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Abstract� The problem of reordering a sparse symmetric matrix to reduce its en�
velope size is considered� A new spectral algorithm for computing an envelope�reducing
reordering is obtained by associating a Laplacian matrix with the given matrix and
then sorting the components of a speci�ed eigenvector of the Laplacian� This Lapla�

cian eigenvector solves a continuous relaxation of a discrete problem related to envelope
minimization called the minimum ��sum problem� The permutation vector computed
by the spectral algorithm is a closest permutation vector to the speci�ed Laplacian

eigenvector� Numerical results show that the new reordering algorithm usually com�
putes smaller envelope sizes than those obtained from the current standards such as
the Gibbs�Poole�Stockmeyer �GPS� algorithm or the reverse Cuthill�McKee �RCM� al�
gorithm in SPARSPAK� in some cases reducing the envelope by more than a factor of

two�
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�� Introduction� Algorithms for reordering sparse matrices play a vital role in our

ability to perform many large�scale matrix computations� Ordering algorithms such as
minimum�degree and nested dissection have been developed for reducing �ll in direct
methods for solving sparse� symmetric positive de�nite systems of equations 
�� ��� ����
Various ordering algorithms for reducing the envelope �variable band or pro�le� of

sparse matrices� such as the reverse Cuthill�McKee �RCM�� Gibbs�Poole�Stockmeyer
�GPS�� and Gibbs�King �GK� algorithms� have also been designed 
��� �	� ���� Al�
though envelope�reducing orderings were developed for use in envelope schemes for
direct factorization� these orderings have been used in the past few years in several

other applications� The RCM ordering has been found to be an e�ective preordering in
computing incomplete factorization preconditioners for preconditioned conjugate gra�
dients methods 
�� ��� Such orderings have also been used in parallel matrix�vector

multiplication and tridiagonalization of sparse symmetric matrices�
The wider applicability of envelope�reducing orderings justi�es a fresh look at the

algorithms currently available and the development of new algorithms� In this paper we
present a new spectral algorithm for computing an envelope�reducing ordering of sparse�

symmetric matrices� The ordering algorithm uses an eigenvector corresponding to the
smallest positive eigenvalue of the discrete Laplacian matrix associated with the given
symmetric matrix� �If the matrix is irreducible� or equivalently if its adjacency graph is
connected� then this eigenvector corresponds to the second smallest eigenvalue� Hence

we call this a second Laplacian eigenvector or Fiedler vector�� The ordering is computed
by permuting the components of a second Laplacian eigenvector in nonincreasing �or
nondecreasing� order� For large matrices� the eigenvector computation is performed by
a �multilevel� approach described in 
���

Earlier� we had used a second eigenvector of the Laplacian matrix for computing
a spectral nested dissection ordering� and for partitioning computations on �nite ele�
ment meshes on a distributed�memory multiprocessor 
��� �
� ���� The eigenvector of

the adjacency matrix corresponding to the largest eigenvalue has been used to �nd a
pseudoperipheral node by Grimes et al� 
����

A companion paper 
��� provides theoretical justi�cation for the spectral envelope�
reduction algorithm by considering a closely related problem called the ��sum problem�

�This problem is de�ned in the next section�� It is shown there that this problem
can be formulated as a quadratic assignment problem involving the Laplacian matrix�
Lower bounds for the ��sum are obtained in terms of the smallest positive Laplacian
eigenvalue� These bounds appear to be reasonably tight� and hence indicate how close

the computed orderings are to the optimal orderings� Further� permuting the matrix
in nonincreasing �or nondecreasing� order of the components of a second Laplacian
eigenvector is shown to yield a feasible solution to the ��sum problem that is closest to
an infeasible solution for which the lower bound is attained�

Fiedler 
�� ��� studied the properties of the second Laplacian eigenvalue and a
corresponding eigenvector and their relationship to the connectivity of a graph� and
also observed 
�
� that the di�erences in the components of this eigenvector is an ap�

proximate measure of the distance between the vertices� Juvan and Mohar 
��� have
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advocated the use of this eigenvector to compute bandwidth and p�sum reducing or�

derings� Mohar and Poljak 
�	� have recently provided a comprehensive survey of the
applications of Laplacian spectra to combinatorial problems�

The spectral envelope�reduction algorithm has several features which set it apart
from the earlier reordering algorithms such as the GPS� GK� or RCM algorithms 
	� ���

�	� ���� These algorithms employ local�search in the adjacency graph of the matrix� All
of them try to �nd a pseudo�diameter in the graph by generating a long level�structure
by breadth��rst�search beginning from a suitable vertex� These types of algorithms
generally do not vectorize� and there is no obvious way to implement them in parallel� In

contrast the new algorithm proposed here is based on the computation of an eigenvector
of a special matrix� and hence involves standard �oating point operations� such as
matrix vector multiplications� dot products etc� The algorithms for these operations

not only vectorize easily� but also can be implemented in parallel with little e�ort�
�Parallel implementation of the basic spectral method� which uses the Lanczos algorithm
to �nd eigenvectors� is straightforward� Parallel implementation of the �multilevel�
enhancements described in Section � is more di�cult� but possible in principle�� The

algorithm is also iterative in nature� in the same sense that SOR or the Lanczos methods
are iterative� It allows a user to terminate the reordering process depending on a
stopping criterion� thus permitting the user to make trade�o�s in ordering time versus
storage e�ciency�

Before we end this introduction� some comments are in order about the applicabil�
ity of the results to envelope factorization schemes� Frontal methods related to envelope
or pro�le schemes are still the method of choice for solving large�scale systems of linear
equations in many structural engineering applications� for example in the computa�

tional structural mechanics testbed �CSM� at NASA Langley 
�
�� Implementations of
these methods are also widely distributed in most of the �nite element software pack�
ages such as MSC�NASTRAN or ANSYS� Parallel algorithms for the actual numerical

factorization of a matrix in envelope format have been investigated 
��� ����
E�cient implementations of sparse matrix algorithms 
�� �� ��� ��� on supercom�

puters demonstrate that very high levels of performance are attainable with general
sparse algorithms� Hence there are no good reasons to use envelope schemes for sparse

matrix factorizations for the sake of performance alone� Furthermore� it has long been
known that general sparse methods are considerably more e�cient with respect to stor�
age 
���� Ashcraft et al� 
�� presented numerical evidence that general sparse methods
outperform envelope methods in both respects� However� envelope methods and related

methods such as frontal or skyline methods continue to be the standard solution option
in many commercial structural analysis packages� Thus� demonstrating the e�ciency of
the new spectral algorithm o�ers potential performance improvements in these packages
without making substantial changes to the underlying data structures� Further� Liu 
���

has described a generalized envelope algorithm for computing the numerical factoriza�
tion by rows� and his results show that such a scheme can compete with general sparse
algorithms�

The following is an outline of the rest of this paper� In Section � we formulate the

�



problems associated with the minimization of envelope parameters and describe related

problems called the ��sum and ��sum problems� We describe some theoretical results
to justify the proposed new algorithm� The second Laplacian eigenvector solves a con�
tinuous relaxation of a discrete problem related to the envelope problem� the minimum
��sum problem� Further� it is proved that the permutation vector computed by the

spectral algorithm is a closest �in the ��norm sense� permutation vector to a second
Laplacian eigenvector� In Section � we discuss the spectral algorithm and its numeri�
cal implementation� The multilevel algorithm� which uses coarsening of the underlying
graph combined with Rayleigh Quotient iteration 
��� to compute the eigenvector is de�

scribed� Numerical results and comparisons with GPS� GK� and RCM are presented in
Section �� These results indicate that the new algorithm is often considerably more e��
cient in reducing the storage requirements� The spectral algorithm does require greater

execution time for computing the ordering� but the new ordering often yields greatly
reduced factorization times for the spectrally reordered matrices�

�� The envelope reduction problem�

���� The envelope of a matrix� Let A be an n � n symmetric matrix with
elements aij� whose diagonal elements are nonzero� We consider various parameters of
the matrix A associated with its envelope�

We denote the column indices of the nonzeros in the lower triangular part of the
i�th row by row�i� � fj � aij �� 
� and � � j � ig� For the i�th row of A we de�ne

fi�A� � minfj � j � row�i�g� and�����

ri�A� � i� fi�A�������

Here fi�A� is the column index of the �rst nonzero in the i�th row of A �by our assump�
tion of nonzero diagonals� � � fi � i�� and the parameter ri�A� is the row�width of the
i�th row of A� The bandwidth of A is the maximum row�width

bw�A� � maxfri�A� � i � �� � � � � ng�

The envelope of A is the set of column indices that lie between the �rst nonzero

column index and the diagonal in each row�

Env�A� � f�i� j� � fi�A� � j � i� and i � �� � � � � ng�

We denote the size of the envelope by Esize�A� � jEnv�A�j� The work in the Cholesky
factorization of A that makes use of an envelope storage scheme can be bounded from
above by �����

Pn
i�� ri�ri � ��� Hence hereafter we will denote Ework�A� �

Pn
i�� r

�
i as

a measure of the work in such a factorization� We stress that this estimate is an upper

bound on the actual work in an envelope factorization scheme�
The values of these parameters strongly depend on the choice of an ordering of the

rows and columns� and thus we consider how these parameters vary for a symmetrically

permuted matrix P TAP � where P is a permutation matrix� We de�ne Esizemin�A��
the minimum envelope size of A� to be the minimum size among the envelopes of all
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permuted matrices P TAP � The quantities Eworkmin�A� and bwmin�A� are de�ned in

similar fashion� In general the minima for these three quantities will not be attained
by the same permutation�

The envelope parameters can also be de�ned with respect to the adjacency graph
G � �V�E� of A� Denote nbr�v� � fvg � adj�v�� In terms of the graph G and an

ordering � of its vertices� we can de�ne

r�v� �� � maxf��v�� ��w� � w � nbr�v�� ��w� � ��v�g�

Hence we can write the envelope size and work associated with an ordering � as

Esize�G��� �
X
v�V

r�v� �
X
v�V

maxf��v�� ��w� � w � nbr�v�� ��w� � ��v�g

Ework�G��� �
X
v�V

r��v� �
X
v�V

maxf���v�� ��w��� � w � nbr�v�� ��w� � ��v�g�

The goal is to choose a vertex ordering � � V �� f�� � � � � ng to minimize one of the
parameters described above� We denote by Esizemin�G� �Eworkmin�G�� the minimum
value of Esize�G��� �Eworkmin�G���� over all orderings �� where again �in general�

the minima will not all be attained by the same �� We will use the de�nitions in terms
of matrices throughout the rest of the paper�

It will be helpful to consider quantities related to the envelope size and envelope
work� the ��sum� ���A�� and the ��sum� ����A�� We write the envelope size and ��sum�

and the envelope work and the ��sum in a way that shows their relationships�

Esize�A� �
nX
i��

max
j�row�i�

�i� j��

���A� �
nX
i��

X
j�row�i�

�i� j��

Ework�A� �
nX
i��

max
j�row�i�

�i� j���

����A� �
nX
i��

X
j�row�i�

�i� j���

The parameters ���min�A� and ����min�A� are the minimum values of these parameters
over all permuted matrices P TAP �

It is known that minimizing the bandwidth and the ��sum are NP�complete prob�

lems� the former even for trees with degree bounded by three� Minimizing any of the
other quantities considered here is likely to be intractable as well� so one has to settle
for heuristic orderings to reduce the quantity�

Recently it has been shown that the envelope size problem is intimately related

to the ��sum problem� and that the envelope work problem is related to the ��sum
problem 
���� Let � denote the maximum number of o��diagonal nonzeros in a row of
A� �This is the maximum vertex degree in the adjacency graph of A��

�



Theorem ��� �����	� Let A be a symmetric matrix� The minimum values of the

envelope size� estimate of the envelope work in the Cholesky factorization� ��sum� and
��sum of a symmetric matrix A are related by the following inequalities�

Esizemin�A� � ���min�A� � �Esizemin�A�������

Eworkmin�A� � ����min�A� � �Eworkmin�A�������

���min�A� � ���min�A� �
q
jEj���min�A�����	�

���� The Laplacian matrix and bounds on envelope parameters� The Lapla�
cian matrix Q�G� of an undirected graph G is the n � n matrix D � B� where D is
the diagonal degree matrix and B is the adjacency matrix of G� If G is the adjacency
graph of a symmetric matrix M � then we could de�ne the Laplacian matrix Q directly�

qij �

����
���

�� if i �� j and mij �� 
�

 if i �� j and mij � 
�
�
Pn

j��

j ��i
qij if i � j�

The eigenvalues of Q�G� are the Laplacian eigenvalues of G� and we list them as
�� � �� � � � � � �n� An eigenvector corresponding to �k will be denoted by xk� and will

be called a kth eigenvector of Q� It is well�known that Q is a singular M �matrix� and
hence its eigenvalues are nonnegative� Thus �� � 
� and the corresponding eigenvector
is any nonzero constant vector c� If G is connected� then Q is irreducible� and �� � 
�

The smallest nonzero eigenvalues and the corresponding eigenvectors have important
properties that make them useful in the solution of various partitioning and ordering
problems� These properties were �rst investigated by Fiedler 
�� ���� more recently
several authors have studied their application to such problems�

Juvan and Mohar 
��� have obtained bounds for bandwidth and p�sums in terms
of Laplacian eigenvalues� They have also suggested the use of a second eigenvector to
compute orderings to reduce bandwidth� ��sum� and ��sum� Helmberg� Mohar� Poljak�
and Rendl 
��� have obtained additional lower bounds on the bandwidth� The �� and

��sum problems have been recently formulated as quadratic assignment problems and
thus bounds have been obtained for the envelope size and work 
���� The following
result describes two of the simpler bounds�

Theorem ��� �����	� The envelope size of a symmetric matrix A can be bounded

in terms of its second and largest Laplacian eigenvalues as

���A�

��
�n� � �� � Esizemin�A� �

�n�A�

�
�n� � ���

Our estimate of the envelope work in the Cholesky factorization of A can be bounded as

���A�

���
n�n� � �� � Eworkmin�A� �

�n�A�

��
n�n� � ���

	



���� Approximate minimization of envelope work� We now o�er some justi�

�cation for the spectral envelope�reduction algorithm� which computes an ordering by
sorting the components of a second Laplacian eigenvector� The idea is to consider the
related ��sum problem� and then to show that a second Laplacian eigenvector x� solves
a continuous relaxation of the problem� We then prove that the permutation vector

computed by the spectral algorithm is a closest vector �in the ��norm sense� among the
permutation vectors to the eigenvector x��

For odd n� let P denote the set of n�vectors p whose components are permutations
of f��n � ����� � � � ���� 
� �� � � � � �n � ����g� For even n� let P denote vectors that

are permutations of f�n��� � � � ������� � � � � n��g� We denote the i�th component of a
vector x by xi� We consider the ��sum of a symmetric matrix A� de�ned with respect
to vectors in P�

min
x�P

nX
i��

X
j�row�i�

�xi � xj�
� �

�

�
min
x�P

X
aij ���

�xi � xj�
��

A strategy to approach this hard discrete problem is to relax the condition that x must
belong to the set of permutation vectors and instead to minimize the objective function
over a suitable class of n�vectors� This yields an easier continuous problem� we can then
�nd the permutation vector closest to the solution vector of the continuous problem�

and consider the former as an approximate solution of the combinatorial problem�
Note that any p � P satis�es pTu � 
� and 	 	 pTp � �n�����n���� for odd n� and

	 � �n�����n � ���n � �� for even n� where u � ��� �� � � � ��T � Given a vector x � 
n�
we can de�ne a permutation vector p induced by x by the rule pi � pj if and only if

xi � xj� Note that the ordering of the columns and rows is unique except when two or
more components have the same value xi� Hence to obtain a continuous relaxation of
the discrete problem� we consider the set X of vectors x � 
n satisfying x �� 
� xTu � 
�

and xTx � 	� This is now a continuous optimization problem�

�

�
min
x�X

X
aij ���

�xi � xj�
�

� min
x�X

�
BB�

nX
i��

dix
�
i � �

X
j�i

aij ���

xixj�

�
CCA

� min
x�X

xTDx � xTBx � min
x�X

xTQx

� ��x�
Tx� � ��	�

Hence a second Laplacian eigenvector x� solves the continuous approximation to
the ��sum problem� Now we prove that a permutation vector p

m
induced by x� is a

closest vector in P to x�� Earlier a similar result was obtained by Chan and Szeto 
��
for the graph bisection problem�

Theorem ���� The vector p
m

induced by a second Laplacian eigenvector x� is a
closest �in the ��norm� permutation vector to x�� In other words�

p
m
� arg min

p�P
kp � x�k��

�



We require the following lemma to prove the theorem�
Lemma ��
� If a� � a�� b� � b� are real numbers�

r � �a� � b��
� � �a� � b��

�� and s � �a� � b��
� � �a� � b��

��

then r � s�
Proof� Suppose that r � s� Then

�a� � b��
� � �a� � b��

� � �a� � b��
� � �a� � b��

�

� a��b� � b�� � a��b� � b���

Since a� � a�� it follows that b� � b�� which is a contradiction�
Proof of Theorem 	�
� For convenience of notation� let x 	 x� in this proof� Let

y �� p
m
be a permutation vector such that there exists a pair of vertices u�v satisfying

x�u� � x�v� and y�u� � y�v�� Let z be the ordering such that z�u� � y�v�� z�v� � y�u��
and z�w� � y�w� for all other vertices� Then

ky � xk�
� � kz � xk�

�

� �y�u�� x�u��� � �y�v�� x�v��� � �y�v�� x�u��� � �y�u�� x�v���

� 
�

where the last inequality follows from the previous lemma� By the swapping of com�
ponents� we have obtained a vector z that is closer than y to the eigenvector x� By
repeating this swapping procedure� we �nd that p

m
is a closest vector in P to the vector

x�
Earlier Juvan and Mohar 
��� had shown that p

m
maximized the value of the fol�

lowing inner product over all permutation vectors p�

j�x�� pm�j � j�x�� p�j�

Stronger justi�cation of the spectral algorithm for reducing the ��sum is obtained

in the companion paper 
��� by considering a quadratic assignment formulation of the
problem� This formulation leads to a lower bound for the ��sum in terms of the second
Laplacian eigenvalue� and the orthogonal matrix attaining this lower bound can be
characterized� It can be shown that a closest permutation matrix �de�ned in a suitable

sense� to this orthogonal matrix is obtained by sorting the components of a second
Laplacian eigenvector in nondecreasing �nonincreasing� order�

���� Adjacency orderings� We now consider the concept of an adjacency order�
ing of a graph G� Let G be the adjacency graph of a matrix A� and suppose that
the vertices of G are ordered in some ordering as fv�� � � � � vng �i�e�� ��vj� � j�� and let
Vj � fv�� � � � � vjg� For Y 
 V � de�ne adj�Y � to be the set of vertices in V n Y that are

adjacent to some vertex in Y � We will say that an ordering is an adjacency ordering if
vj�� � adj�Vj�� for j � �� � � �� n� ��

�



The size jadj�Vj�j has been called the jth frontwidth 
���� and corresponds to the

size of the j�th column of the envelope of A� Hence an alternative expression for the
the envelope size is

Esize�A� �
nX

j��

jadj�Vj�j�

This expression for the envelope size shows the rationale for considering adjacency
orderings for envelope�reduction� The idea is to locally reduce the jth frontwidth by
choosing vj to be a vertex of low degree belonging to adj�Vj���� The Cuthill�McKee

ordering is an adjacency ordering� but RCM is not an adjacency ordering� The GPS
and GK algorithms attempt to number vertices in the level structures to obtain an
adjacency ordering� as far as is possible�

The ordering induced by a second Laplacian eigenvector is not an adjacency order�

ing� but comes close in the sense described below� The following theorem� proved by
Fiedler 
���� provides the necessary insight�

Theorem ���� Let G be a connected graph� and x � �x�� x�� � � � xn� be a second
Laplacian eigenvector of G� For any real 
 � 
� de�ne S�
� � fvj � V � xj � 
g� Then

the subgraph induced on S�
� is connected� Similarly� if 
 � 
� then S��
� � fvj � V �
xj � 
g induces a connected subgraph�

In the notation of the theorem� let the vertices vj � V be ordered such that j � k

if and only if xj � xk� Consider three subsets of vertices corresponding to positive�

zero� and negative entries in the second eigenvector� i�e�� de�ne P � fvj � xj � 
g�
Z � fvj � xj � 
g� and N � fvj � xj � 
g� Let the vertices in N be numbered
by j � �� � � � � k� the vertices in Z by j � k � �� � � �� p � �� and the vertices in P by

j � p� � � �� n� We have k � p� Then Theorem ��	 implies that for j � p � �� � � �� n�
we have vj�� � adj�Vj�� A similar statement holds if we add vertices with negative
entries in the eigenvector in decreasing order to the set P � Z� Thus the order implied
by a second Laplacian eigenvector has the property of an adjacency ordering if vertices

with positive components are added in increasing order to N � Z� or if vertices with
negative components are added in decreasing order to P�Z� However� there exist simple
examples� even trees� for which the spectral ordering is not an adjacency ordering�

�� The Spectral algorithm for envelope reduction� Based on the theorems
in Section � the following new algorithm for reducing the envelope of a sparse matrix
can be formulated� Since the algorithm is based on properties of the spectrum of the
Laplacian matrix L� it will be called the spectral algorithm� We assume throughout this

section that the adjacency graph of the given matrix is connected� or that the matrix
is irreducible�

Algorithm �� Spectral Algorithm

�� Given the sparsity structure of a matrix M � form the Laplacian matrix L�
	� Compute a second eigenvector x� of L�

� Sort the components of the eigenvector in nondecreasing order� and reorder the

matrix M using the corresponding permutation vector� Also sort the compo�

�



nents in nonincreasing order� and compute the corresponding reordering of the

matrix M � Choose the permutation that leads to the smaller envelope size�
The implementation of steps � and � are relatively straightforward� The formation

of the Laplacian matrix requires the computation of the degree of the nodes xi� Step
� is a simple sort of the entries of x�� and recording the resulting permutation of

indices� This can be done quickly by any e�cient sorting algorithm such as quicksort�
Computationally the di�cult part is step ��

The standard algorithm for computing a few eigenvalues and eigenvectors of large
sparse symmetric matrices is the Lanczos algorithm� Since the Lanczos algorithm is

discussed extensively in the textbook literature 
��� ���� we do not include a detailed
description of the standard algorithm here� Recently� we have developed a much more
e�cient multilevel method for �nding a second eigenvector 
��� The multilevel method

requires three elements in addition to the Lanczos algorithm�
� Contraction� Construct a series of smaller graphs that in some sense retain
the global structure of the original large graph�

� Interpolation� Given a second eigenvector of a contracted graph� interpolate

this vector to the next larger graph in a way that provides a good approximation
to an eigenvector of the larger graph�

� Re�nement� Given an approximate eigenvector for a graph� compute a more
accurate vector e�ciently�

Graph contraction is accomplished by �rst �nding a maximal independent set of ver�
tices� which are to be the vertices of the contracted graph� The edges of the contracted
graph are determined by growing domains from the selected vertices in a breadth��rst
manner� adding an edge to the contracted graph when two domains intersect� A series

of smaller contracted graphs is constructed until the size of the vertex set is less than
some number �typically �

�� The Lanczos algorithm can then be used to �nd the
eigenvector of the smallest graph very quickly� This eigenvector is then interpolated

to a vector corresponding to the next larger graph� This interpolated vector yields a
very good approximation to the eigenvector of the larger graph� The approximation
is then re�ned using the Rayleigh Quotient Iteration algorithm� which� because of its
cubic convergence� usually requires only one or perhaps two iterations to obtain an

acceptable result� This process of interpolation and re�nement is continued until the
eigenvector of the original graph is determined�

�� Numerical results� This section shows numerical results for the envelope sizes

and bandwidths obtained from the spectral� RCM� GPS� and GK algorithms for three
sets of matrices� The �rst set� shown in Table ���� includes matrices for structural
analysis applications from the Boeing�Harwell data set� The next set� shown in Ta�

ble ���� consists of miscellaneous matrices from the Boeing�Harwell collection� Finally�
the third set� shown in Table ���� is a selection of matrices from structural analysis used
at NASA� The computations were performed on a Silicon Graphics workstation with a
�� MHZ IP� processor�

The spectral algorithm �nds the reordering with the smallest envelope in �� out of
�� cases �as shown in the �Rank� column of the tables�� In those cases in which the re�

�



Table ���

Results �Boeing�Harwell � Structural Analysis�

Title Envelope Bandwidth Run time Algorithm Rank

�equations� �sec��
�nonzeros�

BCSSTK�� ������ �		 ���� SPECTRAL �
���

�� 	��	�� ��� ��� GK �
�������� 	��	
� ��	 �	� GPS �

	����� ��� �
� RCM �

BCSSTK�� ��
���

� ��� ����	 SPECTRAL �

�������� ������
�� ��	
	 ��	� GK �
�������
� ��
�
���� ��� 	��� GPS �

��������
 ��� ���� RCM �

BCSSTK�
 ����	���� ����� ����� SPECTRAL �
�������� �	�������� ������ ����
 GK �

���
����
�� ���������
 ��	�	 ����	 GPS �
���������
 ��	�� ���� RCM �

BCSSTK�� ���	������ ����� 		�
� SPECTRAL �
��	�	��� �����
���� ����
 ���
	 GK �
��
��	
�� �������	�� ���
� ���� GPS �

���������� ����� ���� RCM �

BCSSTK�� �������	�� ������ ���
� SPECTRAL �
�����
�� ����	����� ����� �
���� GK �
���
����		� 	
�
�����
 ����� ����� GPS �

	����
���� ����
 ���� RCM �

BCSSTK�� �������
� ����� ���
� SPECTRAL �

������� ��	�����	 ��� 	��
 GK �
��

����� ������
�� 	�� ���� GPS �

��������	 ��� ���� RCM �

sult of the spectral algorithm is not the best �i�e�� BCSSTK��� BKSSTK��� SHUTTLE�
and CAN�
���� it is still fairly close to the best result� In several cases� however� the

spectral algorithm �nds a reordering with an envelope substantially smaller than any
of the other algorithms� sometimes by a factor of more than two� Note also that the
spectral algorithm clearly outperforms the others on the larger problems in the Tables�
The run time of the spectral algorithm is usually� but not always� greater than that

of the other algorithms� We expect the di�erences in runtimes between the ordering
algorithms to be smaller on computers with vector�processing capabilities� such as the
Crays�

The GPS� GK� and RCM algorithms� which are all closely related� use local search

�breadth��rst search� from a pseudo�peripheral vertex to generate a long rooted level
structure� The RCM algorithm then numbers the vertices by increasing level values�

��



Table ���

Results �Boeing�Harwell � Miscellaneous�

Title Envelope Bandwidth Run time Algorithm Rank

�equations� �sec��
�nonzeros�

CAN�
�� 		���� �
� �	� SPECTRAL �
���
��� ���	�� ��� ��
 GK �
����	�� ���
�� �	� ��� GPS �

	����� ��	 �
	 RCM �

POW� ������ ��� ��	 SPECTRAL �

������� ������ �
� ��� GK �
������� ������ ��� ��
 GPS �

�����
 ��� �
	 RCM �

BLKHOLE ��
���� ��� �	� SPECTRAL �
������� ������� ��� ��� GK �

���	
�� ������� �
� ��� GPS �
������� �
	 �
� RCM �

DWT���
 ����
� ��� ��� SPECTRAL �
�����
� ���	�� �� ��� GK �
�����	�� �
����� �	 ��� GPS �

�
����� �� ��� RCM �

SSTMODEL �����	 ��� ���� SPECTRAL �
�����	� �
��	�� ��	 ��� GK �
����
��� ��
���� �� ��� GPS �

�
	���� �� ��
 RCM �

where the vertices in each level are numbered in nondecreasing order of their degrees�

The �nal RCM ordering is obtained by reversing the ordering thus obtained� The GPS
and GK algorithms use more sophisticated techniques to create a more general level
structure by combining the information from two rooted level structures obtained from
the endpoints of a pseudo�diameter in the RCM algorithm� They also use more re�ned

numbering techniques to reduce the size of the envelope and the bandwidth� This is
the reason why the latter two algorithms require more time than the RCM algorithm�

Generally the GPS algorithm yields a lower bandwidth while the GK algorithm
yields a lower envelope size 
��� ���� Our results are in agreement with this conclusion�

It should be pointed out that n � ���
 was the largest order of the problems considered
in earlier work� and that the results reported here are for much larger problems�

In contrast to the above algorithms� the spectral algorithm relies on the global
information in the components of a second Laplacian eigenvector� The results show

that the bandwidths of the spectral reorderings are often much greater than those of
the other reorderings� even when the spectral envelopes are much smaller� This can be
seen in Figures ��� through ��	� which show the sparse matrix structure of the original

��



Table ���

Results �NASA�

Title Envelope Bandwidth Run time Algorithm Rank

�equations� �sec�
�nonzeros�

BARTH� ��	���� 	�� ���
 SPECTRAL �
���
��� �	����� ��
 �	� GK �
�������� ������� ��� ��� GPS �

��	��	
 ��	 ��� RCM �

SHUTTLE 	������ ��� ��	� SPECTRAL �

����
	� 	�����
 �� ���� GK �
��	����� 	������ �� ��� GPS �

	������ �	
 ��� RCM �

SKIRT ������� ��
�� 	��� SPECTRAL �
����	��� ��
������ ��	 ���
 GK �

��
��		�� ��
���	�� �
� ���� GPS �
��
������ ��� ��� RCM �

PWT 	��
��	�� ����� ����� SPECTRAL �
����	��� 	�	�
��
� �	
 ����	 GK �
��������� 	������		 ��
 ����� GPS �

	��	����� ��
 ���� RCM �

BODY ���
����� ����� ����
 SPECTRAL �
��	�
��� �
�	������ ��
�� ����
 GK �
��
������ �
��	����� ��� ���� GPS �

�����
���� �	� ���� RCM �

FLAP �
������	� ����� �	��
 SPECTRAL �

�	��	��� ���������� ��
�� ����� GK �
�	����	�� ���������� ��� ���
� GPS �

���	����
	 ��� ���� RCM �

IN�C ��	�������� ��	
� ������ SPECTRAL �
�������
� 	���������	 ����
 	���� GK �

���
������� 	����
����� ����� ����� GPS �
	����

���	 ����� ����� RCM �

BARTH� matrix and of the four reorderings considered here� A black dot indicates a
nonzero element� The GK� GPS� and RCM reorderings all look very similar� whereas
the SPECTRAL reordering has a quite di�erent appearance�

Juvan and Mohar 
��� had suggested the use of the spectral ordering for reducing
the bandwidth �and p�sums�� but our results show that the GPS algorithm is much
more e�ective than the spectral algorithm in reducing the bandwidth� A possibility is
to make limited use of a local reordering strategy based on the adjacency structure to

improve the envelope parameters obtained from the spectral method� Such reordering

��



Table ���

Factorization times

Title Envelope Factor time Algorithm
�sec�

BCSSTK�� ��
���

� �	� SPECTRAL
��������
 ����� RCM

BCSSTK�� �������
� ��
 SPECTRAL

��������	 ��	 RCM

BARTH� ��	���� ���� SPECTRAL

��	��	
 �	��� RCM

strategies will be considered elsewhere since the evaluation of the various possibilities
will require much e�ort�

Finally we list in Table ��� the factorization times for a few matrices� reordered
with both the spectral algorithm and with RCM� These times are for the envelope

factorization routine from SPARSPAK� and are measured again on a SGI worksta�
tion� We selected one example where the spectral algorithm is comparable in storage
requirements to RCM �BCSSTK���� and two examples where the spectral algorithm
yields considerably lower storage memory requirements� The results demonstrate the

quadratic behavior of the factorization time as a function of the envelope size� There�
fore we conclude that spectral reordering not only reduces the memory requirements�
but also improves execution times�
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Fig� ���� Structure of the original ordering of the matrix BARTH��
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Fig� ���� Structure of the Gibbs�Poole�Stockmeyer �GPS� reordering of BARTH��
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Fig� ���� Structure of the Gibbs�King �GK� reordering of BARTH��
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Fig� ���� Structure of the Reverse Cuthill�McKee �RCM� reordering of BARTH��

��



0 1000 2000 3000 4000 5000 6000

0

1000

2000

3000

4000

5000

6000

nz = 40965

Fig� ���� Structure of the Spectral reordering of BARTH��
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