
Sequential and Parallel Algorithms for Embedding Problems on

Classes of Partial k�Trees

Arvind Gupta� Naomi Nishimuray

Abstract

We present sequential and parallel algorithms for various embedding problems on bounded
degree partial k�trees and k�connected partial k�trees� these include subgraph isomorphism
and topological embedding� known to be NP�complete for general partial k�trees� As well as
contributing to our understanding of the types of graphs for which these problems are tractable�
this paper introduces new methods for solving problems on graphs� In particular� we make
use of a tree�like representation of the graph �the tree�decomposition of the graph� to apply
techniques used to solve problems on trees to solve problems on more general classes of graphs�

� Introduction

In devising sequential and parallel algorithms for subgraph isomorphism and topological embedding
of bounded degree partial k�trees and k�connected partial k�trees� we make advances in two streams
of research� One stream of research is the identi�cation of problems for which a bound on the tree�
width of a graph allows a more e�cient solution than in the general case� a partial k�tree is also
known as a graph of bounded tree�width� The other stream is the identi�cation of classes of
graphs for which these embedding problems are tractable� the subgraph isomorphism problem�
and consequently the more general problem of topological embedding� is known to be NP�complete
for general graphs �GJ	
�� and remains so even for graphs of bounded tree�width �Sys�
�� The
algorithms presented in this paper make use of techniques developed in each of these streams� and
in addition introduce general methods for enabling the techniques in one stream to be applied to
problems in the other�

As we will see in Section 
� graphs of bounded tree�width can be characterized as the class
of partial k�trees� and include many natural classes of graphs� such as trees� outerplanar graphs�
series�parallel graphs� and Halin graphs� Of great interest for our algorithms is the fact that any
graph in this class can be represented as a special type of tree� namely a tree�decomposition� of
bounded width� Such graphs have the property that there are small separators which break the

�School of Computing Science� Simon Fraser University� Burnaby� Canada� V�A �S�� email� arvind�cs�sfu�ca�
FAX ��	
� �
���	
�� Research supported by the Natural Sciences and Engineering Research Council of Canada� the
Center for System Sciences and the Advanced Systems Institute�

yDepartment of Computer Science� University of Waterloo� Waterloo� Ontario� Canada� N�L �G�� email�
nishi�plg�uwaterloo�ca� FAX ���
� ������	� Research supported by the Natural Sciences and Engineering Research
Council of Canada�

�



graph into a tree�like structure� This property has led to e�cient algorithms for a number of
problems which are di�cult to solve on general graphs� For example� Bodlaender �Bod
�� uses this
property to give a polynomial time algorithm to determine if two input graphs are isomorphic� He
combines the use of separators with a dynamic programming approach to build information about
the isomorphism� The basic idea of our algorithms is to attempt to process a graph with respect to
its tree�decomposition� We use some techniques developed for handling trees and introduce some
new techniques applicable to more general types of graphs�

Previous sequential algorithms for embedding problems on various classes of graphs include algo�
rithms for subgraph isomorphism on trees �Mat	��� two�connected outerplanar graphs �Lin�
�� two�
connected series�parallel graphs �LS���� bounded degree partial k�trees �MT

�� and k�connected
partial k�trees �MT

�� and algorithms for topological embedding on bounded degree partial k�
trees �MT

� and k�connected partial k�trees �MT

�� Earlier work in a parallel setting includes
algorithms for subgraph isomorphism �LK�
� GKMS
�� GN

� and topological embedding on
trees �GN

� and a number of problems on bounded degree partial k�trees including the subgraph
isomorphism problem �Bod��b�� but not for topological embedding or for subgraph isomorphism
on k�connected partial k�trees�

The contributions of our work to the understanding of embedding problems are two�fold� We
present the �rst parallel algorithms for subgraph isomorphism of k�connected partial k�trees and for
topological embedding of bounded degree partial k�trees and k�connected partial k�trees� Although
there are di�erent algorithms known for the other problems considered in this paper� one of our
contributions is to provide a general framework that allows us to extract the similarities between
trees and partial k�trees� subgraph isomorphism and topological embedding� and sequential and
parallel settings� Our algorithms are conceptually simple� exploiting the relatively simple structure
of a subtree isomorphism algorithm �Mat	��� and thereby making clear the connection between
trees and partial k�trees� At the same time� our methods are su�ciently �exible to allow us to
introduce modi�cations that address the di�erences between the problems under consideration�
we retain the same structure for sequential topological embedding algorithms� parallel subgraph
isomorphism algorithms� and ultimately parallel topological embedding algorithms�

The outline of the remainder of the paper is as follows� In the next section we give de�nitions�
Section � contains a description of some the di�culties encountered in attempting a straightforward
adaptation of the subtree isomorphism algorithm to form algorithms for our problems� as well as
techniques which can be applied to overcome these di�culties� The section ends with a general
outline of all eight algorithms� In Sections � and � we present sequential algorithms for subgraph
isomorphism and topological embedding� and in Section � we present their parallel counterparts�
Finally� in Section 	 open problems are presented�

� Preliminaries

For the problems discussed in this paper� each input graph will be a partial k�tree� properties of
which will be discussed in Section 
��� Of particular importance will be our ability to structure
such a graph as a special type of tree called a tree�decomposition� discussed in greater detail in
Section 
�
�

As our algorithms entail identifying a tree�decomposition� we introduce a graph that includes






all tree�decompositions� called a tree�decomposition graph� the tree�decomposition graph will be
discussed in greater detail in Section ��
� In order to avoid confusion� we will refer to nodes in the
original graphs� vertices in a tree�decomposition� and tdg�vertices in the tree�decomposition graph�
Terminology relevant to many of these structures is discussed in Section 
���

��� Graphs

We assume a basic familiarity with graphs and trees� the reader is referred to a standard refer�
ence �BM	�� for the appropriate background� We denote the vertex and edge sets of a graph G by
V �G� and E�G�� Unless otherwise speci�ed� all our graphs will be connected�

In the course of our algorithms� we will divide a graph G into pieces using a subset A of V �G��
We will denote the set of connected components of GnA by CG�A� where the subscript G will be
dropped when it is clear from context� The neighbourhood of A in B� nbhrA�B�� is the set of vertices
of B � V �G� which are adjacent to vertices of A� For G� and G� subgraphs of G� A separates G�

and G� if the only nodes that G� and G� have in common are in A and there is no edge in G from
a node in G� to one in G�� In this case� we will refer to A as a separator� It is not di�cult to see
that A is a separator of G� and G� if and only if nbhrG�

�G��� nbhrG�
�G�� � A�

All trees in this paper will be rooted �and therefore directed�� The size of a tree T � jV �T �j� is
denoted by jT j� We will say that a vertex x is a descendant of a vertex y if there is a �directed� path
from x to y of nonnegative length� We will distinguish between an arbitrary connected subgraph
of T � and a subtree of T consisting of a vertex and all of its descendants� We use Tv to denote
the subtree of T rooted at v� In addition� we will be concerned with pieces of the tree that arise
from removing a subtree from another subtree� For v � V �T � and w � V �Tv�� the subgraph TvnTw
denotes the subgraph obtained by removing from Tv all proper descendants of w� In particular�
this means that the node w � TvnTw� We will call TvnTw a scarred subtree of T � In this context� we
will call v a scar� and we will say that Tv is scarred at w or� more succinctly� that v is scarred at w�

In addition� we will refer to �induced� subgraphs of a graph G� By a subgraph of G we will
mean a graph G� such that V �G�� � V �G� and E�G�� � E�G�� For S a subset of nodes of G� the
node�induced subgraph �or just induced subgraph� of G with respect to S� or G�S�� is the subgraph
of G consisting of all nodes in S and all edges in G between two vertices in S�

More generally� for a directed acyclic graph G and a node a of G� we will say that node b is a
child of node a if there is an edge from b to a in the graph�

��� Tree�decompositions

The representation of graphs by the tree�like structures we present here was �rst introduced by
Robertson and Seymour �RS����

De�nition� Let G be a graph� A tree�decomposition for G is a pair �TG� �G� where TG is a tree
and �G � V �TG�� fsubsets of V �G�g satisfying�

�� for every e � �u� v� � E�G�� there is an x � V �TG� such that u� v � �G�x�� and


� for x� y� z � V �TG�� if y is on the path from x to z in TG then �G�x� � �G�z� � �G�y��

�



The width of a tree�decomposition �TG� �G�� tw�TG� �G�� is maxfj�G�x�j� � � x � V �TG�g and the
tree�width of a graph G� tw�G�� is the minimum width over all its tree�decompositions�

When clear from context� we may drop the superscript and write �T� ��� In addition� we may refer
to �H�x� as the label of x�

Examples� The tree�width of a clique Kn is n� �� the tree�width of a tree is � and the tree�width
of a cycle Cn is 
� A graph which is k�connected will have tree�width at least k�

Notice that in the above de�nition labels of vertices of TG only include nodes of G� We will�
however� refer to edges in �G�x� for x � V �TG� by which we mean the edges of the graph induced
by �G�x�� As well� we will assume that for every x� �G�x� is an �ordered� sequence instead of a set
�although we will use set notation where convenient�� For x� y � V �TG�� y a child of x� suppose
a� b � �G�x� � �G�y�� All our tree�decompositions will have the property that a and b occur in the
same relative order in both �G�x� and �G�y��

We can extend the notion of a node�induced subgraph to a set of nodes appearing in �G�x� for
nodes x in V �TG�� Namely� for a subgraph S of TG� we set GfSg to be the subgraph of G induced
by the nodes in

S
f�G�x� � x � V �S�g�

Let �TG� �G� be a tree�decomposition of a graph G� and let S be a connected subgraph of TG�
Then� for �GS the restriction of �G to S� �S� �GS � is a tree�decomposition of GfSg�

Intuitively� a tree�decomposition gives insight into separators of the graph� In particular� for
�TG� �G� a tree�decomposition of G and x � V �TG�� �G�x� separates the subgraphs of G induced
by �TG

c�
� �G�� � � � � �TG

c�
� �G�� �TGnTG

x � �
G� where c�� � � � � c� are the children of x�

The following lemma is a consequence of the de�nition of a tree�decomposition and the discussion
above� The separator is crucial to the development of our algorithms�

Lemma ���� Let �TG� �G� be a tree�decomposition of a graph G� Let y be a non�root vertex of TG

with parent x� Then �G�x� � �G�y� separates GfTyg from GfTnTxg�

Clearly the tree�decomposition of a graph G is not unique �see Figure �� and in general� if G
has tree�width k it has tree�decompositions of width between k and jV �G�j� For �xed k� there has
been considerable e�ort devoted to �nding algorithms which determine if a graph has tree�width
at most k� and if so� �nd a tree�decomposition of bounded width�

Robertson and Seymour�s work �RS��� gives a non�constructive proof of the existence of anO�n��
algorithm for this problem� Arnborg et al� �ACP�
� exhibit an O�nk��� algorithm� Subsequent work
on this problem was performed by Lagergren �Lag
�� and Reed �Ree

� who achieved quasi�linear
time algorithms� Recently� Bodlaender �Bod
�� has settled the question for the sequential case by
demonstrating a linear time algorithm� Discussion of parallel algorithms for the problem can be
found in Section ��

��� Graphs of bounded tree�width

In this paper� we will use the terms partial k�tree and graph of bounded tree�width interchange�
ably �Ros	��� A partial k�tree is a subgraph of a k�tree� which in turn is de�ned below�

De�nition� Let k � �� A k�tree is a graph from which it is possible to obtain a k�clique �Kk� by
a sequence of eliminations of degree k vertices whose neighbours form a clique�

�



�
�
�
�
�
�
�
�
�
�

s s

ss

G �tw�G� � 
�

a

c d

b

�
�
�
�ab

�
�
�
�abc

�
�
�
�bc

�
�
�
�bcd

Tree Decomposition �

�
�
�
�

�
�

�

�
�
��

�
�
�
�
�
�
�

bc

abc bcd

Tree Decomposition 


Figure �� Two di�erent tree decompositions of graph G

�
�
�
�
�
�
�
�

�
�
�
�

��
��

��
��

��
���

�
�
�
�

�
�

�

�
�
�
�

s
s
s
s

s

s

A

C

E

D

B

F

Perfect elimination ordering�

E� F�D�C�A�B

Figure 
� A 
�tree and perfect elimination ordering

For a k�tree G� a sequence of vertex eliminations satisfying the property in the above de�nition is
called a perfect elimination ordering for G� Figure 
 gives an example of a 
�tree with a perfect
elimination ordering� An alternate characterization of a k�tree is given by the following recursive
construction�

Lemma ���� Let k � �� Then� the set of k�trees is the smallest set of graphs satisfying�

�� A k�clique is a k�tree�

�� Let G be a k�tree on n nodes and K be a k�clique in G� Then the n�� node graph G� formed
by taking G and introducing a new vertex v adjacent to all of K is a k�tree�

Every graph G is a partial k�tree for some k� since G is is trivially a partial jV �G�j�tree� The
problem of determining the minimumk for which a graph is a partial k�tree is NP�complete �ACP�
��

�



This problem is in fact equivalent to �nding the minimum k for which G has tree�width k� as shown
in the lemma below�

Lemma ���� Let G be a graph� Then G is a partial k�tree if and only if tw�G� � k�

There are a large number of natural classes of graphs which are partial k�trees for some k� Trees
are ��trees and both outerplanar graphs and the more general series�parallel graphs are partial 
�
trees� Halin graphs are partial ��trees� Chordal graphs with maximum clique size k are partial
k�trees� Finally� any family of graphs closed under minors which does not contain a planar graph
is a k�tree for k a function of the size of the excluded planar graph �RS����

��� Topological embedding

The problem of topological embedding is a generalization of the problem of subgraph isomorphism�
Intuitively� a subgraph isomorphism algorithm determines a mapping from nodes in G to nodes in
H and from edges in G to edges in H � A topological embedding algorithm instead �nds a mapping
from nodes in G to nodes in H and from edges in G to paths in H � such that the images of the
edges in G form node�disjoint paths in H � A more formal de�nition follows�

De�nition� Let G and H be graphs� Then G is topologically embeddable in H � if there is a pair of
functions �f�� f�� such that�

�� f� � V �G�� V �H� is one�to�one�


� f� � E�G�� fpaths in Hg�

�� if e � �x� y� � E�G� then f��e� has end points f��x� and f��y�� and

�� for e� e� � E�G�� e �� e�� f��e� and f��e�� have no vertices in common except possibly for their
endpoints�

Alternatively� if there is a subgraph ofH that is isomorphic toG� we can talk about transforming
H into G by removing nodes and edges not found in that subgraph� Each node of H is either
preserved by the transformation� if it is in the image of V �G� under the mapping� or it is deleted�
If there is a topological embedding of G in H � we can transform H into G by removing nodes
and edges� and then by shrinking paths into edges� The process of shrinking a path consists of
contracting edges in the path� We can view the edges in the path as being contracted from one
path endpoint or the other into the middle of the path� where each time an edge is contracted� the
intermediate node on the path is collapsed into a path endpoint� In the transformation of H into
G� there are nodes which are preserved �the image of the mapping of the V �G��� nodes which are
collapsed �interior nodes in the paths�� and nodes which are deleted�

To make explicit the mechanism of collapsed nodes in a topological embedding� we give an alter�
nate de�nition of topological embedding� equivalent to that given above� In the earlier de�nition�
the embedding is characterized by two functions� one from vertices in G to vertices in H � and the
other from edges in G to paths in H � The notion of collapsed nodes is implicit in the function
from edges in G to paths in H � In the de�nition below� the embedding is also characterized by two

�



functions� this time one from vertices in G to vertices in H � and the other from intermediate nodes
of paths in H to endpoints of paths in H � In this alternate de�nition� the collapsing of nodes is
made explicit and the existence of node�disjoint paths is made implicit� In the remainder of the
paper� we will use this alternate de�nition�

Lemma ���� Let G and H be graphs� Then G is topologically embeddable in H� if and only if there
is a pair of functions �f� g� such that�

�� f � V �G�� V �H� is one�to�one �we use FI to denote the nodes in the image of f�	

�� g � SG� FI� where SG � V �H�nFI �we use GI to denote the nodes in the image of g�	


� each node in SG has degree at most two in G�SG�FI�	

�� the nodes in SG can be partitioned such that there is one �possibly empty� partition Pe for
each edge e � E�G� and one partition for �unused
 nodes	 and

�� for edge e � �x� y� � E�G�� there is a path f�x�� v�� � � � � vk� f�y� in H such that v�� � � � � vk � Pe
and for some i � k� g�v�� � � � �� g�vi� � f�x� and g�vi��� � � � �� g�vk� � f�y��

Where appropriate� we will say that G is topologically embeddable in H with respect to �f� g��

� Adapting tree techniques

Our algorithms make use of methods developed to solve problems on trees by making use of the
tree�like structure of the tree�decomposition of a graph� To provide a framework in which to discuss
techniques needed to create working algorithms� we brie�y describe one method of solving subtree
isomorphism sequentially and then delineate the problems encountered in attempting to adapt
this algorithm to more general classes of graphs� We demonstrate our techniques with respect to
the subgraph isomorphism problem on k�connected partial k�trees and then show how they can
be applied to other embedding problems� In Section � we discuss further developments used in
forming parallel algorithms�

Matula �Mat	�� was the �rst to show a polynomial time procedure for the subtree isomorphism
problem� He used a dynamic programming approach to work level by level up the tree� at each step
combining information using bipartite matching� This approach has successfully been combined
with other techniques to derive parallel algorithms for this problem �LK�
� GKMS
�� as well as
parallel algorithms for a variety of other embedding problems on trees �GN

�� Bodlaender applied
this methodology to a large set of problems� including the subgraph isomorphism problem for
bounded degree graphs of bounded treewidth� both sequentially �Bod��a� and in parallel �Bod��b��

To examine the dynamic programming approach in greater detail� suppose we are given two
trees T and T � and we wish to determine whether T is isomorphic to a subtree of T �� We proceed
by working from leaves to root in T � �nding in turn for each node v all possible mappings of Tv
into T �� For a node v with children c� through ck� the mappings of Tv will be determined using
the previously computed mappings of Tc� through Tck � Because each vertex is a separator of the
tree� by identifying a node v we are immediately identifying a set of previously processed connected

	



components� namely Tc� through Tck� and a connected component yet to be processed� namely
TnTv�

In the subtree algorithm� the structure of T can be used to determine the order in which nodes
are processed� In particular� the rooting of a tree provides an orientation� making it meaningful
to talk about processing children before a parent� This orientation is particularly important as
information gained in processing children is used in processing a parent�

Viewed as a problem on graphs of tree width one� we can view the processing of nodes as taking
place simultaneously in the tree�decompositions of the source tree T and the target tree T �� Since
the trees themselves can act as tree�decompositions� we have the tree�decompositions of the source
and target graphs as inputs�

When our inputs are graphs of tree�width greater than one� however� we no longer have as input
canonical tree�decompositions of the two graphs� Although we can easily obtain tree�decompositions
of the graphs �as discussed in Section 
�� since tree decompositions are not necessarily unique�
isomorphic graphs may not be characterized by isomorphic tree�decompositions� We can �x a tree
decomposition for one of the two graphs and root it to give an orientation to that graph� but it is
not clear how this orientation can be used in the other graph� It is in fact this problem that seems
to induce �NP�completeness� in the general case for subgraph isomorphism of partial k�trees� We
will see in Section �� that we can use the fact that either the source graph is of bounded degree or
k�connected to solve this problem� In the remainder of this section� we introduce tools created to
address these problems� namely normalized tree�decompositions and tree�decomposition graphs�

��� Normalized tree�decompositions

In this section� we de�ne a special type of tree�decomposition needed for the subgraph isomorphism
algorithm� and then show how to form a tree�decomposition of this type�

The goal of the algorithm will be to construct such a decomposition for H and then attempt
to construct one for G with the same underlying tree structure� In the process we will determine
if G is a subgraph of H �

De�nition� Let H be a graph of size greater than k and let �TH � �H� be a tree�decomposition of
H of width k� Then �TH � �H� is a normalized tree�decomposition if�

�� The vertices of TH can be labelled as separator vertices and clique vertices such that the root
of TH is a separator vertex� the leaves of TH are clique vertices� the child of each separator
vertex is a clique vertex and the child of each clique vertex is a separator vertex�


� For any separator vertex x � V �TH�� j�H�x�j � k�

�� For any clique vertex y � V �TH�� j�H�y�j � k � ��

�� For any siblings x and y� j�H�x�j �� j�H�y�j�

�� For any separator vertex x with child y� �H�y� � �H�x�
S
fag for some node a �� �H�x�� and

the ordering on the nodes in �H�y� is the same as in �H�x�� with a added at the end�

�� For any clique vertex y with child x� �H�x� � �H�y�� with the nodes in �H�x� in the same
relative order as in �H�y��

�



�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�

�s
s
s
s

s
s

A

C

E

D

B

F

Graph H

�
�
�
�����

�
�
�
HHH�
�
�
�����

�
�
�
HHH�
�
�
�

ABC

BCD AC

CDE CDF

A Tree Decomposition

�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
��� HH�

�
�
�
�
�
�
�

AB

ABC

BC

BCD

CD

CDE CDF

A Normalized
Tree Decomposition

Figure �� A tree�decomposition of H � before and after normalization

	� For any clique vertex y with child x� with a � �H�y� but not in the the parent of y� a must
be in �H�x��

A normalized tree�decomposition roughly corresponds to a perfect vertex elimination ordering
for the underlying graph completed to a k�tree� where the node a in conditions � and 	 corresponds
to the node being eliminated at a particular point in the sequence�

It is not di�cult to transform any tree�decomposition into a normalized one� Figure � illustrates
a graph H � a tree�decomposition of H � and the normalized tree�decomposition of H obtained by
applying the construction given in Lemma ����

Lemma ���� LetH be a graph and �TH � �H� be a tree�decomposition of H of width k� Then there is
an O�jV �TH�j�� time algorithm which takes �TH � �H� and returns a normalized tree�decomposition
�SH � �H� of H whose width is also k�

Proof�
We �rst set SH to equal TH and �H to equal �H � and then modify them to �t the conditions�

Step �� We contract any edge between vertices x and y such that �H�x� � �H�y��
Step �� We set all existing vertices to be clique vertices� since �TH � �H� was a tree�decomposition
of H of width k� it is clear that condition 
 has been satis�ed�
Step �� Between each pair of clique vertices x and y� where x is the parent and y the child�
we insert a constant number of new vertices in a path as follows� Let S � �H�x� � �H�y� and let
n�� � � �nj be the nodes in �H�y��S� Because the underlying graph H is connected� we can conclude
that S is nonempty� due to Step �� we know that S is strictly smaller than either the label of x
or the label of y� We create a child of x� a separator vertex with label S� The next two nodes on
the path from x to y are a clique vertex and then a separator vertex� each with label S 	 fn�g� the






following two a clique vertex and a separator vertex each with label S 	 fn�� n�g� and so on� until
the path ends at y�

It is not di�cult to see that conditions 
 and � are satis�ed� To see that conditions � and � can
be satis�ed� it su�ces to observe that we can set the orderings on the labels in the obvious way�
Step �� We now ensure that condition 	 is satis�ed� The condition is violated by a situation in
which a separator vertex z is the parent of a clique vertex y� in turn the parent of separator vertex
x� such that the unique node a in �H�y�n�H�z� is not contained in �H�x�� In this case� it is not
di�cult to see that �H�x� � �H�z�� We remove the edge between y and x� instead making x into
a child of the parent of z�
Step �� Condition � can be satis�ed by examining all siblings to see if they share a label value�
and if so� to combine such siblings into a single node with all subtrees of the original siblings�
Step 	� Finally� to satisfy condition �� we add in a separator vertex as a root� choosing as its label
an arbitrary subset of the label of the original root�

It is not di�cult to see that each of the above steps can be completed in the stated running
time�

Combining the result of Bodlaender �Bod
�� showing a linear time algorithm for �nding a tree�
decomposition of width k for a partial k�tree and the algorithm in Lemma ���� we obtain�

Corollary ���� Let H be a partial k�tree with n nodes� Then� there is an O�n�� algorithm which�
on input H returns a normalized tree�decomposition �TH � �H� of H of width k�

We will require the following fact about normalized tree decompositions of k�connected partial
k�trees�

Lemma ���� Let �TG� �G� be a width k normalized tree�decomposition of a k�connected partial k�
tree G� Let v � V �TG� with children w�� � � � � wr� Then each of the graphs GfTnTvg� GfTw�g

� � � � � GfTwrg

are connected�

Proof�

Since we can view a tree�decomposition as being rooted at any vertex of the tree TG� it su�ces
to consider only the case in which v is the root of TG� Similarly� since the proofs for v a separator
vertex and v a clique vertex are similar� we present only the former�

To show that each of the graphs GfTwig
is connected is equivalent to showing that the number

of components in CG��
G�v�� is equal to the number of children of v� By the de�nition of a tree�

decomposition� clearly there cannot be more children than components�
Suppose instead that the number of children is smaller than the number of components� Then�

there must be some pair of components that are subgraphs of the graph GfTw�g
� for some value of

�� Without loss of generality� we assume that the components C and D form GfTw�g
� Since w� is

a clique vertex� by Condition � in the de�nition of normalized tree�decompositions there is a node
a � �G�w�� such that a �� �G�v�� The node a must be in either C or D� without loss of generality�
we assume that a � C�

As C and D are both subgraphs of GfTw�g
� there must be a least one vertex in Tw�

which
contains at least one node in D� We let y be the vertex of Tw�

that contains at least one node in
D� say b� and such that no ancestor of y contains any node in D�

��



Since G is k�connected� it is not di�cult to see that for each separator vertex x � TG� the size
of �G�x� is equal to k� Moreover� there must be at least k node�disjoint paths in G from b to the
k nodes in �G�v��

We now consider the child x of w� which is the ancestor of y� By Condition 	 in the de�nition
of normalized tree�decompositions� we can conclude that a � �H�x�� Since x is a separator vertex�
�G�x� contains at most k� � nodes in D� By Menger�s Theorem� there can be no more than k� �
node�disjoint paths from b to the nodes in �G�v��

Thus� we can not obtain the required k node�disjoint paths in G from b to the k nodes in �G�v��
contradicting the assumption that G is k�connected�

��� Tree�decomposition graphs

As outlined above� our algorithm constructs a normalized tree�decomposition of H and then pro�
ceeds up this tree level by level� attempting to construct a similar tree�decomposition of G� Here
we will construct a representation graph whose vertices correspond to vertices in such a tree�
decomposition of G� if one exists� We give a high�level explanation of the construction� followed by
formal de�nitions� In this section we focus on the subgraph isomorphism problem for k�connected
partial k�trees� modi�cations needed for the other algorithms will be presented in Sections ��
 and
�� Lemma ��� is the key to simplifying the k�connected case�

����� De�nition of TDG�G�

We construct a graph called a tree�decomposition graph of G� we refer to the vertices of this graph
as tdg�vertices�

Intuitively� a tdg�vertex corresponds to a potential vertex in a tree�decomposition of G� it
contains information about the structure of that vertex as well as its placement in the tree�
decomposition� A tree�decomposition graph consists of two types of tdg�vertices� separator vertices
and clique vertices� intuitively corresponding to the k�clique to which a new node is attached and
the resulting �k � ���clique� respectively� in a node�elimination ordering of a k�tree�

A separator vertex � of the tree�decomposition graph of G is a triple �Sep�� ��� Part��� where
Sep� is a set of nodes of G called the separator of �� �� is a permutation on the elements of the
separator of � called the ordering on Sep�� and Part� the partition induced by �� Furthermore�
in Part� � �P�

� � P
�
� � � � � � P

�
r �� we call P�

� the parent partition and for i � �� we call P�
i a child

partition� In these partitions� each P�
i is a single connected component of GnSep��

The separator is a set of nodes forming the label of a vertex in a tree�decomposition of G� The
ordering on Sep� indicates the ordering on the nodes� as necessitated by the de�nition of a label
of a tree�decomposition vertex as a sequence rather than a set of nodes� The tdg�vertices represent
all possible separators and all possible orderings�

In any tree�decomposition ofG with a vertex x labelled by the nodes in Sep� �with any ordering��
the subgraph of non�descendants of x and the subtrees rooted at the children of x induce subgraphs
of G� each consisting of a single connected component from C�Sep�� �see Lemma ���� recall that this
is a consequence of the fact that G is k�connected�� For convenience� each connected component
can be represented by the smallest numbered node appearing in that component� Part� speci�es
the assignment of connected components to subgraphs of the tree�decomposition� In particular� P�

�

��



�
�

�
��fb� cg� �b� c�� �
� fag� fdg��

�
�

�
��fa� b� cg� �b� c� a�� �fdg��

�
�

�
��fb� c� dg� �b� c� d�� �fag��

����������

PPPPPPPPPP

Separator �

Clique
QQk ���

Figure �� Part of TDG�G�

is the set of nodes in the connected component assigned to the subgraph of non�descendants of x
and the P�

i �s for i �� � to the subtrees rooted at the r children of x� The tdg�vertices represent all
possible ways of making such assignments�

A clique vertex is de�ned similarly� the main di�erence is that in a clique vertex there must
exist a node which did not exist in its parent� A clique vertex 	 is a tuple �Clique�� 
�� Region���
where Clique� is a set of nodes in G� 
� is a permutation on the nodes in that set� and Region�

is a set of regions de�ned below� The set of partitions� Region�� consists of the set R�
� of nodes

forming the parent partition of Clique�� plus pairs �R�
i � S

�
i �� where S

�
i is Clique� less one node xi

�xi not the new node� and R�
i is G less the component of C�S�

i � which contains xi�
Just as the tdg�vertices correspond to possible vertices in a tree�decomposition of G� the edges

in the tree�decomposition graph correspond to potential edges in a tree�decomposition� To capture
this notion� we group children of a node into clusters� such that the edge between the parent and
only one of the children in a cluster can exist� We can think of the clusters as a level of OR gates
between the parents and the children� Then� a clique vertex is in the jth cluster of a separator
vertex �the parent� if the clique vertex contains all the nodes in the parent plus a new node in the
jth partition� and if the sets of connected components match up in the appropriate way�

The requirements for a separator vertex to be in the cluster of a clique vertex are similar in
general� In the case of a k�connected partial k�tree� there is only one possible choice for a separator
and thus the clusters are trivial�

The following formalizes the intuitive de�nition given above� Figure � illustrates a part of the
tree�decomposition graph for the graph G illustrated in Figure ��

De�nition� Let G be a k�connected graph of width k� The tree�decomposition graph ofG� TDG�G��
is a directed graph �V S 	 VC�E��

�� The set V S consists of all triples � � f�Sep�� ��� Part��g satisfying�

�a� Sep� is a subset of V �G� of size k�

�b� �� is a permutation of the elements of Sep�� and

�c� Part� is a set �P�
� � P

�
� � � � � � P

�
r �� r � jC�Sep��j such that for each i� � � i � r� P�

i is
a set of nodes of G� and the P�

i �s form a partition of C�Sep�� such that P�
� contains

zero or one connected component and the remaining P�
i �s contain exactly one connected

component each�

�





� The set VC is the set of all tuples 	 � fClique�� 
�� Region�g� such that�

�a� Clique� is a subset of V �G� of size k � ��

�b� 
� is a permutation of the elements of Clique�� say x�� � � � � xk���

�c� Region� is a set �R�
� � �R

�
� � S

�
� �� � � � � �R

�

k � S
�

k ��� such that the following conditions are
satis�ed�

i� for � � i � k� S�
i � Clique�nfxig�

ii� R�
� � 	fC � C � C�G�x������xk�� and xk�� �� Cg�

iii� R�
i � 	fC � C � C�G�S�

i
�� and xi �� Cg�

�� A clique node 	 � �Clique�� 
�� Region�� with Clique� under the permutation 
� equal
�x�� � � � � xk��� is in the jth cluster of a separator node � � f�Sep�� ��� Part��g �the parent�
if and only if

�a� xk�� � Pj �

�b� Sep� under the permutation �� is �x�� � � � � xk��

�c� R�
� �

S
i��j P

�
i �

�d� P�
j � fxk��g 	

S
i��R

�
i �

�� A separator node � � f�Sep�� ��� Part��g is in the jth cluster of a clique node 	 �
�Clique�� 
�� Region�� �the parent� withClique� under the permutation 
� equal �x�� � � � � xk���
if and only if

�a� Sep� under the permutation �� is �x�� � � � � xj��� xj��� � � � � xk����

�b� P�
� �

S
i��j R

�
i �

�c� R�
j �

S
i��P

�
i �

As we noted earlier� it is easy to show that for a k�connected partial k�tree� there will be at
most one separator node in the cluster of each clique node� We present these de�nitions in a more
general form to serve as a basis for the de�nitions for other cases� to be considered later in the
paper�

����� Facts about TDG�G�

In order to make use of tree�decomposition graphs in our algorithm� we �rst establish a num�
ber of properties concerning the size and structure of the graphs� Similar lemmas about tree�
decomposition graphs of bounded degree partial k�trees can be found in Section ��
�

Lemma ���� Let TDG�G� be the tree�decomposition graph of a k�connected partial k�tree G� and
let n � jV �G�j� Then� TDG�G� has size O�nk��� and can be created in time O�nk����

��



Proof� To create all the separator tdg�vertices in TDG�G�� we �rst identify all separators of the
appropriate size� and for each separator determine all the connected components which remain
when the separator is removed� For convenience� a connected component can be represented by the
smallest numbered vertex in that component �unique numbers can be assigned to the nodes in G
in a preprocessing step using a depth��rst search�� The number of separators is at most

�
n

k

�
� which

is in O�nk�� For each separator� the connected components can be found in time O�n�� for a total
cost of O�nk���� At this point we have generated all possible values for the �rst component in a
separator tdg�vertex�

Next� for each separator� we enumerate all possible orderings� giving a total of O��k � ����
orderings per separator� or O��k� ���nk��� di�erent possibilities for the �rst two components in a
tdg�vertex� To determine all possibilities for the third component� recall that by Lemma ��� each
partition consists of a single component� It su�ces to specify which of the O�n� components is the
parent component� since the order of the children partitions is unimportant�

To count the number of clique tdg�vertices� we consider the number of possible choices for
Clique� orderings� and for each of the constant number of subsets� the choice of components� for a
total of O�nk����

Finally� we determine the memberships in all clusters� For a particular clique tdg�vertex� a
separator tdg�vertex in its jth cluster must have a particular separator and a particular ordering
on that separator� Moreover� as a consequence of Lemma ��� and the fact that the nodes associated
with the separator tdg�vertex form a subset of the nodes associated with the clique tdg�vertex� the
partition induced by the clique tdg�vertex dictates the partition induced by the separator tdg�
vertex� Since there is a single candidate for a given clique tdg�vertex and cluster� there are a total
of O�nk��� candidates for all clique vertices �recall that the number of clusters of a clique tdg�
vertex is constant�� For a particular separator tdg�vertex� there are O�n� di�erent possible ways of
extending the separator label to form a clique label� and for each of those O��� ways of partitioning
since the parent partition is �xed and the other partitions are each a connected component� This
yields a total time of O�nk��� for the whole algorithm�

The next three lemmas show that tree�decompositions are structurally contained inside a tree�
decomposition graph�

Lemma ���� For G a graph� the tree�decomposition graph TDG�G� is acyclic�

Proof� Suppose that there is an edge from a clique tdg�vertex 	 �parent� to another separator
tdg�vertex � �child�� By the requirements for the existence of the edge� the size of P �

� must be
strictly smaller than the size of P�

� � The acyclicity of the graph follows from this fact�

De�nition� Let G be a graph of width k and � a tdg�vertex of TDG�G�� The graph induced by
�� G��	 is the subgraph of G induced by V �G�nV �P���

The proof of Lemma ��� �and the analogous lemma for clique tdg�vertices� omitted from this paper�
is a direct consequence of the conditions specifying an edge in the de�nition of a tree�decomposition
graph�

Lemma ��	� Let TDG�G� be a tree�decomposition graph of a graph G� Let � be a separator tdg�
vertex with children 	�� � � � � 	r� Let Part� � �P�

� � � � � �P
�
s � be the partition induced by �� Then�

there is a one�to�one correspondence between the 	i and the P�
i � � � i � r�

��



��� General algorithm sketch

Since the same techniques are used in all eight algorithms discussed in this paper� the algorithms
share a general structure� In this section we mention the points common to all the algorithms� in
later sections we will highlight the di�erences between them�

Each algorithm �rst creates a normalized tree�decomposition of H � In the parallel algorithms�
the tree�decomposition of H undergoes further processing to ensure sublinear running time�

Next� the tree decomposition graph ofG is formed� Each algorithm entails searching in TDG�G�
for a tree�decomposition of G which mimics that of H � The way in which H can be transformed
into G depends on whether the algorithm is a subgraph isomorphism algorithm or a topological
embedding algorithm� Thus� the exact de�nition of TDG�G� depends on which problem is being
solved� Recall that the problems are NP�complete for G a general partial k�tree� to obtain polyno�
mial time algorithms� we exploit the nature of G as being of bounded degree or k�connected� The
de�nition of TDG�G� di�ers for these two cases�

To be able to talk about the similarity between a tdg�vertex in TDG�G� and a vertex in TH � we
de�ne a special type of tdg�mapping between the two structures� Ultimately� we wish to show that
if there exists a tdg�mapping between any tdg�vertex and the root of TH � then we can conclude that
there exists a subgraph of H isomorphic to G� in the case of the subgraph isomorphism problem�
or that G can be topologically embedded in H � in the case of the topological embedding problem�

Finally� each algorithm proceeds by processing the nodes of TH from bottom to top� at each
point determining for each tdg�vertex in TDG�G� whether or not there is a tdg�mapping from the
tdg�vertex to the node of TH � The results of this determination for a particular node of TH are
stored in a bit vector or array for that node� The size of the array and the amount of information
to be stored in an entry depend on the particular problem being solved� In each case� the values
in the array for a particular vertex of TH will depend on values in the arrays at children of that
vertex�

The running time of the algorithm is then the time to create a tree�decomposition of H � added
to the time to normalize that tree�decomposition �and add further structure� if needed�� added to
the time to create TDG�G�� and �nally added to the time to �ll in each array in TH � This last
quantity will consist of the number of vertices in TH multiplied by the time to �ll in all entries in
one array� in the case of a sequential algorithm� and in the case of a parallel algorithm� the depth
of the newly structured TH multiplied by the time to �ll in all entries in one array�

� Sequential subgraph isomorphism

In this section we present an O�nk�
��� time algorithm to determine� given a k�connected partial k�
tree G and a partial k�tree H � whether H contains a subgraph isomorphic to G� We then show how
this algorithm can be modi�ed to yield an O�nk��� time algorithm for the subgraph isomorphism
problem for G a bounded degree partial k�tree� and polynomial time algorithms for topological
embedding� Although there are other algorithms known for these problems �MT

�� we present
ours as natural generalizations of the approaches taken in solving subgraph isomorphism on trees
which� in turn� generalize naturally to sequential topological embedding algorithms and parallel
algorithms for all the problems under consideration�

��



��� Subgraph isomorphism for the k�connected case

In this section� we present details of the subgraph isomorphism algorithm for a k�connected source
graph� In order to be able to discuss the mapping of clique �respectively� separator� tdg�vertices
in TDG�G� to clique �respectively� separator� vertices of TH � we need to de�ne an isomorphism
between the subgraphs of G induced by the two sets of nodes�

De�nition� Given a TDG�G� clique vertex 	 and a vertex x in TH � we will say that 	 is order
preserving isomorphic to x if k�� � jClique�j � j�H�x�j and G�Clique� � is isomorphic to a subgraph
of H���x	�� such that the sequence of nodes of G in Clique� ordered by the permutation 
� map to
the nodes in �H�x�� in order� in that isomorphism�

The de�nition with respect to separator vertices is analogous� and hence omitted� More generally�
we require isomorphisms from subgraphs of TDG�G� to subtrees of a tree�decomposition of H � the
de�nition with respect to separator vertices is analogous�

De�nition� Suppose there is a clique tdg�vertex 	 of TDG�G� and a vertex x of TH such that
G��	 is isomorphic to a subgraph of HfTxg� Let f be an isomorphism between these two graphs�
Then� f is a tdg�isomorphism from 	 to x if�

�� f is an order preserving isomorphism of 	 into x� and


� for each child � of 	 there is a unique child y of x such that �the appropriate restriction of�
f is a tdg�isomorphism from � to y�

Theorem ���� Let G and H be partial k�trees for k greater than zero� and let G be k�connected�
Let n � jV �G�j� jV �H�j� Then there is an O�nk�
��� time algorithm to determine whether or not
G is isomorphic to a subgraph of H�

Proof of Theorem�

Our algorithm �rst creates a normalized tree�decomposition of H � �TH � �H�� and after that a
tree�decomposition graph of G� TDG�G�� We then wish to determine� for every tdg�vertex and
every vertex of TH � whether or not there is a tdg�isomorphism from the tdg�vertex to the vertex
of TH � If there is a tdg�isomorphism from any sink in TDG�G� to the root of TH � we will then
conclude that there exists a subgraph of H which is isomorphic to G�

With every vertex x of TH we associate a bit vector� Bx� of length jTDG�G�j with one bit
for each tdg�vertex of TDG�G�� The bit corresponding to tdg�vertex � of TDG�G� is denoted by
Bx���� We will set Bx��� to � if and only if there is a tdg�isomorphism from � to x� proceeding up
from the leaves of TH � For a vertex x of TH and tdg�vertex � of TDG�G�� Bx��� is determined
after all By�	� have been determined where y is a child of x and 	 is any tdg�vertex of TDG�G��

We now show how to determine whether or not Bx��� � �� If x has no children� then Bx��� � �
if and only if � is order preserving isomorphic to x� and Part� � �P�� �which implies that � has
no children�� This can be determined in constant time�

We now consider the situation in which x has at least one child� Let y�� � � � � ym be the children
of x and 	�� � � � � 	r be the children of �� When we process x and �� vectors for all children of x
have been completed� in particular� we have obtained all tdg�isomorphism information concerning

��



Isomorphism�
a� A� b� B
c� C� d� D�

�
�
��fa� bg� �a� b�� �
� fc� dg��

�
�

�
��fa� b� cg� �a� b� c�� �
� fdg��

�
�

�
��fb� cg� �b� c�� �fag� fdg��

�
�

�
��fb� c� dg� �b� c� d�� �fag� 
��

Isomorphism�
d� A� c� B
b� C� a� D�

�
�
��fc� dg� �d� c�� �
� fa� bg��

�
�

�
��fb� c� dg� �d� c� b�� �
� fag��

�
�

�
��fb� cg� �c� b�� �fdg� fag��

�
�

�
��fa� b� cg� �c� b� a�� �fdg� 
��

�Separator�

�Clique�

�Separator�

�Clique�

TDG�G� contains both segments given above� The isomorphism depends on the tree decomposition of H�

Figure �� Parts of TDG�G� which map to �TH � �H�

children of � and children of x� More formally� for � � i � m� � � j � r� Byi�	j� has been
determined�

We construct a bipartite graph �X� Y � where there is a vertex in X for each 	i and a vertex in
Y for each yj � There is an edge from 	i to yj if Byj �	i� � �� Then we set Bx��� to � if there is a
matching in �X� Y � in which all of X is used and there is an order preserving isomorphism from �
to x which is consistent with the matching�

An illustration of a matching problem can be seen in Figure �� where a tdg�vertex � has three
children and a vertex x in the tree�decomposition of H has m children�

By �nding tdg�isomorphisms from tdg�vertices in TDG�G� to vertices in TH � the process of
�lling in the entries in the bit vectors can be seen as selecting tdg�vertices that represent a tree�
decomposition of G corresponding to that of H � Since there are nodes in H which do not appear
in G� it is possible that there is not a one�to�one correspondence between selected tdg�vertices and
vertices of TH � In particular� consider a separator vertex z with parent y and grandparent z� all in
TH � By de�nition� there exists in H a node a which is in �H�y� and �H�z�� but not in �H�x�� If
no node in G maps to a� then TDG�G� will not contain tdg�vertices for all of x� y� and z�

In order to handle this situation� it is necessary to check whether or not the desired tdg�
isomorphism was not already achieved at the previous level of separator tdg�vertices �respectively�
clique tdg�vertices�� Accordingly when for some grandchild z of x� B��z� � � and � is tdg�isomorphic

�	



	

��
�� ��

��

�

	� 	� 	�

In TDG�G�� � has � children
Bold lines indicate clusters

	

��

x
�

�
�

	
	
p p p pcc

c

��

y� y� y� ym

In �TH � �H�� x has m children

s
s
s

sssppps










Q
Q
Q
Q
QQ

HHHHHH
�
�
�
�
�
�










	�

	�

	�

y�
y�
y�

ym

Setting up the matching
�	i� yj� an edge i� Byj �	i� � �

Figure �� Setting up a matching between � and x

to x with the same tdg�isomorphism as that from � to z� we set Bx��� � �� There are O�n�
grandchildren to check for each x�

Figure � illustrates two possible mappings obtained between TDG�G� and �TH � �H� when the
input graphs are graph G from Figure � and graph H from Figure �� For each of the mappings�
the corresponding isomorphism is illustrated�

To prove that the algorithm is correct� it is su�cient to show by induction that for any � and
x� there is a subgraph of HfTxg isomorphic to G��	 if and only if there is a tdg�isomorphism from �

to x� The proof follows from the de�nition of the tdg�isomorphism and the algorithm� the details
are omitted from this paper�

To determine the running time of this algorithm� we recall we can construct a normalized tree
decomposition of H in time O�n�� �Corollary ��
�� Further� we recall that the size of TDG�G� is
O�nk��� and that TDG�G� can be constructed in time O�nk��� �Lemma ����� For x a vertex of
TH and � a tdg�vertex of TDG�G�� determining Bx��� can be accomplished in time O�n���� �due
to the cost of bipartite matching� giving a time bound of O�nk�
����

��� Subgraph isomorphism for the bounded degree case

We give a brief outline of the changes to the above algorithm for the case where G is of bounded
degree but not necessarily k�connected� Recall that in Lemma ��� we asserted that when a separator
was removed fromG� each remaining piece was connected� When we created the tree�decomposition
graph of G� to form a partition into parent and child partitions� it was su�cient to identify which
one connected component belonged to the parent partition� Now� we have to consider the cost of
assigning multiple connected components to a particular partition� Moreover� in the previous case
we could assume that the size of a clique was always k � � and that of a separator was always k�
in this more general case� we can no longer make such an assumption�

����� Modi�cation of TDG�G�

To handle the situation in which a tdg�vertex is to be mapped to a vertex of TH containing a
di�erent number of vertices� we make the following changes to TDG�G��

��



�� Sep� is an array of size k of which zero or more entries may be blank�


� Clique� is an array of size k � � of which zero of more entries may be blank�

�� P�
� contains zero or more connected components and the remaining P�

i �s contain one or more
connected components each �recall that the Pi�s form a partition of CG�Sep����

�� S�
i is a subset of the numbers f�� � � � � kg corresponding to a subset of Clique� with the new

node understood to be included� Since Clique� may contain blanks� for any j � S�
i � the jth

item in Clique� may be a blank�

We can make use of the fact that G has bounded degree to keep TDG�G� from becoming too
large� Lemma ��
 establishes the size and creation time�

Lemma ���� Let TDG�G� be the tree�decomposition graph of a bounded degree partial k�tree G�
Let d be the maximum degree of a node in G� and let n � jV �G�j� Then� TDG�G� has size O�nk���
and can be created in time O�nk����

Proof� As this proof is very similar to that of Lemma ���� we omit some of the details in order to
highlight the di�erences�

To create all the separator tdg�vertices in TDG�G�� we �rst identify all separators of the appro�
priate size� and for each separator determine all the connected components which remain when the
separator is removed� The number of separators will be at most

Pk

i��

�
n

i

�
� which is in O�nk�� For

each separator� the connected components can be found in time O�n�� for a total cost of O�nk����
At this point we have generated all possible values for the �rst component in a separator tdg�vertex�

Next� for each separator� we enumerate all possible orderings� giving a total of O��k � ����
orderings per separator� or O��k� ���nk��� di�erent possibilities for the �rst two components in a
tdg�vertex� To determine all possibilities for the third component� we consider all partitions of the
components into r di�erent subsets� and for each partition� all possible choices of a single part of the
partition as the parent partition �recall that the order of the children partitions is unimportant��
Since the degree of the graph is bounded� we are determining all possible partitions of a constant
number of connected components into r � � nonempty sets �if the parent partition is nonempty��
which we multiply by r�� to account for the selection of a particular piece as the parent partition�
plus the number of possible partitions of d connected components into r nonempty sets �if the
parent partition is empty�� This gives us a constant number of possible partitions for each setting
of the �rst two components in the vertex�

To count the number of clique tdg�vertices� we consider the number of possible choices for
Clique� orderings� and for each of the constant number of subsets� the choice of components� for a
total of O�nk����

Finally� we determine the memberships in all clusters� For a particular clique tdg�vertex� a
separator tdg�vertex in its jth cluster must have a particular separator and a particular ordering
on that separator� There are at most O��� possible candidates �di�ering by the way in which
connected components are partitioned�� or O�nk��� for all clique vertices �recall that the number
of clusters of a clique tdg�vertex is constant��

�




For a particular separator tdg�vertex� there are O�n� di�erent possible ways of extending the
separator label to form a clique label� and for each of those O��� ways of partitioning� for a total
of O�nk��� candidates for all separator vertices�

To check whether or not a candidate is in a cluster requires checking partitioning information�
which can be accomplished in O�n� time� for a total of O�nk��� time for the whole algorithm�

����� Modi�cation of the tdg
mapping

In order to incorporate the changes in the de�nition of the tree�decomposition graph� we alter
slightly our de�nition of an order preserving isomorphism�

De�nition� Given a TDG�G� clique vertex 	 and a vertex x in TH � we will say that 	 is order
preserving isomorphic to x if the array for Clique� is of length j�H�x�j� and G�Clique� � is isomorphic
to a subgraph of H���x	�� such that for all � the node of G in position � in the array for Clique�

maps to the �th node in �H�x� in that isomorphism�

The de�nition with respect to separator vertices is analogous� and hence omitted� the de�nition of
a tdg�isomorphism follows from the above de�nition�

����� Modi�cation of the algorithm

We now consider the di�erences between the algorithm for the k�connected case and the algorithm
for the bounded degree case�

Theorem ���� Let k� d � � and let G and H be partial k�trees� G with degree at most d� Let
n � jV �G�j� jV �H�j� Then there is an O�nk��� time algorithm to determine whether or not G is
isomorphic to a subgraph of H�

Proof of Theorem�
Since the algorithm is very similar to that given in the proof of Theorem ���� we omit the

similarities in favor of highlighting the di�erences between the two algorithms�
The key di�erence between the algorithms is in the determination of whether or not Bx��� � �

for a tdg�vertex � with at least one child� As before� let y�� � � � � ym be the children of x and 	�� � � � � 	r
be the children of �� Assume that for � � i � m� � � j � r� Byi�	j� has been determined� The
bit vectors for all children of x have been completed� in particular� we have obtained all tdg�
isomorphism information concerning children of � and children of x� Also as before� we construct a
bipartite graph �X� Y � where there is a vertex in X for each 	i and a vertex in Y for each yj � There
is an edge from 	i to yj if Byj �	i� � �� Then we set Bx��� � � if and only if there is a matching in
�X� Y � in which all of X is used and there is an order preserving isomorphism from � to x which
is consistent with the matching�

To solve a matching problem� we �rst partition X into the set Xs of vertices of degree at most
jX j in �X� Y � and the set X� of vertices of degree greater than jX j in �X� Y �� Since both Xs

and Ys � nbhrXs
�Y � are of constant size� it can be determined in constant time whether or not a

matching using all of Xs exists in �Xs� Ys��


�



A
A

��

s
s
s
e

d

b

G�

Figure 	� A input graph for subgraph isomorphism� bounded degree case

Isomorphism�
b� B� d� D� e� E

�
�

�
�� b � �
� fd� eg��

�
�

�
�� b d ��
� feg��

�
�

�
�� d � �fbg� feg��

�
�

�
�� d e ��fbg� 
��

Figure �� Part of TDG�G�� which maps to �TH � �H�

If there is no such matching in �Xs� Ys�� then we can conclude that there is no such desired
matching in �X� Y �� If on the other hand there is a matching in �Xs� Ys�� we can remove from Y all
matched vertices in Ys to create Y�� Since the number of matched vertices in Ys is exactly jX j� each
node in X� has degree greater than jX j � jXsj � jX�j in Y�� guaranteeing that a matching exists�
It can be found using a simple greedy algorithm�

For inputs the graph G� illustrated in Figure 	 and the graph H illustrated in Figure �� Figure �
illustrates a possible mapping obtained between �TH � �H� and TDG�G���

It is not di�cult to see that each matching problem can be solved in constant time� yielding an
overall execution time of O�nk���� as claimed�


�



� Sequential topological embedding

In an algorithm with a similar structure� the tree�decomposition graph and the array used in
processingH can be modi�ed to allow us to solve the topological embedding problem� As mentioned
in Section 
��� if G is isomorphic to a subgraph of H � we can view each node of H as being either
in the image of the mapping of the nodes of G to the nodes of H � or extraneous to the mapping�
We can view the topological embedding of G in H as the determination of a subgraph of H such
that each node in the subgraph is either in the image of the mapping of the nodes of G to the
nodes of H � or is an intermediate node in a path to which one of the edges of G is mapped� A node
of H which is the intermediate node in such a path is said to have been collapsed into one of the
endpoints of the path� special care has to be taken to ensure that all collapsing can be detected by
the algorithm�

��� Modi�cation of TDG�G�

To account for collapsed nodes of H � we modify TDG�G� to include tdg�vertices which mimic the
structure of the section of TH involving the addition of a node which is collapsed� In particular�
a collapsed node may be the new node added in a clique in TH � to account for this possibility�
we allow a separator node � to have as a child a clique node 	 such that Sep� � Clique�� The
modi�cations made to the de�nition of TDG�G� are as below� the same modi�cations are made for
both the bounded degree case and the k�connected case�

�� A separator node � is in a cluster of a clique node 	 if Sep� is a proper subset of Clique�

�and the other conditions in TDG�G� are satis�ed��


� A clique node 	 is in a cluster of a separator node � if Clique� � Sep� or if Clique� contains
one new node �and the other conditions in TDG�G� are satis�ed��

�� For a clique node 	 in the cluster of a separator node � such that Clique� � Sep�� � is also
in a cluster of 	� We call the edge from child � to parent 	 an up�edge�

It is not hard to see that the size of TDG�G� increases by at most a constant factor� and if we
ignore up�edges� TDG�G� is acyclic� as needed�

��� Modi�cation of the tdg�mapping

To determine whether or not a tdg�vertex � can tdg�map to a vertex x of T � we must be able to
map each node in Sep� �or Clique�� into a node in �H�x� and each edge in G�Sep�� �or G�Clique���
into a path in H � Due to the presence of collapsed nodes in H � particular care must be taken in the
combining of mappings obtained for children of x� The arrays at each x hold information su�cient
to allow the correct combination of children mappings� with several entries for each ��

For each x and �� the array contains entries for each partition of the edges in G�Sep�� �or
G�Clique� �� into the sets Above� Below� and Inside� An edge is in the set Below if the entire path
to which that edge is mapped is contained in HfTyg for some child y of x� If an edge is in the
set Inside� the edge can be mapped to a path in HfTxg� of which at least one edge is contained
in H���x	�� Above contains all edges that require the use of edges in HfTnTxg� When �lling in the







s su v �An edge in G�������

HHHHHj �A path in H�
f�u� f�v�s s s s s s s s

p� p p p pd p p p pa q� p p p qb r� p p p re p p p rc

�

While going up in TDG�G� and TH � collapse pd� � � � � pa and re� � � � � r��

s su v
�

��

�
��Rs s s s s s

p� p p p pd q� p p p qb re p p p rc

�

Collapse the qi�s in one step�

s su v

� �s s s s
p� p p p pd p p p re p p p rc

Figure 
� Mapping an edge to a path

array for x using the arrays for the children of x� it is necessary to be sure that the partitions are
consistent� namely that each edge appears somewhere in H �

Since the edges in G must be mapped to node�disjoint paths in H � it is important to keep track
of the collapsed nodes to be sure that each is used in no more than one path� The detection of
a path in H can be seen as occurring in several states� Suppose the edge �u� v� in G is mapped
to the path p�� � � � � pd� � � � � pa� q�� � � � � qb� r�� � � � � re� � � � � rc in H � First u is mapped to a node pi� say
pd� when tdg�vertex �� is tdg�mapped to vertex x� in TH � Then� in a series of ancestors of ��

tdg�mapping into a series of ancestors of x�� pd is collapsed into pd��� pd�� is collapsed into pd���
and �nally pa�� is collapsed into pa� Similarly� v is tdg�mapped to some rj� say re� when tdg�vertex
�� is tdg�mapped to vertex x� in TH � and subsequently re is collapsed into re�� and so on until r�
is collapsed into r�� There is an ancestor 	 of �� and �� that maps into an ancestor y of x� and
x�� such that y contains both pa and r�� In the mapping of 	 to y� q� through qd are collapsed into
pa and qd�� through qb are collapsed into r� to complete the path� It is not di�cult to see that the
segments p� through pd�� and re�� through rc are determined through a similar series of collapses�


�



This example is illustrated in Figure 
�
The above example contains the two ways in which paths are determined� the collapsing of

a series of nodes occurs when the edge is in the set Above and the mapping of 	 to y when the
edge is in the set Inside� When an edge is in the set Inside� it su�ces to map that edge into a
node�disjoint path� In terms of the de�nition below� f is the mapping of u to pa and v to r�� and
g is the mapping which collapses the qi�s into pa and r��

De�nition� Given a TDG�G� vertex � and a vertex x in TH � we will say that � embeds in x
subject to Inside� f � and g� for Inside a subset of the edges in G�Clique�� �or G�Sep���� if and only
if the graph with vertex set Clique� �or Sep�� and edge set Inside is topologically embeddable in
H���x	� with respect to �f� g��

For convenience� we will use the following notation�

De�nition� Given a TDG�G� vertex � that embeds in a vertex x in TH subject to Inside� f � and
g� we use FI�x� �� to denote the nodes in the image of f � G�x� �� to denote the domain of g and
GI�x� �� to denote the image of g�

Handling the situation in which an edge �u� v� is in the set Above requires more book�keeping�
As we saw in the previous example� the node�disjoint path to which �u� v� is mapped may be
partially determined by a series of collapses� An intermediate node on the path can be collapsed
into another intermediate node or into an endpoint� moreover� it is also possible for an endpoint
to be collapsed into an intermediate node� If there is a function f governing the mapping from �
to x and another function f � governing the mapping from a child of � to a child of x� then either
f�u� is collapsed into f ��u� or f ��u� is collapsed into f�u�� It is important to be able to distinguish
which is the endpoint and which an intermediate node� Moreover� in ensuring that the mappings
chosen at a particular � and x are consistent with mappings chosen at children of � and x� we
must be sure that G�x� �� and FI�x� �� are disjoint from each other as well as from the sets of
nodes collapsed in children of � and x� Each node in G�x� �� has degree two with respect to the
embedding thus far� so that the collapsing constitutes the mapping of an edge to a path� rather
than to a more complicated structure�

To make the consistency checks possible� we keep track of which nodes in �H�x� were collapsed
in descendants� In determining whether or not these sets of nodes are disjoint for various children�
it is only necessary to consider nodes in �H�x�� That is� since TH is a tree decomposition� we
know that the only nodes that could possibly be contained in both HfTyg and HfTzg are those in
�H�y� � �H�z�� which must be contained in �H�x�� for y and z children of x�

In addition� at a particular point in the mapping we record the path degrees of the nodes in
�H�x� with respect to the mapping thus far� The path degree of a node is the number of partially�
created paths for which the node is a current endpoint� For our purposes� it will su�ce to know
whether the number is �� �� or more than �� denoted 
� It is important to note that although in
the course of collapsing nodes a particular node u in G may be mapped to many di�erent nodes in
H � only one of the nodes in H will be the image of the node in G with respect to the topological
embedding of G in H � That single node will have degree at least as great as the degree of u in G�
any other node to which u is mapped must be an intermediate node in a path� and hence must have


�



degree two in Hnfnodes not in the image of f or in the domain of gg� If the current endpoint is
known not to be the image of u �in particular� we have collapsed a high�degree node into it�� we
mark it with a path degree of ��� We can then use the stored path degrees to ensure that only
legal collapsings take place�

De�nition� Suppose that � is a tdg�vertex in TDG�G� and x a vertex in TH � Then� � tdg�embeds
in x subject to P � f � g� S� and PD� where

�� P is a partition of the edges in G�Clique�� �or G�Sep��� into sets Above� Below� and Inside�


� S is a subset of �H�x�� and

�� PD � �pd�� � � � � pdj�H�x	j� is a tuple of values in f��� �� �� 
g� the ith entry being the path
degree of the ith node in �H�x��

if the following conditions are satis�ed�

�� � embeds in x subject to Inside� f � and g�


� for each child 	i of �� and for distinct children yj of x� each 	i tdg�embeds in a distinct yj
subject to some P i� f i� gi� Si� and PDi�

�� for each edge in �� if the edge is in Above� it is in Above in each 	i in which it exists� if it is
in Inside� it is in Above or Inside in each 	i in which it exists� and if it is in Below� it is in
Inside or Below in exactly one 	i�

�� the Si�s� G�x� ��� �
S
i FI�yj � 	i��nFI�x� �� and FI�x� �� are all disjoint�

�� S �
S
i�S

i�	 G�x� ��	 �
S
i FI�yj � 	i��nFI�x� ���

�� for distinct nodes u and v in Clique� �or Sep��� f i�u� �� f j�v� for any i �� j�

	� in the subgraph of H induced by G�x� ��	 FI�x� ��	 �
S
i FI�yj� 	i��nFI�x� �� the following

conditions are satis�ed�

�a� each node in the partition of �unused nodes� in G�x� �� has

i� degree two in this subgraph� and

ii� path degree zero in each child of x to which a child of � maps�

�b� for each u in Clique� �or Sep��� if there are at least two j�s such that f j�u� �� f�u��
then for each such j the node f j�u� has

i� degree one in the graph�

ii� a path from f j�u� to f�u� in which each intermediate node is in the partition of
�unused nodes� in G�x� ���

iii� path degree at least zero in each child of x to which a child of � maps�

iv� summing over all such children� path degree one� and

v� in PD� f�u� has path degree equal to the number of j�s plus the sum of all path
degrees of f�u� in all children of x to which children of � map�


�



�c� for each u in Clique� �or Sep��� if there is one j such that f j�u� �� f�u�� then the node
f j�u� either has all the properties above� or

i� degree one in the graph�

ii� a path from f j�u� to f�u� in which each intermediate node is in the partition of
�unused nodes� in G�x� ��� and

iii� in PD� f�u� has path degree ��

�d� for all other nodes� the path degree is the sum of the path degrees of the node in all
children of x to which children of � map�

��� Modi�cation of the algorithm

The proof of Theorem ��� is very similar to the proof of Theorem ���� accordingly� only the dif�
ferences are highlighted� Theorem ��
 is stated without proof� as its proof follows from proofs of
Theorems ��� and ����

Theorem ���� Let k� d � � and let G and H be partial k�trees� where G is k�connected� Let
n � jV �G�j� jV �H�j� Then there is an O�nk

���k�
��� time algorithm to determine whether or not
G can be topologically embedded in H�

Proof of Theorem ����
Our algorithm�rst creates a normalized tree�decomposition ofH � �TH � �H�� and a tree�decomposition

graph of G� TDG�G�� We then wish to determine� for every tdg�vertex and every vertex of TH �
whether or not the tdg�vertex tdg�embeds in the vertex of TH � If any sink in TDG�G� tdg�embeds
in the root of TH � we will then conclude that G can be topologically embedded in H �

With every vertex x of TH we associate an array Bx� with one entry Bx��� P� f� g� S� PD� for
each tdg�vertex of TDG�G�� each partition P � each function f � each function g� each subset S� and
each tuple PD� We will set Bx��� P� f� g� S� PD� to � if and only if � tdg�embeds in x subject to P �
f � g� S� and PD� proceeding up from the leaves of TH � For a vertex x of TH and tdg�vertex � of
TDG�G�� Bx��� � � �� is determined after all By�	� � � �� have been determined where y is a child of x
and 	 is any tdg�vertex of TDG�G��

We now show how to determine whether or not Bx��� P� f� g� S� PD� � �� where x is a vertex
of TH and � is a tdg�vertex of TDG�G�� If � has no children� then Bx��� � � �� � � if and only if �
embeds in x subject to Inside� f � and g� which can be determined in constant time�

We now consider the case in which � has at least one child� Let y�� � � � � ym be the children of x
and 	�� � � � � 	r be the children of �� Assume that for � � i � m� � � j � r� Byi �	j� � � �� have been
determined� The arrays for all children of x have been completed� in particular� we have obtained
all tdg�embedding information concerning children of � and children of x� We determine the value
of the array Bx��� P� f� g� S� PD� for �xed values of P � f � g� S� and PD� We now conduct a series of
consistency checks and then set up a separate matching problem for each choice of ��� partition of
the edges Below into children of �� �
� partition of S into G�x� ��� �

S
i FI�yj � 	i��nFI�x� ���� and

the contributions associated with each child of � �for the child of x to which a child of � maps��
��� partition of G�x� �� into pieces for each edge in Inside and the �unused nodes� partition� ���
partition of each pdi into �contributions� from each child of � or from � itself� for nonnegative values
of pdi� and for pdi � �� identi�cation of a child of � associated with this collapse� and ��� assignment


�



Embedding�
a� A� b� B
c� C� d� E
edge bd� BDE�

�
�
��Separator��fa� bg� �a� b�� �
� fc� dg��

�
�

�
��Clique��fa� b� cg� �a� b� c�� �
� fdg��

�
�

�
��Separator��fb� cg� �b� c�� �fag� fdg��

�
�

�
��Clique��fb� c� dg� �b� c� d�� �fag� 
��

�
�

�
��Separator��fc� dg� �c� d�� �fag� 
��

�
�

�
��Clique��fc� dg� �c� d�� �fag� 
��

Figure ��� Parts of TDG�G� mapping to �TH � �H�

of a distinct pair �	i� u�� for u � Sep� �or Clique��� to each node in �
S
i FI�yj� 	i��nFI�x� ��� We

construct a bipartite graph �X� Y � where there is a vertex in X for each 	i and a vertex in Y for
each yj� There is an edge from 	i to yj if B�i �yj� � � �� � � subject to each of the preceding �xed
partitions and straightforward consistency checks to be sure that values are consistent with those
in the choices of partitions above� Then we set B��x� � � if and only if for one of these problems
there is a matching in �X� Y � in which all of X is used and � embeds in x subject to Inside� f �
and g�

It is not di�cult to see that each of the conditions in the de�nition of tdg�embedding is satis�ed�
Condition � is explicitly checked by the algorithm and condition 
 by the nature of the matching
problem� The third condition is satis�ed by the choice of partition ���� and the fourth and �fth
conditions by the choice of partition �
�� plus a check that S and f have been constructed in such a


	



way that FI�x� �� is disjoint from S� Condition � is satis�ed by partition ���� Finally� to see that
the last condition is satis�ed� we note that the subgraph under consideration is �xed by choices of
f � S� and partitions �
�� ���� ���� and ���� regardless of which children of � map to which children
of x� allowing all conditions to be veri�ed prior to the matching step�

Figure �� illustrates part of a matching obtained between TDG�G� and �TH � �H�� for G as in
Figure � and H as in Figure ��

To determine the running time of this algorithm� we recall we can construct a normalized tree
decomposition of H in time O�n�� �Corollary ��
�� Further� we recall that the size of TDG�G� is
O�nk��� and that TDG�G� can be constructed in time O�nk��� �Lemma ����� For x a vertex of
TH � � a tdg�vertex of TDG�G�� P � f � g� S and PD� the number of matching problems set up is
the product of the following counts for the various partitions� ��� O�nk

�

�� for the placing of O�k��
edges in O�n� di�erent sets� �
� O�nk�� for the placing of O�k� nodes in O�n� di�erent sets� ���
O���� for the placing of k nodes in O�k�� di�erent sets� ��� O�n��� for each of O��� pdi�s� selecting
out of O�n� choices� and ��� O�nk�� for choosing one of O�nk� values for each of O�k� nodes� Since
each checking step can be done in time O�n�� each matching can be solved in time O�n���� and the
total number of values of x� �� P� f� g� S and PD is in O�nk���� the total cost of the algorithm is
O�nk

���k�
���
The following theorem is stated without proof� as it is very similar to the previous theorem�

The main di�erences lie in the cost of matching� which is constant� and the counts for the various
partitions� Since G is a bounded degree graph� the counts are all constant�

Theorem ���� Let k� d � � and let G and H be partial k�trees� G with degree at most d� Let
n � jV �G�j� jV �H�j� Then there is an O�nk��� time algorithm to determine whether or not G can
be topologically embedded in H�

� Parallelizing the algorithms

The sequential algorithms given in the previous sections were designed in such a way that straight�
forward parallelization is possible� after a normalized tree�decomposition of H has been obtained
and a tree�decomposition graph of G created� it is possible to process the vertices of TH level by
level rather than one at a time� The complexity of the algorithms then depends on the costs of
obtaining a tree�decomposition of a graph� normalizing a tree decomposition� and creating a tree
decomposition graph� and then on the cost of processing a particular vertex of TH multiplied by
the depth of TH �

The overall complexity of a parallel algorithm depends in various ways on the choice of tree�
decomposition algorithm used� Among the best known tree�decomposition algorithms� there are
tradeo�s between running time� processor count� depth of the resulting tree�decomposition� and
width of the resulting tree�decomposition� Since our algorithms for the k�connected case depend
on a resulting tree�decomposition of width k and since the number of processors needed to form
a tree decomposition graph is a function of the width of the tree decomposition� we cannot make
use of either Lagergren�s algorithm� which using O�n� processors and O�log� n� time to produce a
tree�decomposition of width �k�� �Lag
��� or Reed�s algorithm� which uses n� logn processors and
O�log� n� time to obtain a tree�decomposition of width �k �Ree

�� Instead we would opt to use
either the fastest known parallel tree�decomposition algorithm� running in time O�logn� and using


�



O�n�k�
� processors �Bod��b�� or an earlier algorithm using O�n�k��� processors and O�log� n� time
�CH��� each producing a width k tree decomposition�

The choice of tree�decomposition algorithm is further complicated by the importance of the
depth of the resulting tree�decomposition on the running time of the subgraph isomorphism algo�
rithm� As the tree�decomposition is processed level by level� the depth is a multiplicative factor in
the running time� To obtain a sublinear running time� we could use a result of Bodlaender� who
obtains a logarithmic depth tree decomposition of width �k � 
 in O�logn� time using O�n�k�
�
processors �Bod��b�� resulting again in the problems associated with a decomposition of width
greater than k�

We instead consider a type of algorithm slightly more complicated than the straightforward one
described above� Instead of reducing the depth of the tree�decomposition of H � we instead apply a
technique which� in a logarithmic number of iterations� breaks TH into constant size pieces�

We note that since the tree decomposition algorithms are written for CRCW PRAMs� our
running times assume concurrent writing� Since the algorithms depend on matching� for which in
the general case RNC but not NC algorithms are known� the algorithms for the k�connected case
are randomized and those for the bounded degree case are deterministic�

The remainder of the section is organized as follows� First� in Section ���� we present a parallel
algorithm for normalizing a tree decomposition� Next� Section ��
 describes the technique used
to break TH into constant size pieces� The parallel algorithm for creating TDG�G� is given in
Section ���� Sections ��� and ��� give details of the parallel subgraph isomorphism and topological
embedding algorithms�

	�� Normalizing a tree decomposition

In this section� we show how the algorithm presented in Lemma ��� can be parallelized in a straight�
forward manner� The proof refers to step numbers used in the earlier lemma� the reader is referred
to that lemma for further details�

Lemma 	��� Let H be a graph and �TH � �H� be a tree�decomposition of H of width k with n �
jV �TH�j� Then there is an O�logn� time O�n��processor algorithm which takes �TH � �H� and
returns a normalized tree�decomposition �SH� �H� of H whose width is also k�

Proof �outline��
Step �� We contract any edge between vertices x and y such that �H�x� � �H�y�� This step is
accomplished in O�logn� time with O�n� processors by using pointer jumping� for y the parent of
x� if �H�x� � �H�y� or �H�y� � �H�x�� we reassign the parent of x to be the parent of y�
Step �� We set all existing vertices to be clique vertices� since �TH � �H� was a tree�decomposition
of H of width k� it is clear that condition 
 has been satis�ed�
Step �� Between each pair of clique vertices x and y� where x is the parent and y the child� we
insert a constant number of new vertices in a path as follows� Let S � �H�x� � �H�y� and let
p�� � � � � pj be the nodes in �H�y��S� Because H is connected� S is nonempty� As well� due to Step
�� S is strictly smaller than both �H�x� and �H�y�� The �rst vertex on the path� the child of x�
is a separator vertex with label S� The next two vertices are a clique vertex and then a separator
vertex� each with label S 	fp�g� the following two a clique vertex and a separator vertex each with
label S 	 fp�� p�g� and so on� until the path ends at y�







It is not di�cult to see each such path can be created in constant time with one processor�
Since there are O�n� paths� this gives a total of O�n� processors�
Step �� We now ensure that condition 	 is satis�ed� The condition is violated by a situation in
which a separator vertex z is the parent of a clique vertex y� in turn the parent of separator vertex
x� such that the unique node a in �H�y�n�H�z� is not contained in �H�x�� In this case� it is not
di�cult to see that �H�x� � �H�z�� We remove the edge between y and x� instead making x into
a child of the parent of z�

Step � clearly takes constant parallel time with O�n� processors�
Step �� Condition � can be satis�ed by examining all siblings to see if they share a label value�
and if so� combining such siblings into a single vertex with all subtrees of the original siblings�

This step can be accomplished in O�logn� time with O�n� processors using sorting �Col����
Step 	� Finally� to satisfy condition �� we add in a separator vertex as a root� choosing as its label
an arbitrary subset of the label of the original root�

It is not di�cult to see that each of the above steps can be completed in the stated running
time�

	�� Breaking TH into constant size pieces

In this section we give a brief description of a technique� originated by Jordan �Jor�
� and
Brent �Bre	�� for breaking TH into constant size pieces in logarithmic time� Full details of the
technique� including proofs of all the lemmas� can be found in an earlier paper on the subject
�GN

��

The technique consists of recursively dividing a tree into smaller subgraphs of two di�erent types�
namely unscarred and scarred subtrees �the reader is referred to Section 
�� for the de�nition of a
scarred subtree and related concepts�� Lemma ��
 concerns the subsequent division of an unscarred
subtree and Lemma ��� the subsequent division of a scarred subtree� both are slight generalizations
of results by Brent�

Lemma 	��� Let T be a tree with at least two nodes� Then there is a unique node v of T with
children c�� � � � � ck�� such that�

�� jTnTvj �
jT j

�
� �or equivalently jTvj �

jT j

�
�	 and

�� jTcij �
jT j

�
� for all � � i � k�

Lemma 	��� Let T be a tree� jT j � 
� and � be a leaf of T � Then there is a unique ancestor v of
� such that if c is the child of v for which � � Tc then�

�� jTnTvj �
jT j

�
� �or equivalently jTvj �

jT j

�
�	 and

�� jTcj �
jT j
� �

We obtain a division of the tree into subgraphs by starting with a tree T and recursively
applying the two lemmas depending on whether or not a subgraph has a scar� In both Lemma ��

and Lemma ���� the node v is called the Brent break of T � In Lemma ��� we can view the leaf � as
a place holder for a scar� It is clear that in the division� each subgraph has at most one scar� In

��



�
�

�
�

�

�
�
�
�
�

rx
�
�
A
Aq q

c� p p pck

�����

HHHHH
Brent Break

�
�

�
�

�

�
�
�
�
�

�
��

�
��

rx
r
s

�
�
A
Aq q

c� p p pck �
�

��

�
�
��

rs
��AAq q

d� p p pdl
�

�
�

p p p E
E
EE

p p pQQ
Q
Q

�
�
�
��

J
J
J
JJ

�
�
�
��

J
J
J
JJ

�
��

J
JJ

�
�
�
��

J
J
J
JJ

rc�
r
s

rci rck
�
�
�

p p p A
A
A

Child Breaks

�
�
��

J
J
JJ

�
�
��

J
J
JJ

rd� rdl

Figure ��� Part of a Brent tree

practice� we will view the applications of both Lemma ��
 and Lemma ��� as two�step operations�
�rst T is split into subgraphs TnTv and Tv and then Tv is split into subtrees Tc�� � � � � Tck�� where
c�� � � � � ck�� are the children of v� The �rst step will be called a Brent break and the second a child
break� we further distinguish between breaks that are simple �where� as in Lemma ��
� none of the
resulting subgraphs are scarred� or scarred� as in Lemma ���� The set of subgraphs obtained by the
application of a Brent break and then a child break form disjoint sets of the nodes of the original
subgraph� We use the term Brent restructuring to apply to one Brent break followed by one child
break� resulting in disjoint subsets of the nodes� It is not di�cult to see that O�logn� recursive
applications of the lemmas will result in trees of constant size� For many problems� these can then
be processed directly in constant time�

We can create a tree� the Brent tree of T � or BT � containing all the information about a sequence

��



of Brent structuring steps on a tree� We will associate with each vertex a level number� where the
root of the tree is at level � and the child of a vertex at level � is at level � � �� The root of the
tree contains all of T � the children and grandchildren of the root contain the subgraphs obtained by
a single application of Brent restructuring� and each subsequent pair of levels contains subgraphs
obtained by a further application of Brent restructuring� A portion of a Brent tree is illustrated in
Figure ��� The proof of the following result can be found in an earlier paper �GN

��

Lemma 	��� The total determination of BT can be achieved in O�log jT j� time using O�jT j
� pro�
cessors�

	�� Creation of TDG�G�

We present a parallel algorithm for the creation of TDG�G�� Where details� such as counting
arguments� are identical to those appearing in the sequential algorithm� they are omitted from the
following lemma� The reader is referred instead to the proof of Lemma ��� for such details� We
begin with the k�connected case�

Lemma 	��� Let G be a k�connected partial k�tree with n � jV �G�j� Then TDG�G�� the tree�
decomposition graph of G� can be created in time O�logn� using O�nk��� processors�

Proof �outline�� To create all the separator tdg�vertices in TDG�G�� we �rst identify all separators
of size at most k in G� and for each separator S determine CG�S�� We can perform this step in
O�logn� time by assigning O�n� processors for the connected component problem arising from the
removal of each of the O�nk� separators �using Shiloach and Vishkin�s algorithm on partial k�trees�
which each have a linear number of edges �SV�
��� for a total of O�nk��� processors� At this point
we have generated all possible values for the �rst component in a separator tdg�vertex�

Next� for each separator� we enumerate all possible orderings of the nodes in constant time�
To determine all possibilities for the third component� recall that by Lemma ��� each partition
consists of a single component� It su�ces to specify which of the O�n� components is the parent
component� since the order of the children partitions is unimportant� This gives a total of O�nk���
di�erent separator tdg�vertices which can be created in O�logn� time with O�nk��� processors�

To count the number of clique tdg�vertices� we consider the number of possible choices for
Clique� orderings� and for each of the constant number of subsets� the choice of components� Using
counting argument similar to the one given above gives a total of O�nk��� di�erent tdg�vertices�

Finally� we must determine the memberships in all clusters� For a particular clique tdg�vertex�
a separator tdg�vertex in its jth cluster must consist of a particular node set and a particular
ordering on that set� The choice of parent component is �xed by the clique tdg�vertex� Since the
number of clusters is constant for a clique tdg�vertex� this can be performed in constant time with
O��� processors per clique tdg�vertex�

For a particular separator tdg�vertex� there is a cluster for each child partition� Within the
cluster� there are O�size of the partition� di�erent ways of extending the separator label to form
a clique label� Since the partitions are disjoint this gives a total of O�n� di�erent children in all
the clusters� By assigning O�n� processors to each separator tdg�vertex the clusters can all be
established in constant time�

�




By applying similar techniques we can obtain a corresponding lemma for the bounded degree
case�

Lemma 	�	� Let G be a degree d partial k�tree for some positive d� Then TDG�G�� the tree�
decomposition graph of G� can be created in time O�logn� using O�nk��� processors�

	�� Modi�cation of the tdg�mapping

We give details of how the tdg�mapping is modi�ed for subgraph isomorphism for k�connected
partial k�trees� The modi�cations for the bounded degree case and for topological embedding are
similar�

In the sequential algorithm� we worked up TH from the leaves to the root� at each point
keeping track of mapping information between all tdg�vertices and a particular vertex in TH �
More speci�cally� the information for a tdg�vertex � and a vertex x of TH indicated under which
conditions G��	 could be mapped to to HfTxg �in other words� when � was tdg�isomorphic to x��

In the parallel algorithm� we work up the Brent tree of TH � BT � keeping track of mapping
information between tdg�vertices � and vertices X of the Brent tree� If the subgraph of H induced
byX is unscarred� then the mapping can be computed as in the sequential case� If on the other hand
the subgraph is scarred� then we compute for all possible scars in G the mapping from the scarred
subgraph of G induced by � and the scar to X � with scars mapping to scars in the appropriate
order� When a mapping is obtained from � with scar 	 to x with scar y� we say that ��� 	� is
tdg�scarred�isomorphic to �x� y�� A similar concept can be de�ned for topological embedding�

	�� Modi�cation of the algorithms

We begin by describing a parallel algorithm for determining the subgraph isomorphism problem
for k�connected partial k�trees� Subsequently we list the corresponding results for the other three
problems under consideration�

Theorem 	�
� For k � �� let H be a partial k�tree and let G be a k�connected partial k�tree� Let
n � jV �G�j� jV �H�j� Then there is an O�log� n� time� O�nmaxf�k�
��k����g� processor randomized
CRCW PRAM algorithm to determine whether or not G is isomorphic to a subgraph of H�

Proof �Outline��

We begin by creating a normalized tree�decomposition �TH � �H� of H � then a Brent tree BT of
T � and �nally a tree�decomposition graph of G�

With each Brent vertex X of BT � the Brent tree of a normalized tree�decomposition �TH � �H�
of H � we associate an array BBX � For X an unscarred tree with root labelled x� the array BBX

is equivalent to Bx in the sequential case� If X is a scarred tree� say with root labelled x and scar
labelled y� BBX is a jTDG�G�j � jTDG�G�j bit matrix with entry BBX ��� 	� � � if and only if
��� 	� is tdg�scarred�isomorphic to �x� y��

We process the vertices of the Brent tree level by level� computing BBX for each Brent vertex
X � We must show how information at one level of the Brent tree can be combined to determine
the array entries at the next level of the Brent tree� The transition from a vertex X in BT to its
children represents either a child break or a Brent break� we consider each case in turn�

��



If the level from X to its children represents a child break� then either zero or one child of
X represents a scarred subgraph of TH � If no child is scarred� this step is similar to that in
Theorem ����

Now suppose that the level fromX to its children represents a child break�X is labelled by a tree
TxnTz� and its children Y�� � � � � Yr are labelled with trees Ty�nTz� Ty�� � � � � Tyr where y�� � � � � yr are
the children of x in T and z is a descendant of y�� We can assume that all entries in BBY�� � � � � BBYr

have been computed� For each child 
 of a tdg�vertex � and each tdg�vertex 	 in a child partition
of 
� we wish to determine whether or not BBX ��� 	� � �� To do so� we set up a matching
similar to that in the proof of Theorem ���� except that we place the additional restriction that
BBY��
� 	� � ��

We now consider the case in which the level from X to its children represents a Brent break�
Let the two children of X � Y� and Y�� represent T

H
x nT

H
y and TH

y nT
H
z � �or TH

y if it is unscarred� for
x� y� and z vertices in TH � Assuming that both children of X represent scarred trees� BBX ��� 	�
will be � if there is a 
 such that BBY���� 
� � � and BBY��
� 	� � � with 
 a descendant of � and
	 a descendant of 
�

To determine the running time of the algorithm�we recall that we can form a tree�decomposition
of H in time O�log� n� using n�k�� processors� normalize the tree�decomposition in time O�logn�
using O�n� processors �Lemma ����� create BT in timeO�logn� using O�n
� processors �Lemma ����
and create TDG�G� in timeO�logn� using O�nk��� processors �Lemma ����� To process the vertices
of the Brent tree� we note that each array entry for each of the O�logn� levels of the tree can be
processed in parallel� We consider the child and Brent breaks separately�

To process a child break� the time to compute a single entry of BBX is dominated by the time
to set up and perform the matching� Using a randomized algorithm� this can be accomplished in
time O�log� n� with O�n
��� processors �MVV�	�� Since there are O�jTDG�G�j�� entries in BBX �
and at most n Brent vertices at a single level of the Brent tree� all of which can be processed in
parallel� the total number of processors needed is in O�jTDG�G�j� � n � n
����

We now consider the case in which the level from X to its children represents a Brent break�
Let the two children of X � Y� and Y�� represent T

H
x nT

H
y and TH

y nT
H
z � �or TH

y if it is unscarred� for
x� y� and z vertices in TH � Assuming that both children of X represent scarred trees� BBX ��� 	�
will be � if there is a 
 such that BBY���� 
� � � and BBY��
� 	� � � with 
 a descendant of � and 	
a descendant of 
� The value of BBX ��� 	� can be determined in constant time using O�jTDG�G�j�
processors� one for each possible value of 
� For all array entries for all vertices at the same level
in the Brent tree� the Brent breaks can be processed in constant time using O�n�k�
� processors�

From the discussion above� the total time to process the entire Brent tree is O�log� n� with
O�nmaxf�k�
��k����g� processors�

When G is a bounded degree partial k�tree� the algorithm di�ers mainly in the type of matching
problem needed to process a child break� As in the sequential algorithms� a constant time algorithm
can be used� In this case� the creation of the tree�decomposition of H will dominate the time and
processor count�

Theorem 	��� For k � �� let H be a partial k�tree and let G be a bounded degree partial k�tree�
Let n � jV �G�j � jV �H�j� Then there is an O�logn� time� O�n�k�
� processor CRCW PRAM
algorithm to determine whether or not G is isomorphic to a subgraph of H�

��



For the problem of topological embedding� when G is of bounded degree� we are able to obtain
an algorithm of the same complexity�

Theorem 	��� For k � �� let H be a partial k�tree and let G be a bounded degree partial k�tree�
Let n � jV �G�j � jV �H�j� Then there is an O�logn� time� O�n�k�
� processor CRCW PRAM
algorithm to determine whether or not G can be topologically embedded in H�

When G is k�connected� a larger processor count is required�

Theorem 	���� For k � �� let H be a partial k�tree and let G be a k�connected partial k�tree� Let
n � jV �G�j� jV �H�j� Then there is an O�log� n� time� O�nk

��
k����� processor randomized CRCW
PRAM algorithm to determine whether or not G can be topologically embedded in H�

Proof �Outline��
The general outline of the proof is similar to that of Theorem ��	� with technical details associ�

ated with topological embedding as in Theorem ���� We omit the points common to one theorem or
the other� in the interest of emphasizing the di�erences� In particular� we focus on the fact that in�
stead of processing a jTDG�G�j�jTDG�G�j bit matrixBBX for each vertexX of the Brent tree� we
nowmust consider all possible entries of the formBBX���� P

�� f�� g�� S�� PD��� �	� P �� f�� g�� S�� PD���
where P� f� g� S� PD are similar to those in the proof of Theorem ����

It is not di�cult to see that the total number of array entries for a single vertex X is in
O�jTDG�G�j��� We set up one matching problem for each of the consistency checks outlined in the
proof of Theorem ���� The running time and the processor count are dominated by the processing
of the child breaks� The total number of matchings set up to compute one entry of BBX is in
O�nk

���k���� Since there are O�jTDG�G�j�� di�erent array entries for any one Brent vertex� O�n�
Brent vertices at one level of the Brent tree� and O�n
��� processors required to set up and perform
one matching� all consistency checks for all matchings for all nodes at one level of the Brent tree
can be processed in parallel using O�nk

��
k����� processors� Since the time to process one level is
dominated by the time needed to perform a single matching� the total amount of time to process
all O�logn� levels of the Brent tree is in O�log� n�� as claimed�

� Conclusions and open problems

We have presented algorithms for subgraph isomorphism and topological embedding on two classes
of partial k�trees� Since these problems are NP�complete for partial k�trees� it is evident that the
result cannot be fully generalized� However� it is possible that some degree of generalization might
be possible� this is left as an open question� Moreover� although the results in this paper delineate
the boundary between the tractable and the intractable with respect to these embedding problems
for classes of partial k�trees� there is still the need for the delineation of such a boundary for other
classes of graphs with respect to these problems�

Subgraph isomorphism is only one of many problems known to have a polynomial time solution
for trees but to be NP�complete for general graphs� It might be possible to attempt to apply to
other problems of this type the methods developed in this paper for adapting tree techniques to
techniques for general graphs�

��



The search for polynomial time algorithms for classes of partial k�trees is itself a topic of interest�
It would be instructive to determine for what other problems a bound on degree or a restriction to
k connectedness would yield a more e�cient algorithm than in the general case�

References

�ACP�
� S� Arnborg� D� Corneil� and A� Proskurowski� �Complexity of �nding embeddings in a k�tree�� SIAM Journal
of Algebraic and Discrete Methods �� pp� ������
� �
���

�ALS
�� S� Arnborg� J� Lagergren� and D� Seese� �Problems easy for tree�decomposable graphs�� Journal of Algorithms
��� �� pp� �	��� �

��

�Bod��a� H� Bodlaender� �Dynamic programming on graphs with bounded treewidth�� Proceedings of the ��th Inter�

national Colloquium on Automata� Languages and Programming� pp� �	������

�Bod
�� H� Bodlaender� �A linear time algorithm for �nding tree�decompositions of small treewidth�� Proceedings of

the ��th Annual ACM Symposium on the Theory of Computing� pp� ������
� �

��

�Bod��b� H� Bodlaender� �NC�algorithms for graphs with bounded tree�width�� Technical Report RUU�CS����
� Uni�
versity of Utrecht� �
���

�Bod
	� H� Bodlaender� �Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k�trees��
Journal of Algorithms ��� pp� �����
�� �

	�

�BM��� J� Bondy� and U�S�R� Murty�Graph Theory with Applications� North�Holland� �
���

�Bre�
� R� Brent� �The parallel evaluation of general arithmetic expressions�� Journal of the ACM ��� �� pp� �	���	��
�
�
�

�CH��� N� Chandrasehkaran and S�T� Hedetniemi� �Fast parallel algorithms for tree decomposition and parsing partial
k�trees�� Proceedings ��th Annual Allerton Conference on Communication� Control� and Computing� �
���

�Col��� R� Cole� �Parallel merge sort�� SIAM Journal on Computing ��� pp� ��	����� �
���

�GJ�
� M� R� Garey and D� S� Johnson� Computers and Intractability� A Guide to the Theory of NP�completeness�
Freeman� San Francisco� �
�
�

�GKMS
	� P� Gibbons� R� Karp� G� Miller� and D� Soroker� �Subtree isomorphism is in random NC�� Discrete Applied
Mathematics ��� pp� ������ �

	�

�GN
�� A� Gupta and N� Nishimura� �The parallel complexity of tree embedding problems�� to appear in Journal
of Algorithms� A preliminary version has appeared in Proceedings of the Ninth Annual Symposium on Theoretical

Aspects of Computer Science� pp� ������ �

��

�Jor�
� C� Jordan� �Sur les assemblages de lignes�� Journal Reine Angew� Math� ��� pp������
	� ���
�

�Lag
	� J� Lagergren� �E�cient parallel algorithms for tree�decompositions and related problems�� Proceedings of the
��st Annual IEEE Symposium on the Foundations of Computer Science� pp� �������� �

	�

�Lin�
� A� Lingas� �Subgraph isomorphism for biconnected outerplanar graphs in cubic time�� Theoretical Computer
Science ��� pp� �
���	�� �
�
�

�LK�
� A� Lingas and M� Karpinski� �Subtree isomorphism is NC reducible to bipartite perfect matching�� Information
Processing Letters �� pp� ������ �
�
�

�LS��� A� Lingas and M� M� Syslo� �A polynomial�time algorithm for subgraph isomorphism of two�connected series
parallel graphs�� Proceedings of the ��th International Colloquium on Automata� Languages� and Programming pp�
�

�
	
� �
���

�MT
�� J� Matou�sek and R� Thomas� �On the complexity of �nding iso� and other morphisms for partial k�trees��
Discrete Mathematics ���� pp� �
����
� �

��

��



�Mat��� D� Matula� �Subtree isomorphism in O�n������ Annals of Discrete Mathematics �� pp� 
���	�� North�Holland�
�
���

�MVV��� K� Mulmuley� U� Vazirani� and V� Vazirani� �Matching is as easy as matrix inversion�� Proceedings of the

��th Annual ACM Symposium on the Theory of Computing� pp� �
����
� �
���

�Ree
�� B� Reed� �Finding approximate separators and computing tree width quickly�� Proceedings of the �	th ACM

Symposium on the Theory of Computing� pp� �������� �

��

�Ros�
� D�J� Rose� �On simple characterization of k�trees�� Discrete Mathematics �� pp� �������� �
�
�

�RS�
� N� Robertson and P� Seymour� �Graph Minors III� Planar tree�width�� Journal of Combinatorial Theory �Ser�
B� ��� pp� 

��
� �
�
�

�RS��� N� Robertson and P� Seymour� �Graph Minors II� Algorithm aspects of tree�width�� Journal of Algorithms ��
pp� �	
����� �
���

�SV��� Y� Shiloach and U� Vishkin� �An O�logn� parallel connectivity algorithm�� Journal of Algorithms �� pp� ������
�
���

�Sys��� M� M� Syslo� �The subgraph isomorphism problem for outerplanar graphs�� Theoretical Computer Science
��� pp� 
��
�� �
���

�	


