same for all k with � � k � �� The case k � � is

considered� because it corresponds to the most commonly used grid�based routing

methodologies ������ The weights of any other cuts for k � � are thus larger than

the weight assigned to k � �� Therefore this is an overestimation of the original

hyperedge�
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The weighting chosen by Xiong and Kuh is �
k
k���

� which is an underestimation of

the original hyperedge�

The weight used by Vannelli and Hadley is 
dk
�
ebk

�
c���� where bk

�
c 
dk

�
e� is the

smallest 
largest� integer greater 
less� than or equal to k

�
� It is also an underes�

timation of the original hyperedge� however� it was calculated using various linear

programming models to minimize the approximation errors ������

Table ���� Comparison of four weighting schemes�

Stevens � vanCleemput Xiong � Kuh Vannelli � Hadley fan model

k a s� p� s a s� p� s a s� p� s s� p� s
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Table ��� gives a comparison among four di�erent schemes 
the last one will be

described in the next section� for hyperedges of degree � �� Note that the weights

determined by the model of Stevens and vanCleemput have been normalized with

respect to the weight assigned to a ��way split 
����� Several observations can be

drawn from this table�

�� For all schemes� k � � can be modeled exactly�

�� The weighting of Stevens and vanCleemput is better than that of Xiong and

Kuh for k � � but is worse for k � ��
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�� Among three schemes� the weighting by Vannelli and Hadley is the best for any

k in terms of s� s� and the possibility p� of being s��

��� Planar Min�Cut Model with Positive Weights

One motivation for studying the problem of modeling of signed hypergraphs by known

graph�theoretic notions of hypergraphs and graphs is to develop e�cient approximate

algorithms� In particular� we are interested in the maximum balance problem in pla�

nar signed hypergraphs� The use of the clique as the min�cut model for a hyperedge

with degree exceeding three will lead to nonplanar graphs� This is not desirable�

since the maximum balance problem in a planar signed graph can be solved in poly�

nomial time� whereas the maximum balance problem in a general signed graph is

NP�complete� In this section� we study planarity preserving min�cut modeling�

The graph structure we choose to model a hyperedge is called a fan graph� In

Fig� ����� we give the fan graphs used to model a hyperedge with k end�vertices for

k � �� The edge weights are determined by mathematical programming to minimize

the estimation error� One can see from the table that the maximum error by the fan

model is close to that of Xiong and Kuh� but the possibility of being such a worst

case is lower� Moreover� the mean error is less than that of Xiong and Kuh� as well

as that of Stevens and vanCleemput�

As an example� mathematical programming formulation for modeling a hyperedge

with four vertices is given below�

minimize f �
	X
l��


sl � s�� �
	X
l��

sl

subject to

a�� � a�� � a�� � s� � �
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Figure ����� Planar graph approximations of hyperedges with degree k � ��
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a�� � a�� � a�� � a�� � s	 � �

s� � s� � s� � s� � s� � s� � s	 � �s � �

The following solution to the problem above is obtained by using minos� a math�
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ematical programming package ������

a�� � a�� � a�� � a�� �
�

�
� a�� �

�

�

s� � s� � s� � s� � s	 � �� s� � s� �
�

�

��� Summary and Open Problems

Our contributions in this chapter are twofold� On the theoretical side� our results

lead to the cut hierarchy of Fig� ����� Two classes of �graphs� are cut�equivalent if

they are cut models of each other� One class A of �graphs� contains another class B�

if �graphs� in class A are cut models of �graphs� in class B� If dummy vertices are

allowed� then we have the �min�cut� hierarchy as illustrated in Fig� �����

signed graphs
real-weighted

signed graphs
positive-weighted

graphs
real-weighted

real-weighted hypergraphs

positive-weighted critical signed hypergraphs

positive-weighted signed hypergraphs

graphs
positive-weighted

hypergraphs
positive-weighted

Figure ����� Cut hierarchy of signed hypergraphs�

On the practical side� we proved that the clique is indeed the best approximate

min�cut model with positive weights for a hyperedge even if dummy vertices are

allowed� This settles a conjecture by Lengauer ���� ���� which further con�rms the�

oretically the e�ectiveness of the use of the clique model in netlist partitioning� as

done by Hadley� Mark and Vannelli �����
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positive-weighted

signed graphs
real-weighted

signed graphs
positive-weighted

graphs
real-weighted

real-weighted hypergraphs

positive-weighted critical signed hypergraphs

positive-weighted signed hypergraphs

graphs

hypergraphs
positive-weighted

Figure ����� Min�cut hierarchy of signed hypergraphs�

A planarity preserving min�cut model was presented for the �rst time� Because

its weights are determined by mathematical programming so as to minimize the ap�

proximation error� the proposed planarity preserving min�cut model gives rise to good

polynomial time approximation algorithms for the maximum balance problem in a

planar signed hypergraph� This result is of practical relevance� since hyperedges with

 E � � are only few in the problem instances resulting from optimal layer assign�

ment �����

On the other hand� the results obtained in this chapter indicate that there is gen�

erally no good way to model a signed hypergraph by graphs with positive weights�

This provides one reason why we shall develop robust heuristics that can work di�

rectly on signed hypergraphs� which will be the scope of the next chapter� The same

observation has been made on network partitioning ���� �����

There are several open problems� The �rst one is the existence of a real�weighted

hypergraph as a polynomial cut model for a signed hypergraph 
Section ����� We

conjecture that such a polynomial model does not exist� That means� the cut model

of a signed hypergraph might have to be exponential� Therefore� the introduction

of signed hypergraphs might lead to exponential speedup of e
ciency over existing

�graphs�� which have signi�cant impact on algorithm design� The second problem is
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the existence of an analytic expression for the problem of planar min�cut modeling� In

addition� it is also interesting to see if the fan graph is the best planar graph structure

for modeling a hyperedge�



Chapter �

A Local Search Heuristic for

Maximum Balance

In Chapter �� we presented algorithms for the maximum balance problem in planar

signed hypergraphs� which� in turn� solve the optimum layer assignment problem�

since the maximum balance problem in planar signed hypergraphs is a precise graph�

theoretic formulation of the optimum layer assignment problem� In this chapter�

we consider the case of general signed hypergraphs� This study is motivated by

several considerations� First� a signed hypergraph is not necessarily planar� Second�

with the ever increasing demand in high�performance circuit design� it is desirable to

consider timing constraints during layer assignment� such constraints may give rise

to non�planar signed hypergraphs ����� Finally� the study here provides a basis to the

development of e�cient heuristics for the minimum covering problem� as explored in

the next chapter�

Recall from Chapter � that the maximum balance problem is NP�complete� it is

therefore very unlikely that there exist polynomial�time algorithms for �nding opti


mum solutions� One paradigm to attack NP�complete problems is by approximation�

i�e�� approximating a general case of the problem by special cases that can be solved

��
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polynomially� This usually leads to guaranteed e�cient algorithms for �nding guar


anteed good solutions� though not necessarily optimal� Indeed� the result of approxi�

mation of signed hypergraphs by planar signed graphs in Section ���� combined with

the algorithm developed in Chapter �� provides an e�cient approximation algorithm

for the maximum balance problem in planar signed hypergraphs� However� it is not

easy to see how to apply this paradigm to the general case� since the problem in

general signed graphs is NP�complete also� Therefore� this chapter focuses on a more

generally applicable paradigm	local search�

Local search is based on what is perhaps the oldest optimization method	trial

and error� In Section ���� we describe the paradigm of local search and its adaptation

to our problem� In Section ���� we work through an example� to illustrate further

the basic idea� and to examine where computations are consumed� We then show in

Section ��� how to speed up those computations by using suitable data structures and

incremental techniques� In Section ���� we present a technique that can help move

out of local optima� based on the property of signed hypergraphs� Some theoretical

aspects of local search are discussed in Section ����

��� Local Search Paradigm and encore Neighborhood

Local search is a general paradigm for solving optimization problems� An optimization

problem P consists of

�� a set of possible inputs�

�� a group of constraints which speci�es the property that the solution must satisfy�

The set of possible inputs that satis�es all the constraints is usually called the

feasible solution set� denoted by F �

�� a cost mapping� c � F 
 R� which associates with each feasible solution� f 
 F �

a real cost� 
Here R is the set of real numbers��
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The maximization problem is to �nd an f 
 F for which

c
f� � c
y� for all y 
 F �

Such a solution f is called a globally optimal solution� Given a neighborhood mapping�

N � F 
 �F � the set N
f�� f 
 N
f�� is the neighborhood of f � The solution f is a

local optimum with respect to N if

c
f� � c
y� for all y 
 N
f��

Alternatively� given point f 
 F � we de�ne gain
f� � c
t�� c
f� where t 
 N
f�

such that

c
t� � c
y� for all y 
 N
f��

We denote such a point t by next
f�� A solution f 
 F is a local optimum with respect

to N if

gain
f� � ��

The paradigm of local search for solving the maximization problem P is now shown

in Fig� ���� We start at some initial feasible solution f 
 F and then search for a best

solution next
f� in its neighborhood� As long as a best neighborhood improves the

current solution� i�e�� gain
f� � �� we adopt it and repeat the neighborhood search

from the new solution� we stop when we reach a local optimum� The process of

searching for a new solution from a current solution is called one pass of local search�

We may rephrase an optimization problem with a superimposed neighborhood

structure as a local search optimization problem stated below� given an input instance

x� �nd a locally optimal solution� We refer to the use of local search paradigm in

Fig� ��� to a local search optimization problem as standard local search algorithm�

In the rest of this section� we describe how to apply this paradigm to the maxi�

mum balance problem� The problem input is a signed hypergraph H� Any arbitrary
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LOCAL SEARCH

� f � some initial starting point in F

� while gain
f� � �

� do f � next
f�

� return f

Figure ���� Paradigm of local search�

bipartition � of H is a feasible solution� If we denote the number of vertices in H

by n� then the feasible set will the the set of all the �n bipartitions� The cost here is

the number of balanced edges� We will show in Chapter � how to obtain a feasible

solution when there exist constraints imposed on the maximum balance problem�

The most critical part is the choice of a neighborhood mapping N� A neighborhood

should be easy to search� i�e�� enable an e�cient calculation of gain
�� and next
���

at the same time rich enough to assure the quality of the local optima obtained� A

simple choice would be the set of points within Hamming distance �� The process

of searching for a best neighbor amounts to searching for a vertex which� if moved

from its current group to its complementary group� will lead to maximum gain in

terms of the number of balanced edges� For convenience� we call this the Hamming

neighborhood�

We implement a more sophisticated neighborhood� called the encore neighbor�

hood� a neighboring bipartition is obtained from a current bipartition by a sequence of


at most n� moves� at each move� a vertex of maximum gain that has not been moved

since the beginning of the sequence is chosen to move� This neighborhood generalizes�

and explores a much larger neighborhood than� the simple Hamming neighborhood�

Any local optimum with respect to the encore neighborhood is certainly a local

optimum with respect to the Hamming neighborhood� the converse does not hold�

therefore� the use of the encore neighborhood is expected to produce better local

optima� Indeed� the encore neighborhood is inspired by the success of the work
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of Kernighan and Lin ����� and Fiduccia and Mattheyses ����� for graph"network

partitioning�

The key part is how to perform the search for next
�� and the calculation of

gain
�� under the encore neighborhood� We will look at an example �rst in the

next section� and give a careful implementation later� We will show �nally that the

encore neighborhood search takes only linear time� in terms of the size of the prob�

lem instance� i�e�� the nonzero entries in the incidence matrix of a signed hypergraph�

For simplicity� we will use encore search to refer to the encore neighborhood

search�

��� encore Search	 An Illustrative Example

Consider the following example� Let H � 
V�E� �� where V � fv�� ���� v�g� E �

fe�� ���� e�g� and � is described by the following matrix�

�T �

�
BBBBBBBBBBB�

� � � �

� � � �

� � � �

�� � � ��

� � �� ��

�
CCCCCCCCCCCA

�

Here the transpose �T of the incidence matrix is used for notational convenience� Let

x

� � 
�� �� �� �� ��T as the �seed�� i�e�� an initial bipartition� We want to �nd such a

bipartition� x 
 f��� �gn� in the encore neighborhood of x

� that balances as many

edges as possible�

If we use the value � to denote �don
t cares�� then we may speak of �ternary�


f������g� vectors� Any edge ej is balanced by two �ternary� bipartitions� One is

equal to the jth column of �� and the other is the negation of that column� We

denote these bipartitions by ej and �ej� respectively�
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In order to decide which component of the present bipartition x should be changed

to get closer to an optimal solution� we de�ne the direction matrix � � 
�ij�m�n�

where �ij � xieij� If xi agrees with eij	the ith component of ej	then �ij is equal

to �� if xi disagrees with eij� then �ij is equal to ��� �nally� if si is not in ej� then

eij � � and �ij is also �� Therefore the number of �� entries in each column of  

re�ects how far x is from bipartition ej � we denote this number by d
�
j and call it the

distance from x to ej� Similarly� the number d
�
j of � entries in column j of  is the

distance from x to �ej � Each entry in � has the following meaning�

�ij �

������
�����

�� if changing xi takes x away from ej 
closer to �ej� by ��

��� if changing xi takes x closer to ej 
away from �ej� by ��

�� otherwise�

The shortest distance� called dj � from x to a bipartition that balances edge ej is

dj � minfd�j � d
�
j g� If dj �� �� then edge ej is not balanced by x� We will denote by

d� the distance vector 
d�� � ���� d
�
m�� and treat d

� and d similarly� The number c of

balanced edges is the number of zero components of d�

Initialization� The direction matrix for initial bipartition x

� is simply�
�� � �T�

The calculation of d�� d�� and d� and c is illustrated below�

x

��
BBBBBBBBBBB�

�

�

�

�

�

�
CCCCCCCCCCCA

�
�� �

�
BBBBBBBBBBB�

� � � �

� � � �

� � � �

�� � � ��

� � �� ��

�
CCCCCCCCCCCA

d� �
�
� � � �

	

d� �
�
� � � �

	

d �
�
� � � �

	
c � �
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We consider which component of x should be changed to get as close to an optimal

solution as possible� For this purpose we introduce the gain matrix G � 
gij�m�n

where

gij �

������
�����

�� if the change of xi changes ej from unbalanced to balanced�

��� if the change of xi changes ej from balanced to unbalanced�

�� otherwise�

Matrix G can be obtained by inspection of d and �� There are three situations�

If dj � �	as in the case of d�	then edge ej is balanced by x� If we change any

component of x corresponding to a vertex joined in ej� the number c of balanced

edges will decrease by �� Therefore g�� � g�� � g�� � ��� If dj � �	as in the

case of d�	there exists a component of x 
here x�� which� if changed� will cause

ej to become balanced� Therefore the corresponding entry 
g��� in G is �� In the

special case where dj � � and jejj � �	as in the case of e�	both entries are equal

to �� Thus g�� � g�� � �� If dj � �	as in the case of d�	edge ej will remain

unbalanced no matter which component of x changes� Thus all the entries in the

corresponding column 
here column �� are �� The above calculations result in the

matrix G

� shown below� The sum of the entries in row i of G is the total gain

obtained by complementing xi� which forms a gain vector �� In our example� the

fourth component has the largest gain� hence� we select it as the component to be

changed�

�

�

G

� �

�
BBBBBBBBBBB�

� �� � �

� �� � �

� � � �

� � � �

� �� � �

�
CCCCCCCCCCCA

�
BBBBBBBBBBB�

��

�

�

�

�

�
CCCCCCCCCCCA

select x�

Move �� We change the fourth component of x

�� and the new bipartition is

x
�� � 
�� �� ����� ��T � This is the �rst move� The new direction matrix  
�� is the
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same as  

� except that the �th row is the negation of the original row� The fourth

component of x is �locked� after the move� in the sense that it will not be changed

again during the search for the �rst bipartition� Hence we do not need to check the

gain entries corresponding to this component� such entries will be shaded� All of the

calculations connected with Move � are compactly summarized below�

x
���
BBBBBBBBBBB�

�

�

�

��

�

�
CCCCCCCCCCCA

�
�� �

�
BBBBBBBBBBB�

� � � �

� � � �

� � � �

� � � �

� � �� ��

�
CCCCCCCCCCCA

d� �
�
� � � �

	

d� �
�
� � � �

	

d �
�
� � � �

	
c � �

�
��

G
�� �

�
BBBBBBBBBBB�

� �� � �

�� �� � �

� � � �

� �� � �

�
CCCCCCCCCCCA

�
BBBBBBBBBBB�

��

��

�

�

�
CCCCCCCCCCCA

select x�

Move �� According to �
��� we change x�� The computed results are illustrated

below� All the entries in the new gain vector �
�� are negative� This means that the

corresponding components of x are either locked or� if changed� will cause more edges

to be unbalanced� Our strategy� therefore� is to terminate the neighborhood search�
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Thus we obtain x � 
�� �� ��������T � which balances edges e�� e� and e��

x
���
BBBBBBBBBBB�

�

�

�

��

��

�
CCCCCCCCCCCA

�
�� �

�
BBBBBBBBBBB�

� � � �

� � � �

� � � �

� � � �

� �� � �

�
CCCCCCCCCCCA

d� �
�
� � � �

	

d� �
�
� � � �

	

d �
�
� � � �

	
c � �

�
��

G
�� �

�
BBBBBBBBBBB�

� � �� ��

�� � �� �

� � � ��

�
CCCCCCCCCCCA

�
BBBBBBBBBBB�

��

��

��

�
CCCCCCCCCCCA

Stop

In the description above� the direction and gain matrices are introduced for de�

scriptive convenience� What we really need are the distance and gain vectors� We

can divide the computational cost associated with each move into three parts�

� Task �� computation of the distance vectors�

� Task �� calculation of the gain vector�

� Task �� selection of a component in the gain vector that has the maximum

value�

In the next section� we will see how this idea can be implemented so that its worst�case
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computational cost of encore SEARCH is O
p�� where p is the number of nonzero

elements in the incidence matrix�

��� E
cient Implementation of encore Search

We now describe an e�cient implementation of the basic ideas of the previous section�

E�ciency is achieved by using suitable data structures for Tasks � and �� and an

incremental approach for Task �� so that all three tasks are performed in O
p� time�

�
�
� Calculation of Distance Vectors

We use sparse�matrix techniques to store the incidence matrix �� 
In other words� we

use the adjacency�list data structure to represent a signed hypergraph�� We maintain

an array of edges� in which each entry is a linked list of pointers to vertices in that

edge� We also keep an array of vertices� in which each entry is a linked list of pointers

to edges involving that vertex� These two arrays permit e�cient traversal of nonzero

entries by row or by column� We also keep track of the values of d� and d� for each

edge� After changing xi� we update the distance values as follows�

d�j � d�j 
old� � �ij�

d�j � d�j 
old�� �ij�

The number of operations needed for computing the new distances is thus jEij� The

total number of operations needed to maintain distance vectors for one move is
Pm

i�� jEij � p� The initialization of d� and d� takes p operations� Therefore the

total cost for Task � is �p� i�e�� O
p��

Proposition �
�
� Using the sparse
matrix data structures� the calculation of dis


tance vectors in one pass of local search takes O
p� time�
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�
�
� Initialization of Gain Vectors

Now we consider how to calculate the gain vector for a given bipartition x� All

distances can be obtained in O
p� time� Only edges with the shortest distances of

� or � contribute to the gain vector� such edges are said to be x
sensitive� The

calculation of the gain vector checks for each edge to see if it is x�sensitive� If so�

all the vertices in that edge may be checked to determine whether to add �� remove

�� or do nothing for that corresponding entry� In the worst case� all the edges are

x�sensitive� and all the vertices in each edge need to be checked� Therefore O
p�

operations are needed to build up the gain vector for a given x�

Proposition �
�
� Computing the gain vector for a given bipartition takes O
p�

time�

�
�
� Incremental Gain Updating

Knowing the gain vector for x� we calculate the gain vector for the new x obtained

by changing xi� An e�cient approach is to perform incremental updating� i�e�� to

modify only that part of the gain vector that is a�ected by the move�

To illustrate this idea� we refer to Move � in our introductory example� Both

the distance and gain vectors for x

� are known� We change x�� and all the nonzero

entries in the fourth row of �
�� 
corresponding to x�� are negated� These entries

are ��� and ���� Therefore� only the distances for edges in E� are changed 
here

E� � fe�� e�g�� As a consequence� only the �rst and the fourth columns of G may be

changed� Since 	i is equal to the sum of the entries in the ith row ofG� the new � can

be obtained from the old � by �rst subtracting the �rst and the fourth columns of

G
�� and then adding the �rst and the fourth columns of G
��� Thus� the calculation

of contributions to the gain vector is required only for the edges in Ei�
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Gain updating is required only when an edge in Ei is sensitive in the present or

the previous moves� Due to the fact that each component is locked after the move� an

edge ej can be sensitive 
dj � � or dj � �� during the search for one bit assignment

only a constant number of times� The reason is as follows� A moved component either

agrees or disagrees with ej� Consider the �rst case� Since the component is locked

after the move� it will disagree with ej forever� This means that d
�
j will be greater

than � forever� Similarly� for the second case� we can conclude that d�j will be greater

than � forever� Thus the number of times that dj is � is bounded� If there are two

moves involving two components that originally agree with ej� then� after the move�

the two components will disagree with ej forever� i�e�� d
�
j � �� Similar reasoning

shows that the number of times that dj is � is also bounded� Formally� we have the

following result�

Proposition �
�
� For each edge� gain updating is required only a constant number

of times during one pass of local search�

A detailed case analysis reveals that three gain updatings are su�cient ������ Since

the number of updatings for each edge is bounded� we have the following proposition�

Proposition �
�
� For each edge� all gain updating takes O
p� time during one pass

of local search�

�
�
� Data Structures for Gain Vectors

Now we describe a data structure� denoted by B� for the gain vector� It shall support

the following operations�

� INSERT�B� i� gi� inserts a component i with gi in B�

� DELETE�B� i� deletes component i from B�
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� UPDATE�B� i� q� updates gi by q� i�e�� lets gi � gi � q and moves it to the

appropriate place in B�

� MAX�B� returns the component of x with maximum gain� or NIL if B is empty�

We use a bucket list� as illustrated in Fig� ���� The range of the bucket list goes from

3

2

1

0

-1

-2

-3

1 2 3 4 5
INDEX

MAXGAIN

BUCKET

4

2

1

3 5 000

1

-1

Figure ���� Bucket list structure 
before Move ���

�l to l� where l � maxfjEij� � � i � mg� The jth entry of the bucket list contains a

doubly�linked list of unlocked components with gain currently equal to j� An addi�

tional array INDEX is used to maintain pointers for direct access to each component

in the bucket list� Whenever a component is locked� we remove it from the bucket

list and set the corresponding INDEX to NIL� A MAXGAIN pointer is maintained to

keep track of the bucket having a component of highest gain� This pointer is updated

by decrementing it whenever its bucket is found to be empty� and resetting it to a

higher bucket whenever a component moves to a bucket above MAXGAIN� With the

bucket�list data structure� all the operations above except MAX�B� take O
�� time�
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Proposition �
�
� Operation MAX takes O
p� time in total in one pass of local

search�

Proof� Operation MAX is performed at most n times� Since this is done by

accessing pointer MAXGAIN� it is su�cient to examine how much work is needed to

maintain MAXGAIN� Pointer MAXGAIN may be a�ected by INSERT� DELETE and

UPDATE� Whenever a component moves to a bucket above MAXGAIN� MAXGAIN is

simply reset to a higher bucket� Operation INSERT is invokedm times� thereforeO
p�

time is needed for maintaining MAXGAIN due to this operation� Whenever a bucket

of maximum gain is found to be empty� we need to decrementMAXGAIN until we �nd

the next non�empty bucket� This may happen when operation DELETE is invoked� or

when UPDATE is needed to decrease the gain 
q � ��� The number of times DELETE

is invoked is at most n� and each time there are at most �e empty buckets� where

e � maxfjEij� � � i � mg� Therefore O
p� time is needed for maintaining MAXGAIN

due to DELETE operations� When UPDATE is invoked to decrease the gain� i�e�� q

is ��� at most one bucket may be found to be empty� When UPDATE is invoked

to increase the gain� the current maximum gain is compared with the new gain to

determine MAXGAIN� By Proposition ������ the total time needed for maintaining

MAXGAIN due to UPDATE is O
p�� Therefore� the total time needed for maintaining

MAXGAIN is O
p�� �

�
�
� Formal Description

ENCORE SEARCH� Lines � and � initialize the seed x� Line � invokes the proce�

dure COMPUTE GAIN to calculate the distances and to construct B under x� The

return value of COMPUTE GAIN is the number of unbalanced edges� In line �� the

component of highest gain is returned with the aid of the operation MAX on B� If

the gain value is positive� Lines � to � perform one move� that is� lock component

i� remove the gain of component i from B� invoke the procedure UPDATE GAIN to
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update B and the related distances due to the change of xi� change xi� and �nally

calculate the number u of unbalanced edges� Lines � to � repeat until either there is

no positive�gain component� or all components are locked� i�e�� B is empty�

ENCORE SEARCH
H�

� for i�� to m

� do xi��

� u� COMPUTE GAIN
H�x�B�

� while gain of MAX
B� � � and u � �

� do lock xi

� DELETE
B� i�

� UPDATE GAIN
H� i�x�B�

� xi�� xi

� u�u�MAXGAIN

�� return x

COMPUTE GAIN� Line � initializes the number u of unbalanced edges to n�

Lines � and � initialize the temporary array � to zero� Lines � to �� form the

main body for calculating the distances u and the gain vector �� Lines �� and ��

build B according to the calculated gain vector�
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COMPUTE GAIN
H�x�B�

� u�n

� for i�� to m

� do 	i��

� for each ej 
 E

� do d�j �d�j ��

� for each xi contained in ej

� do �ij�xieij

� if �ij � ��

� then d�j �d�j � �

�� else d�j �d�j � �

�� dj�minfd�j � d
�
j g

�� if dj � �

�� then u�u� �

�� for each xi in ej

�� do 	i�	i � �

�� if dj � �

�� then if jEij � �

�� then for each xi in ej

�� do 	i�	i � �

�� else for each xi in ej

�� do if xi is xi�sensitive

�� then 	i�	i � �

�� break

�� for i�� to m

�� do INSERT
B� i� 	i�

�� return u
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UPDATE GAIN
H� i�x�B�

� for each ej in Ei

� do �ij�xieij

� if 
d �� � or �� MODIFY GAIN
��� ej� dj�B�

� d�j �d�j � �ij

� d�j �d�j � �ij

� if 
d �� � or �� MODIFY GAIN
�� ej� dj�B�

MODIFY GAIN� Given an edge ej� the distance dj � and a parameter q� the proce�

dure MODIFY GAIN
f� ej� dj �B� works as follows� If q � �� the edge
s contribution is

added to B� if q � ��� the contribution is removed from B�

MODIFY GAIN
q� ej� dj �B�

� if dj � �

� then for each xi in ej

� do UPDATE
B� i��q�

� else if dj � �

� then if jEij � �

� then for each unlocked xi in ej

� do UPDATE
B� i� q�

� else for each unlocked xi in ej

� do if xi is xi�sensitive

�� then UPDATE
B� i� q�

�� break

�
�
	 Time Complexity

Theorem �
�
� The running time of ENCORE SEARCH is O
p��
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Proof� Initialization in Lines � and � takes m time� By Proposition ������ Line �

takes O
p� time� By Proposition ������ Line � takes O
p� time� In the worst case�

Lines � to � is repeated m times� Each time the procedure UPDATE is invoked� it

takes O
jEij� operations to do lines �� �� �� �� According to Proposition ������ the

number of calls to MODIFY GAIN for edge ej during the entire ENCORE SEARCH

is a constant� say t�� Each call to MODIFY GAIN for edge ej takes jejj opera�

tions� Therefore the number of operations required by line � in ENCORE SEARCH

is
Pm

i��O
jEij� �
Pn

j��
t�jejj� � O
p� � t�p � O
p�� Hence the time complexity of

algorithm ENCORE SEARCH is O
p�� �

��� Hierarchical Re�nement Towards Global Optima

The solutions produced by algorithm LOCAL SEARCH are� in general� not optimal�

but locally optimal with respect to the neighborhood� In this section� we present

a re�nement technique that makes use of the properties of signed hypergraphs to

improve the solution quality�

We �rst consider an example as illustrated in Fig� ���
a�� There are �ve vertices

and four edges� The current bipartition is 
f�g� f�� �� �� �g� as illustrated by a dashed

line� The edge incident with vertices � and � is not balanced� It is easy to verify

that no further move of any vertex can have a positive gain� i�e�� increase the number

of balanced edges� However� as illustrated in Fig� ���
d�� if vertices � and � are

interchanged� then the number of balanced edges increases by ��

This example can be generalized as follows� Let H � 
V�E� be a signed hyper�

graph� and V� be a nonempty subset of V � Let E� be all the edges that are only

incident with vertices in V�� i�e�� all the end�vertices of such edges are in V�� The pair


V�� E�� is a sub
hypergraph of H induced on V��

We consider the following property of sub�hypergraphs� Let � � 
V �� V �� be a
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Figure ���� Illustration of further re�nement of local search�

bipartition of V � All the vertices V� of sub�hypergraph H� are partitioned into the

two groups by �� If we interchange all the vertices of V� in V � with all the vertices

of V� in V �� and denote the resulting bipartition as �
�

� then the number of balanced

edges by �
�

is the same as that of �� This is because all the balanced edges in E�

remain balanced� all the unbalanced edges in E� remain unbalanced� and �nally� all

the edges not in E� remain as they were�

Suppose that V is partitioned into a set of subsets of vertices� For convenience�

each subset is said to be a cluster� All the vertices in a cluster are partitioned to

the two groups by �� If we interchange vertices in the two groups for a cluster�

all the edges in the sub�hypergraph induced on this cluster will keep their balance

status� However� edges with end�vertices in the di�erent clusters may change their

balance status� Hence we have a new optimization problem� that is to classify all

the clusters of V to two categories 	interchanged or not interchanged	so as to



���� HIERARCHICAL REFINEMENT TOWARDS GLOBAL OPTIMA ��

maximize the number of balanced edges� Since we do not need to consider the edges

with end�vertices in a cluster� this problem can be formulated as the maximum balance

problem in a reduced signed hypergraph� Let Hr � 
V r� Er� be such a reduced signed

hypergraph� the construction of Hr involves the following steps�

�� Perform LOCAL SEARCH on H� and denote the bipartition obtained by � �


V �� V ���

�� Partition V into a set of clusters�

�� For each cluster� choose either the vertices in V � or those in V � as reference

vertices� and the other group as non�reference vertices�

�� Represent each cluster by a vertex in V r�

�� If an edge e in H is incident with vertices in more than one cluster� construct an

edge er in Hr incident with the corresponding vertices in V r� If e is incident with

sign s on a reference vertex of V � then er is incident with the corresponding ver�

tex in V r with the same sign� Otherwise� er is incident with the corresponding

vertex in V r with the complementary sign�

A simple way to partition V into a set of clusters is to de�ne a maximal set of

vertices that are incident with balanced edges to be a cluster� In other words� we

shrink all the balanced edges and merge the vertices incident with each balanced edge

to be one vertex�

Consider Fig� ���
a�� All the vertices are partitioned into two clusters f�� �� �g

and f�� �g� as illustrated in Fig� ���
b�� With vertices � and � chosen as reference

vertices� the resulting reduced signed hypergraph is shown in Fig� ���
c��

Now LOCAL SEARCH can be performed on Hr in an attempt to further increase

the number of balanced edges� This process is repeated until the reduced signed

hypergraph is stable� i�e�� no further reduction of the cost is possible� Finally� we

back�trace the process to obtain the �nal bipartition� The reader can verify that

applying LOCAL SEARCH on Hr in Fig� ���
c� yields the �nal bipartition as shown
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in Fig� ���
d��

There are several observations�

�� The algorithm takes u � m iterations to converge� where m is the number of

edges in a signed hypergraph�

�� Let Ei � E be the set of balanced edges obtained by the ith run of LO�

CAL SEARCH� and let jEij be the cardinality of Ei� Then E� � E� � ��� �

Eu�� � Eu� and thus jE�j � jE�j � ��� � jEu��j � jEuj�

�� Each iteration takes O
p� time in the worst case�

The re�nement technique described above can also be used to enlarge the encore

neighborhood� Each time� instead of adopting a new solution in the neighborhood

of current solution� we may use the re�nement technique above to �nd a solution of

even better quality�

��� Theoretical Aspects of Local Search

Having described practical considerations in applying local search to our problem�

we turn now to some of its theoretical aspects� Surprisingly� although local search is

conceptually simple and practically successful	it converges quickly with quite sat�

isfactory solutions	very little has been known theoretically about its running time

and solution quality� In fact� neither theoretical nor practical tools are well estab�

lished yet� In this section� we summarize some preliminary observations in order to

illustrate where the di�culties are�

�
�
� Complexity of Local Search

We have shown that one iteration of our local search algorithm takes linear time� i�e��

we are able to determine in linear time whether a solution is locally optimal and to
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�nd a better neighbor if it is not� The question is how many passes are needed for

convergence to a local optimum� or� more generally� what is the complexity of �nding

locally optimal solutions�

It is not di�cult to see that� for a signed hypergraph with unweighted� or small


integer
weighted� edges� the local search algorithm converges in O
m� passes� where

m is the number of edges� This is because the value of the objective function� which

is bounded by O
m�� is always decreased in each pass� In practice� the number of

required passes seems independent of the number of edges� usually only a few passes

are su�cient�

On the other hand� if there are arbitrary weights associated with edges in a signed

hypergraph� we can construct an instance of the problem	a signed hypergraph with

certain weights associated with edges	with a speci�c initial bipartition� such that the

standard local search algorithm takes an exponential number of passes to converge��

Moreover� it seems very unlikely that there exist other� possibly noniterative� algo�

rithms that could do better in �nding a local optimum that would be produced by the

standard algorithm starting from a given initial bipartition� This problem is called

the standard algorithm problem ������ We will prove in Theorem ����� that the stan�

dard algorithm problem is NP�hard� However� the hardness in �nding the precise

local optimum by the standard algorithm does not imply hardness in �nding some

local optimum� In fact� the complexity of the local search problem	given a signed

hypergraph� �nd some locally optimal solution s 
 F	is still open�

For a given signed hypergraph H with a rational edge weighting w� there always

exists a local optimum� further the local optimality can be veri�ed in linear time�

This fact can be rephrased in the following predicate form�

P 
H�w� � 
There exists a bipartition � such that Q
H�w� ����

�A proof will be given in Theorem ������
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where

Q
H�w� �� � 
for any bipartition �
�

such that �
�


 N
��� c
�� � c
�
�

���

and Q
H�w� �� can be veri�ed in polynomial time� Clearly P 
H�w� is true for all

signed hypergraphs with arbitrary weightings� This is an existentially polynomial

�EP	 theorem according to the terminology of Edmonds ����� Then� from Edmonds


conjecture�schemata 
which are supported by numerous examples from various dis�

ciplines�� it follows that there should exist a polynomial�time algorithm for �nding

such a � �����

From a series of recent results of Johnson� Krentel� Papadimitriou� Sch!a�er� and

Yannakakis ���� ��� ���� ���� ����� we can show that the complexity of our local search

problem is in PLS 
for Polynomial�time Local Search�� a complexity class somewhere

�between� P and NP � Further� it is PLS�complete� and thus as hard as any such

problem�

A local search problem P is in the class PLS ����� if there exist polynomial�time

algorithms

�� to compute an initial feasible solution�

�� to compute the cost c for a given solution�

�� either to determine that a solution is locally optimal or to �nd a better solution

in N �

The class of PLS�complete problems includes the following well�known local search

problems�

� the Kernighan�Lin heuristic for the graph partitioning problem ���� ����

� the Lin�Kernighan heuristic for the traveling salesman problem ������

� MAX CUT with the Hamming neighborhood� this is called the ��opt MAX�

CUT�



���� THEORETICAL ASPECTS OF LOCAL SEARCH ��

Moreover� for all the problems above� the standard algorithm takes exponential time

in the worst case� and the standard algorithm problem is NP�hard�

In the following� we show that our problem is PLS�complete by giving a �PLS�

reduction� from ��opt MAX�CUT to it� A PLS
reduction from problem A in PLS

to another problem B in PLS is de�ned in terms of two polynomially computable

functions f and g� Given an instance x of A� f computes an instance f
x� of B such

that� for any local optimum s of f
x�� g
s� is a local optimum of x� Since there are two

polynomial functions involved� PLS�completeness proofs tend to be very complicated�

In fact� the PLS�reduction for the Lin�Kernighan heuristic for the traveling salesman

problem is ten�page long ������ Fortunately� owing to previous results� the proof for

our problem is not that involved�

If a function g is a one�to�one mapping between local optima of the target problem

to local optima of the source� then a PLS�reduction is said to be tighty� For a tight

PLS�reduction� if the standard algorithm for the source problem takes exponential

time in the worst case� so does the algorithm for the target problem� If the standard

algorithm problem for the source problem is NP�hard� so is the standard algorithm

problem for the target problem�

Theorem �
�
� The local search optimization problem for the maximum balance

problem with the encore neighborhood is PLS
complete� The standard algorithm

for the local search optimization problem takes exponential time in the worst case�

The corresponding standard algorithm problem is NP
hard�

Proof� The encore heuristic is in the class PLS� Now we can give a PLS�

reduction from �� opt MAX�CUT� This reduction is straightforward� since the Ham�

ming neighborhood is a restricted encore neighborhood� and since MAX CUT is

yA more formal de�nition can be obtained in ������
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a restricted version of the maximum balance problem� Our problem is thus PLS�

complete� Further� this �restriction reduction� is tight� Therefore� it follows that the

standard algorithm for our local search problem takes exponential time in the worst

case� and that the corresponding standard algorithm problem is NP�hard� �

�
�
� Quality of Local Search

The solutions obtained by local search are lower bounds to globally optimal solutions�

We are interested in knowing how far they are away from global optima� or� more

generally� what are upper bounds on global optima�

Generating upper bounds appears hard for the maximum balance problem except

for some degenerate cases� For the problem of graph bipartitioning 
with positive edge

weights�� there are two graph�theoretic approaches to generating such bounds� One�

as noted �rst by Kernighan and Lin ����� is by using the max��ow"min�cut theorem

of Ford and Fulkerson ����� A minimum cut separating two designated vertices can

be obtained by �ow techniques in O
n�� time� where n � jV j ����� A global minimum

cut can be found by using cut�tree techniques in O
n�� time �����

The other approach� developed on the basis of a theory called the basis of graph

spectra ����� yields even tighter bounds� The idea is to formulate the n	n adjacency

matrix A � 
aij� of a graph� with aij � wij where wij is the weight associated with the

edge joining vi and vj� and then to use the second smallest eigenvalue as a bound �����

This approach has been extended and applied very successfully by Vannelli and his

associates ���� ���� to netlist partitioning� and by Hagen and Kahn ���� to netlist

partitioning with the ratio�cut objective ���� �����

Both approaches above are based on the assumption of non�negative weights�

From the last chapter� we know that negative weights are generally unavoidable if we

want to approximate the maximum balance problem in a signed hypergraph by the
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maximum cut problem in a graph� Therefore� it seems di�cult to extend these two

approaches to our problem�

For many combinatorial optimization problems� the mathematical programming

approach can be used to generate good bounds� The idea is to formulate a combinato�

rial optimization problem as an integer linear programming problem� and then to use

the solutions given by linear relaxation 
permitting nonintegral solutions� as bounds�

However� this approach does not help for the maximum balance problem� since the

linear relaxation of its ��� integer programming formulation 
See Chapter �� provides

no useful information� its solution is a vector with all components being �
�
and the

value of the objective function equals the total number of edges� We note that an

application of a new lower bound given recently by Boros� Crama and Hammer ����

for unconstrained quadratic ��� optimization appears promising�

��� Summary

In this chapter� we presented an application of local search to solving the maximum

balance problem in general signed hypergraphs� Our main contribution here is a care�

ful implementation of local search� which is a generalization of the work of Fiduccia

and Mattheyses on netlist partitioning� We have proved that the worst�case com�

putational cost of one pass of the heuristic grows linearly with the size of signed

hypergraph� We also presented a re�nement technique that makes use of the prop�

erties of signed hypergraphs to further improve the solution quality� We also proved

that our local search heuristic is PLS�complete� i�e�� as hard as any such problem�

The problem of whether we could have a polynomial algorithm for �nding a local

optimum still constitutes a �family treasure� �����
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A Greedy Peeling Heuristic for

Minimum Covering

Having focused on the maximum balance problem in the previous three chapters� we

now turn to the minimum covering problem� In addition to the problem itself� we are

also interested in the following variation� Given a signed hypergraph H and a �xed

integer k� �nd k bipartitions that balance as many edges in H as possible� We call

this variation the partial covering problem�

There are two motivations for studying the partial covering problem� First� the

partial covering problem with k � � degenerates to the maximum balance problem��

Thus we hope that the design of minimum covering algorithms could bene�t from

maximum balance algorithms developed in the previous chapters� Second� as de�

scribed in Chapter �� partial covering itself is of practical importance to the optimum

synthesis of synchronous logic circuits�

Given the NP�completeness of both the partial and minimum covering problems�

and also given the large size of the problem instances we need to solve� we will focus on

�In this sense	 the partial covering problem is called the maximum k�balance problem�

��



��

�nding an e�cient algorithm that can produce good approximate solutions� A simple

heuristic� which solves both the partial covering problem and the minimum covering

problem in a uni�ed way� is as follows� First �nd a bipartition � that balances as

many edges as possible� then remove the edges balanced by � from H� and repeat

this process k times unless H is empty� i�e�� contains no edges� This heuristic� called

greedy peeling� solves the minimum covering problem� when k is set to a su�ciently

large number�

The greedy peeling heuristic can be implemented very e�ciently� The bounded

version of the local search heuristic developed in the previous chapter can be used

for maximum balance� The resulting implementation of greedy peeling runs in O
kp�

time� where p is the size of the signed hypergraph�

The issue we may doubt is the quality of the solution generated by greedy peeling�

Before we describe its empirical evaluation in Chapter �� we investigate this issue

theoretically in this chapter� We will show that� under the assumption that the

maximum balance problem can be solved exactly� the greedy peeling heuristic has a

guaranteed 
constant� performance bound for partial covering� and has a performance

bound log p for minimum covering�

We notice that there exists a class of optimization problems arising in a variety of

VLSI applications� which have the same structure as the problem we are considering

here� Various heuristics have been developed for each problem� and have achieved

remarkable success in practice� however� no theoretical justi�cation is available yet�

Our theoretical analysis turns out to be applicable to all these heuristics� This chap�

ter is organized as follows� In Section ���� we introduce a mathematical framework

that captures the underlying structure of a class of VLSI optimization problems� In

Section ���� we describe two general paradigms� namely prime covering and greedy

peeling� for solving the optimization problems of this structure� We then focus on

deriving performance bounds of greedy peeling for partial covering and exact covering
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in Sections ��� and ���� In Section ���� we apply our theoretical results to justify some

experimental results reported in the literature�

��� The Cluster�Cover Framework

Let E be a �nite ground set of elements� A set system is a pair 
E�F � with F � �E�

A subset
closed systemy is a set system

such that

�� � 
 F �

�� Y 
 F and X � Y implies X 
 F �

A superset
closed system is a set system

such that

�� E 
 F �

�� Y 
 F and X � Y implies X 
 F �

The �rst property is called the nonemptiness property� The second property is called

the hereditary property�

We are now ready to present an abstract framework� called cluster
cover� for a class

of combinatorial optimization problems� We are given a set E of ground elements and

a problem�speci�c �compatibility	 predicate #
P � with a single parameter P � E� A

subset P of E is called a cluster if it satis�es the predicate� Furthermore� the predicate

# must be such that the set P of clusters forms a subset�closed system 
E�P�� The

maximum k
cluster problem is as follows� Given an integer k� �nd at most k clusters

that contain as many ground elements as possible� When k � �� this becomes the

maximum cluster problem�

Given a ratio 
� � � 
 � �� an 

cover is a set of clusters that contains at least the

fraction 
 of the ground elements� Clearly the set	denoted by C	of covers forms a

superset�closed system 
P� C�� The minimum 

cover problem is as follows� Given a

ratio 
� � � 
 � �� �nd an 
�cover that contains as few clusters as possible� When


 � �� this becomes the minimum cover problem� or the exact cover problem�

yA subset
closed system is known as an independence system according to Korte and Lov�asz �����
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An illustration of this structure is given in Fig� ���� The ground set E is fa� b� cg�

The clusters are fa�bg� fb�cg� and all their subsets 
including the empty set�� Note

that fa�cg and fa�b�cg are excluded by the problem�speci�c predicate 
an example

is given in Problem � described later in this section�� Then given 
 � �
�
� the set

of 
�covers is C � fC�� ���� C�� ���g� where C� � ffag� fbgg� C� � ffag� fcgg� C� �

ffbg� fcgg� C� � ffa� bgg� C� � ffb� cgg� and the remaining covers are the super�sets

of the �rst �ve covers� The empty cluster is ignored� since it does not contribute

anything useful to the problem we are interested in�

C�C�C�C�C�

fb� cgfa� bgfcgfbgfag�

C

P

E cba

all supersets

Figure ���� Structure illustrating the cluster�cover optimization problems�

The maximum k�cluster problem and the minimum 
�cover problem are closely

related� On the one hand� setting k to a su�ciently large number in the maximum

k�cluster problem solves the minimum 
�cover problem� On the other hand� the

minimum 
�cover problem with a su�ciently small 
 is equivalent to the maximum

k�cluster problem� However� both problems have independent practical relevance�

On the theoretical side� the cluster�cover framework described above relates to

two important concepts studied by mathematicians� One is a set�cover� Given a

ground set� and a set of subsets of ground elements� the set�cover problem is to �nd

the minimum number of subsets that cover all the ground set� Our framework of
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cluster�cover di�ers from set�cover in two aspects� 
�� the set of subsets is implicitly

given by a problem�speci�c predicate� and 
�� the set of subsets is subset�closed� The

other related concept is a matroid ����� A matroid is a subset�closed system 
E�P�

that obeys the combinatorial aspect of the Steinitz exchange principle�

� If X�Y 
 P and jXj � jY j then there exists a y 
 Y �X such that X�fyg 
 P�

On the practical side� the cluster�cover framework abstracts a class of optimization

problems arising in a variety of VLSI applications� Some of them have been studied

extensively and are well understood� some are less explored� and some have been

posed only very recently� In the rest of this section� we describe these problems in

an informal way� We refer the interested readers to the literature for more precise

de�nitions and more detailed motivations�

Problem �� Combinational Logic Minimization ���� ����

Combinational logic minimization is a problem of minimizing the cost of the circuit

used to implement a Boolean function� A Boolean function f is usually �incompletely	

speci�ed by its on
set� the set of input values x 
 f�� �gn such that f
x� � �� and

its o�
set� the set of input values such that f
x� � �� Each element in the on�set


o��set� is called a minterm� The set of ground elements are the on�set� A cluster

is a set of minterms that can be �covered� by a product term 
called �cube� in the

corresponding Boolean space� that does not contain any minterm in the o��set� Such

a product term is called an implicant in logic synthesis� The exact cover problem is

of practical interest� and has been studied extensively ���� ����� For example� given

the on�set fx�x�� x�x�g and the o��set fx�x�g� fx�x�� x�x�g is a cluster� which can be

�covered� by an implicant fx�g� This cluster constitutes the minimum cost cover�

Problem �� Constrained Encoding ����� ����

This is one of the two problems we are studying in this thesis� A ground element is

a dichotomy� For example� a � 
f�� �g� f�g�� b � 
f�g� f�g�� and c � 
f�g� f�� �g� are

three dichotomies� where f�� ���� �g are states� Two dichotomies are compatible if no
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two states appearing in one subset of one dichotomy appear in two di�erent subsets

of the other dichotomy� For example� a and b� and b and c� are compatible� but a and

c are not� A set of mutually compatible dichotomies forms a cluster� which in turn

can be represented by another dichotomy� For example� a and b can be represented

by 
f�� �g� f�� �g�� We say that the new dichotomy covers all the dichotomies in the

cluster� The cluster�cover structure for this example has been illustrated in Fig� ����

The maximum cluster problem is to �nd a dichotomy that covers as many dichotomies

as possible� The minimum cover problem is to �nd a minimum number of dichotomies

that cover all the given �ground� dichotomies� Both the maximum cluster and the

minimum cover problems are of practical interest to sequential logic synthesis� as

described in Chapter ��

Problem �� Multi�Layer Topological Planar Routing ����

Consider Fig� ��� with two rows of terminals marked by numbers� Terminals

marked by the same number form a net� A ground element is a net� Two nets are

compatible if they can be routed in a plane without intersecting with each other� For

example� nets �� � and � 
solid� in Fig� ��� can be routed in one plane� they form a

cluster� Nets � and � 
dashed� can be routed in another plane� they form another

cluster� The maximum cluster problem is to �nd a maximal set of nets that can be

routed in one plane� The minimum cover problem is to �nd the minimum number

of planes such that all the nets can be routed without intersecting with each other�

Both problems are of practical interest� and have been studied �����

Problem �� Application Timing for Delay�Fault Testing ����

Consider a combinational circuit in Fig� ��� with two primary inputs 
I� and I���

two primary outputs 
O� and O��� and �ve gates 
G� to G�� interconnected by wires�

Associated with each gate and wire is a delay� for example� gate G� has delay �� and

the wire from input I� to gate G� has delay ��� Delay�fault testing involves an

application of a sequence of test patterns at primary inputs� We denote by Ti the

speci�c time of applying a signal to a primary input i� For example� we may have
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Figure ���� An example of multi�layer topological planar routing�

the so�called application timing assignment TI� � � and TI� � � for a test pattern�

For a speci�c timing assignment of a test pattern� we denote by Tj the latest time for

signals to arrive at output j from all the inputs� 
e�g�� TO� � TO� � ���� For a path

from an input i to an output j� the time allowed for signal propagation is Tj � Ti�

which may be di�erent from the total delay value associated with that path� this

di�erence is called the slack of that path� 
e�g�� path I�
G�
G�
O� is the only one

with a nonzero slack 
���� We de�ne the delay slack for each delay as the minimum

of the path slacks of all input�to�output paths that include this delay� 
e�g�� the wire

delay between G� and G� has a nonzero slack 
����

(0)

(0)

G5

G4

(5)

(10)

(10)

(5)

(2)
(3)

(5)

(5)

(5)

(10)

G3

G2

G1

O2

O1

I2

I1

Figure ���� Simple example to illustrate application timing�

Under application timing assignment TI� � � and TI� � �� only the wire delay
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between G� and G� has a nonzero slack 
��� whereas under application timing assign�

ment TI� � TI� � �� TO� � ��� TO� � ��� path I�
G�
G�
G�
O� has a nonzero

slack 
��� Also the wire delay between G� and G� and that between G� and G� have

a nonzero slack 
��� The total sum of delay slacks is ���

A key observation established in ���� is that delay slacks a�ect the size of the delay

fault detectable by any test set� In order to improve the quality of delay�fault testing�

it is desirable to �nd an application timing assignment so as to keep delay slacks as

small as possible� However� the slack of a delay d cannot be made arbitrarily small�

there exists a slack lower bound that is the length of a longest input�to�output path

minus the length of a longest input�to�output path including delay d�

The multiple test application timing assignment problem is as followsz� Given a

ratio� 
� � � 
 � �� �nd the smallest number of application timing assignments such

that� for the ratio 
 of all the delays� there exists at least one timing assignment for

each delay that enables the delay to achieve its slack lower bound� The single test

application timing assignment problem is to �nd an application timing assignment

such that as many delays as possible achieve their slack lower bounds�

A key to casting the test application timing assignment problems into our cluster�

cover framework is the recognition of a compatible cluster� A subset of delays in the

graph forms a compatible cluster� if all the delays in the subset can achieve their slack

lower bounds under a single input time assignment� this is called a consistent
tight

set �subgraph	 by Iyengar and Vijayan �����

Problem �� Monitoring�Logic Design for BIST Enhancement ����

Built�in self�test 
BIST� is a technique widely used in VLSI testing� A typical

BIST structure is shown in the upper part of Fig� ���� which consists of a test gener�

ator� a combinational circuit under test 
CUT�� and a signature analyzer� The test

zThe formulation given in ���� is slightly di�erent from ours� However	 their algorithm does

indeed solve the problem in our formulation�
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generator produces a test input sequence� which is applied to the CUT� The signa�

ture analyzer then compresses the output sequence of the CUT into a signature� and

compares it against the correct one� If they are di�erent� then the CUT is faulty�

However� if the CUT is faulty� we may still obtain a correct signature because of the

data compression� This phenomenon is called aliasing�

Test Generator Circuit Under Test Signature Analyzer

Conventional BIST Structure

Monitoring Circuit

�
cover circuit

�
cover circuit

x

y�

y�

y

Figure ���� An augmented BIST structure�

To overcome aliasing� G!ossel and J!urgensen ���� proposed an improved BIST

structure as shown in Fig� ���� where an error�detection circuit is used to monitor

the faults undetectable because of aliasing� The error�detection circuit consists of a

���cover circuit� y
 of the correct function f
 such that y

x� � � implies f

x� � ��

and a ���cover circuit� y� of f
 such that y�
x� � � implies f

x� � �� To monitor

those faults that cause a function fi� i � �� ���� l being realized� instead of f
� we need

to have

�� the o��set of y
 is the on�set of f
�

�� the o��set of y� is the o��set of f
�
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�� the on�sets of y
 and y� are such that� for each fi� i � �� ���� l� there exists at

least one input pattern x for which the output y

x�fi
x� � y�
x�fi
x� of the

error detection circuit is ��

The last condition can be rephrased with the following concept� If fi
x� �� f

x� � ��

then we say that x �
distinguishes fault fi� fault fi is �
distinguishable under input

pattern x� and x is a �
distinguishing pattern� If fi
x� �� f

x� � �� then we say that

x �
distinguishes fault fi� fault fi is �
distinguishable under input pattern x� and x is

a �
distinguishing pattern� Then condition 
�� can be replaced by the following three

conditions�

�� each fi� i � �� ���� l� is either ��distinguished or ��distinguished by at least one

pattern x�

�� y
 � � for all ��distinguishing patterns�

�� y� � � for all ��distinguishing patterns�

The new logic minimization problem arising from monitoring�logic design for BIST

enhancement is as follows� Given fi� i � �� ���� l� design a minimal�cost two�output

circuit 
y
 and y�� that satis�es 
���
���

We consider an example of G!ossel and J!urgensen� as shown in Table ���� with

three undetectable faults f�� f�� and f� of the correct function f
� Fault f� is ��

distinguishable under ���� fault f� is ��distinguishable under ��� and ��distinguishable

under both ��� and ���� fault f� is ��distinguishable under ����

Before formulating this problem in our cluster�cover framework� we make the

following observation� An input pattern x can ��distinguish a set of faults� or ��

distinguish them� but not both� Thus y

x� � � implies y�
x� � �� and y�
x� � �

implies y

x� � �� According to the terminology in logic synthesis 
See Problem ���

the on�set of y
 is the set of ��distinguishing patterns� and the on�set of y� is the set

of ��distinguishing patterns� Therefore� the set of implicants of y
 is disjoint from

that of y�� The structure of our problem can be illustrated in Fig� ���� Each minterm
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Table ���� A simple example to illustrate BIST enhancement�

test pattern x f
 f� f� f�

��� � � � �

��� � � � �

��� � � � �

��� � � � �

��� � � � �

��� � � � �

��� � � � �

��� � � � �

may distinguish a set of faults� each implicant covers a set of minterms� a cover is a

set of implicants�

Because the relation between faults and minterms can be easily obtained from the

given table in linear time� the problem structure can be simpli�ed so that it �ts into

our cluster�cover framework� The set of faults constitutes the ground set� A cluster

is a set of faults that can be distinguished by minterms that can be covered by an

implicant� A cover is a set of clusters that covers all the faults� The monitoring�logic

minimization problem considered by G!ossel and J!urgensen can be formulated as the

minimum cover problem� i�e�� �nd a cover that contains as few clusters as possible�

The cluster�cover framework for our example is shown in Fig� ���� The o��set of

y
 is f���������������g� The o��set of y� is f���������������g� Faults f�� f�� and f�

form a y
�cluster� because all they are ��distinguishable by a set of minterms that can

be represented by an implicant $x�$x�� The minimum cost cover is $x�$x��

An interesting extension of the work of G!ossel and J!urgensen is to study the

maximum k�cluster problem� We may often have a limited area that can be used for

monitoring logic� Then the problem is to design a monitoring circuit using this area
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������

y
�implicant y��implicanty
�implicant

x�x�$x�$x�

covers

implicants

faultsf�f�f�

minterms

x�x�

������

Figure ���� Three�level hierarchy for monitoring�logic�



��� CHAPTER 	� A GREEDY PEELING HEURISTIC FOR MINIMUM COVERING

y��cluster

���

���

���
������

x�x�

clusters

faults

covers

f� f� f�

y
�cluster y��cluster

$x�$x� x�x�

Figure ���� A cluster�cover framework for the monitoring�logic example�

in such a way to cover as many faults as possible� This is of more interest to the

ASIC industry� since the gate�array or FPGA designs usually have some spare area�

Our cluster�cover framework leads to a precise formulation of the monitoring�

logic minimization problem for BIST enhancement� Two paradigms described in the

next section will provide� for the �rst time� both an exact algorithm and a complete

heuristic for monitoring�logic minimization�

��� Prime Covering versus Greedy Peeling

In this section� we describe two basic paradigms� namely prime covering and greedy

peeling� for solving the optimization problems that have the cluster�cover structure�

We then categorize the heuristics developed previously for each optimization problem

listed in the previous section�
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�
� Prime Covering

Prime covering is an enumeration�based approach to solving the minimum 
�cover

problem� The approach consists of two stages� corresponding to the two�level hier�

archies of the problem structure as illustrated in Fig� ���� In the �rst stage� the set

of clusters is generated� Because the set of clusters constitutes a subset�closed sys�

tem� only maximal clusters	for which the addition of one more ground element will

violate the predicate	need to be constructed� A maximal cluster is called a prime

cluster�

With the set of constructed prime clusters� the second stage of prime covering is

to solve the standard set�cover problem by the branch�and�bound method� Branch�

and�bound is a process of successive partitioning of the solution space� A cluster

is picked up	this is called branching	and then we examine the problem� assuming

that the cluster is in the minimum cover� and then assuming that the cluster is not

in the minimum cover� Bounding refers to generating lower bounds that can be used

to prune the search space e�ectively�

To obtain a good lower bound for the objective function at each branch� either

the compatibility graph or the con�ict graph can be used� A compatibility 
con�ict�

graph has vertices corresponding to ground elements� There is an edge joining two

vertices if the corresponding two ground elements are compatible 
not compatible��

i�e�� in 
not in� one cluster� The number of vertices in the maximum independent set

in the compatibility graph� which equals to the number of vertices in the maximum

clique in the con�ict graph� is a lower bound for the size of the minimum cover� In

practice� �nding the maximum clique is easier than �nding the maximum independent

set ������

The determination of the branching cluster is based on a basic intuition that the

ground elements participating in fewer clusters are the ones �hard� to cover� To

measure this �hardness�� each ground element is given as its weight the reciprocal of
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the number of clusters it participates in� The weight of a cluster is the total weight

of all the ground elements in the cluster� The cluster of maximum weight which is

also in the independent set is chosen as the branching cluster�

Prime covering is basically an exact algorithm for optimum solutions� It can be

converted into a greedy heuristic by taking the �rst leaf visited as the solution and

using no backtracking� The result obtained is a lower bound for the minimum cover�

The set�cover problem is NP�hard ����� In the worst case� the number of branches

needed for �nding an optimum solution is exponential in terms of the number of

prime clusters� The no�backtracking version of the algorithm or even greedy peeling

can be used for set�covering� as is done in combinational logic minimization� however�

the number of prime clusters can be exponential in terms of the number of ground

elements� For example� as reported in the constrained encoding problem� the number

of primes is prohibitedly large ������ Furthermore� in most cases the construction

of prime clusters is time�and�space consuming� Therefore� prime covering is usually

used as a paradigm for �nding optimum solutions to relatively small problems for

which the clusters can be easily constructed�

	
�
� Greedy Peeling

Greedy peeling solves both the minimum 
�cover problem and the maximum k�cluster

problem in a uni�ed manner� As a one�stage approach� it constructs directly the

clusters needed in the �nal solution 
minimum cover�� An informal description of

greedy peeling with application to the minimum covering problem was provided at

the beginning of this chapter� A more abstract description in terms of the cluster�

cover framework is given in Fig� ���� Initially a ground set E and an integer k are

given� The initial solution is an empty cover C 
line ��� The key of greedy peeling is

to use a subroutine that can solve the maximum l�cluster problem 
l � k� typically

l � � is used�� The algorithm iterates dk
l
e times 
lines � to ��� at each iteration�
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the subroutine is �rst invoked to �nd a cluster Ci and the subset of ground elements

covered by Ci 
substep� solve�� then the ground elements covered by Ci are removed

from E 
substep� peel
o��� and �nally the newly found cluster Ci is added to the �nal

solution 
substep� augment�� The algorithm returns the computed cover C and the

remainder of the ground set consisting of the elements not covered by C�

GREEDY PEELING�E� k�

� E
�

� E

� C � f g

� for i � � to dk
l
e do

� 
Ci� Ei�� solution of maximum l�cluster on E
�

"% solve %"

� E
�

� E
�

� Ei "% peel o� %"

� C � C � Ci "% augment %"

� return 
C�E
�

�

Figure ���� Paradigm of greedy peeling�

The greedy peeling heuristic can be applied to the second stage of prime cover�

ing for solving the set�cover problem� as we mentioned in the previous subsection�

However� the chief advantage of greedy peeling� in contrast to prime covering� is

to avoid the complicated and time�consuming process of cluster generation for the

cluster�cover optimization problems�

The main disadvantage of greedy peeling� in contrast to prime covering� is that it

is not obvious how to approach optimum solutions� However� for several degenerate

cases� greedy peeling is proven to produce optimum solutions�

�� The maximum l�cluster problem can be solved exactly and the resulting subset�

closed system consists of dk
l
e disjoint clusters�

�� The maximum l�cluster problem can be solved exactly� and the resulting subset�

closed system obeys the combinatorial aspect of the Steinitz exchange princi�
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ple�

� If X�Y 
 P and jXj � jY j then there exists a y 
 Y � X such that

X � fyg 
 P�

The subset�closed system with the property above is called a matroid� Matroid

theory has established that the greedy algorithm always produces an optimal

solution �����

We now describe two general techniques to improve the solution quality of greedy

peeling� One is to build local search on top of greedy peeling� which gives rise to

iterative greedy peeling� It works as follows� Suppose that we have found a solution

by greedy peeling after k iterations� The kth iteration was introduced� since there

exists a non�empty set P of ground elements that has not been covered by the �rst

k � � iterations� The set P thus appeared to be �hard� to cover� Therefore� we

start a new run of greedy peeling by �insisting� that the �rst iteration of greedy

peeling must peel o� P � This can be accomplished by using a modi�ed local search

heuristic� The other technique is to prevent the peeling from being too greedy by

imposing certain problem�speci�c criteria� for example� balance criteria in constrained

encoding ����� �����

	
�
� Taxonomy of Cluster�Covering Heuristics

In this subsection� we summarize various heuristics developed previously for some

VLSI optimization problems of the cluster�cover structure in two categories� prime

covering and greedy peeling� We refer the interested readers to the original literature

for details of those heuristics�

� Prime Covering� This category includes various algorithms for combinational

logic optimization� such as ���� ����� the constrained encoding algorithm by

Yang and and Ciesielski ������ the constrained encoding algorithm by Saldanha�
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Villa� Brayton� and Sangiovanni�Vincentelli ������ and the constrained encoding

algorithm by Devedas and Newton �����

� Greedy Peeling� This category includes the constrained encoding algorithm

by Shi and Brzozowski ������ the topological planar routing algorithm by Cong�

Hossain� and Sherwan ����� the application timing algorithm by Iyengar and

Vijayan ����� and the monotoring�logic optimization algorithm by G!ossel and

J!urgensen �����

In summary� our results in this section are two�fold� First� two paradigms are

abstracted out in an attempt to capture the generally�applicable ingredients from

various heuristics targeted for each individual application� They can be used as

general guidelines for developing both exact and heuristic algorithms for new opti�

mization problems that have the cluster�cover structure� Second� the taxonomy of

cluster�covering heuristics provides additional insights into solving each speci�c prob�

lem� On one hand� we can use the paradigm of prime covering to develop exact

algorithms for those problems which have been previously solved only by greedy peel�

ing� On the other hand� we can apply the paradigm of greedy peeling to develop

e�cient hueristics for solving large�size problems that were previously unsolvable by

prime covering�

��� Performance of Greedy Peeling for Partial Covering

In this section� we analyze the performance of greedy peeling for partial coveringx�

We de�ne the performance ratio 	 of greedy peeling as follows�

	 �
the number of ground elements covered by k clusters using greedy peeling

maximal number of ground elements that can be covered by k clusters
�

xThis work is inspired by the work of Cong	 Hossain	 and Sherwan ����� We realized that their

initial analysis for topological planar routing can be generalized to a class of problems of the cluster


cover structure�
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Our main result is as follows�

Theorem 	
�
� Suppose that the maximum l
cluster problem can be solved with a

performance ratio �� then the performance ratio of greedy peeling for the maximum

k
cluster problem is

	 � � � 
� �
�

dk
l
e
�d

k

l
e�

where k � l�

We �rst prove the following lemma�

Lemma 	
�
� Let P�
k be the set of ground elements of maximal cardinality that could

be covered by k clusters� Let Pi be the set of ground elements covered by greedy peeling

at the ith iteration� � � i � dk
l
e� Then we have�

jPij �
�

dk
l
e

jP�

k j �
i��X
j��

jPjj��

Proof� Suppose that Pj � E� j � i� is the set of ground elements covered by the

jth iteration of greedy peeling� Then� at the end of the 
i� ��th iteration of greedy

peeling� the set of remaining ground elements that needs to be covered is�

P
�

� E � �i��
j��Pj� 
����

We wish to �nd out how the set of ground elements in P
�

covered by the ith iteration

of greedy peeling relates to P�
k �

We �rst observe that� after the 
i� �� iterations of greedy peeling� the remaining

part of P�
k in P

�

is

P�
k � P

�

� P�
k � �i��

j��Pj� 
����
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On the other hand� without loss of generality� we can assume that P�
k � �

dk
l
e

i�� P
�
i �

where P �
i � E is a subset of ground elements that can be covered by l clusters� and

P �
i � P �

j � � if i �� j� Then�

P�
k � P

�

� 
�
dk
l
e

i�� P
�
i � � P

�

� �
dk
l
e

i�� 
P
�
i � P

�

�� 
����

Combining 
���� and 
����� we have the following inequality�

�
dk
l
e

i�� P
�
i � P

�

� P�
k � �i��

j��Pj�

By the pigeonhole principle� there must exist a x� � � x � dk
l
e such that

jP �
x � P

�

j �
�

dk
l
e

jP�

k j �
i��X
j��

jPj j��

Because each iteration of greedy peeling chooses a maximal set of ground elements

that can be covered by l clusters within performance ratio �� the set chosen by the

ith iteration of greedy peeling is

Pi � �
P �
x � P

�

��

Therefore

jPij �
�

dk
l
e

jP�

k j �
i��X
j��

jPjj��

�

Now the proof of Theorem ����� consists of some algebraic manipulations�

Proof of Theorem ������ Let

wi �
�

dk
l
e

jP�

k j �
i��X
j��

wj�

for i � � with w
 � �� Then we have

wi � 

�

dk
l
e
�
��

�

dk
l
e
�i��jP�

k j�
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Thus
dk
l
eX

i��

wi � 
� � 
� �
�

dk
l
e
�d

k
l
e�jP�

k j�

So the performance ratio is�

	 � � � 
� �
�

dk
l
e
�d

k
l
e�

Hence� the theorem is proved� �

We are now ready to make some observations�

� When dk
l
e � �� then 	 � � holds�

� Note that 	 is a decreasing function� Since

limx��
��
a

x
�x � 


�

e
�a�

	 is bounded by �� 
�
e
��� When � � �� then 	 is bounded by � � �

e
� ������

� The derivative of the performance ratio with respect to � is

�	

��
� 
��

�

dk
l
e
�
d

k

l
e����

If dk
l
e � �� then ��

��
� �� If dk

l
e 
 �� then ��

��
� e���

� The derivative of the performance ratio with respect to dk
l
e is

�	

�dk
l
e
�

�


dk
l
e��

��

�

dk
l
e
�d

k

l
eln
��

�

dk
l
e
��

��� Performance of Greedy Peeling for Exact Covering

In this section� we analyze the performance of greedy peeling for exact covering�� The

main result is as follows�

�This work is an application of the result by Johnson ��
�	 Lov�asz �
�� and Chv�atal ����� Their

results on set
covering are known for a long time� however	 such results have not been applied to

the analysis of VLSI heuristics before�
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Theorem 	
�
� The performance ratio of greedy peeling for the minimum covering

problem is �
log jP j

� where P is the largest cluster�

Proof� Let the set E of ground elements to be covered be f�� ����mg� and let the

given set of clusters be Pj � j � �� ���� n� Let t denote the number of iterations required

by greedy peeling for solving the minimum covering problem� Let P r
j denote the set

Pj at the beginning of iteration r� r � �� ���� t� for typographical simplicity� we denote

the size of P r
j by w

r
j �

We assume that the cluster picked up by the greedy peeling heuristic at iteration

r is P r
r �

At iteration r� all the elements in P r
r are peeled o� from all the other clusters�

Thus� each i 
 E belongs to precisely one of the sets P r
r with r � �� �� ���� t� For this r

associated with element i� the price� yi� paid for covering element i can be written as

yi �
cr
wr
r

�

From the peeling�o� property of greedy peeling� we have Pj � P r
r � P r

j � P r��
j �

Thus

mX
i��

aijyi �
tX

r��



X

i	Pj
P r
r

yi�

�
tX

r��


wr
j � wr��

j �cr

wr
r

�
sX

r��


wr
j � wr��

j �cr

wr
r

�

where s � t is the largest superscript such that ws
j � ��

From the greedy property of greedy peeling�

cr
wr
r

�
cj
wr
j

�
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we have�

mX
i��

aijyi � cj
sX

r��


wr
j �wr��

j �cr

wr
j

�

Noticing that�

sX
r��

wr
j �wr��

j

wr
j

�
sX

r��


H
wr
j ��H
wr��

j �� � H
w�
j ��

where

H
x� �
xX

j��

�

j
�

and

w�
j � jPjj �

mX
i��

aij�

we have�
mX
i��

aijyi � cjH

mX
i��

aij�

for all j such that
mX
i��

yi �
X
j	J�

cj�

Let x � 
xj� be the binary incidence vector x � 
xj� for an arbitrary cover� which

satis�es
nX

j��

aijxj � �

for all i� then

X
j	J�

cj �
mX
i��

yi

�
mX
i��



nX

j��

aijxj�yi

�
nX

j��



mX
i��

aijyi�xj

�
nX

j��

H

mX
i��

aij�cjxj�
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Since H
x� � log x� if we take x to be the incidence vector of an optimal cover�

then the theorem is proved� �

In view of a very recent result by Lund and Yannakakis ����� namely that� for

any � � c � ���� the set�cover problem cannot be approximated within ratio of

c log p in polynomial time unless NP � DTIME
ppoly logp�	a very unlikely event	the

greedy peeling heuristic is likely the best�possible approximation algorithm for the

optimization problems of the cluster�cover structure�

��� Theoretical Justi�cation of Previous Empirical Results

In this section� we examine some experimental results reported in the literature on

the use of greedy peeling in the two VLSI design applications� In particular� we show

how our theoretical analysis is con�rmed by empirical evidence�

Table ��� shows experimental results reported by Iyengar and Vijayan for appli�

cation timing assignment ����� Iyengar and Vijayan made the following observation�

For some examples� there are relatively large di�erence in the number of assignments

required for 
 � ��� and 
 � �� In other words� while the slack lower bound of a huge

fraction of the fault sites is achieved by the �rst few assignments� a large number

of new assignments may be needed to achieve the lower bound for the remaining few

sites�

Another remark made by Iyengar and Vijayan is that the number of assignments

does not seem to grow with the size of combinational circuits� This is true from our

analysis� since the number of assignments only relates to the size of the maximum

independent set of the compatibility graph�

At the end of their paper� Iyengar and Vijayan posed the following two open

questions� Can the TAT multiple heuristic be improved to bring the number of as


signments for 
 � � closer to that for 
 � ���� Is there a good lower bound for
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Table ���� Experimental results of application timing assignments�

&assignments to achieve

circuit &edges &fault sites 
 � ��� 
 � ���� 
 � �

c��� ��� ��� � � �

c��� ���� ��� � � ��

c��� ��� ��� � � �

c���� ���� ���� � � �

c���� ��� ���� � � �

c���� ���� ���� � � �

c���� ��� ���� � � ��

c���� ���� ���� � � �

c���� ��� ���� � � �

c���� ���� ���� � � ��

the number of assignments necessary to achieve 
 � �� We basically settle the two

open questions� For the �rst question� because greedy peeling has been proved to be

almost optimum� and because its error cannot be less than the logarithm of its input

size� it is very unlikely that the heuristic can be improved to bring the number of

assignments for 
 � � closer to that for 
 � ���� For the second question� our prime

covering paradigm indeed provides a way of obtaining a good lower bound� even an

optimum solution� for the number of assignments necessary to achieve 
 � ��

Table ��� shows experimental results reported by Cong� Hossain and Sherwani

on multi�layer topological planar routing ����� They made the following interesting

observations� First� we can have a planar routing for the majority of nets� ��� Given

a relatively large number of routing layers �say� more than four layers	� we can route

most of the nets without vias� Second� insisting on planar routing for all the nets is

very costly� i�e�� it requires a large number of routing layers� Although we can have
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planar routing for over ��� of the nets in the �rst �ve layers� we need �
�� layers

to route the remaining ��
��� of the nets� Therefore� it is unrealistic to insist on

planar routing for all the nets�

Table ���� Experimental results of multi�layer topological planar routing�

circuit �L �L �L �L �L total layer

bus ��' ��' ��' ��' ��' �

ex� ��' ��' ��' ��' ��' �

ex�a ��' ��' ��' ��' ��' ��

ex�b ��' ��' ��' ��' ��' ��

ex�c ��' ��' ��' ��' ��' ��

ex�b ��' ��' ��' ��' ��' ��

ex� ��' ��' ��' ��' ��' �

ex�b ��' ��' ��' ��' ��' ��

deut ��' ��' ��' ��' ��' ��

We note that the second observation made by Cong� Hossain and Sherwani is not

exact� The cost was caused by their greedy peeling algorithm� It may be the case

that the number of layers really needed for planar routing of all the nets is not that

large� It will be interesting to apply prime covering to their problem for optimum

solutions�

��� Summary

In this chapter� a framework called cluster�cover has been established to capture

a class of NP�hard optimization problems in VLSI design� including combinational

logic minimization� constrained encoding for sequential logic synthesis� multilayer

topological channel routing� application timing for delay fault testing� and monitoring
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circuit design for BIST enhancement� Two paradigms� called prime covering and

greedy peeling� were described as abstractions of various previous cluster�covering

algorithms� A theoretical analysis of the performance of greedy peeling has been

provided� This analysis is applicable to a class of published heuristics which previously

could only be evaluated with respect to benchmarks�
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Mathematical Programming

Formulation of Maximum Balance

Mathematical programming is a generic approach to a certain type of optimization

problem that can be explicitly expressed as a task of maximizing or minimizing an

objective function subject to a set of mathematical inequality constraints� It was

originally developed in the area of operations research� and has been a useful tool

for VLSI optimization� but was traditionally restricted to problems� such as circuit

optimization� that do not have any explicit structural properties to exploit in deriving

e�cient solution�

Recently� mathematical programming techniques have attracted an increasing in�

terest from the VLSI design automation community� This is mainly due to the ever

increasing demand to reduce the �time�to�market� of a VLSI design and to improve

the performance� We have to consider various constraints	due to timing� perfor�

mance� power consumption� and testability	simultaneously when we synthesize the

circuits� Generally� it is impossible to characterize those constraints by combinatorial

structures� For this type of constrained optimization problems� traditional combi�

natorial optimization techniques alone are no longer su�cient� and mathematical

���
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programming is a natural� maybe indispensable� alternative�

At the same time� signi�cant progress has been made in in the theory of com�

putation� A major result is Karmarkar
s polynomial�time algorithm for linear pro�

gramming ����� Inspired by this discovery� researchers have put considerable e�ort

into formulations of combinatorial optimization problems in the framework of linear

programming�� Since most such problems are NP�hard� in the worst case� the num�

ber of linear inequalities required by a linear programming characterization is likely

exponential� Nevertheless� a whole new branch of combinatorial mathematics	 poly�

hedral combinatorics	has been created� with the generation of as �compact� as pos�

sible linear programming characterizations as the central theme� For recent results of

this discipline� see the work of Pulleyblank ������ In another direction� Karmarkar
s

algorithm has been extended directly to handle integer programming ���� �����

In this chapter� we investigate how to solve the maximum balance problem by

mathematical programming� With the practical motivation for performance�driven

layer assignment as described in Chapter �� our emphasis here is to search for a

good linear programming characterization of the maximum balance problem in planar

signed graphs� We �rst give in Section ��� an integer linear programming formulation

for maximum balance in general signed hypergraphs� We then derive in Section ���

a linear programming formulation for planar signed graphs� by using a fundamen�

tal theorem of polyhedral combinatorics� Furthermore� we present several reduction

techniques in Section ���� these lead to a linear programming formulation consisting

of only a polynomial number of inequality constraints�

�A precise historical review of this subject can be found in the preface of the book by Lov�asz and

Plummer �
���
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��� Integer Linear Programming Formulation

In this section� we introduce an integer linear programming formulation for the

maximum balance problem in signed hypergraphs� Consider a signed hypergraph

H � 
V�E� ��� consisting of n vertices and m edges� we are looking for a bipartition

� � 
V �� V �� of V such that the number of balance edges is maximized�

Given a signed hypergraph H and a bipartition �� let us introduce a bipartition

vector x 
 f�� �gn such that

xi �

���
��
� if vi 
 V ��

� if vi 
 V ��

and a balance vector y 
 f�� �gm such that

ye �

���
��
� if edge e is balanced by ��

� otherwise�

Let V �
e represent the set of vertices positively incident with edge e� and let V �

e

represent the set of vertices negatively incident with edge e� Then edge e is balanced

by the partition � if and only if V �
e � V � and V �

e � V �� or V �
e � V � and V �

e � V ��

This observation can be expressed as

ye �
Y

vi	V
�
e �vj	V

�

e

xi
� � xj� �
Y

vi	V
�
e �vj	V

�

e


�� xi�xj� 
����

Then the maximum balance problem is to �nd x 
 f�� �gn and y 
 f�� �gn so as to

maximize
P

e ye subject to 
�����

To convert the integer nonlinear programming formulation above into an integer

linear programming problem� we de�ne

y�e �
Y

vi	V
�
e �vj	V

�

e

xi
� � xj�� 
����

y�e �
Y

vi	V
�
e �vj	V

�

e


�� xi�xj� 
����
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There two conditions are equivalent to the following four set of conditions�

y�e � xi �vi 
 V �
e � 
����

y�e � � � xj �vj 
 V �
e � 
����

y�e � � � xi �vi 
 V �
e � 
����

y�e � xj �vj 
 V �
e � 
����

for each e 
 E� These inequalities are called vertex
edge incidence constraints�

The maximum balance problem can now be formulated as the following linear

integer programming problem�

maximize
X
e


y�e � y�e �� 
����

subject to the vertex�edge incidence constraints 
�����
����� It consists of n � �m

integer variables and �p constraints�

��� Linear Program for Planar Signed Graphs

In this section� we derive a linear programming formulation for the maximum balance

problem in planar signed graphs� We �rst set up an integer linear program for signed

graphs and then reduce it to a linear program 
without the integrality restriction� by

applying both a fundamental theory of polyhedral combinatorics and the planarity

property of planar signed graphs�

Consider a signed graph G � 
V�E� ��� Suppose that � � 
V �� V �� is a bipar�

tition� and C � E is the corresponding cut� i�e�� a set of edges such that each edge

joins a vertex in V � with a vertex in V �� We associate a cut variable ze with each

edge e 
 E as follows�

ze �

���
��
� if e 
 C�

� otherwise�

����
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A feasible solution to the maximum balance problem corresponds to a vector z in

RjEj that de�nes a cut� where R is the set of real numbers� Let Q be the set of all

the cycles in G� then vector z 
 RjEj de�nes a cut� if and only if

ze 
 f�� �g� 
�����

for all e 
 E� and X
e	Q

ze � � 
mod ��� 
�����

for all Q 
 Q� Here 
����� states that each cycle must be cut by a bipartition an even

number of times�

In a signed graph� a positive edge is an edge with either two positive vertex�edge

incidences� or two negative incidences� a negative edge is an edge with one positive

vertex�edge incidence and one negative incidence� Let E� 
E�� denote the set of

positive 
negative� edges in E� then edge e is balanced by a bipartition if and only if

ze � � for e 
 E��

ze � � for e 
 E��

The maximum balance problem is to �nd z 
 RjEj for an integer linear program

de�ned by

maximize
X
e	E�

we
� � ze� �
X
e	E�

weze�

subject to 
����� and 
������ where we is a real weight associated with edge e�

We know from Chapter � that the maximum balance problem for a planar signed

graph reduces to the minimum T �join problem in its planar dual� Then� according to

Edmonds and Johnson ����� and noticing that cycles and cuts are exchangeable under

planar duality� 
������
����� can be replaced by the following set of linear inequalities�

X
e	Q�U

ze �
X
e	U


�� ze� � �� 
�����
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where Q is a cycle in Q� U � Q and jU j is odd� and Q � U denotes edges in Q but

not in U � The inequalities in 
����� are called blossom inequalities�

In summary� the maximum balance problem in a planar signed graph is formulated

as the following linear program�

maximize
X
e	E�

we
� � ze� �
X
e	E�

weze�

subject to

ze � �� 
�����

and X
e	Q�U

ze �
X
e	U


�� ze� � �� 
�����

where Q 
 Q� U � Q and jU j is odd�

Any linear program can be solved in polynomial time in the size of the pro�

gram ����� However� the number of blossom inequalities in our formulation above

may be exponential in terms of the graph size� as seen from the following proposition�

Proposition �
�
� For a cycle of length k� the number of blossom inequalities in

�����	 is �k���

��� Reduction of Blossom Inequalities

In this section� we show that the number of blossom inequalities in 
����� can be

reduced to be polynomial in the size of G� This result� together with the fact that a

linear program can be solved in polynomial time� leads to another polynomial�time

algorithm for solving the maximum balance problem in planar signed graphsy� Note

yOne such polynomial
time algorithm for maximum balance in planar signed graphs was given

in Chapter � via the graph T 
join concept�
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that planar maximum balance includes planar maximum cut� which was solved in

polynomial time by Hadlock ����� and Lipton and Tarjan �����

The reduction of blossom inequalities is accomplished by using three techniques�

namely graph simpli�cation� graph triangulation� and redundance elimination� We

�rst describe the graph simpli�cation technique� A signed graph that arises from the

optimum layer assignment problem may contain the following graph structures�

� Loops� Edges that connect to only one vertex�

� Parallel edges� Two or more edges that join the same two vertices�

� Series edges� Two or more edges connected in series� i�e�� that form a single

path between two vertices�

� Cut edges� Edges with the following property� The removal of such an edge

leads to a graph with more connected components� For example� the two edges

indicated by dashed lines in Fig� ��� are cut edges�

Figure ���� Illustration of cut edges�

For the maximum balance problem� such a signed graph can be simpli�ed as fol�

lows�

� Loops� A loop can be positive or negative� A positive loop will always be

balanced by any bipartition� it thus can be ignored� A negative loop will never

be balanced by any bipartition� it thus can be removed from the consideration

with an adjustment to the objective function�
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� Parallel edges� A set Eij of parallel edges joining vertices i and j can be replaced

by a positive edge joining i and j with a weight equal to the sum of the weights

of positive edges minus the sum of the weights of negative edges� The reason

for this is as follows� All the edges e in Eij are either cut 
ze � ��� or uncut


ze � ��� thus all the cut variables ze� e 
 Eij � can be represented by a single

variable zij� This leads to jEijj identical equations obtained from 
������ these

equations can be replaced by a single one� The part of the objective function

contributed by edges in Eij is

X
e	E�

ij

we
�� ze� �
X
e	E�

ij

weze � 

X
e	E�

ij

we �
X
e	E�

ij

we�
�� zij� �
X
e	E�

ij

we�

This means that all the edges in Eij can be replaced by a positive edge weighted



P

e	E�

ij
we �

P
e	E�

ij
we� and an adjustment 
addition� of

P
e	E�

ij
we to the ob�

jective function�

� Series edges� A set Eij of series edges connecting vertices i and j can be replaced

by a single edge joining i and j with a weight equal to the smallest of the weights

of all series edges� and with a sign equal to the product of the signs of all the

series edges� The reason for this is as follows� The contribution of all the edges

in Eij to the sign of the related cycles is the product of the signs of all the edges

in Eij� Further� we can remove the edge with the smallest weight to break the

cycles involving Eij�

� Cut edges� It is trivial to see that cut edges can be ignored for the maximum

balance problem�

In practice� the formulation of the optimum layer assignment problem gives rise to

a signed multigraph� especially in the case of large clusters 
See Chapter ��� Therefore

the use of the simpli�cation technique above usually results in a substantial reduction�

The graph triangulation technique is motivated by Proposition �����	the num�

ber of blossom inequalities induced by a cycle is exponential in the length of the
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cycle� This suggests triangulation of a given planar signed graph by adding certain

zero�weighted edges so that each face is enclosed by exactly three edges� Figure ���

illustrates an example where dashed lines represent the added zero�weighted edges�

Figure ���� Graph triangulation for blossom inequality reduction�

We now turn to the redundance elimination technique� We need to introduce

the following concepts� Given a set of linear inequalities� its solution set is called a

polyhedron� If the addition of an inequality c into a set C of linear inequalities does

not change the polyhedron de�ned by the set C� then the inequality c is redundant�

We also say that inequality c is implied by the set C� Redundance elimination is

based on the following observation�

Lemma �
�
� For a connected planar signed graph� all the blossom inequalities are

implied by blossom inequalities for bounded faces�

Proof� We �rst consider a cycle enclosing two faces� and then extend the result

to a cycle enclosing an arbitrary number of faces�

Consider two faces f� and f� that are adjacent with respect to an edge e� as

illustrated in Fig� ���
a�z� We also use f� 
f�� to denote the cycle that forms the

zHere we make use of a property of triangulated graphs to have a conceptually simple proof� In

general	 this lemma is applicable to non
triangulated signed graphs� For such graphs	 however	 two

faces may be adjacent with respect to two or more edges as illustrated in Fig� ����b�� this complicates

the proof�
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e�

e�

Q

e
f�

f�
f�

f�

Figure ���� Illustration in the proof of Lemma ������

boundary of f� 
f��� Let Q be the cycle enclosing f� and f�� i�e�� Q � f�� f�� e� Let

U� � f� � e and U� � f� � e� Then U� � U� � Q�

We write blossom inequalities associated with face f� as follows�

X
i	f��U��e

zi �
X
i	U�


�� zi� � ze � �� 
�����

for all U� such that jU�j is even� and

X
i	f��U��e

zi �
X
i	U�


�� zi� � ze � �� 
�����

for all U� such that jU�j is odd�

Similarly� for face f�� we have�

X
i	f��U��e

zi �
X
i	U�


�� zi� � ze � �� 
�����

for all U� such that jU�j is even� and

X
i	f��U��e

zi �
X
i	U�


�� zi� � ze � �� 
�����

for all U� such that jU�j is odd�
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Combining 
����� with 
������ and 
����� with 
������ we have

X
i	f��f��U��U��e

zi �
X

i	U��U�


�� zi� � �� 
�����

for all such U� � U� that jU� � U�j is odd� This is precisely the set of blossom

inequalities for cycle Q�

Now we consider a cycle enclosing an arbitrary number of faces� Given the set

of blossom inequalities for G� if we replace the set of blossom inequalities associated

with the two faces f� and f� by the blossom inequalities for the cycle Q� this leads

to the set of blossom inequalities for G
E � e�� This is equivalent to merging two

faces f� and f� into one face Q� In this sense any cycle can be solved by repeatly

considering the case of combining two faces� Therefore the lemma is proved� �

Lemma ����� states that it is necessary to construct blossom inequalities only for

the bounded faces� and not for all the cycles� Since the number of faces is linear

in terms of the graph size� whereas the number of cycles is exponential� the use of

redundance elimination leads to an exponential reduction�

In summary� we have the following main result�

Theorem �
�
� For a connected planar signed graph with n vertices and an exterior

of length k� there exists a linear programming formulation of the maximum balance

problem that consists of �n � k � � variables� �n � �k � � blossom inequalities� and

��n � ��k � �� nonzero elements�

Proof� For a connected planar signed graph with n vertices� we can apply

the graph simpli�cation technique to yield a simple signed graph� Then� by graph

triangulation� we obtain a triangulated graph with n vertices and exterior of length k�

The triangulated graph has �n�k�� edges with �n�k�� bounded faces� Therefore

we have �n � k � � variables� By Lemma ����� 
redundance elimination�� we only
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need blossom inequalities for bounded faces� From Euler
s formula� for a planar graph

with n vertices and m edges� there exist m � n � � bounded faces� Since there are

���� � � blossom inequalities for each face� we have �n� �k � � blossom inequalities

in total� Because each inequality has � nonzero elements� the total number of nonzero

elements is ��n � ��k � ��� �

Graph triangulation makes a graph dense� however� the linear programming for�

mulation turns out be even sparser� as indicated by the following lemma�

Proposition �
�
� The linear program for a triangulated planar signed graph is al


ways sparser than that of the original planar signed graph�

Proof� For the triangulated graph� each blossom inequality gives rise to � nonzero

elements� There are �n � k � � variables� Thus the sparsity of the linear program

is ��
�n � k � ��� For the original graph� the number of variables is the number of

edges in the original graph� which is smaller than �n�k��� Each blossom inequality

induces at least � nonzero elements� Thus the linear program for the original graph

is at least as dense as the linear program for the triangulated graph� �

For example� consider a cycle of k � �� edges� The formulation for the original

graph requires k � �� variables and �k�� � ��� constraints� The total number of

nonzero elements is �k��k � ����� The sparsity is �� The new formulation yields

�k � � � �� variables and �
k � �� � �� constraints� The total number of nonzero

elements is �
k � ������ � ���� Thus the sparsity is ���
����	

� �
�	
� �����

��� Summary

In this chapter� an integer linear programming formulation has been presented for the

exact solution of the maximum balance problem in signed hypergraphs� For planar

signed graphs� a polynomial�size linear programming formulation was derived� based
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on the theory of polyhedral combinatorics� and the planarity property� Combining this

with any polynomial�time algorithm 
such as Karmarkar
s algorithm ����� for linear

programs� we have a polynomial�time algorithm for the maximum balance problem

in planar signed graphs�

The mathematical programming approach o�ers two advantages� First� it can take

into account additional constraints naturally� and thus provides a basis to performance�

driven layer assignment as described in Chapter �� Second� it has the same complexity

for the weighted version of the problem� We can extend our polynomial�size linear

programming formulation for planar signed hypergraphs� by applying the graph esti�

mation technique described in Section ��� to approximate a planar signed hypergraph

by a planar weighted signed graph� The solution provides a tight lower bound� which

can be used to evaluate the quality of various heuristics�
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Application to Layout Wiring

The optimum layer assignment problem was �rst addressed for Manhattan�type chan�

nel routing in ���� and has been studied extensively in the past two decades� For a

simple�split routing	where each potential via connects at most three wire segments�

Pinter ������ and also Chen� Kajitani and Chan ����� have shown that the problem

can be reduced to a maximum cut problem in a planar graph� An O
n
�

� log n� al�

gorithm 
where n is the number of potential vias� was developed later ��� ���� Very

few results were known about the general problem� perhaps because of the fact that

standard graph theory is not a convenient framework� Some ad hoc e�orts towards

extending the graph notation were made ���� ���� but none of them leads to a proper

formulation� The complexity issue was open for a long time� until Choi� Nakajima

and Rim ���� showed that the problem is NP�complete�

Another concern� especially for very large scale integrated 
VLSI� circuits� is the

delay introduced by interconnect wiring� Wiring delay is a dominating factor limiting

the performance of VLSI digital circuits� An important factor that determines the

wiring delay is the layer assignment of wire segments� Because the sheet resistance of

the polysilicon layer is greater than that of the metal layer 
����(�� for metal versus

�����(�� for polysilicon for ��um CMOS process� ������ there exists a signi�cant dif�

���



���

ference in delay performance between a wire assigned to the metal layer and the same

wire assigned to the polysilicon layer� This gives rise to layer preference constraints

in practice� For example� some nets� such as power supply and clock lines� or some

terminals of the circuit modules� may be preassigned to the metal layer ������ Even

if all wiring layers have the same conductivity� layer assignment still a�ects the delay

performance� This is because pure via minimization may lead to the congestion of

vias at a critical net� thus degrading the system performance� Therefore� it is de�

sirable to consider timing performance during the layer assignment process� this is

called performance�driven layer assignment�

We show in this chapter that the optimum layer assignment problem is equivalent

to the maximum balance problem in a planar signed hypergraph� Therefore all the

results obtained in this thesis for planar signed hypergraphs are applicable to optimum

layer assignment� This implies a simple proof of the NP�completeness of the optimum

layer assignment problem 
Chapter ��� a more e�cient polynomial�time algorithm for

the restricted case 
Chapter ��� a pseudo�polynomial�time algorithm for the general

case 
Chapter ��� and an approximation algorithm for the general case 
Chapter ���

Our emphasis in this chapter is to formulate performance�driven layer assignment

and to describe our experimental program POLAR� for Performance�Oriented Layer

Assignment of two�layer Routings�

This chapter is structured as follows� In Section ���� we show formally that the

optimum layer assignment problem is equivalent to the maximum balance problem in

a planar signed hypergraph� In Section ���� we present a linear inequality formulation

of timing constraints for performance�driven layer assignment� In Sections ��� and ����

we describe our program POLAR� and some experimental results�
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�� Signed Hypergraph Model of Layer Assignment

We describe the optimum layer assignment problem and its formulation by the ex�

ample of Fig� ���
a�� We are given a set P of points 
t�� � � � � t�� and p�� � � � � p� in

the �gure� in a plane� which are either terminals 
ti� or potential vias 
pi�� We are

also given a set N of �wire	 nets� each net being a wire in the plane with multiple

end�points and connecting several points from P � For example� ft	� t�� p�g represents

a net� Two nets may cross each other 
e�g�� ft	� t�� p�g and ft�� p�g�� this de�nes

a crossing relation X on N � The optimum �two
	 layer assignment problem� is to

assign nets to the two layers in such a way that 
�� no crossing nets appear in the

same layer� and 
�� the number of vias that connect nets assigned to di�erent layers is

minimized� As is usually done in practice� we assume that there does exist a solution

that satis�es condition ��	�

�

�
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Figure ���� �a� A routing �terminals � �� potential vias � ��� �b� Signed hypergraph�

Clearly� two nets that cross each other should be assigned to di�erent layers�

�The routing model implied by our mathematical framework is simple	 concise and general� It

contains the Manhattan routing	 the knock
knee routing	 and the more general gridless routing�
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Similarly� two nets that both cross a common third net should be assigned to the

same layer� Such rules can be captured conveniently by the cluster relation C on N �

which is de�ned to be the re�exive�and�transitive closure of the crossing relation X�

Since the crossing relation is symmetric� the cluster relation is an equivalence relation

on the set N of nets� Each equivalence class of C is called a cluster of nets� Once the

layer assignment of any one net in a cluster is made� the layer assignment of all the

other nets within the cluster is also determined� There are four clusters in Fig� ���
a��

By our assumption� in any cluster� it is possible to assign nets to the two layers

so that no two nets in the same layer cross� Therefore� for each cluster� we arbitrarily

choose one set of nets as reference nets and assign to them the positive polarity ��

and the other set as non
reference nets� with negative polarity ��

A cluster can have electrical connections to other clusters only through potential

vias� 
For example� cluster � is connected to clusters �� �� and � through p�� p�� and

p�� respectively�� If we represent each cluster by a vertex� then each potential via

corresponds to an edge� Since more than two clusters can meet at a potential via� an

edge may connect more than two vertices� i�e�� the natural concept required here is

that of a hypergraph rather than just a graph� Furthermore� a potential via may be

connected to a cluster through a positive or negative net� thus the hypergraph is nat�

urally a signed hypergraph� For our example� Fig� ���
b� shows a signed hypergraph

for the routing problem of Fig� ���
a�� The ordinary graph obtained by treating edge

nodes in the same way as the vertices of H is called the underlying graph of H�

We arbitrarily assign layer � to the all the positive nets and layer � to all the

negative nets� It is clear that vias p�� p�� and p� are required for this choice of reference

nets� The condition for not requiring a real via at the position of a potential via is

that all the nets connected to that potential via have the same polarity� To �nd an

optimal layer assignment we may have to interchange the reference nets with the non�

reference nets in some of the clusters� For example� if we perform this interchange
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for clusters � and �� only via p� is required in the resulting signed hypergraph�

In terms of the signed hypergraph of a routing� a solution assigning nets to the

two layers corresponds to a partition of the vertices into two blocks� All vertices


clusters� for which the reference net assignment is the initial one are in one block of

the partition� whereas those for which the complementary assignment is used are in

the other block� If a bipartition balances an edge e� then all the vertices incident with

e with one of the two polarities will have their reference net assignments interchanged�

Consequently� no via will be required for that edge after the interchange� In other

words� we want to partition all the vertices into two blocks so as to maximize the

number of balanced edges�

By construction� the underlying graph for a given routing is planar� More precisely�

it is a plane embedding of a planar graph� On the other hand� given a planar signed

hypergraph H� one can always construct a two�layer routing in such a way that the

maximum balance problem of H can be solved by the optimum layer assignment

problem of that routing� Therefore� we have the following result�

Proposition �
�
� The optimum layer assignment problem in a two
layer routing is

equivalent to the maximum balance problem in a planar signed hypergraph�


�� Formulation of Timing Constraints

Synchronous digital integrated circuits exhibit three types of timing problems� the

long path problem� where the delay associated with a path is too long� the short path

problem� where the path delay is too short� and the time skew problem� where the

delays of the two paths are not matched� In this section� we show how to consider

these timing problems within the allowable margin of layer assignment�
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Figure ���� Part of a circuit layout�

�
�
� The RC Network Model

We use the Resistor�Capacitor 
RC� network model for delay characterization�

Consider a circuit layout composed of a set of modules and wire segments� as shown

in Fig� ���� Ignoring the fringing capacitance between wire segments� a well�accepted

model for the delay characteristic of the circuit is a collection of RC trees� as shown

in Fig� ���� Each RC tree corresponds to a routing net� It models delays contributed

by modules� wire segments� and potential vias� In the following� we consider each

separately�

First� the delay contribution of a module is characterized by a resistor R and a

capacitor C at each terminal 
or port�� The values of such resistors and capacitors

are independent of layer assignment�

Second� associated with each wire segment sk is the lumped resistance� Rs
k� and

stray capacitance� Cs
k� The value of R

s
k 
C

s
k� depends upon actual layer assignment�

Let zk be de�ned by

zk �

���
��
� if sk is assigned to layer A�

� otherwise�
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Figure ���� The RC network of the layout�

and let the cluster of sk be c
k�� Then we have

zk �

���
��

xc
k� if sk belongs to a reference wire net of c
k��

�� xc
k� otherwise�

����

The resistance and the capacitance of sk can now be expressed as�

Rs
k � RA

k zk �RB
i 
�� zk� 
����

Cs
k � CA

k zk � CB
i 
�� zk�� 
����

where RA
k 
C

A
k � is the resistance 
capacitance� value if sk is assigned to layer A� and

RB
k 
C

B
k � if assigned to layer B�

Finally� we consider potential vias� Suppose that a signal passes from wire segment

si to sj through potential via vk� then the resistance contributed by vk to the signal

propagation can be expressed as

Rv
k � rk
zi
� � zj� � 
� � zi�zj�� 
����

where rk is the resistance when potential via vk becomes a real via�
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�
�
� An Analytical Expression of Interconnect Delay

In this subsection� we consider how to calculate the delay for each RC tree� We use

the Elmore delay as a delay measure ���� ����� Since each block is an RC tree� the

Elmore delay associated with each node in the RC tree can be computed by the TREE

algorithm ����� ����� Analytically� the delay at output node o can be expressed as

TDo �
X
k
o�

Rs
k

X
j
k�

Cs
j �

X
k
o�

Rv
k

X
j
k�

Cs
j � 
����

where the summations
P

k
o�R
s
k and

P
k
o�R

v
k extend over the resistances of those

wire segments and potential vias that lie along the path from input pin to output pin

o� The indices k
o� refer to the corresponding segments and potential vias along the

path� Indices j
k� refer to those wire segments and potential vias that can be reached

by the signal passing through wire segment sk or potential via vk�

Note that Rs
k and Cs

j are linear functions of z� and Rv
k is a quadratic function

of z� and the delay at output node o yields a nonlinear expression of z� In the

following we show how it can be linearized� First� we observe that� for most MOS

processes� capacitance per unit length of interconnect wire is relatively independent

of the actual layer assignment� A typical value of capacitance per unit area� C�� in a

��um CMOS or nMOS process� is ���	����pF�um� for metal� and ���	����pF�um�

for polysilicon ������ Thus� the term
P

j
k�C
s
j becomes constant for a given routing�

regardless of the actual layer assignment� For the sake of notational simplicity� we

denote the capacitance that can be reached by wire segment sk by C
sk�� and the

capacitance that can be reached by potential via vk by C
vk�� Second� we introduce

dummy variables y�ij and y
�
ij as follows�

y�ij � zi
�� zj�� 
����

y�ij � 
� � zi�zj� 
����
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Thus we have

TDo �
X
k
o�

RA
k zk �RB

k 
�� zk�C
sk� �
X
ij
o�


y�ij � y�ij�C
vi�� 
����

where indices ij
o� refer to the corresponding potential vias along the path� This is

a linear expression of interconnect delay in terms of layer assignment variables z and

y� The relation between y and z� as speci�ed by 
���� and 
����� can be characterized

by the following four linear inequalities�

y�ij � zi� 
����

y�ij � �� zj� 
�����

y�ij � �� zi� 
�����

y�ij � zj� 
�����

Here z is used as an intermediate variable for x de�ned by 
�����

�
�
� Formulation of Path�Delay Constraints

The collection of RC trees used for modeling the delay of a circuit layout can be

further abstracted to a directed weighted acyclic graph� where each vertex represents

a module� each edge represents a signal �ow from one module to the other� and

the weight associated with an edge is the delay computed above� which is a linear

function of layer assignment variables� Using this model� we consider the three timing

problems in synchronous circuits�

There are four basic types of propagation paths in synchronous circuits� primary

input to sequential element� sequential element to sequential element� sequential el�

ement to primary output� and primary input to primary output� For each path

endpoint� we can calculate the latest signal arrival time� TDk� by the viable critical

path algorithms ����� ����� Let Trl be the required arrival time Trk� which is deter�

mined by the chip frequency� clocking methodology� etc� Then the long path and the
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short path problem can be solved by setting

mink � Trk � TDk � maxk�

where mink and maxk are two parameters for the path k� The time skew problem can

be resolved by requiring that the delays of the two paths� say i and j� be matched�

�� � Tri � Trj � ��

where � is a given margin�

�
�
� Special Path�Delay Constraints

Two types of degenerate path�delay constraints deserve a special remark� One is the

pre�xed layer assignment� which speci�es that some wire nets must be assigned to a

speci�c layer� This can be expressed by

xk � � or xk � �� 
�����

The other is the capacity constraint� which speci�es the maximum number of vias

that can be allowed in a signal net� Let S be a set of wire nets that forms a signal

net� and let CS represent the maximal number of vias allowable at S� which is called

the via capacity� then the capacity constraint is as follows�

X
e	S

ye � CS� 
�����


�� The POLAR� Layer Assigner

POLAR� is our experimental program for Performace�Oriented Layer Assignment of

two�layer Routings� POLAR� accepts a signed hypergraph description of the optimal

layer assignment problem� which is extracted from a layout� It is used to �nd a

better layer assignment that uses fewer vias� It can handle the following performance

constraints�
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� Fixed layer assignment constraints	certain wire nets must be assigned to a

�xed layer�

� Capacity constraints	the number of vias per signal net is bounded�

POLAR� employs two solution methods described in this thesis 	 integer linear

programming 
POLAR�
exact� and local search heuristic 
POLAR�
heuristic�� It

invokes CPLEXMIP ���� to solve the integer linear programming formulation� PO


LAR� is written in C with ����� lines of code� It runs interactively and provides the

users with �� commands�

Note that the local search heuristic described in Chapter � naturally handles �xed

layer assignment� Such constraints are imposed by pre�locking the �xed vertices and

keeping them locked during the entire local search process�

Now we describe a heuristic 
depicted in Fig� ���� for handling the capacity con�

straints� The basic idea is as follows� Given a bipartition� a path 
net� is segmented

into several pieces by unbalanced edges 
vias�� If we switch the vertices in a piece from

their current group to the other group� then we decrease the number of unbalanced

edges by two 
for the two�end segment� we decrease the number of unbalanced edges

by one�� Meanwhile we may increase the number of unbalanced edges in the �adja�

cent� paths because of such switchings� So we lock all the vertices in the path� and

invoke the local search algorithm to �nd a best possible adjustment� An adjustment

that leads to paths in which the number of vias exceeds the capacity is discarded�

The process is repeated for all the segments in the path� The one with the minimum

number of unbalanced edges 
vias� is used� This exhaustive local adjustment pro�

cedure is performed for all those paths exceeding their corresponding capacities� As

will be demonstrated in the next section� this simple heuristic works extremely well

for handling the capacity constraints� Moreover� it provides a way to improve the

quality of the local search heuristic�
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Algorithm local�adjustment�

�� enqueue all paths according to the number of unbalanced edges�

�� while �not emptyqueue�

��� pop the first one�

��� for each path segment starting from one end

����� if any vertex in the segment is locked� then continue

����� move all vertices in the segment

and set all vertices in the path to 		locked


����� do local search for maximum balance

����� if �one path exceeds its capacity� then continue

else

save this solution if it is better than previous

��� if no success in ���� then no local feasible adjustment

else

output the best one �accept it as a solution�

and set the vertices in this path to be locked�

end�

Figure ���� A local adjustment heuristic for handling capacity constraints�



��� CHAPTER �� APPLICATION TO LAYOUT WIRING


�� Implementation and Experimental Results

POLAR� has been tested on several routings described in ���� ����� these routings

have been used by Chang and Du in evaluating their via minimization algorithm �����

In our experiments� we �rst do not allow vias between routing tracks and choose only

turning points of wires as potential vias� as did by Chang and Du ����� By using our

model of signed hypergraph� the resulting problem is so small that optimum solutions

can be trivially seen� The obtained solutions are the same as those of Chang and Du

by running sophisticated via minimization algorithms� In fact� most potential vias in

these routings are essential�

In order to test larger problem instances� we then chose potential vias in such a

way that each crossing of wires belonging to di�erent nets is surrounded by either

potential vias or terminals� This give rises to the maximal set of potential vias� This

is theoretically very interesting� since the optimality of via minimization with respect

to this selection of potential vias determines the global optimality of via minimization�

In other words� unless we change the topology of routing	which leads to the problem

of topological via minimization ����	the result is the minimal number of vias that we

can use to achieve a feasible layer assignment� On the other hand� we note that� this

selection scheme may violate physical design rules� which� however� can be re�enforced

by using techniques similar to symbolic layout compaction �����

Under the selection of the maximal set of potential vias� each crossing determines

a cluster� In each cluster� we chose the horizontal wire segment as the reference wire

segment� marked with ����

In Table ���� we give statistics of these examples under the columns problem

instance� The name of each routing� 
name�� the number of potential vias� 
p
via��

and the number of clusters� 
cluster�� are indicated� Under the columns previous are

the number of vias� 
o
via�� used in the original routing ���� ���� and the minimal

number of vias needed� 
via�� if only vias in the original routing are chosen as potential
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vias ����� We summarize the results of pure via minimization under the columns

POLAR�
exact and POLAR�
heuristic� where 
via� is the number of vias needed and

all the CPU times are on a Sun Sparc� workstation� For POLAR�
exact� the size of

integer linear programming formulation� i�e�� the number of variables� 
var�� and the

number of constraints� 
const�� is also reported�

Table ���� Experimental results without timing constraints�

problem instance previous POLAR��exact POLAR��heuristic

name p�via clu o�via via var const via CPU 
s� via pass CPU 
s� Reference

yk� �� �� �
 � �� �� � 
��� � � 
�
� ������ Fig��

gcw�� 	 � � � �
 �� � 
��� � � 
�

 ����� Fig���

gcw�� �	 �
 �� � �	� ��� 	 �	��	 	 � 
�
� ����� Fig���

gcw�	 �	 �
 �� �� ��� ��� �� ���� �� �	� 
��� ����� Fig��	

yk�� ��� �

 �	 �
 �
� ��	� � �� ��h �� � 
�
� ������ Fig���

For the �rst four examples� both POLAR�
exact and POLAR�
heuristic obtained

optimal solutions� POLAR�
heuristic is more than ���� times faster than POLAR�


exact� Note that the mixed integer programming formulation is inherently slow�

For yk��� POLAR�
exact found a solution using �� vias in �� CPU hours� whereas

POLAR�
heuristic obtained a solution with the same quality in ���� seconds� For

gcw��� an optimal solution is achieved with ��� passes of the local search algorithm�

each starting with a randomly selected initial bipartition� Optimum layer assignments

for those routings 
except for yk��� we do not know whether it is an optimum or not�

are given in Fig� ��� to Fig� ����

We attribute the high quality results generated by the local search heuristic to

the fact that it uses a good initial bipartition to start with� The initial bipartition is

chosen so that all the vertices are in one group� Because we labeled all the vertical

wire segments by positive signs and all the horizontal wire segments by negative signs�

the chosen initial bipartition actually corresponds to an initial layer assignment where

all the vertical segments are assigned to one layer and all the horizontal wire segments
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978986253532

10109407615410

Figure ���� An optimum layer assignment for yk��

41253

54321

Figure ���� An optimum layer assignment for gcw���

1 2 3 4 5 13 14 15

1 5 9 6 7 12 4 10 14 8 13 11 2 3 15

76 109 11 128

Figure ���� An optimum layer assignment for gcw���
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153211138141075 9 41261

13 1514121110987654321

Figure ���� An optimum layer assignment for gcw���

714167199163122102231342110920323133 3234173323917

249131432203219341244 124412322124131024

Figure ���� A layer assignment for yk���
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are assigned to the other layer� This is the layer assignment used in the original

routings ���� �����

Next we evaluate the performance of POLAR� in handling capacity constraints�

Results with three examples gcw��� gcw�� and gcw�� are summarized in Table ����

Each row reports the results for a particular capacity constraint� For example� in the

third row� we wish to �nd an optimum layer assignment for gcw�� under the capacity

constraint that the number of vias in each net does not exceed �� In addition to the

number of vias 
via� and the CPU time� we also report the number of iterations 
iter�

of ILP branch and bound under POLAR�
exact� the number of local adjustment times


adj�� and the distribution of vias� For example� the distribution f�������g stands for

� nets having � vias� � nets having � via� � net having � vias� and � net having � vias�

For gcw��� there is no layer assignment such that each net uses at most one via�

Table ���� Experimental results with capacity constraints�

POLAR��exact POLAR��heuristic

capacity via iter CPU �s� distribution via CPU �s� adj distribution

� 	 
� ���
 f��	��g 	 ���	 � f��	��g

gcw�� 	 	 

 ���� f
����g 	 ���	 � f
����g

� � �
�
 ����� f�����g � ���� 	 f�����g

gcw�� 	 � ���� ����	 f��
��g � ���� � f��
��g

� � �
�
 ���
 � � � � �

gcw�� 	 �� ��
�� 


�
� f��
�
��g �� ���� � f��
�
��g

� �	 ���
� ��

��
 f��
�	��g �	 ��
� 
 f��
�	��g

We can make some observations from Table ���� First� for all the test cases�

POLAR�
heuristic 
using local adjustment� not only succeeded in meeting the ca�

pacity constraints� but also achieved optimal solutions� Again the CPU time taken is

considerably smaller than that of the branch and bound approach 
POLAR�
exact��
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Second� vias distribute to nets in a reasonably uniform way� It is unlikely that via

minimization causes a heavy congestion of vias at a single net� This is also seen from

experiments in Table ���� This observation contrasts with some previous beliefs� It

is demonstrated that nonuniform capacity constraints� where each net has its own

capacity� are more practically relevant� Our local adjustment heuristic successfully

handles this situation� Moreover� for these cases� solutions by both POLAR�
exact

and POLAR�
heuristic have the same distribution� although most of them are dif�

ferent bipartitions� Third� the smaller the capacity constraints� the faster POLAR�


exact obtains the solution� This is because the small capacity cuts the solution space

needed to search by the branch and bound approach�

Table ���� Experimental results with �xed layer assignment�

POLAR��exact POLAR��heuristic

name nets via iter CPU �s� distribution via CPU �s� pass distribution

yk� 
 � 
� ���	 f���g � ���� � f���g

gcw�� � 	 �� ���� f��	g 	 ���� � f��	g

� � 	�� ��
� f��
�	g � ���� � f��
�	g

gcw�� �	 � 	�� ���� f��
�	g � ���� � f��
�	g

���	 � ��
 ��
	 f�����g � ���	 � f�����g

	 �
 ��� ��

 f
�
�
g �
 ���� �� f
���
g

� �� 	���� �
���� f����
g �
 ���	 � f
���
g

gcw�� � �� ����
 ��
��	 f���������g �� ���	 
 f��
�	����g

	�� �� 		� ���� f
���
g �� ���� � f
���
g

	�� �� 

� 
�
� f
�
��g �� ���� �� f
�
�
��g

�� with local adjustment�

Finally� we experimented with another particular class of timing constraints )

�xed layer assignment� Note that the capability of handling �xed layer assignment



��� CHAPTER �� APPLICATION TO LAYOUT WIRING

is a basic feature of the local search heuristic� Actually it has been used in our local

adjustment heuristic for handling the capacity constraint� Here we use �xed layer

assignment to have critical nets free of vias� This is an alternative to using capacity

constraints directly� Results are summarized in Table ���� The second column 
nets�

indicates the critical nets which we want to be free of vias� Again� we observed that�

for most cases� POLAR�
heuristic achieved optimal solutions� POLAR�
heuristic is

signi�cantly faster than POLAR�
exact� For two cases of gcw��� where critical nets

are chosen as �� and f���g� respectively� optimal solutions are obtained by invoking

the local adjustment heuristic after local search� Since vertices in one path segment

are moved simultaneously� the local adjustment heuristic may help to jump out of a

local minimum� where each time only one vertex can be moved�


�� Summary

We have presented a signed hypergraph model and a CAD tool called POLAR�� for

Performace�Oriented Layer Assignment of two�layer Routings� POLAR� employs an

exact method and a fast heuristic� The exact method is based on a new compact

linear integer programming formulation developed in Chapter �� The fast heuristic is

based on local search described in Chapter ��

POLAR� has been tested on several practical routing examples and demonstrated

its ability in handling various practical constraints� In particular� our comprehen�

sive experiments with pure via minimization 
without timing constraints�� and with

performance�oriented via minimization 
with capacity constraints and �xed layer as�

signment�� have shown that POLAR� heuristic achieved optimum solutions for most

test cases� but used less than one thousandth of the CPU time taken by the branch�

and�bound based integer programming approach� Therefore� POLAR� heuristic is a

promising improvement tool in the performance�driven layout design�



Chapter 	

Applications to Logic Synthesis

In this chapter� we apply the theoretical results developed in this thesis to VLSI se�

quential logic synthesis� Although the formulation of constrained encoding in the state

assignment of asynchronous sequential machines was discovered in the ����s ������ its

relation with the optimal state assignment for synchronous sequential machines was

understood only very recently ����� ����� Indeed� despite a huge volume of literature

on logic optimization� the problem is still not fully understood� In this chapter� we

�rst review brie�y some previous work in Section ���� We then formally de�ne in

Section ��� the model of dichotomy�based constrained encoding and present a uni�ed

framework for logic encoding in sequential logic synthesis� In the subsequent four

sections 
Sections ��������� we show how dichotomy�based constrained encoding re�

lates to various sequential logic design problems� In Sections �������� we describe our

experimental tool� called ENCORE� for sequential logic synthesis� and report various

application results�

��� Introduction

Constrained encoding is an important problem arising in many aspects of the synthesis

���
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of combinational and sequential logic circuits� Given a set S � fs�� ���� smg of m

states� the �complete	 constrained encoding problem is to �nd an encoding � of S

into a set f�
s��� ���� �
sm�g of m binary k�tuples 
k�bit vectors�� in such a way

that all the constraints 
de�ned below� are satis�ed and k is minimized� A binary

constraint� also known as a �partial	 dichotomy constraint� requires that a subset P

of S be distinguished from a disjoint subset Q of S by at least one bit� i�e�� that bit

must have the value � for all the states in P and � for all the states in Q� or vice

versa� If Q is empty� we have the special case of unary constraint requiring that a

subset P of S must be identi�ed by at least one bit b of the k�tuples� in the sense

that the value of b should be the same for all the states in P � A variation� called the

partial constrained encoding problem� aims at maximizing the number of constraints

that are satis�ed using a �xed number of bits�

For example� consider a unary constraint 
fs�� s�� s�g�� and four binary con�

straints 
fs�� s�g� fs�g�� 
fs�� s�g� fs�g�� 
fs�� s�g� fs�g�� and 
fs�� s�g� fs�g�� on set

S � fs�� ���� s�g� Table ���
a� shows a minimum�length encoding satisfying all the

constraints� Table ���
b� gives a two�bit encoding satisfying the largest number 
��

of constraints�

Table ���� Examples of encodings�

�a� �b�

s ��s� s �

�

�s�

s� � � � s� � �

s� � � � s� � �

s� � � � s� � �

s� � � � s� � �

The constrained encoding problem was �rst formulated by Tracey ����� for critical�

race�free state assignment of asynchronous machines� Unger ����� pointed out� for cer�
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tain kinds of �nite state machines 
FSMs�� the problem of obtaining an asynchronous

implementation such that the correctness is independent of the presence of arbitrary

gate and wire delays can be reduced to the problem of constrained encoding� Recent

studies indicate that the problem of encoding states of FSMs to have a minimum PLA

implementation is related to the partial constrained encoding problem ����� �����

The search for e�cient solutions for the constrained encoding problem was pio�

neered by Tracey ������ He proposed a process similar to Boolean logic minimization�

which consists of two basic steps� First� construct all maximal compatible sets of

dichotomy constraints� each such set can be satis�ed by a one bit assignment� which

is called a prime bit assignment� Second� �nd a minimal number of prime bit as�

signments to cover all the given dichotomy constraints� this problem is known as the

covering problem� This prime�covering method gives an exact solution to the complete

constrained encoding problem� However� the number of prime bit assignments may

be exponential in the number of states� and the covering problem is NP�complete �����

In practice� the process described above has been approximated using various heuris�

tic ����� ����� In addition� it is not clear how to apply the prime�covering approach

to partial constrained encoding� As a consequence� for the optimum state assign�

ment for synchronous sequential machines� the dichotomy�based approaches 
such as

DIET ������ have not achieved the success of classical approaches 
such as KISS ������

CREAM ������ NOVA ������ and ������� which are based on group constraints� A

group constraint speci�es that a set of states must be encoded in a neighbourhood or

a face in the Boolean space�

��� Constrained Encoding Model of Logic Synthesis

In this section� we give a mathematical formulation of constrained encoding� We then

show how our model of constrained encoding provides a uni�ed framework for logic

encoding in sequential logic synthesis�
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A constraint c on a set S � fs�� ���� smg is a pair c � 
c�� c�� of disjoint subsets


called blocks� of S� We may distinguish two types of constraints� A binary constraint

consists of two nonempty blocks� A unary constraint is a constraint with one empty

block� Binary constraints are traditionally called �partial	 dichotomies ����� ���� �����

Let B � f��� �g for Boolean values� Conventionally� B � f�� �g is used� We

choose to use f��� �g instead� as it will considerably simplify our notation� Given

a set S � fs�� ���� smg of m � � states and an integer k � �� a binary encoding 
or

simply an encoding� � of S is a mapping �� S 
 Bk� Note that � need not be one

to one� We may think of the encoding as a matrix A� The ith row of the matrix

represents the word assigned by � to state si� and the jth column represents bit j of

the encoding� We use 
 to refer to a particular column of A� such a column is called

a bit assignment� and can be interpreted as a mapping 
� S 
 B� We denote by


�� � � � � 
m the components of bit assignment 
�

With a slight abuse of notation� we say that state si is contained in constraint c

and write si 
 c if si 
 c��c�� We use jcj to denote the number of states contained in

constraint c� A set C � fc�� ���� cng of n constraints can be described by the constraint

matrix C � 
cij�m�n� where

cij �

������
�����

� if si 
 c�j �

�� if si 
 c�j �

� if si �
 cj�

We use Ci to denote the subset of constraints in C containing si� and jCij be its

cardinality�

A bit assignment 
� S 
 B is said to satisfy a constraint c � 
c�� c�� if there

exists a value b 
 B such that for all s 
 c�� 

s� � b� and for all s 
 c�� 

s� � b�

where b is the complement of b� An encoding ��S 
 Bk is said to satisfy a constraint

c � 
c�� c�� if at least one bit assignment of � satis�es c�
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Table ���� Examples of assignments�

s 

s� 

s� 	
s� �
s�

� �� � �� �

� �� � � �

� �� �� � �

� � �� �� �

� �� � � �

� � �� �� �

To illustrate these de�nitions� let S � f�� ���� �g and consider bit assignments 
�


� 	 and � shown in Table ��� and constraints c�� c�� c� and c� de�ned below�

� c� � 
�� �� and c� � 
f�g� ��� Any bit assignment satis�es c� and c�� Therefore

constraint 
�� �� and constraints with one empty block and one one�state block

are trivial constraints� and will be excluded�

� c� � 
f�� �� �g� ��� Bit assignments 
� 	 and � satisfy constraint c�� but 
 does

not�

� c� � 
f�� �� �g� f�� �g�� Bit assignments 
 and 
 satisfy constraint c�� but 	 and

� do not�

The encoding composed of bit assignments 
� 
� 	 and � satis�es the above four

constraints�

The �complete	 constrained encoding problem is de�ned as follows� Given a set S

of m states� and a set C of n constraints on S� �nd an encoding � of S with minimum

k such that � satis�es each constraint c 
 C�

A variation of the above problem� the partial constrained encoding problem� is as

follows� Given a set S of m states� a set C of n constraints on S� and an integer h�
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�nd an encoding � of S with k � h such that � satis�es as many constraints of C as

possible� If h � �� this problem is called the optimal bit generation problem�

If we represent each state by a vertex and each constraint by an edge� then S

and C form a signed hypergraph� For example� for S � fs�� � � � � s�g� the constraint


fs�� s�g� fs�g� corresponds to an edge with positive incidences with s� and s� and a

negative incidence with s�� A bit assignment corresponds to a bipartition of the set of

vertices� A constraint is satis�ed by a bit assignment if and only if the corresponding

edge is balanced by the corresponding bipartition� Therefore the constrained encoding

problem is to �nd the minimum number of bipartitions such that each edge is balanced

by at least one bipartitions� Therefore we have the following result�

Proposition 

�
� The constrained encoding problem is equivalent to the minimum

covering problem of a signed hypergraph� The partial constrained encoding problem is

equivalent to the partial covering problem of a signed hypergraph�

With our model of constrained encoding� a uni�ed framework of logic encoding

for sequential logic synthesis is illustrated in Fig� ���� Depending on di�erent design

styles� a set of dichotomy constraints is generated which guarantees that its satisfac�

tion will lead to a correct implementation� This is the set of correctness constraints�

Another set of dichotomy constraints relates to an economic implementation� This

constitutes the set of optimization constraints� The optimum logic encoding problem

for sequential logic synthesis is to �nd an encoding that satis�es as many optimization

constraints as possible� while satisfying all the correctness constraints�

Now we show how our framework can handle the output encoding problem� As

shown in ������ modeling of the output encoding problem requires the dominance and

disjunctive constraints� in additional to dichotomy constraints� A word 
say� row �

of A� is said to dominate another word 
say� row � of A�� if for each bit position in

the second row that contains a �� the corresponding bit position in the �rst row also
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constraintsconstraints
optimization

race free/delay free

partial satisfactiontotal satisfaction

State Encoding

minimal area PLA

correctness

synchronousasynchronous

Silicon

FSM

Technology Mapping

Logic Minimization

State Minimization

Figure ���� A uni�ed framework of constrained encoding for logic synthesis�

contains a �� A row� say row � of A� is said to be a disjunction of rows � and �� if


� � 
� � 
�� for each bit� A formulation of constrained encoding problem resulting

from output encoding is as follows ������ Given a set of dichotomy constraints� a set

of dominance constraints� and a set of disjunction constraints� �nd an encoding of

minimum number of bits such that it satis�es all the dominance� disjunction� and

dichotomy constraints�

We can use the same algorithm of constrained encoding� but each bit generated

must satis�ed all the dominance constraints and all the disjunction constraints� The

dominance constraints can be imposed as follows� Initially 
� � 
� � �� When the

component of maximum gain is 
�� we check to see the value of 
�� If 
� � �� then

we do not change 
�� or say it is an infeasible move prohibited by the dominance

requirement� So we select the component of the second largest gain� And so on� The
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disjunction constraints can be handled similarly� Initially 
� � 
� � 
� � �� When

the component of maximum gain is 
�� we check the values of 
� and 
�� If either 
�

or 
� is equal to �� then we do not change 
�� this is an infeasible move prohibited

by the disjunctive constraint� When we have changed 
� and 
�� we select 
� as a

component to change in the next move� no matter what 	� is�

The above extension provides a simple way to handle the output encoding problem�

while maintains the same time complexity as the basic bit generation algorithm� The

problem size p now shall include those due to dominance constraints and the disjunc�

tion constraints� We note that� in order to satisfy these dominance constraints and

disjunction constraints� a framework of ordered dichotomies was introduced� which

led to even complicated prime generation and prime covering ������

��� Race�Free State Assignment for Asynchronous Machines

The design of sequential logic circuits begins with a behavior speci�cation� which is

often state table� where the columns corresponds to inputs� the rows to present states�

and the entries to transitions� which are ordered pairs representing the next state and

the current output� respectively� An example of a state table is given in Table ����

To �nd a logic implementation� states are encoded by binary k�tuples� For example�

an encoding of 
s�� s�� s�� s�� is 
��� ��� ��� ���� This can be viewed as an assignments

of two binary state variables y� and y�� With such encoding� the transition functions

can be described by Boolean logic functions in terms of state variables�

A circuit is said to be asynchronous� if it has no clocks� Such a circuit can be

constructed directly from the transition functions and uses feedback lines to relate the

current state variables and the next state variables� If more than one state variable

must change in the course of a transition� the subsequent state of the circuit may

depend on which state variable changes �rst� that is� which one wins the race� In the

worst case� race can be critical� which leads to a malfunction of the circuit�
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Table ���� A �ow table�

x�x�

�� �� �� ��

s� s�� � s�� � s�� � s�� �

s� s�� � s�� � s�� � s�� �

s� s�� � s�� � s�� � s�� �

s� s�� � s�� � s�� � s�� �

Critical races can be avoided by choosing state encoding carefully� It is assumed

that only one binary input variable changes at a time� and that the delays in the

feedback lines are su�ciently large to let all the circuit changes complete before any

state variable can a�ect the gate inputs� Suppose that� under a given input� if the

machine starts in state si it should change to state sj� while if it starts in state sk

it should remain in sk� If the transition si 
 sj involves a critical race� the circuit

may end in state sk� To avoid this� it is su�cient that one state variable be assigned

one value in states si and sj and the opposite value in state sk� This constraint is

represented by a dichotomy 
fsi� sjg� fskg�� Two transitions are disjoint if all the

states involved are distinct� In general� the encoding of states should be such that all

the states �spanned� by a transition occurring within one column must have one bit

di�ering from the encoding assigned to the states spanned by any disjoint transition in

this column� These conditions are known as Tracey�s conditions ������ For example�

Tracey
s conditions for a race�free implementation of Table ��� are as below�

� column ��� 
fs�g� fs�� s�� s�g�

� column ��� 
fs�� s�� s�g� fs�g�

� column ��� 
fs�� s�g� fs�� s�g�

� column ��� 
fs�g� fs�g� 
fs�g� fs�� s�g� 
fs�g� fs�� s�g�
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��� Delay�Free State Assignment for Asynchronous Machines

In general� to avoid critical race and other delay�related timing problems� one has

to insert certain delays in the feedback lines� The question arises whether the states

of a given FSM can be encoded in such a way that its correctness is independent of

the stray delays in the circuit� without the insertion of any delays� Such an encoding

is called a delay
free assignment� It turns out that a delay�free assignment exists if

an FSM satis�es certain conditions discovered by Unger� namely it has no �essential

hazards� ������

Table ��� has no essential hazards� Single input changes are assumed� In order

to produce a delay�free realization� the encoding of states should be such that all

the states involved in every possible transition occurring among any two adjacent

columns have at least one state variable di�ering from all the states involved in any

other disjoint transition beginning or ending in one of the two adjacent columns�

These are called Unger�s conditions ������ From Table ���� we have�

� column �� and column ��� 
fs�� s�� s�g� fs�g� 
fs�g� fs�� s�� s�g�

� column �� and column ��� 
fs�� s�g� fs�g� 
fs�� s�g� fs�g�

� column �� and column ��� 
fs�� s�g� fs�� s�g�

� column �� and column ��� 
fs�� s�g� fs��g

��� Optimal State Assignment for Synchronous Machines

In the synchronous design� clocks are used to control each transition so as to avoid

critical races and hazards� The major concern for the state assignment of synchronous

FSM
s is to �nd a state encoding so as to minimize the cost of implementation� If a

PLA is used to implement combinational logic blocks� then the PLA area� which is

the main portion of the chip area� is the objective to minimize� The optimal state
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assignment problem here is to �nd a state encoding that has a minimum�area two�level

logic implementation�

Table ���� A synchronous state table�

x�x�

�� �� �� ��

s� s� s� s� �

s� s� s� s� �

s� s� s� s� �

s� s� s� s� �

To show why the state assignment problem here can be solved using dichotomy

constraints� we consider the FSM of Table ���� We can group together those entries

in the state table that have the same next state� and express the next state function

as follows�

s� � x
�

�
s� � s�� 
����

s� � x�s� � x�
s� � s�� 
����

s� � x
�

�
s� � s�� 
����

s� � x�s� � x
�

�x�s� 
����

There exist many such groupings� we select the one with the minimal number of

�groups�� This is known as symbolic logic minimization� A good tool for this purpose

is ESPRESSO
MV �����

Note that the area of a PLA is determined by the number of binary variables times

the number of distinct product terms� If we encode the states in such a way that each

group is represented by one Boolean product of the encoding variables 
�� ���� 
k� then

the number of products in the �nal logic is no more than the number of �groups��

This can be achieved by using dichotomy constraints� as explained below�
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States of S appear in each group either as a singleton or as a sum� A singleton can

be expressed directly as a product of the encoding variables 
�� ���� 
k� For example�

if 

s�� � 
����� then s� is represented as 
�

�

�
�� If only two states appear in a sum

and the code words assigned to those two states are adjacent� it is still straightforward

to represent a sum as one product of 
�� ���� 
k� Consider s� � s� for an example� if



s�� � 
���� and 

s�� � 
����� then 

s�� � 

s�� � 
����� i�e�� s� � s� can be

represented as 

�

�

�

�� This is the smallest �subcube� that contains the code words

assigned to every state in fs�� s�g� Now� suppose 

s�� � 
���� and 

s�� � 
����� i�e��

the two code words are not adjacent� If we still take the smallest subcube containing



s�� and 

s��� that is 
����� to represent the sum s�� s�� it will include not only

code words 
���� and 
���� assigned to s� and s�� but also two additional code words


���� and 
����� Such an encoding would be invalid� if 
���� and 
���� are assigned

to states s� and s�� This can be avoided by setting up constraints 
fs�� s�g� fs�g� and


fs�� s�g� fs�g�� In general� for every sum si� � si� � � � �� sij we introduce constraints


fsi� � si�� ���� sijg� fslg� for all l 
 I but l �� i�� i�� ���� ij� where I denotes the integer

set ranging from � to n� In our example� we thus have constraints 
fs�� s�g� fs�g�


fs�� s�g� fs�g� 
fs�� s�g� fs�g� 
fs�� s�g� fs�g� 
fs�� s�g� fs�g� and 
fs�� s�g� fs�g��

It should be noted that partial constrained encoding� i�e� bounded�length encod�

ing may be more relevant than complete constrained encoding� Partial constrained

encoding may result in more product terms� but it uses fewer encoding variables�

Since the PLA area is related to the product of these two parameters� it is possible

that partial encoding yields less PLA area�

��� PLA Decomposition

Another problem that surprisingly resembles optimum state assignment is PLA de�

composition ���� ���� To illustrate why PLA decomposition can be solved within the

framework of constrained encoding� we consider a PLA with seven primary inputs
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and two primary outputs� described by the following expressions�

y� � x�x�x
�

�x� � x�x�x
�

�x	 � x�x�x
�

	 � x
�

�x
�

�x�x
�

	 � x
�

�x
�

�x
�

�x
�

	 
����

y� � x
�

�x
�

�x� � x�x
�

�x� � x
�

�x�x
�

�x	 � x
�

�x
�

�x�x
�

	 � x
�

�x
�

�x
�

�x
�

�x
�

	 � x
�

�x
�

�x
�

�x
�

	 
����

This PLA has �� distinct product terms and cannot be further simpli�ed by using

logic minimizers such as ESPRESSO �����

PLA

driving

PLA driven
outputs

recoded inputs

inputs
unselected

selected
inputs

PLA

original

Figure ���� PLA Architecture�

We would like to decompose the given PLA into the con�guration of Fig� ����

We assume that the selected subset of inputs is SI � fx�� x�� x�� x	g� Five product

terms of the selected inputs appear in 
���� and 
����� x
�

�x�� x�x
�

�x	� x�x
�

	� x
�

�x
�

�x
�

	� and

x
�

�x
�

�x
�

	� In order to re�encode SI� we �rst need to make all involved product terms

of the selected inputs disjoint� Products x�x
�

	 and x
�

�x
�

�x
�

	 are not disjoint� Either

are x
�

�x
�

�x
�

	 and x
�

�x
�

�x
�

	� So we expand those terms into minterms� By removing some

redundant product terms� the above expressions reduce to

y� � x�x�x
�

�x� � x�x�x
�

�x	 � x�x�x
�

	 � x
�

�x
�

�x�x
�

	 � x
�

�x
�

�x
�

�x
�

�x
�

	 
����

y� � x
�

�x
�

�x� � x�x
�

�x� � x
�

�x�x
�

�x	 � x
�

�x
�

�x�x
�

	 � x
�

�x
�

�x
�

�x
�

�x
�

�x
�

	 � x
�

�x
�

�x
�

�x
�

�x
�

	
����

Now all product terms of the selected inputs� x
�

�x�� x�x
�

�x	� x�x
�

	� and x
�

�x
�

�x
�

�x
�

	�

are disjoint� We may view them as four values of a multiple�valued symbolic input

variable s� denoted respectively by s�� s�� s� and s�� Then the above logic expres�

sions with three binary�valued inputs fx�� x�� x�g� one four�valued input fsg� and two
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binary�valued outputs fy�� y�g� can be simpli�ed by multiple�valued symbolic logic

minimization� For this example� by using ESPRESSO
MV ������ we have

y� � x�s� � x�x�
s� � s�� � x
�

�
s� � s�� 
����

y� � x
�

�
s� � s� � s�� � x�s� � x
�

�x
�

�
s� � s�� 
�����

There are six symbolic product terms in the above expressions�

Similar to the optimal state assignment problem� we reduce it to a constrained

encoding problem� For this example� totally we have constraints 
fs�� s�g� fs�g�


fs�� s�g� fs�g� 
fs�� s�g� fs�g� 
fs�� s�g� fs�g� and 
fs�� s�� s�g� fs�g�� It is easily ver�

i�ed that the encoding 

s�� s�� s�� s�� � 
���� ���� ���� ���� is a minimum�length

binary encoding satisfying all the constraints derived above� Therefore� we need

three binary variables� denoted as 
x�x�x�
�� to encode the symbolic input variable s�

Substituting into 
���� and 
������ we obtain the re�encoded PLA�

y� � x�x
�

�x�x�
 � x�x�x
�

� � x
�

�x� 
�����

y� � x
�

�x�
 � x�x�
�x

�

�x�
 � x
�

�x
�

�x� 
�����

The driving PLA is expressed as

x� � x�x
�

	 � x
�

�x
�

�x
�

�x
�

	 
�����

x� � x�x
�

�x	 � x
�

�x
�

�x
�

�x
�

	 
�����

x�
 � x
�

�x� � x�x
�

�x	 � x
�

�x
�

�x
�

�x
�

	 
�����

Comparison� Note that PLA area is calculated by 
�%inps�out�%cubes� Thus the

original PLA takes 
�%����%������� The decomposed PLA� which is the sum of the

driving PLA and the driven PLA� takes 
�%� � �� %� � 
�%
���� � ��%� � �� � ��

� ���� Both the original PLA and the decomposed PLA has �� product terms�
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��� The ENCORE Synthesis Package

We have developed a package called ENCORE for constrained encoding� based on the

greedy peeling heuristic described in Chapter �� The algorithm used inside greedy

peeling for �nding maximum balance is the local search heuristic presented in Chap�

ter �� ENCORE is written using the C programming language�

Since greedy peeling does not guarantee optimality� we have implemented two

techniques in ENCORE� which have been demonstrated e�ectiveness in improving the

quality of constrained encoding� The �rst technique is the iterative greedy peeling as

described in Section ���� This strategy can be accomplished by assigning a su�ciently

large weight to each edge in E
�

� Suppose that each edge ej in a given set E is

associated with an integer weight� wj� Our algorithm and data structures can be

used directly� except that the range of the bucket list is now from �q to q� where

q � maxf
P

ej	Ei
wj� � � i � mg� This enhancement does not increase the time

complexity� Experiments have shown that only a few runs are su�cient to improve

the solution quality�

The second technique is to impose a �balance criterion� on bit generation� A bit

assignment used to satisfy a constraint c � 
c�� c�� distinguishes states in c� from

those in c�� If there are no more constraints� the number of additional bits needed

to distinguish states in c� 
c�� from each other is dlog�jc�je 
dlog�jc�je�� thus� the

minimal number of additional bits is maxfdlog�jc�je� dlog�jc�jeg� Hence� in order to

minimize the number of encoding bits� it is desirable to have the number of ��s and

�s in a bit assignment balanced� The balance criterion implemented in ENCORE

is as follows� Given an integer p� � � p � m� as the desirable number of �s in a

bit assignment� and a tolerance � � r � minfp�m � pg� a bit assignment is said

to be balanced if ��r � m � �p �
Pm

i�� 
i � �r� When p � m��� we need to have

��r �
Pm

i�� 
i � �r� this is the scheme implemented in DIET ������

In ENCORE� the balance strategy is accomplished by �rst generating an initial
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balanced assignment and then maintaining the balance during the process of bit

generation� Starting from the initial bit assignment with all components being ��

encore selects a component with maximum gain to change until the balance criterion

is satis�ed� In the rest of the �rst pass and also in all the following passes� a component

with maximum gain is selected to move only if changing it would not cause imbalance�

Otherwise another component with maximum gain or even the second largest gain is

selected and checked for the balance criterion� If there are several components having

the same largest gain� we select the one which gives the minimum absolute value of

m� �p �
Pm

i�� 
i�

There is a special case for which optimality is guaranteed by greedy peeling� The

problem is to �nd a minimum�length encoding for a set S of m states such that

each state is assigned a distinct code word� It can be described in our framework

of constrained encoding� by a set of n � �
�m
m � �� dichotomies with one state in

each block� We need to add this set of distinct
state constraints when we handle

partial constrained encoding arising from the optimum state assignment problem of

synchronous FSMs�

��
 Experimental Results

The �rst set of small examples comes from the early literature on the synthesis of

asynchronous FSMs� Here the aim is either a race�free ����� or a delay�free implemen�

tation ������ We have written a program to derive the dichotomy constraints from the

original �ow table speci�cation� ENCORE is then used to �nd the minimum�length

encoding that satis�es all these dichotomy constraints� As summarized in Table ����

ENCORE generated encodings with the same lengths as those given by exact methods

in the literature for all these examples�

The second set of tests consists of �� industrial examples available from the MCNC

benchmark set representing a wide range of �nite state automata� The raw data can
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Table ���� Synthesis of asynchronous FSM
s�

FSM �states �constraints �bits References

fsm� � 	 � ������ p���

fsm� � �� � ������ p��	

fsm� � �� � ������ p��
�

fsm� 	 �� � ������ p����

fsm� � �
 � ������ Fig��

fsm� � �
 � ������ Fig��

be found in ������ We have incorporated ENCORE into Berkeley octtools to produce

PLA realizations from given FSM speci�cations�

 
35.0%

65.0%

KISS

36.0%

64.0%

NOVA

8.0%

92.0%

DIET

8.0%

92.0%

ENCORE
non-optimum optimum

Figure ���� Comparison of several encoding programs�

We have conducted two groups of experiments� In the �rst group� we solve the

constrained encoding completely� i�e�� we look for a minimum�length encoding that

satis�es all the constraints� We have written a program to generate the dichotomy

constraints from the face�embedding constraints� where face�embedding constraints

are obtained by running ESPRESSO
MV ����� We compared ENCORE with sev�

eral available state assignment programs� KISS ������ NOVA ������ and DIET ������

The results are summarized in Table ���� For each example tested� the table reports
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the minimum number &bits of bits by unconstrained encoding� the minimum num�

ber &cbits of bits by constrained encoding� the encoding lengths obtained by KISS�

NOVA� DIET� and ENCORE 
with and without a balance criterion�� and the CPU

time used� For all the test examples 
with the exception of the keyb FSM�� ENCORE

using the balance criterion obtained the shortest length encodings� with only one

tenth to one thousandth of the CPU�time used by NOVA and DIET� Note that both

ENCORE and DIET work on binary constraints� but DIET uses the prime�covering

approach� KISS and NOVA work on the face�embedding constraints and are based on

di�erent theoretical foundations� The time complexities of the encoding algorithms

used in these programs are at best quadratic in the size of the problem�

The second group of experiments gave very interesting results� Here we solve

the partial constrained encoding problem� Given a bound on the encoding length�

maximize the number of satis�ed binary constraints� The lengths chosen are the

minimum ones needed to distinguish all the states� ENCORE produces better overall

results than NOVA 
cf� Table ����� For most of the FSMs� especially the large ones�

the �nal PLA implementations occupy less area than those given by NOVA� Note

that ENCORE aims at maximizing the number of satis�ed binary constraints� where

NOVA aims at maximizing the number of satis�ed face�embedding constraints�

��� Summary

There are two major results in this chapter� First� we presented a CAD tool called

ENCORE for solving various constrained encoding problem in sequential logic syn�

thesis� It generates better results than the existing programs developed speci�cally in

each application �eld� Since ENCORE is orders of magnitude faster� it is a promis�

ing alternative to existing techniques for solving large�size VLSI�CAD problems� We

note that the lack of e�cient methods for �nding state assignments in asynchronous

sequential synthesis has once been considered as a major obstacle to the use of the
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Table ���� Encoding with all the input constraints satis�ed�

the encoding length CPU�time
s��

FSM �bits �cbits KISS NOVA DIET ENCOREnb ENCOREb NOVA DIET ENCOREb

dk�� � � � � � � � ��� 
�� 
�

��

lion � � � � � � � � 
�� 
�


mc � � � � � � � � 
�� 
�


tav � � � � � � � � 
�� 
�
�
train� � � � � � � � � 
�� 
�


s� � � � � � � � � 
�� 
�


bbtas � � � � � � � 
�
 
�� 
�


beecount � � � � � � 
�� 
�� 
�
�
dk�� � � � � � � � ��� 
�� 
�
�
dk�	 � � � � � � � 
��� 
�� 
�
�
dk�	 � � � � � � � 
�� 
�� 
�
�
ex� � � � � � � � 
�� 
�� 
�
�
shiftreg � � � � � � � 
��� 
�� 
�
�
ex� � � � � � � � ���� 
�� 
�
�
lion� � � � � � � � � 
�� 
�
�
bbara � � � � � � � ��
�� 
�� 
�
�
ex� � � � � 	 � � 
��� ��� 
�
�
ex	 � � � � � � � � 
�� 
�
�
opus � � � � � � � � 
�� 
�


train�� � � � � � � � ���� ��	 
�


modulo�� � � � � � � � � ��� 
�


ex� � � � � � � � � ��� 
�
�
dk��� � � � � � � � �� ��
 
�
�
mark� � � � � � � � �� ��� 
�
�
bbsse � � � � � � � 
�� ��� 
�
�
cse � � � � � � � 
�� ��� 
�
�
kirkman � � � � � � � � ��	 
��

sse � � � � � � � � ��� 
�
�
ex� � � � � � 	 � ���� ��� 
�
�
keyb � 	 � 	 � � � �� 	�	 
��

ex� � 	 	 	 	 	 	 �� ���� 
���
s� � � � � � � � ���� ���� 
�
�
s�a � � � � � � � � ��	 
�
�
don�le � � �� �� �� 	 � � ��� ���� 
�
�
dk�� � 	 �
 �
 � � � ��� �	�� 
�
�
styr � � � � � � � �� ���� 
���
sand � � � � � � � ���	� ���� 
�
�
tbk � � � � f �� �� ��
� f 
���
planet � � � � f 	 	 �	�� f ��
	
scf 	 � � � � f � � � f 
���

� VAX�������

�� less than 
�
�
� not applicable
� solution not found within the used CPU time
f failed
b with balance requirement
nb without balance requirement
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Table ���� Comparisons of NOVA�ih� NOVA�ig and ENCORE�

��hot NOVA�ih� NOVA�ig� ENCORE random
FSM �cubes �bits �cubes area �cubes area �cubes area �cubes� area� area�

dk�� �	 � �� ��� �� �
� �� �
� �
 ��
 ���
lion � � � �� � �� 	 		 	 		 ��
mc �
 � � ��� � ��� � ��� � ��� ��	
tav �� � �� ��� �� ��� �� ��� �� ��� ���

train� 	 � � �� � �� � �� 	 		 �

s� �� � �
 ��
 �
 ��
 � ��� � ��� ���

bbtas �� � � ��� �� ��
 �
 ��
 �� ��
 �
�
beecount �� � �� ��	 �� ��� �
 ��
 �� ��� ���
dk�� �� � �� ��
 �	 ��
 �	 ��
 �� ��
 	��
dk�	 �
 � � ��	 � �
� � �
� � ��	 ���
dk�	 �
 � �� �
� �� �
� �	 �	� �� �
� ���
ex� �� � �� �	� �� �	� �� �	� �
 ��
 ���

shiftreg � � � �� � �� � 	� �� ��� ���
ex� �� � �� ��� �� ��� �� ��� �� ��� ���
lion� �
 � � ��� � ��� � ��� �� ��	 ��

bbara �� � �� ��
 �� ��
 �� ��
 �� ��� ���
ex� �� � �� ��� �� ��� �	 �
� �� ��� �
�
ex	 �
 � �	 �
� �	 �
� �� ��� �	 �
� ��	
opus �� � �� ��� �� ��� �� �
� �
 ��
 ���

train�� �� � � ��� �� �
� �
 �	
 �� �
� ���
modulo�� �� � �� ��
 �� ��
 �� ��
 �� ��
 ���

ex� �� � �� ��	 �� ��	 �� ��� �� ��	 ���
dk��� �� � �� �
� �� ��� �� ��� �� �	� ���
mark� �� � �� 	�� �� 	�� �� ��� �� 	�� 	��
bbsse �
 � �
 ��
 �
 ��
 �
 ��
 �� �
�� ��	�
cse �	 � �� ���� �� ���� �� ���� �� ���� �
��

kirkman �� � 	� ���� 		 ���� �� �	�� �	 ���� ����
sse �
 � �
 ��
 �
 ��
 �
 ��
 �� �
�� ��	�
ex� �� � �� �
� �� 	�� �� �	� �� 	�� �
�
keyb 		 � �� ���� �� �	
� �� ���� �� �	�� ����
ex� �� � �� ���� �� ���� �� ��	� �
 ���
 ����
s� �� � �
 ���
 �	 ���� �� ���� �� ���� �	
�
s�a �� � 	� ���� �
 ���
 	� �	
� �� ��
� ����

don�le �� � �� 	

 �� ��
 �� ��� �
 ��

 ����
dk�� �� � �� ���� 	� ���� �� ��	� �	 ���� ����
styr ��� � �� �
�� �
� ���� �� ���� ��� ���� ����
sand ��� � �
� ���� �
� ���� �

 ��

 �� ��	� ��	�
tbk �	� � ��� ���
 �	� ���
 ��� ���� ��� ���
 �
�


planet �� � �� ���� �� ���� �
 ���
 �� ���� ���

scf ��� 	 ��� ����� ��� ����� ��
 ����
 ��� ����� �����

TOTAL ����� ����� �
�	� 	
��� 	�
��
� �
 �� �� �

 ���

�� To enable a fair comparison� we do not use the �r option�
�� best random solution
�� average of random solutions
�bits � code�length
�cubes� number of product�terms after ESPRESSO logic minimization
area� 
��
�inputs � �bits� ��bits ��outputs���cubes
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asynchronous design methodology �����

Second� it is demonstrated for the �rst time that synthesis results obtained using

dichotomy constraints are comparable with the conventional face�embedding con�

straints in terms of PLA area used� We note that� while the reason for maximizing

the number of satis�ed face�embedding constraints is intuitively clear� the reason why

maximizing the number of satis�ed dichotomy constraints still yields the same result

is not obvious� A theoretical analysis is needed as to improve our understanding of

this aspect of sequential logic synthesis�



Chapter �


Conclusions and Future Research

Layer assignment and logic encoding are two problems that have presented a challenge

to both theoreticians and CAD practitioners for more than two decades� Except for

some special cases� these problems were formulated and solved previously in an ad

hoc manner� Such an approach cannot keep pace with the ever�increasing complexity

of VLSI design� which demands an e�cient and e�ective solution of large instances of

problems� In this thesis� a new graph�theoretic framework was established� which� for

the �rst time� captures precisely the underlying combinatorial structure of the two

problems�

In this chapter� the main results of the thesis are �rst summarized in terms of this

newly�established graph�theoretic framework� The practical impact of these results

on the two VLSI design problems is then reviewed� Finally� some research topics

in VLSI design that appear to be promising in view of the results of the thesis are

pointed out�

���� Contributions to Mathematical Theory

A notion of signed hypergraph was formally introduced in the thesis� A signed hyper�

���
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graph is a hypergraph in which each vertex is incident with an edge either positively or

negatively� This notion captures the underlying structures of the two practical VLSI

problems� generalizes Harary
s notion of signed graph� Berge
s notion of hypergraph�

and formalizes Yannakakis
 notion of bipartite weighted graphs�

With the motivation from VLSI applications� we studied one speci�c property�

called balance� of signed hypergraphs� An edge e is said to be balanced by a bipartition

if all the vertices positively incident with e are in one block of the bipartition� and all

the vertices negatively incident with e are in the other block� A signed hypergraph

is balanced if there exists a bipartition that balance all the edges� We established a

structural characterization of balanced signed hypergraphs� such signed hypergraphs

are free of negative cycles� where a negative cycle is one with an odd number of

negative vertex�edge incidences� Furthermore� a linear�time algorithm for balance

testing was described� Our characterization is a generalization of Harary
s theorem

on signed graphs� We also noted that a slightly di�erent de�nition of the sign of the

cycle leads to the balance concept related to matrix unimodularity� a fundamental

problem in mathematical programming�

We studied two balance�related optimization problems in signed hypergraphs� The

maximum balance problem is to �nd a bipartition that maximizes the number of

balanced edges in a signed hypergraph� The minimum covering problem is to �nd

a minimum number of bipartitions such that each edge is balanced by at least one

bipartition� On the basis of our structural theorem� we proved that both the maximum

balance problem and the minimum covering problem are NP�complete� Further� we

proved that the maximum balance problem for planar signed hypergraphs is also

NP�complete�

An integer linear programming formulation was presented for the exact solution

of the maximum balance problem� By using polyhedral combinatorics� we derived a

polynomial�size linear programming formulation for planar signed graphs�
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We introduced a new concept of hypergraph T �join� as a generalization of graph T �

join� We de�ned the minimum hypergraph T �join problem as �nding the hypergraph

T �join of maximum cardinality� We showed that the maximum balance problem in a

planar signed hypergraph reduces to the minimum hypergraph T �join problem in its

planar dual� Although the minimum hypergraph T �join problem is NP�complete even

for planar hypergraphs� its special case	the minimum graph T �join problem	can

be solved very e�ciently�

We addressed the problem of modeling signed hypergraphs by real�weighted hy�

pergraphs or graphs and established a hierarchy in terms of a cut property� We settled

a conjecture of Lengauer which states that a clique is the best approximate model

for a hyperedge even if dummy vertices are allowed� This modeling gives rise to good

approximation algorithms for the maximum balance problem�

We presented an implementation of local search for the maximum balance problem

in general signed hypergraphs� With suitable data structures� one pass of local search

takes linear time� It may take an exponential number of passes for local search to

converge� however� in practice� only a small number of passes is needed� We also

pointed out our implementation belongs to the complete class PLS 
Polynomial�time

Local Search� studied by theoreticians�

We described a simple greedy peeling heuristic for solving the minimum covering

problem� We proved that greedy peeling has a guaranteed performance bound for

solving a class of VLSI optimization problems of the so�called cluster�cover struc�

ture� Our theoretical result is applicable to a variety of published heuristics� which

previously could be evaluated only with respect to benchmarks�

���� Contributions to Optimum Layer Assignment

The optimum layer assignment problem in two�layer routing is� for the �rst time� cap�
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tured precisely by the graph�theoretic framework established in this thesis� It is for�

mulated as the maximum balance problem in planar signed hypergraphs� Therefore

all the results obtained in this thesis for planar signed hypergraphs are applicable to

optimum layer assignment� This implies a simple proof of the NP�completeness of

the optimum layer assignment problem 
Chapter ��� a more e�cient polynomial algo�

rithm for the restricted case 
Chapter ��� a compact linear programming formulation

for the restricted case 
Chapter ��� a pseudo�polynomial algorithm for the general

case 
Chapter ��� and a near�optimum approximation algorithm for the general case


Chapter ��� On the basis of theoretical properties of signed hypergraphs� our work

reveals the inherent di�culty of the formulation of the problem by existing graph

concepts 
Chapter ��� An experimental program has also been written for optimum

layer assignment with timing constraints 
Chapter ���

���� Contributions to Logic Synthesis

Our model of constrained encoding provides a uni�ed framework for encoding prob�

lems arising from optimum state assignment for synchronous circuits� race�free state

assignment for asynchronous circuits� delay�free state assignment for asynchronous

circuits without essential hazards� and combinational logic decomposition� The com�

binatorial structure of constrained encoding was described by a graph�theoretic notion

for the �rst time� The constrained encoding problem was formulated as the minimum

covering problem in signed hypergraphs� The problem has been proved to be NP�

complete� on the basis of theoretical properties of signed hypergraphs�

A simple greedy heuristic was presented and implemented in an experimental

program ENCORE� ENCORE has been applied to a variety of practical problem

instances� For a number of examples found in the literature on the synthesis of

asynchronous sequential machines� ENCORE consistently obtains optimal or near�

optimal results� For the optimum state assignment of the MCNC FSM benchmarks�
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ENCORE generates the same or even shorter encoding lengths than the programs

KISS� NOVA and DIET� but takes much less CPU time� It was demonstrated for

the �rst time that PLA implementations of synchronous FSMs using dichotomy con�

straints compare very favorably with respect to area with those based on traditional

group constraints�

���� Incompletely Constrained Via Minimization

We consider a slightly relaxed version of constrained via minimization� Illustrated in

Fig ����
a� is an instance of the constrained via minization problem and its optimum

solution� It uses two vias at a single net 
net ��� Now we assume that the geometry

position of the wire of net � can be changed� We further assume that wires do not

take any space� Then� only one via is needed� as shown in Fig� ����
b�� This routing

model is called incompletely constrained via minimization� In the extreme case� if

all the routing wires are allowed to change their geometry positions 
only terminals

are �xed�� this gives rise to topological �unconstrained	 via minimization� a problem

that was �rst addressed by Hsu ����� and has been well studied by Sarrafzadeh and

Lee ����� �����

In order to have incompletely constrained via minimization practically useful� geo�

metrical mapping is required in the same way as for topological via minimization �����

Nevertheless� the incompletely constrained model of via minimization posed here is a

generalized� perhaps more realistic� version of the constrained and topological models

of via minimization� There are two basic situations where this model may be use�

ful� First� constrained via minimization may result in many vias in critical nets� this

usually degrades the circuit performance� A possible remedy to this problem is to re�

route these critical nets to achieve a further via reduction� This interesting question

also arises in real layout design� It is often the case that all the nets except a few


less than �'� have been routed successfully� Then an engineering practice� known
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Figure ����� An example of incompletely constrained via minimization�

as rip�up and re�routing� as discussed in the survey paper by Kuh and Ohtsuki �����

is invoked� Second� if we use the topological routing approach� some critical nets

may have to be routed �rst due to performance consideration� This also gives rise to

incompletely constrained via minimization� In addition� if geometrical mapping for

incompletely constrained via minimization can be easier than that for unconstrained

via minimization	this may be the case because some routings have been mapped

already	then incompletely constrained via minimization may be useful in bringing

topological routing to become useful in real layout design �����

Now we show how the incompletely constrained via minimization problem can be

formulated using the framework developed in this thesis� For simplicity� we assume

that we use the maximal set of potential vias� each crossing forms a cluster� Then

the planar sign graphs for routings in Fig� ����
a� and Fig� ����
b� are shown in

Fig� ����
a� and Fig� ����
c�� respectively� Figure ����
b� gives the planar signed

graph for the routing without net ��

It will be more convenient if we consider the planar dual of a planar signed graph


Chapter ��� In order to take into account the channel routing restriction� i�e�� the

area outside the channel is not allowed for routing� we need to consider each face
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Figure ����� Signed graphs for incompletely constrained via minimization�

adjacent to the channel separately 
If we allow the �over�the�cell� routing� then all

these faces will be merged into one exterior face�� Note that� as far as constrained via

minimization is concerned� all these faces must be merged to form the exterior face


see Chapter ��� With the selection of a maximal set of potential vias� we can draw

the planar dual directly from the routing� Figure ����
a� shows the planar dual for

our routing example without net �� It is easily veri�ed that as far as constrained via

minimization is concerned� this planar dual degenerates to a single�vertex graph� its

T �join is empty� and no via is required�

Now we consider how to represent a topological routing of a net in the planar

dual� We mark by s and t the two vertices corresponding to the two terminal faces

where the terminals of the net are located 
See Fig� ����
a��� 
We consider here only

two�terminal nets�� A routing of the net goes through a set of faces between the two

terminal faces� each such face will be separated into two faces by the routing� In

terms of the planar dual� this process is equivalent to replacing an s � t path by a

corresponding ladder� An example of a ladder is shown in Fig� ���� for the routing

of net � in Fig ����
a��� An s � t path determines a unique ladder as follows� each

vertex in the path is split into two new vertices� and the edges connected to the
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path from one side of the path are connected to the new vertex in that side� For

example� the replacement of the path in Fig� ����
a� by its corresponding ladder in

Fig� ����
b� leads to the planar dual in Fig� ����
c� for Fig� ����
a�� The planar dual

for Fig� ����
b� is shown in Fig� ����
d�� It is easily veri�ed that� in Fig� ����
c�� there

exist two negative vertices 
pointed to by arrows�� A minimum T �join that connects

the two vertices uses two edges 
two vias�� For Fig� ����
d�� there exist two negative

vertices 
pointed to by arrows� one being the exterior vertex� The minimum T �join

here uses only one edge 
one via��

(a)

1 2 3 4 5

3 5 2 1 4

s

t

t

s

(b)

Figure ����� Planar dual graphs for incompletely constrained via minimization�

We have the following graph�theoretic formulation of the incompletely constrained

via minimization problem for a given routing with additional k unconstrained nets�

We are given a planar marked graph corresponding to the given routing� and k pairs

of s� t vertices corresponding to terminals of k nets� The problem is to �nd k 
s� t��

paths such that the replacement by their corresponding ladders will result in a graph

with the smallest minimum T �join�

The problem formulated above is a new graph�theoretic problem� It will be in�

teresting to investigate its complexity� since we know that the constrained via min�

imization for two�layer routing with simple splits is polynomially solvable� as is the
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Figure ����� Planar dual examples for incompletely constrained via minimization�

topological via minimization for two�layer channel routing ������ We note that it is

di�cult to formulate incompletely constrained via minimization using existing topo�

logical via minimization approaches�

���� Other Problems

In addition to the speci�c topic described in the last section� several other research

topics in VLSI design appear to be promising in view of the results of this thesis�

Among them� an application of our model of dichotomy�based constrained encoding

to various non�conventional logic synthesis problems is of primary interest to logic
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designers� These problems include FPGA�targeted� timing�driven� and testability�

driven logic synthesis� We feel that the objectives and conditions of these problems

can be modeled by dichotomy constraints� which in turn can be formulated in our

framework of signed hypergraph� Two additional problems along this line are state

minimization and state splitting ������ Our experiments suggest that state mini�

mization and state splitting can be combined together with state encoding� Several

other layer assignment problems are of interest to layout designers� These include

multi�layer via minimization� multichip�module via minimization ����� and layout

wirability ������

On the theoretical side� because our notion of signed hypergraph is a generalization

of several known graph�theoretic concepts� future research may also include the study

of other questions� that have been studied before for graphs� for signed hypergraphs�

In particular� we are investigating the possibility of applying the notion of signed

hypergraph to derive a polynomial�time local search algorithm for the �
opt MAX�

CUT problem�
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