
University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

Technical Report Series

CS-93-52

Abstract Data Views� A Module Interconnection Concept to

Enhance Design for Reusability

by

D�D� Cowan C�J�P� Lucena

November, 1993



Abstract Data Views� A Module Interconnection Concept to

Enhance Design for Reusability

D�D� Cowan
Computer Science Department � Computer Systems Group

University of Waterloo
Waterloo Ontario�

Canada
N�L �G�

dcowan�csg�uwaterloo�ca

C�J�P� Lucena
Departamento de Inform�atica

Pontif�	cia Universidade Cat�olica
Rio de Janeiro� ��
���
��� RJ�

Brazil

lucena�inf�puc�rio�br

November �� �

�

Abstract

The Abstract Data View �ADV� design model was originally created to specify clearly and
formally the separation of the user interface from the application component or Abstract Data
Type �ADT�� and to provide a systematic design method that is independent of speci�c appli�
cation environments� Such a method should lead to a high degree of reuse of both interface
components and their associated ADTs� The material in this paper extends the concept of
ADVs to encompass the general speci�cation of interfaces between objects in the same or dif�
ferent computing environments� This approach to specifying interfaces clearly separates objects
from each other� since objects do not need to know how they are used� or how they obtain
services from other objects� Thus� objects which are designed to minimize knowledge of the
environment in which they are used� are more amenable to reuse�

Categories and Subject Descriptors� D���	 
Software�� Programming Techniques � Object�
oriented Programming 
 D���� 
Software�� Software Engineering � Tools and Techniques 

D���� 
Software�� Software Engineering � Programming Environments D����� 
Software��
Software Engineering � Design
 D���m 
Software�� Software Engineering � Miscellaneous 

General Terms� Abstract Data Types� Interactive Applications� Programming� User Interfaces

Additional Key Words and Phrases� End�User Programming� Script Languages� Interfaces

�



� Introduction

The concept of Abstract Data View �ADV� �CILS��a� CILS��b� is intended to bridge the gap be	
tween the internal world of the application object or abstract data type �ADT� and its requirement
for knowledge of the external world
 An ADT should not know how its state is presented to the
user� or how the user interacts with that presentation
 In addition� knowledge of the external world
should be provided in such a way that it can be disconnected from the application object when it is
no longer needed
 For example� an integer which is part of the state of an ADT� could be presented
as a numeric quantity� a position on a dial� or the position of a slider� and the user could interact
with the interface to change the integer in several di�erent ways
 As well� the ADT should not
know which representation is used
 ADVs support this concept of a clear separation of external
representation from internal state


ADVs as user interfaces disconnect the application object from the user� the application object
has no knowledge of the interaction with the user
 All interaction is encapsulated in the ADV
which is then provided to the object through its provided services
 ADVs can also be composed
from other ADVs through nesting� thus� it is possible to build complex user interfaces from simpler
components
 An ADV is an object or ADT in that it has a state and an interface which can be
operated by an external agent


The concept of ADV was 
rst applied to man	machine interfaces where a number of di�erent
approaches such as those reported in �KP��� Hil��� CCCL��� have separated the interface from
the application in an attempt to reuse interface objects
 The original ADV approach allowed both
the association of di�erent interfaces to the same server and the composition of interfaces through
nesting �CILS��a� CILS��b�� thus� providing for the reuse of interfaces and their associated ADTs

Extensive experimentation with the ADV concept for the design of man	machine interfaces has
led us to believe that the concept can be generalized and extended to model internal module or
object interconnection interfaces and interfaces to other media such as networks
 ADVs have been
used to support user interfaces for games and a graph editor �C����� to interconnect modules in
a user interface design system �UIDS� �LCP���� to support concurrency in a cooperative drawing
tool and to implement a ray tracer in a distributed environment
 The VX�REXX �VRe��� system
that was built as a research prototype was motivated by the idea of composing applications in the
ADV�ADT style


ADVs can be used to connect objects together at di�erent binding times during the programming
process� that is at code	time� link	time or run	time
 Also ADVs can be used to connect together
small and large objects� that is� they encompass programming	in	the	small and programming	in	
the	large �DK���
 Currently ADVs are a design concept and can be implemented using many dif	
ferent strategies
 For example� VX�REXX supports dynamic programming	in	the	large and allows
application integration by linking together user interfaces �ADVs� and large prede
ned objects


We believe it should be possible to balance decomposition by form and decomposition by func	
tion �Mah��� in the software design process in a manner similar to the way it is practiced in various
engineering disciplines
 In order to achieve this goal we need both design and implementation tools
to merge the structured and object	oriented design approaches
 We believe the concept of Abstract
Data Views provides the bridge between these two design approaches� because it supports both the
object view and decomposition by nesting


�



� Some Design Issues

An argument for the justi
cation of contemporary object	oriented design methodologies� that is
often used� emphasizes that object	oriented design and development inverts the traditional function	
oriented methodologies often associated with structured analysis and design �DeM���
 With this
inversion the emphasis is no longer placed on specifying and decomposing system functionality�
rather the object	oriented approach focuses 
rst on identifying objects from the application domain�
and then associating procedures with them
 A claim� that often follows from the previous argument�
is that object	oriented development not only allows information to be shared within an application�
but also o�ers the prospect for reuse of both designs and code
 We believe that this argument is
essentially incomplete� provides only a partial view of the very complex software design problem�
and that software design requires both approaches


A comprehensive design approach should at least include both function	oriented and object	
oriented �form� techniques
 In order to provide a perspective on this problem we 
rst brie�y review
some concepts from design theory followed by a brief justi
cation of the previous statement


There exist four widely known design paradigms �abstract prescriptive models of the design
process� in Computer Science �Das���� the analysis	synthesis	evaluation paradigm� the arti
cial
intelligence paradigm �design problems are said to be ill	structured�� the algorithmic paradigm
�design problems are considered well	structured problems 	 designs can be �programmed� from
precise requirements� and the formal design paradigm �design	while	verify�


The classical analysis	synthesis	evaluation paradigm �ASE� �Ale��� represents a widely held
view of the design process in most engineering disciplines
 According to ASE� the design process
is thought to consist of three logically and temporally distinct stages� a stage of analysis of the
requirements� followed by a stage of synthesis� followed by a stage of evaluation
 In general� several
instances of this three stage sequence may be required in order to progress from a more abstract
to a more concrete level
 Regardless of whether one considers large	scale software development or
the design of small programs� the development of software design methods has been enormously
in�uenced by the ASE paradigm


Several recent models of the software development process such as prototyping �B���� have
overcome the limitations of the classical ASE paradigm by viewing it as an interweaving of solutions
�designs or forms�� problems �requirements�� and evaluations� in which solutions and evaluations
prompt problems as much as problems prompt solutions


Maher �Mah��� has categorized the most important design synthesis models associated with the
new form of the ASE design process
 This process is often presented in three interwoven stages
called problem statement� design synthesis of a candidate solution and evaluation
 These design
synthesis models are decomposition� reasoning by cases and transformation
 Decomposition is the
classical �divide	and	conquer� approach to design and is the most widely used synthesis technique
in software development
 Reasoning by cases is the use of reasoning by analogy and is represented
by recent approaches to design reuse �Mai��� and transformational synthesis includes various forms
of program derivation from formal speci
cations �Par���


Let us concentrate on decomposition because of its relevance to practical software development

There is both decomposition by function and decomposition by form
 Maher �Mah��� calls attention
to the classical �function versus form� dilemma
 Engineers� architects and other designers often
face this problem� how much of each kind of decomposition to use
 In the next paragraph we

�



paraphrase some material from Maher �Mah��� in order to explain these two design strategies

What is decomposition by form and decomposition by function� First a design problem is

decomposed into subproblems and decomposition usually follows one of these two approaches
 In the
approach called decomposition by form one divides a problem in a domain of design knowledge into
the various components
 For example� in structural design these components would be the objects
such as walls� slabs� and steel beams that are used to construct the design solution
 In decomposition
by function one divides the solution into the various functions that must be provided by the design
solution
 For example� a structural solution must resist certain loads� provide unobstructed open
space� and have certain insulating properties
 Decomposition by form is an object	centred approach
in which the design knowledge is centred around the physical components
 Decomposition by
function considers a functional decomposition to a su�cient level of detail so that a function to
form mapping can occur


Until very recently software engineers have been constrained by a lack of tools and hence have
tended to use only functional decomposition
 Although this is an appropriate problem	solving
approach� decomposition involves re	composition later to produce the 
nal design
 This design
obtained through re	composition may contain several problems
 For instance� if the requirements
of the design problem change� a system based on decomposing functionality may require massive
restructuring


Object	oriented design has allowed the software engineer to perform decomposition by form

Unfortunately� much of the literature in object	oriented development assumes that decomposition
by form �object� replaces decomposition by function� and further� that inheritance is the way
decomposition by function takes place in object	oriented design
 In fact� inheritance allows spe	
cialization of forms� it is not meant to support decomposition by function into di�erent smaller
units


We believe that we are now able to balance decomposition by form and decomposition by
function in the software design process in a manner similar to the way it is practiced in various
engineering disciplines
 In order to achieve this goal we need both design and implementation
tools to merge the structured and object	oriented design approaches
 We believe the concept of
Abstract Data Views �ADVs� with some modi
cations to the concept of Abstract Data Types
�ADTs� provides the bridge between these two design approaches


� Abstract Data Types and Abstract Data Views

��� Abstract Data Types

An abstract data type �ADT� is an object in the object	oriented sense of program design
 We
use the term ADT because we are mostly interested in its properties as a type
 An ADT is an
object which is de
ned by a state and a functional interface
 The functions de
ned by the interface
can query or change the state of the ADT
 Only the functional interface is accessible to external
sources
 Given an ADT X we can instantiate various objects of type X


We extend the concept of ADT to allow nesting of ADTs� nesting implies that ADTs are
composed of a number of constituent objects and that one ADT encloses its constituents
 Also
the enclosing ADT knows the identity of its constituents� but the enclosed objects do not know
the identity of the enclosing object
 The semantics of nesting are such that reference to enclosed

�



Mapping

Output

ADV
(User Interface)

ADT
(Server)

{
Operations

State

User

Input
Message

Message

Figure �� An ADV as a user interface

objects from outside the enclosing object do not violate encapsulation �CL���
 Nesting supports
decomposition by function


��� Abstract Data Views as User Interfaces

Abstract data views �ADVs� are ADTs which have been modi
ed to support the design of user and
module interfaces
 ADVs were originally conceived to act as general user interfaces and to achieve
a separation of concerns by providing a clear separation at the design level between the application
as represented by an ADT� and the user interface or ADV


ADVs are objects in that they have a state� and a functional interface� they have also been
extended to support nesting
 ADVs support one or more mappings which allow the ADV to query
the state of any associated ADT and to change the state of that ADT through its functional
interface
 This mapping approach allows controlled access to the state of the ADT� thus preserving
the hiding principle �Par��b�
 The strategy used to implement this mapping is not speci
ed in the
model


The functional interface of an ADV is not invoked through the usual procedure or function calls
but by input messages
 Input messages can be triggered by external operations such as input events
caused by a keyboard or a mouse
 ADVs can produce output messages that use the mapping to
query the values of the variables in an accompanying ADT
 An output message is sent every time
the ADT operations change the state of the ADT
 Output messages in terms of a user interface
are the display commands which paint various views on the screen
 Of course output messages
do not change the state of the associated ADT
 Figure � illustrates the concepts described in the
preceding paragraphs


In the context of user interfaces and other transformations from one medium to another the
input and output messages can be viewed as medium transformers
 For example� the input message
or event takes a user action and transforms that action into a sequence of ADV operations
 The
output message or display takes a sequence of ADV operations and transforms them into a viewable
or tactile phenomenon


�



Type ADT Name

Declaration� var name��Type�� var name��Type�� � � �

Invariant� inv 	name � formulae

Type ADT Name�

Declaration� var name���Type�� var name���Type�� � � �

Invariant� inv 	name � formulae

Function function name� �input variables� res � output variables

external wr var name��wr varname��� rd var name�
pre�condition� formulae

post�condition� formulae





End ADT Name�

Function function name �input variables� res � output variables
external wr var name�� rd var name�
pre�condition� formulae
post�condition� formulae





End ADT Name

Figure �� An Abstract Data Type �ADT� Speci
cation Schema

��� Speci�cation Schemas for ADTs and ADVs

In order to provide a speci
cation schema for ADTs and ADVs we use a model	based approach
to speci
cation based on a VDM	like notation �Ier���
 VDM is used as the notation in which the
variable abstract types� the invariant formulae and the pre	 and post	conditions are expressed

Since the pre	 and post	conditions may refer to the values of the variables before and after the
execution of the event� we use VDM hooked variables �e
g
 ��x � to denote the variables before the
execution


An abstract schema for our form of ADT is shown in Figure �
 The schema shows ADT
Name� enclosed or nested inside ADT Name
 The ADT labelled ADT Name is aware that it is
composed of ADTs such asADT Name�� but ADT Name� is not aware of any aspect of the state of
ADT Name
 Variables that are declared �external varnames� in a function de
nition are accessible
outside the ADT
 All functions are public unless explicitly labelled private
 Thus� this form of
composition using nesting does not violate encapsulation and enclosed ADTs such as ADT Name�
are independent of their enclosing ADTs


Although this nesting notation extends VDM� this concept can be mapped back to �standard�
VDM notation
 The main idea is to use VDM maps �Ier��� to keep enclosing ADTs such as
ADT Name aware of the nested objects such as ADT Name�


�



ADV name� For Type adt names �

Declaration� var name��Type�� var name��Type�� � � �

Invariant� inv 	name � formulae

ADV name�� For Type adt names��





End name�

MESSAGE Input� �parms�
external varnames
post�condition� formulae

MESSAGE Input� �parms�





MESSAGE Output ��





End name

Figure �� An Abstract Data View �ADV� Speci
cation Schema for a user interface

An abstract schema of an ADV for a user interface is illustrated in Figure �
 The ADV
speci
cation schema in Figure � shows a nesting of ADVs� each one of them possibly referring to
an ADT� in this case� the ADV labelled name encapsulates the ADV name�
 Each ADV de
nes
its state through variable declarations whose relationship is expressed by a state invariant
 In the

ADV labelled name the expression �Invariant� inv 	name � formulae� is the state invariant

The examples in this paper will ignore the invariant property of an ADV or ADT� since we are
concentrating on programming aspects of the design approach to interfaces and not with providing
exact formal speci
cations


When comparing the notation used with the ADV in Figure � with VDM� the reader may
notice the absence of preconditions
 That simply indicates that the programming approach does
not assume any restriction on user operations


External de
nitions such as �external varnames� make external variables accessible internally

The declaration �post�condition� formulae� states the post	conditions for a message and represents
a logical de
nition that program code for the message must satisfy


The ADV approach assumes that the application ADTs never include operations related to user
interface aspects of the application
 In our approach� the ADV represents all user interface aspects
of ADTs
 In the syntax of the schema� the representation relation requires that the ADT name be
given after the key words For Type in the ADV heading
 Whenever the ADV has no associated
ADT� that is� when it represents only interface concepts independent of the applications such as
scrolling� the For Type declaration is omitted


Whenever the declaration For Type is used� the pseudo	variable owner associated with an

�



instance of the declared ADT is made available inside the ADV
 This pseudo	variable refers to
the represented ADT and allows controlled access to the state of the ADT
 An ADT can only
be modi
ed through its operations but read	only access to its state can be provided through the
pseudo	variable owner 
 The owner pseudo	variable can then be used in the state invariant for the
ADV and� in a restricted form� in the post	conditions� thus� allowing the �appearance� of an ADV
to conform to the state of an ADT
 This connection between the ADT and ADV captures the
WYSIWYG nature of a user interface


In the original ADV paper �CILS��a� we provided a formal semantics for ADVs as user interfaces�
whereas in this paper we illustrate through informal arguments and examples� how ADVs may be
used as module interfaces in general program design
 In another paper �CCL��� we present the
ADV concepts using a visual formalism� and also outline how these concepts may be incorporated
in a design methodology to be supported by an appropriate environment


��� Communication Between ADVs and ADTs

Communication between an ADV and an ADT occurs when the ADV executes synchronous in	
vocations �procedure calls� e�ectively� to the ADT �CCCL���
 An ADT never generates events
that must be handled asynchronously by the associated ADV
 This approach contrasts with other
user interface models� where a component must handle both synchronous and asynchronous invoca	
tions from other components
 Handling asynchronous invocations is considerably more complicated
than handling synchronous invocations since it requires error	prone mechanisms such as signals�
interrupts� or callbacks
 With an explicit mapping we enforce a one	way communication� and� as a
consequence� have fewer interconnections� thus� ensuring that the role and scope of the interface are
de
ned unambiguously
 Asynchrony is needed in other models because the �o�cial� locus of con	
trol is in the non	user	interface application
 This approach is consistent with �slightly	interactive�
programs� which mostly compute but occasionally prompt the user for input
 In highly interactive
applications� however� the actual locus of control is associated with the user
 The tension between
these two loci of control is the source of the complexity
 The ADV model avoids this tension by
placing the main locus of control in the ADV
 Fundamentally� the ADV model is based on the
program waiting for the user rather than the user waiting for the program


��� ADVs and Metaphors

Because of their general properties ADVs can be viewed at the design level as metaphors trans	
forming between the semantic domain of the user and an associated ADT or between the semantic
domains of two ADTs
 This concept of ADV as a metaphor allows ADVs to be used as user in	
terfaces or to de
ne interfaces between ADTs in the same or separate computers
 In this latter
context ADVs can be viewed as module interconnection relations
 In the following sections we will
examine ADVs in all these uses


A conceptual architecture has been proposed in �BKL��� in which a metaphor level is viewed
as the conceptual foundation on which an interactive system is based
 Furthermore� the authors
claim that the basis of the metaphor level is an ADT


We have arrived independently at a similar conclusion in that we view the ADV �a special type
of ADT� as a metaphor
 An example of the nature of an ADV as a metaphor is presented in a later

�



section of this paper
 ADVs as metaphors can also be supported by the central ideas of a formal
theory of metaphors �Ind��� which is described in the following paragraphs


To provide a simpli
ed version of Indurkhya�s formal de
nition of metaphors� we need 
rst to
consider V to be a set of symbols and f �V � T a function which maps the symbols to a set of
types
 A vocabulary is de
ned as a pair � V � f �
 We now consider a set of well	formed sentences
S over the vocabulary � V � f � and a sub	set Sd of S composed of derivations �sentences that
de
ne or assign some meaning to the symbols of V �


We can now de
ne a domain Di as a four	tuple � V � f � Sd � S �
 The set of structural con	
straints S delimits the interpretations that can be given to the symbols de
ned in Sd and to the
sentences that can be formed using the vocabulary � V � f �
 We can now de
ne a metaphor in
Indurkhya�s style� given two domains D� � � V�� f�� Sd�� S� �� called the source domain� and D� �
� V�� f�� Sd�� S� �� called the target domain� and an admissible mapping m�V� � V�� a metaphor
is a pair � m� S � where S is a sub	set of S� formed by its transformable sentences


ADVs as models of metaphors adhere to this de
nition
 In Figure �� the two domains are� the
Abstract Task Domain �BKL��� �the high level user�s tasks needed to execute some computation
	 represented by the eye� and the application domain represented by the ADT
 The mapping in
Figure � is the mapping m in the de
nition� the input messages are the sentences S and the output
is the result of applying the metaphor


Maiden �Mai��� has discussed the nature of mappings of analogies or metaphors in software
engineering
 They map only those causal relations belonging to an abstraction shared by the target
�the ADT� and the reusable domain �the user�s abstract task domain�
 The causal relations belong
to an abstract knowledge structure shared by the reusable and target problems
 The ADV concept
also conforms to those considerations


� ADVs as Module Interconnection Relations

The modular structure of a system can be described in terms of various types of mathematical
relations
 The entity	relationship model �ER model �Che���� was motivated by the need for a
conceptual model of data suitable for specifying user views and logical requirements in applications
that are centered around large collections of interrelated data �databases�
 The model is based
on three primitive concepts� entities� relations and attributes
 The properties of an entity are its
attributes and the relations in which it participates
 Relations may be annotated as one to one�
one to many� many to one� or many to many
 These annotations describe simple constraints on the
relationship


When we describe general programming systems� as opposed to database	centered applications�
we need relations to be constrained in ways that characterize the structure of software designs
�Par��b� Par��a� Par���


Four types of relations among modules are useful for structuring software designs in which
decomposition by form �object� with decomposition by function are combined
 They are� USES�
IS COMPONENT OF� COMPRISES and INHERITS FROM


For distinct modulesMi andMj � we say thatMi USESMj if and only if correct execution ofMj
is necessary for Mi to complete the task described in its speci
cation
 If Mi USES Mj � we also say
that Mi is a client of Mj � since Mi requires the services that Mj provides
 In classical structured

�



design �strict functional decomposition� the USES relation is restricted to a hierarchy
 In object
oriented design� the USES relations among modules is de
ned statically� that is� the identi
cation
of all pairs � Mi �Mj � belonging to USES �identi
cation of clients and servers� is independent of
the execution of the software


In design� once Mi is decomposed into the set Ms �i of its constituents� it is replaced by them�
that is� Mi is an abstraction �COMPRISES the set Ms �i � that is implemented in terms of simpler
abstractions �that relate to the abstraction by means of the relation IS COMPONENT OF�
 A
module Mi can also be organized as a hierarchy of modules that inherit its properties �INHERITS
FROM�� that is� their attributes as objects fall under the same general category


The relations USES and IS COMPONENT OF�COMPRISES provide only a rough description
of the software architecture
 More remains to be said regarding the exact nature of the interaction
between two modules participating in the USES relation and about the details of IS COMPO	
NENT OF�COMPRISES


In our generalization of the ADV�ADT concept we say that an ADV VIEWS an ADT
 The
VIEWS relation combines the USES and the COMPRISES relations and also provides the addi	
tional details regarding the interaction between two modules
 The ADV provides the client ADT
with the services it needs from a server ADT and it may also express the COMPRISES relation by
integrating component ADTs through the nesting of their respective ADVs
 INHERITS FROM
also holds within ADVs


Nesting and inheritance also implement the relations IS COMPONENT OF and INHERITS
FROM at the ADT level


The relation VIEWS was informally described above as a combination of USES and COM	
PRISES extended to include additional details regarding the interaction between two modules
 In
what follows we provide examples of the additional details that can be encapsulated in ADVs


In some object	oriented design methodologies �Boo��� R���� many di�erent relationships be	
tween objects may be realized as client relationships
 The relation VIEWS constraints the semantics
of the client relationship to mean essentially IS A COMPONENT OF
 The server object is com	
pletely encapsulated by the client and may therefore be regarded as its private resource


To exploit the inherent concurrency of object orientation� several categories of objects had their
roles identi
ed in designs of concurrent systems
 Examples are active �actor� objects �Boo��� that
export no methods �their only function is to call other objects in the system�� objects which possess
no active thread �servers or passive objects� and �agent� objects �Boo��� that both export methods
for invocation by others and possess their own thread to initiate calls
 Since their methods may be
called concurrently by other objects� they are likely to require an appropriate behavior to control
external access
 The 
rst and third categories are examples of the additional details regarding the
interaction between modules that ADVs should be able to capture


Also� to provide maximum �exibility in the allocation of virtual node instances to physical
machines in a network� the distributed run	time system should support the same communication
mechanisms for local �intra	processor� and remote �inter	processor� communication 	 a property
known as communication transparency
 There is one fundamental aspect of objects that is detri	
mental to their suitability for acting as virtual nodes 	 their failure to encapsulate their internal
state
 Again� this is another example of interaction between modules that may be dealt with by
ADVs


��



ADT ADT

Mapping

Output
Messagei j

ADVij

Views

Figure �� An ADV providing an interface between two ADTs

ADV name� For Type adt map names �

Declaration� var name��Type�� var name��Type�� � � �

Invariant� inv 	name � formulae

MESSAGE Output � For Type adt output names � ��





End name

Figure �� An Abstract Data View �ADV� Speci
cation Schema for a module interface

� ADVs as Domain Transformers

ADVs can be used to transform one semantic domain to another� a process that is usually
associated with a stepwise re
nement or top	down approach to design
 In this section we illustrate
this transformation in two steps
 First we show how ADVs can be used to hide a portion of the
interface of an ADT and thus produce a more specialized version
 This concept is illustrated by
showing how a deque can be transformed into a queue or stack through a simple application of
an ADV
 In a second step we show how ADVs can be viewed as metaphors as de
ned in Section
�
�
 Here we discuss the concept and illustrate the approach by transforming the design of a mail
system into the lower level functions of a 
le system


The 
rst step illustrates the notion of dynamic inheritance supported by ADVs to promote reuse
by stimulating the development of general components which can be viewed in various di�erent
ways
 In other words� with ADVs we are able to mimic in object	oriented design and programming
the way generality and reuse could be achieved in data base systems


The second step relates to our previous work on application integration �CILS��b� CLV���

Originally we have used external ADVs �user interfaces� to integrate applications
 If the application
ADT we want to connect to an ADV is expressed at a low level of abstraction� the gap needs to
bridged by other layers of ADVs and ADTs


The argument we have used to consider external ADVs as metaphors also apply to the situation
in which a client ADT is viewing a server ADT
 At the linguistic level we could name an ADV�s
messages with the terminology from the problem domain
 Thus� ADVs can be made to represent
metaphors in the problem domain known to the end	user


��



At the design level the ADV concept can be modi
ed to specify completely the relationship
between modules represented by ADTs
 For example� ADVij depicted in Figure � shows that the
client ADT labelled ADTi views the component ADT labelled ADTj 
 In other words the ADV

implements the module relations VIEWS �USES and COMPRISES�
 The ADV can also support
the detailed de
nition of the interface between modules


A modi
cation of the ADV speci
cation schema from Figure � is shown in Figure � and this
new schema de
nition supports the concept of an interface between modules
 The ADV approach
assumes that the client ADT never includes operations related to interfaces of other ADTs which it
uses
 In our approach� the ADV represents all aspects of the interface of the component ADT which
are relevant to the client ADT
 In the syntax of the modi
ed schema� the representation relation
requires that both the client ADT name and the component ADT name be speci
ed in the ADV

The client ADT name should appear after the key words For Type in the ADV declaration� and
the component ADT name after For Type in the output message


Whenever the declaration For Type is used in both the ADV and output message declara	
tions� two pseudo	variables client owner and component owner become available inside the ADV

The variables client owner and component owner are associated with the client and component
ADTs respectively
 These pseudo	variables refer to the two ADTs and allow controlled access


The pseudo	variable component owner connects an instance of the ADV to an instance of the
component ADT and provides access to its interface
 This method of specifying the connection to
the component ADT ensures that the client has no knowledge of the interface of the component
ADT
 Further it allows the ADV to implement interface hiding or interface specialization where
a client ADT may only have access to a subset of the operations provided by a component ADT

Also if the method of interface access provided by the client di�ers from that supported by the
component the ADV can e�ect a transformation


The pseudo	variable client owner associated with an instance of the client ADT is made avail	
able inside the ADV
 This pseudo	variable refers to the client ADT and allows controlled access to
the state of the ADT
 The client ADT can only be modi
ed through its operations but read	only
access to its state can be provided through the pseudo	variable client owner 
 The client owner

pseudo	variable can then be used in the state invariant for the ADV and� in a restricted form� in the
post	conditions� thus� allowing the �appearance� of an ADV to conform to the state of an ADT

This connection between the ADT and ADV ensures that the ADV has current knowledge of the
state of the ADT


The schema which supports interfaces between ADTs only contains output message de
nitions�
since there is no active external object to trigger an event which would cause an input message

ADTs do not trigger events and ADVs only connect ADTs together and do not interact directly


From an operational viewpoint the ADV can be viewed as a process which responds to changes
in the client ADT state� and responds to these changes by activating the interface of the component
ADT
 The ADV acts in a manner not unlike a channel in a computer system


In summary we observe that there are two types of ADVs� an ADV which acts as an interface
between two di�erent media and has both input and output messages� and an ADV which acts as

�The client ADT changes its state because of a direct or indirect stimulus caused by an input event such as that

coming from a user interface� a timer or some other interrupt�driven device�

��



ADTi

Mapping

ADT j

Mapping

Output

Message

Output

Message
ADVij

ADV
ji

ADVij
b

Views

Figure �� A pair of ADVs providing a bi	directional interface between two ADTs

an interface between two ADTs operating in the same medium

The interface speci
ed in Figure � and � only supports uni	directional communication and

does not allow the component ADT to return values to the client
 In order to allow bi	directional
communication we must use a pair of ADVs as depicted in Figure �
 The second ADV named
ADVij provides access to the state of ADTj and returns values to ADTi through the output

message
 These two ADVs are composed into a single ADV called ADVb
ij and this speci
cation

schema is outlined in Figure �


��� A Simple Example of the Use of ADVs as Domain Transformers

In the simple example presented in this section we illustrate the use of ADVs as general interfaces
by demonstrating how a double	ended queue �deque� can be presented as either a stack or queue

We 
rst present the speci
cation of the three ADTs� the deque� stack and queue followed by the
two ADVs which interconnect the stack to the deque and the queue to the deque
 Since the two
ADVs are bi	directional this example shows simple nesting of ADVs and many other aspects of
their basic structure and yet manages to avoid detail which might obscure the concept


We start the example by describing the application� that is� by providing a simpli
ed speci
ca	
tion for the three ADTs �deque� stack and queue� that encapsulate the application� this description
is shown in Figures � and �
 Note that we formulate an application speci
cation which is entirely
independent of the interface of the components


In Figure � Element stands for an abstract element to be placed in the deque
 No operations
in the example require pre	conditions because the restrictions that the deque is empty is de
ned in
the post	conditions for the RemoveRight and RemoveLeft functions


Given the ADT speci
cation for the application� we can now de
ne the two ADVs Stack and
Queue in Figure �� which connects the ADTs for Stack and Queue to the ADT for Deque
 This
interface speci
cation performs the primary function of connecting the ADTs and hiding aspects
of the Deque interface that are not necessary for the speci
c de
nition


The ADTs Stack and Queue are associated with the ADT Deque through the For Type

operator speci
ed in the ADVs Stack and Queue and in the output messages in Figure ��
 The
item shown after the For Type operator in the ADV statement is associated with a client and
the item after the For Type operator in the output message is connected with a component
 The
pseudo	variables client owner and component owner are made available through this association

��



ADV ADVb
ij

Declaration� var name��Type�� var name��Type�� � � �

Invariant� inv 	name � formulae

ADV ADVij � For Type ADTi





MESSAGE Output � For Type ADTj � ��

End ADVij

ADV ADVji � For Type ADTj





MESSAGE Output � For Type ADTi � ��

End ADVji





End ADVb
ij

Figure �� An Abstract Data View �ADV� Speci
cation Schema for a bi	directional module interface

and allow read	only access to the state of the client and restricted access to the interface of the
component
 The restrictions imposed on interface access are a function of the ADV


��� ADVs as Metaphors

In the previous section we demonstrated how ADVs can be used as interfaces between two ADTs

This concept can be further generalized� and an ADV can be viewed as a metaphor or transformer
between two semantic domains
 In terms of design the ADV or metaphor can be viewed as a
mapping between two di�erent levels of abstraction in a design
 For example� the concept of
deleting a 
le by dragging it to a trash can� can be viewed as a metaphor for deleting a 
le from a

le system� which can be viewed as a metaphor for operations such as locating a 
le in a directory
and altering the various tables
 We shall illustrate this concept further by constructing the ADVs
or metaphors for an electronic mail example which is illustrated in Figure �� and has been used
as a generic example in the literature �BKL���


����� An Example � Electronic Mail

An electronic mail system was chosen to show how a designer might use ADVs to specify the
relationship between two di�erent levels within the architecture
 Electronic mail can be viewed as
operations on a number of ADTs or objects at a level of abstraction viewed by the user
 Hence the
user would have the concept of mailbox for incoming messages� a letterbox for outgoing messages�

��



Type Deque

Declaration� componentDeque�Element��DeqEl �Element

Type Element





End Element

Function AddRight �DeqEl�
external wr DeqEl

post�condition� componentDeque �
�������������
componentDeque�� �DeqEl �

Function AddLeft �DeqEl�
external wr DeqEl

post�condition� componentDeque � �DeqEl ���
�������������
componentDeque

Function RemoveRight �� res � fempty �DeqElg
external rd DeqEl
post�condition� if ISEMPTY ��

then res � empty

else
�������������
componentDeque � componentDeque�� �DeqEl �� res � DeqEl

Function RemoveLeft �� res � fempty �DeqElg
external rd DeqEl
post�condition� if ISEMPTY ��

then res � empty

else
�������������
componentDeque � �DeqEl ��� componentDeque � res � DeqEl

Private Function ISEMPTY �� res �B
post�condition� res � �length�componentDeque� � ��

End Deque

Figure �� The ADT for a Deque

��



Type Stack

Declaration� componentStack �Element�� StackEl �Element

Type Element





End Element

Function Push �StackEl�
external rd StackEl

post�condition� componentStack �
������������
componentStack �� �StackEl �

Function Pop �� res � StackEl
external wr StackEl

post�condition�
������������
componentStack � componentStack �� �StackEl �� res � StackEl

End Stack

Type Queue

Declaration� componentQueue�Element��QueueEl �Element

Type Element





End Element

Function Enqueue �QueueEl�
external rd QueueEl

post�condition� componentQueue �
�������������
componentQueue�� �QueueEl �

Function Dequeue �� res �QueueEl
external wr QueueEl

post�condition�
�������������
componentQueue � �QueueEl ��� componentQueue � res � QueueEl

End Queue

Figure �� The ADTs for a Stack and Queue

��



ADV Stack

ADV Push� For Type Stack �

MESSAGE Output � For Type Deque� ��
external rd client owner �StackEl �wr component owner �DeqEl
pre�condition� client owner �StackEl � component owner �DeqEl �

client owner �StackEl �� empty �
client owner �Push � component owner �AddRight

End Push

ADV Pop� For Type Deque�

MESSAGE Output � For Type Stack � ��
external wr component owner �StackEl � rd client owner �DeqEl

pre�condition� component owner �StackEl � client owner �DeqEl �
component owner �Pop � client owner �RemoveRight

post�condition� component owner �StackEl � client owner �RemoveRight

End Pop

End Stack

ADV Queue

ADV Enqueue� For Type Queue�

MESSAGE Output � For Type Deque� ��
external rd client owner �QueueEl �wr component owner �DeqEl
pre�condition� client owner �QueueEl � component owner �DeqEl �

client owner �QueueEl �� empty �
client owner �Enqueue � component owner �AddLeft

End Enqueue

ADV Dequeue� For Type Deque�

MESSAGE Output � For Type Queue� ��
external wr component owner �QueueEl � rd client owner �DeqEl
pre�condition� component owner �QueueEl � client owner �DeqEl �

component owner �Dequeue � client owner �RemoveRight
post�condition� component owner �QueueEl � client owner �RemoveRight

End Dequeue

End Queue

Figure ��� The ADVs to connect a Stack and a Queue to a Deque

��



Mail System File System

Figure ��� The Mail Example

a trash can for deleted messages� a set of folders on a desktop to retain important messages� a
notepad to create a message� and of course� the object message
 All of these concepts would relate
to operations on the 
le system
 Hence our mail system consists of a number of objects at one level
of abstraction or semantic domain which must somehow be mapped into the semantic domain of
the 
le system
 This mapping which is a metaphor� is de
ned by an ADV


We give a partial illustration of the ADV as a design metaphor by showing how it maps the
operations on the object mailbox onto the operations on the 
le system
 Figures �� and �� show
the two ADTs for the mail system and 
le system� while Figures ��� �� and �� contain the
complete de
nition of the ADV that acts as the metaphor mapping the mail system into the 
le
system


The function of this ADV is to map the functions of the mail system such as Select and View
into equivalent functions in the 
le system such as Access and Read 
 This is illustrated in Figure ��
in the ADV for Mailbox where the result of the Mailbox �Select operation in the ADV MailSystem
is 
rst transformed from a mailbox name into a 
le name by the function string��le
 This name
is then used by the 
le system function Directory �Access to return a handle to a directory which
is stored in a variable dirptr in the enclosing ADV Mail System Metaphor 
 The variable dirptr
is converted from a 
le handle into a directory name by the function �le�string and then used as
an argument in the Mailbox View command
 Here we see how the ADV acts as a metaphor� it
transforms the commands and their arguments from the semantic domain of the mail system to
the semantic domain of 
les and directories


� Implementing ADVs

ADVs were originally conceived as a method of reusing designs for user interfaces and ADTs
in highly interactive systems
 In the previous section we have generalized the ADV concept to
encompass general interfaces between ADTs in any part of a program design
 As general interfaces
ADVs can be implemented using several di�erent models �CCCL��� such as MVC �KP��� and ALV
�Hil��� and at several di�erent times during the program creation process
 This section outlines
some of the possible implementation strategies


��



Type Mail System

Declaration� componentMailbox �Mailbox

Type Mailbox

Declaration� msg �Message

Type Message

Declaration� hdr �Header
bdy �Body

Type Header





End Header

Type Body





End Body

Function View Header ��
external rd hdr
post�condition� �Header displayed�

Function View Body ��
external rd bdy

post�condition� �Message displayed�

End Message

Function Select ��
external rd msg
post�condition� �Message selected� �Header �View Header

End Mailbox

Function Select ��
external rd componentMailbox

post�condition� �Mailbox selected�

Function View ��
external rd componentMailbox
post�condition� �List of messages viewed using Header
View Header command iteratively�

End Mail System

Figure ��� The ADT for the mail system

��



Type FileSystem

Declaration� dir �Directory
dir handle�Directory pointer

Type Directory

Declaration� �le�File

Type File





End File

Function Access ��
external rd �le
post�condition� �File named 
le available�

End Directory

Function Access �dir handle�
external rd dir

post�condition� �Directory named dir available�

End FileSystem

Figure ��� The ADT for the 
le system

ADV Mail System Metaphor

ADV MailSystem� For Type MailSystem�





End MailSystem

ADV FileSystem� For Type FileSystem�





End FileSystem

Private Function string��le �x � pointer to string� res � y � fempty � z � pointer to �leg
pre�condition� x �� empty

post�condition� �x converted to z�

Private Function �le�string �y � pointer to �le� res � x � pointer to string
pre�condition� y �� empty
post�condition� �y converted to x�

End Mail System Metaphor

Figure ��� The ADV acting as a metaphor between the mailbox and the 
le system

��



ADV MailSystem� For Type MailSystem�

ADV Mailbox � For Type Mailbox �

ADV Message� For Type Message�

ADV Header � For Type Header �

MESSAGE Output � For Type File� ��
external rd client owner �msg
post�condition� component owner �File�Access�string��le�client owner �msg��

End Header

ADV Body � For Type Body �

MESSAGE Output � For Type File� ��
external rd client owner �msg

post�condition� component owner �File�Access�string��le�client owner �msg��

End Body

End Message

MESSAGE Output � For Type FileDirectory � ��
external rd client owner �componentMailbox
post�condition� component owner �Directory �Access�

string��le�client Owner �componentMailbox��

End Mailbox

End MailSystem

Figure ��� The ADV for the Mail System

��



ADV FileSystem� For Type FileSystem�

MESSAGE Output � For Type Mailbox � ��

ADV Directory � For Type Directory �

ADV File� For Type File�

MESSAGE Output � For Type Header � ��
external rd client owner �dir

post�condition� component owner �Header �View Header�
�le�string�client owner �dir� � �end of header marker��

MESSAGE Output � For Type Body � ��
external rd client owner �dir

post�condition� component owner �Body �View Body�
�le�string�client owner �dir� � �start of body marker��

End File

MESSAGE Output � For Type Mailbox � ��
external rd client owner �dir

post�condition� component owner �Mailbox �View��le�string�client owner �dir��

End Directory

End FileSystem

Figure ��� The ADV for the 
le system

��



ADV class

B_ADV class
C_ADV class

D_ADV
class

Interactive class

B class
C class

D class
A class

A1

A2
A3

A_ADV
class

A_ADV1

A_ADV2

A_ADV3

1D_ADV
1.1C_ADV

1.2C_ADVB_ADV1

1C1D2B1B

B3

1

E_ADV class

E_ADV

E class

Figure ��� Programming ADV � ADT designs

��� ADVs and ADTs as Objects and Classes

One implementation strategy which might be called the single	language� approach produces ADVs
as modules or objects in the sense of object	oriented programming
 As an illustration of this
technique we give a brief overview in this Section of how ADVs relate to the ADT classes of object	
oriented programming
 This approach has already been tested extensively in the implementation
of a GUI generator in C�� developed by Potengy and described in �LCP���


ADT classes which communicate with the user through an associated ADV can be viewed as
subclasses of a general Interactive class as illustrated in Figure ��
 Each of these ADTs inherits
the properties of the general Interactive class� and an instance of this class is an Interactive object

The ADV subclass structure shown in Figure �� is speci
ed re�ecting the Interactive subclass
structure� obviously providing access only to its public members


The ADV class contains at least a Window and a reference to an Interactive object
 Each
instance of ADV is related only to one Interactive object at a time� but many ADV objects can be
related to the same Interactive object at the same time
 For example� in Figure ��� the A ADV

instance A ADV� is associated with the instance A� of A
 The instance B ADV� sometimes is
linked to B� and sometimes to B�
 There are also two instances of the C ADV class associated
with the same instance C� of C 
 Of course there must be a mechanism to tell the ADV to which
instance it is related
 However� because the way instances are stored is application dependent� the

�We use the term single�language because most of these concepts would be implemented in a single programming

language rather than using multiple languages�

��



application designer will be in charge of specifying the association mechanism

When an Interactive object is changed by itself� by an ADV� or by any object internal to the

application� it will send a message to all associated ADVs� requesting that they update themselves

To do this� the Interactive class contains a list of references to ADV objects
 Experience with
programmingADVs indicates that they should be able to send messages to each other
 This message
passing is only necessary with ADVs that are directly or indirectly related to the same object
 Thus�
the best object to manage the message tra�c is the Interactive object
 In order to improve the
opportunity for reuse� the ADV subclass should be as general as the ADT class with which it is
associated� thus� the same abstract operations will be applied to ADVs and their associated ADTs

For example� in Figure ��� class D is a subclass of B and C � since its corresponding ADV is built
in the same way� the class D ADV is a subclass of B ADV and C ADV 


Another approach which delays the binding time would be to consider ADVs and ADTs as
object modules and connect them together when the modules are linked
 Such an approach might
require a more complex linker than is normally used� since the linker instructions would likely be
ADVs
 Except for completeness we do not discuss this approach further


��� ADVs and ADTs as Dynamic Objects and Classes

Another implementation approach could be called the domain	expert approach
 In this case a
number of application and user interface components are made available
 Each component may
be quite complex with a well	de
ned application program interface �API�
 The API can be linked
to and operated dynamically using some form of late binding through a program written in a
script language such as the Korn	Shell �Par���� Perl �Wal���� Expect �Lib���� Visual Basic �Cor����
VX�REXX or REXX �Cow���
 In fact the scripts which link the various components together are
often ADVs themselves in that they act as metaphors
 The domain	expert approach has been
used in a limited way in Unix to join together 
lters and other application units in some form of
chain using standard input and output ports
 We have used this strategy more extensively in our
laboratory to produce complex applications from component ADVs and ADTs
 Some examples are
presented in �CILS��b� and �CLV���


In this section we use an example to illustrate some aspects of the domain	expert approach

Consider a relational database containing several numeric data 
elds which we wish to display in
a spreadsheet format
 The entire application is controlled by a GUI which has text input 
elds for
the name of the database and the corresponding SQL statements
 The system is constructed using
one of the user interface toolkits such as VX�REXX or Visual Basic� that is� interface components
and various application programs are connected together and communicate through a scripting
language


There are several ADTs and ADVs in the system
 The database is an ADT and the spreadsheet
is an ADV and ADT combination since it contains both a user interface and the application which
stores the data
 The GUI objects and their associated scripts to control the application form an
ADV
 Another ADV which is implemented entirely in the scripting language is the connection
between the database and the spreadsheet
 This ADV acts as a metaphor since it takes data from
the database� transforms the data into a format suitable for the spreadsheet� and then communicates
with the spreadsheet
 This is one illustration of an entire class of applications which can be
constructed using the domain	expert approach
 Features of this approach include selective interface

��



ADV Concurrent

Declaration� lock � semaphore

ADV Stack





End Stack

ADV Queue





End Queue

End Concurrent

Figure ��� The ADVs to connect a Stack and a Queue to a Deque with concurrency mechanisms

hiding and dynamic inheritance
 Many examples similar to the one described here have been
implemented
 In fact� developing methods for producing such applications was one of the motivating
factors for creating VX�REXX


� Concurrency

The examples in Section �
� were used to illustrate how an ADV can be used to specify an interface
between two ADTs
 This approach to interfaces can be easily extended to handle concurrency� and
we use the stack� queue and deque example as an illustration
 When the stack or queue ADT
accesses the deque they cause a change in state in the deque� hence any such access must be in the
form of an atomic transaction


The speci
cation in Figure �� and �� illustrates one method of achieving concurrency using
an ADV
 Since the Stack and Queue ADVs may not operate independently they are enclosed
in another ADV called Concurrent which supports concurrency mechanisms
 In this example a
semaphore variable lock is declared which is acted upon by two semaphore functions up and down
equivalent to Dijkstra�s P and V operations �Dij���
 The pre	 and post	conditions were expanded
to ensure that execution would only occur if the deque ADT was not already in use


Two observations can be made about the method which is illustrated in Figure �� and ��

Concurrency issues are now carefully isolated� they are not part of the ADT
 Rather they describe
how the ADT should be used
 Also this form of packaging of concurrency concerns bears some
relationship to the concept of monitor �Hoa���


The previous example illustrates the principles of using ADVs in a computation involving con	
currency but a more complex example is needed to test the method thoroughly
 For this reason we
designed and implemented a simple cooperative system� a shared drawing tool that is outlined in
this section
 In the cooperative system users are allowed to draw simple diagrams and write short
paragraphs in their workspace
 Each user�s actions will be replicated in the other active workspaces

Since many workplaces may be active simultaneously� concurrent user actions may take place and

��



ADV Stack

ADV Push� For Type Stack �

MESSAGE Output � For Type Deque� ��
external rd client owner �StackEl �wr component owner �DeqEl

pre�condition� client owner �StackEl � component owner �DeqEl �
client owner �StackEl �� empty �

client owner �Push � component owner �AddRight � down�lock�
post�condition� up�lock�

End Push

ADV Pop� For Type Deque�

MESSAGE Output � For Type Stack � ��
external wr component owner �StackEl � rd client owner �DeqEl

pre�condition� component owner �StackEl � client owner �DeqEl �
component owner �Pop � client owner �RemoveRight � down�lock�

post�condition� component owner �StackEl � client owner �RemoveRight � up�lock�

End Pop

End Stack

ADV Queue

ADV Enqueue� For Type Queue�

MESSAGE Output � For Type Deque� ��
external rd client owner �QueueEl �wr component owner �DeqEl
pre�condition� client owner �QueueEl � component owner �DeqEl �

client owner �QueueEl �� empty �
client owner �Enqueue � component owner �AddLeft � down�lock�

post�condition� up�lock�

End Enqueue

ADV Dequeue� For Type Deque�

MESSAGE Output � For Type Queue� ��
external wr component owner �QueueEl � rd client owner �DeqEl

pre�condition� component owner �QueueEl � client owner �DeqEl �
component owner �Dequeue � client owner �RemoveRight � down�lock�

post�condition� component owner �QueueEl � client owner �RemoveRight � up�lock�

End Dequeue

End Queue

Figure ��� The Stack and Queue Components of the Concurrent ADV

��



Public

PublicPrivate

PrivatePrivate

Private

ADV

ADT

Public

Private

Public

Private

Managers

Figure ��� Cooperative Drawing Tool

they should be properly handled

The design of the concurrent application was simply handled through the use of ADVs
 The

prototype consists of two windows where squares can be created
 Each window represents one
screen of a workstation
 When a user selects one object in one of the windows� the related object
in the other window can not be accessed


Each workspace has a related ADV which re�ects the state of a unique ADT� that maintains
the information about all objects drawn by the users
 There will also be a private workspace�
represented by an ADV related to its own ADT� accessible only to the owner of that workspace
 A
diagram representing this description is shown in Figure ��


It is important to note that parallel operations can occur as users work in instances of their
workspace
 Therefore� since each instance is responsible for its operations� we must be able to
guarantee that interference will not occur


To maintain the consistency of the user�s actions we must ensure that each action is applied to
all active workspaces
 We will use objects called managers to achieve this goal
 Whenever the state
of an ADT changes� the manager will notify all related ADVs
 This con
guration is illustrated in
Figure ��


The 
rst time the tool is activated� a public ADT and associated manager will be created in
the machine where the program was invoked� this machine is the server
 Each time a user joins
the session� a new ADV will be created in the user�s workstation� which will be �connected� to
the manager in the server machine
 Only the ADV�s visual representation will be exported to the
workstations� and all processing will be executed in the server machine


The managers will maintain a list of dependencies between ADV�s and ADT�s and any message
between them will be handled by the managers
 Moreover� whenever there is a relation between
an ADT and an ADV there must be a manager


��



Mapping

User
Interface

Input

Output

ADV

Mapping
Input

Output

ADV ADT

Mapping
Input

Output

ADV ADT

Network
Interface

Client

Server

Figure ��� ADVs used to implement the client�server model

The introduction of the manager will result in an intermediate layer between the ADV and
ADT world� thus introducing extra work in the implementation phase
 This work will be reduced
gradually� because the former interfaces and application portions of each implementation can be
easily reused


In order to test the proposed speci
cation� a program was developed using C�� simulating the
concurrent operation
 Each entity ��object�� has at least three related objects in C��� one for
the interface part �ADV�� another for the application part �ADT� and an object that manages the
relations between them


� ADVs in Distributed Systems

ADVs are used as an interface between the computer system and the user and have been viewed as
a design paradigm for user interfaces
 A user interface is one example of a transition between two
di�erent worlds� namely the world of the human user and the world inside the computing system

The world of the human user is active� while the computing system world is passive waiting to
respond to external commands
 The ADV provides a bridge between those two di�erent worlds or
media


There are other examples in computing systems where a bridge for such a transition is required

Networks are one such example
 Signals from the network are active commands which require
a response from the computer system
 This line of reasoning has led to the use of ADVs in
other situations such as the one shown in Figure ��
 Here two ADVs are acting as interfaces to
the network and are supporting the client�server model
 The input messages are signals such as
datagrams from the network and the output messages respond to changes in the state of the ADT
and transmit signals or datagrams to the network
 Conceptually there is no di�erence between the
use of an ADV as a user interface or a network interface� and so in a formal speci
cation we use
the schema from Figure �
 It is interesting to note that the two ADVs in Figure �� correspond to
the client handler and server handler which are used in client�server systems


The rest of this section demonstrates how the ADV and ADT concepts map into the client�server
environment
 We follow this explanation with a discussion of a practical application of this approach

��



ServerHandler

sh

ClientHandlerch

ClientHandler ch

ServerHandler

sh

Client

AView

A_Client

Server

A_Server

A

Client

B_Client

BView

B

Server

B_Server

a1

bv1

av1 av2

b1

Host 2

Host 1

Figure ��� Client�Server architecture using ADVs

by demonstrating a distributed ray tracer


	�� The Client
Server Design Environment

The Client�Server environment consists of a set of classes of ADTs and ADVs which are used
to build interactive client�server based applications
 These classes include the user interface �an
ADV� and its associated interactive class �LCP���that are described in Section �� a new ADT for
the Server � and two ADVs for the ClientHandler and ServerHandler 
 The Client and Server are
abstract classes� which are specialized through inheritance to perform speci
c functions


The ClientHandler combined with the ServerHandler are responsible for establishing the com	
munication between a Client subclass instance and a Server subclass instance
 A ClientHandler is
located at the same address space as its associated Clients and a ServerHandler is located in the
same address space as its associated Servers 


Of course both the Client and Server operate without knowledge of their enclosing space
 A

��



ServerHandler

sh

Server

A_Server

A

a1

ServerHandler

sh

Server

Host 2

Client

AView

A_Client

av1

AView

B_Client

bv1

ClientHandler
ch

C

c1

Host 1

B_Server
b1

B

Host 3

Figure ��� Distributed Object

Client communicates with a Server just as if there were no intermediate layer between them

Hence� the handlers must contain maps from their remote customers to the associated remote
handlers
 For example� if an instance of a class A Client sends a request for an instance of a
class A Server � the request is intercepted by the local ClientHandler � which delivers the request
to the correct ServerHandler � based on the Server � ServerHandler map in the ClientHandler 

The ServerHandler � in turn� captures the request� forwarding it to the appropriate Server 
 If the
Server needs to send some reply message� the ServerHandler intercepts the reply� delivering it to
the correct ClientHandler � based on the Client � ClientHandler map in the ServerHandler 
 The
ClientHandler will then forward the reply to the original Client 
 This process is illustrated in
Figure ��


In the Client�Server model� the programmer can specify the remote ADTs without worrying
about the lower layers of network or bus communications� or even without considering client�server
relations
 These issues are postponed until the Client and Server subclasses are speci
ed


Returning to the example in Figure ��� we see that the programmer can specify A as an
ordinary local object� and AView as a simple ADV for A� by extracting its public members
 To
make it distributed� the programmer need only to create a subclass of A and Server �Multiple
Inheritance� called A Server � which would act as the server� and a subclass of AView and Client

called A Client � which would act as the client

This approach supports both modularity and transparency in the context of building distributed

��



applications
 Reuse is also further supported because the same composition operations can be used
on the Client and the Server domains
 This model enables its users to create distributed objects
as well
 As illustrated in Figure ��� the object C is composed of two remote objects A and B �
placed in di�erent remote hosts
 For the user of object C � everything happens as if C were all
local
 Simply stated each process has a single client	handler ADV and a single server	handler ADV
that jointly handle interprocess communication


The Client�Server model as implemented in the previous presentation integrates multiple hard	
ware and software systems into a single seamless computing environment
 This current research
work generalizes the ADV concept beyond user interfaces and makes it into a model for interfaces
between ADTs in both a single machine and distributed computing environment


	�� An Application� A Simple Distributed Ray Tracer

In order to determine that the ADV concepts were practical in a distributed computing environment
we designed and implemented a simple distributed ray tracing algorithm
 Ray tracing is a well
known concept which is very computing intensive and is an ideal candidate for some form of parallel
computing
 The ray tracing program consisted of several classes which are mostly illustrated in
Figure ��
 As well as the objects shown the system required a ray trace manager and a ray
tracer
 The design and implementation in C�� of the ray tracer which is shown diagrammatically
in Figure �� has been completely successful
 The code runs in a client�server environment using
both RS���� and Sun workstations and the performance is more than satisfactory
 A description
of the details of the design and implementation are provided in �CCLP���


	 Related Work

The work of D
L
 Parnas is one of the major sources of inspiration for the research described in this
paper
 Parnas pioneered most of the early work on software design� Parnas �Par��b� introduced the
concept of information hiding and the notion of module speci
cation �Par��a�
 Subsequent work
gave additional insights into the issue of program families �Par��� and program modi
cation for
extension and contraction �Par���
 In a sense our present work attempts to quantify some of Parnas�
earlier ideas
 Another early precursor of our ideas of using ADVs to connect objects together is
the notion of programming	in	the	small versus programming	in	the	large by De Remer and Kron
�DK���


A number of authors have been working recently on ideas that relate to our proposals
 These
ideas may be 
rst grouped into the following categories� the use of relations as explicit entities
in object oriented design� the use of special classes and objects as interfaces to other classes and
objects� and the combination of decomposition by function with decomposition by form


Rumbaugh et al �R���� have done important pioneering research in object	oriented design� and
in some sense have proposed an up	to	date version of the earlier work by Jackson �Jac���
 They
�R���� propose that it is useful to model a system from three related but di�erent viewpoints�
the object model �de
nes the structure of objects in a system�� the dynamic model �describes
aspects related to time and sequencing of operations� and the functional model �functions� map	
pings� constraints and functional dependencies�
 The methodology that combines the above three
views of modelling systems is called the Object Modelling Technique �OMT�
 The object model of

��



U

V

O

ViewPlane

Eye

BoundingBox

Surface

RTObject

Light

Figure ��� Ray Tracer Objects

��



RTManager

RTView

Client

ClntRTView

Server

ViewPlane
SrvrVP

ClientHandler

ServerHandler

Scene

RayTracer

SrvrRT

Server
VPView

Client

ClntVP

Scene

ServerHandler

ClientHandler

RayTracer

SrvrRT

Server
VPView

Client

ClntVP

Scene

ServerHandler

ClientHandler

RayTracer

SrvrRT

Server
VPView

Client

ClntVP

Scene

ServerHandler

ClientHandler

Front End

Host 1

Host 2

Host 3

crt2 crt3

svp

sh

rtmng

crt1

scn

ch

ch

sh

cvp1

scn

srt1

sh

ch

scn

srt2

cvp2

sh

ch

cvp3

srt3

scn

Figure ��� The Distributed Ray Tracer

��



OMT combines the object	oriented model with the entity	relationship model from data base theory
�R����


Booch �Boo��� also emphasizes� as does OMT� the need for multiple views of complex software
systems
 However� he concentrates on decomposition by form �objects� and does not deal with
functional decomposition
 Booch uses four diagrams called� the class diagram �what classes exist
and how are those classes related��� the object diagram �what mechanisms are used to regulate
how objects collaborate��� the module diagrams �where should each class and object be declared��
and the process diagram �to what processor should a process be scheduled��
 When he discusses
relationships among objects� he says that the objects involved in using relationships may play one
of three roles� Actor� Server and Agent
 Unfortunately he does not appear to elaborate on these
roles in the presentation of his methodology
 Our ADV proposal may be viewed as an extended
combination of the roles of Booch�s Actor and Agent objects
 Similarly the design primitives
provided by ADVs and ADTs could be used to reformulate Booch�s object and module diagrams


One important aspect of our proposal� the balance between decomposition by form and by
function� has also been addressed in �Jal���

Early work by Goguen �Gog��� investigated the reuse and interconnection of software compo	
nents
 He de
nes a view of an entity A as a theory T� as a mapping from the types of T to the
types of A and a mapping from the operations of T to the operations of A� such that the transla	
tion of every axiom in T is satis
ed by A
 The motivation and the context in which his work was
developed are similar to the ones that suggested our work but we have arrived at quite di�erent
design mechanisms to accomplish similar tasks


Contemporary work by Kazman et al �BKL��� has proposed that metaphors be considered as

rst	class abstract data types
 They have shown how the speci
cation of metaphors as ADTs con	
stitute the central idea in the conceptual architecture they propose for human	computer interfaces

This previous work uses an approach that parallels our use of ADVs to model user interfaces �an
ADV is a special type of ADT� but has been more focused on the issue of formal speci
cation of
Human Computer Interfaces as opposed to our more general interest in ADVs as general software
design mechanisms
 Independent work reported in �SV��� has also suggested that twin ADTs or�
more generally� ADTs with multiple representations are a useful concept in the construction of
reusable software components for data types


�
 Conclusions

In this paper we have argued the generality of ADVs as a general design mechanism in which both
end	users and ADTs VIEW ADTs through ADVs
 The proposal of a new design concept requires�
formalization to allow for a rigorous understanding of the semantics of the concept being proposed
as well as guidelines for future implementation and extensive experimentation �development of
several meaningful examples� to validate the underlying ideas
 So far we have performed a large
number of experiments and have done work on formalization �CCL���
 ADVs at the user	interface
level have also been formalized in �CILS��a�
 There we have used an extension of VDM �Ier��� that
handled the concept of nesting
 VDM and ADVcharts �a visual formalism based on statecharts
�Har���� �CCL��� were chosen as formal speci
cation notations because they both provide insights
for the development of a methodology based on ADVs and associated tools
 We have explored an

��



approach which should allow us to add the concept of time to the notion of ADV
 The introduction
of time will allow sequencing to be added to this design concept


In Section � we have discussed two main approaches to the implementation of ADV	based
designs� the single	language or object	oriented programming approach and the domain	expert ap	
proach
 The 
rst approach has allowed us to explore new forms of parallel program design and
implementation
 In �CCLP��� we discuss the merits of this application of ADVs
 The domain	
expert approach assumes that a number of application and user interface components are made
available as reusable components
 We believe this approach using tools such as VX�REXX will en	
able a new form of program construction we have called Computer Assisted Application Integration
�CIS��� CLV���
 Thinking about ADVs as metaphors will play an essential role in this research and
it seems clear that results from the general area of domain analysis �Ara��� will also contribute in
this context
 We believe that the metaphor approach to programming using ADVs may contribute
to the problem of reverse engineering of software systems


A methodology for computer	assisted design based on ADVs will depend on further development
of the visual formalism to express the relationships among ADVs� the functional decomposition as	
pects of ADVs and ADTs as well as timing considerations associated with module interconnections

Extensive experimentation will be required to compare the resulting methodology� for instance� with
the ones proposed by Booch �Boo��� and Rumbaugh �R����
 An ADV	based methodology will pro	
vide a rigorous integrated notion of module interfaces that has been missing in previous module
interconnection languages


Many standards in computer�communications such as those proposed by CCITT and ISO em	
phasize the standardization of interfaces including sequencing
 With the addition of time the ADV
concept could be used to provide a formal rigorous de
nition of many of the interfaces in standards
documents


�� Acknowledgements

The authors wish to thank J
 Atlee� C
 Bicharra� P
J
 Bumbulis� L
M
F
 Carneiro� S
E
R
 Carvalho�
M
H
 Co�n� R
N
 Kazman� and A
B
 Potengy for their helpful comments and suggestions on an
earlier version of this paper


References

�Ale��� C
 Alexander
 Notes on the Synthesis of Form
 Harvard University Press� ����


�Ara��� G
 Arango
 Domain Analysis Methods
 In W
 Schoe�er� editor� Software Reusability

Harwood� London� March ����


�B���� R
 Budde et al
 Prototyping� An Approach to Evolutionary System Development

Springer	Verlag� ����


�BKL��� L
 Bass� R
 Kazman� and R
 Little
 Toward a Software Engineering Model of Human	
Computer Interaction
 In Proceedings of the Engineering for Human�Computer Inter�
action� Amsterdam� North Holland� ����


��



�Boo��� Grady Booch
 Object Oriented Design with Applications
 The Benjamin�Cummings
Publishing Company� Inc
� ����


�C���� D
 D
 Cowan et al
 Program Design Using Abstract Data Views�An Illustrative Exam	
ple
 Technical Report ������ Computer Science Department� University of Waterloo�
Waterloo� Ontario� Canada� December ����


�CCCL��� L
 M
 F
 Carneiro� M
 H
 Co�n� D
 D
 Cowan� and C
 J
 P
 Lucena
 User Interface High	
Order Architectural Models
 Technical Report ������ Computer Science Department�
University of Waterloo� Waterloo� Ontario� Canada� ����


�CCL��� L
 M
 F
 Carneiro� D
 D
 Cowan� and C
 J
 P
 Lucena
 ADVcharts� a Visual Formalism
for Interactive Systems
 In To appear in Proceedings of the York Workshop on Formal

Methods for Interactive Systems Springer� ����


�CCLP��� M
 Co�n� D
 D
 Cowan� C
 J
 P
 Lucena� and A
 B
 Potengy
 Distributed Abstract
Data Views� Design and Implementation
 Technical Report ��	��� Computer Science
Department� University of Waterloo� Waterloo� Ontario� Canada� ����


�Che��� P
 P	S
 Chen
 The entity	relationship model� Toward a uni
ed view of data
 ACM

TODS� ���������� March ����


�CILS��a� D
 D
 Cowan� R
 Ierusalimschy� C
 J
 P
 Lucena� and T
 M
 Stepien
 Abstract Data
Views
 Structured Programming� ����������� January ����


�CILS��b� D
 D
 Cowan� R
 Ierusalimschy� C
 J
 P
 Lucena� and T
 M
 Stepien
 Application Inte	
gration� Constructing Composite Applications from Interactive Components
 Software
Practice and Experience� �������������� March ����


�CIS��� D
 D
 Cowan� R
 Ierusalimschy� and T
 M
 Stepien
 Programming Environments for
End	Users
 In Proceedings of IFIP ��� Volume III� pages ������ ����


�CL��� D
 D
 Cowan and C
 J
 P
 Lucena
 Enhancing Software Design Reuse� Nesting in
Object	Oriented Design
 Technical Report ������ Computer Science Department and
Computer Systems Group� University of Waterloo� ����


�CLV��� D
 D
 Cowan� C
 J
 P
 Lucena� and R
 G
 Veitch
 Towards CAAI� Computer Assisted
Application Integration
 Technical Report ������ Computer Science Department and
Computer Systems Group� University of Waterloo� Waterloo� Ontario� Canada� January
����


�Cor��� Microsoft Corporation
 Microsoft Visual Basic Programmier�s Guide
 Microsoft Corpo	
ration� ����


�Cow��� M
 F
 Cowlishaw
 The REXX Language� A Practical Approach to Programming

Prentice	Hall� �nd edition� ����


�Das��� S Dasgupta
 Design Theory and Computer Science
 Cambridge University Press� ����


��



�DeM��� T
 DeMarco
 Structured Analysis and System Speci�cation
 Yourdon Press� ����


�Dij��� E
 W
 Dijkstra
 Co	operating Sequential Processes
 In Programming Languages
 Aca	
demic Press� ����


�DK��� F
 DeRemer and H
 Kron
 Programming	in	the	large Versus Programming	in	the	small

IEEE Transactions on Software Engineering� ����� ����


�Gog��� J
 A
 Goguen
 Reusing and Interconnecting Software Components
 IEEE Computer�
������ ����


�Har��� D
 Harel
 Statecharts� A Visual Formalism for Complex Systems
 Science of Computer
Programming� ���������� ����


�Hil��� Ralph D
 Hill
 The Abstraction	Link	View Paradigm� Using Constraints to Connect
User Interfaces to Applications
 In CHI ���� pages �������
 ACM� May ����


�Hoa��� C
 A
 R
 Hoare
 Monitors� An Operating System Structuring Concept
 Communications
of the ACM� ����������� October ����


�Ier��� Roberto Ierusalimschy
 A Method for Object	Oriented Speci
cations with VDM
 Tech	
nical report� Monogra
as em Ci encia da Computa!c"ao� PUC	Rio� February ����


�Ind��� B
 Indurkhya
 Approximate Semantic Transference� A Computational Theory of
Metaphors and Analogies
 Cognitive Science� ��� ����


�Jac��� M
 A
 Jackson
 System Development
 Computer Science
 Prentice	Hall� ����


�Jal��� P
 Jalote
 Functional re
nement and nested objects for object	oriented design
 IEEE
Trans	 on Software Engineering� ��� ����


�KP��� Glenn E
 Krasner and Stephen T
 Pope
 A Cookbook for Using the Model	View	
Controller User Interface Paradigm in Smalltalk	��
 JOOP� pages ������ August
September ����


�LCP��� C
 J
 P
 Lucena� D
 D
 Cowan� and A
 B
 Potengy
 A Programming Model for User
Interface Compositions
 In Anais do V Simp
osio Brasileiro de Computa�c�ao Gr
a�ca e

Processamento de Imagens� SIBGRAPI���� Aguas de Lind#oia� SP� Brazil� November
����


�Lib��� Donald Libes
 expect� Curing Those Uncontrollable Fits of Interactivity
 In Proceedings

of the Summer 
��� USENIX Conference� Anaheim� California� Gaithersburg� MD
������ June ����
 National Institute of Standards and Technology


�Mah��� M
 L
 Maher
 Process Models for Design Synthesis
 AI Magazine� Winter ����


�Mai��� N
 Maiden
 Analogy as a Paradigm for Speci
cation Reuse
 Software Engineering
Journal� January ����


��



�Par��a� D
 Parnas
 A Technique for Software Module Speci
cation with Examples
 CACM�
������ ����


�Par��b� D
L
 Parnas
 On the Criteria to be Used in Decomposing Systems into Modules
 CACM�
������� December ����


�Par��� D
 Parnas
 On the Design and Development of Program Families
 IEEE Transactions
on Software Engineering� ����� ����


�Par��� D
 L
 Parnas
 Designing Software for Ease of Extension and Contraction
 IEEE Trans�

actions on Software Engineering� ������������� March ����


�Par��� Tim Parker
 Shells for UNIX� A Basic Programming Choice
 Computer Language�
�������� ����


�Par��� H
 A
 Partsch
 Speci�cation and Transformation of Programs
 Springer	Verlag� ����


�R���� James Rumbaugh et al
 Object�Oriented Modeling and Design
 Prentice Hall� ����


�SV��� K
 Sikkel and J
 C
 van Vliet
 Abstract Data Types as Reusable Software Components�
The Case for Twin ADTs
 Software Engineering Journal� May ����


�VRe��� WATCOMVX�REXX for OS�� Programmer�s Guide and Reference
 Waterloo� Ontario�
Canada� ����


�Wal��� Larry Wall
 Programming perl
 O�Reilly $ Associates� ����
 QA��
��
P���W��x


��


