
Constraint-Based Rendering for Scenes with

High Dynamic Ranges

by

Lijiang Fang

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1993

c�Lijiang Fang 1993

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

ii

The University of Waterloo requires the signatures of all persons using or

photocopying this thesis. Please sign below, and give address and date.

iii

Abstract

Many researchers have examined rendering techniques with a focus on realistic

image synthesis. Ray tracing and radiosity, which are the most successful current

methodologies, are based on the physics of light and surfaces. Neither considers

display device limitations or properties of human visual perception. Further-

more, the synthetic camera model has shown its deficiency in rendering images

with high dynamic ranges onto display devices with lower dynamic ranges.

A new rendering framework is proposed. Human visual properties are incor-

porated into the framework to increase the effective visual contrast. It is known

in visual perception that brightness is not a monotonic function of intensity. The

perceived brightness is affected by the intensities of the surrounding area. It is

also known that human vision is insensitive to low frequency spatial intensity

variation. In the proposed framework, to preserve the visual contrast in one

image, the contrasts across edges are maintained while the intensities in large

areas are slowly varied.

Based on the proposed framework, a modified rendering pipeline is presented

and a prototype system is implemented. The system generates the contrast

constraints by invoking a modified visible surface algorithm. Then, the problem

of satisfying the constraint hierarchy is transformed into a bounded linear least

squares (BLLS) problem. Numerical algorithms are employed to solve the BLLS

problem.

iv

Acknowledgements

First, I would like to thank my supervisor Dr. William Cowan for his guidance,

encouragement, and support. He also suggested I improve my English writing

even before he became my supervisor, so that the writing of this thesis was less

painful. I would also like to thank my faculty readers, Dr. Richard Bartels and

Dr. Anna Lubiw, for spending time reading my thesis and providing helpful

suggestions and comments.

I enjoyed the stimulating environment in the Computer Graphics Laboratory

(CGL). I thank all the faculty members, staffs, and students of CGL. In particular,

I would like to thank Eric Davies, for serving as my thesis’s student reader and

for many discussions on graphics, X windows, LATEX, etc. Also thanks to Lori

Case of the Scientific Computation Group for discussing numerical optimization

with me; to Maureen Stone of Xerox PARC for making a manuscript available

to us; to Steve Mann for making ice cream weekly in CGL. Thanks also go to

Rick Stroobosscher, Phil Bertrand, Peter Mayo, and Rob Kroeger for providing

the friendly computing environment in CGL.

Thanks to all my friends for making my stay at Waterloo enjoyable. Special

thanks to my family members for their moral support. My brother Liping intro-

duced me to Waterloo and helped me in many ways while I was far away from

my parents.

This work was partially supported by an Ontario Graduate Scholarship; by

several ITRC fellowships; by NSERC and ITRC through various grants to CGL;

and by Digital Equipment Corporation through equipment donations to CGL.

v

Trademarks

DECstation and ULTRIX are trademarks of Digital Equipment Corporation. X

Window System is a trademark of the Massachusetts Institute of Technology.

NAG is a registered trademark of the Numerical Algorithms Group Limited,

the Numerical Algorithms Group Inc, and the Numerical Algorithms Group

(Deutschland) GmbH.

All other products mentioned in this thesis are trademarks of their respective

companies. The use of general descriptive names, trade names, trademarks, etc.,

in this publication, even if the former are not indentified, is not to be taken as a

sign that such names may be used freely by anyone.

vi

Contents

1 Introduction 1

1.1 Rendering in the Context of Computer Graphics � � � � � � � � � � 1

1.2 Display Device Limitation � 2

1.3 Motivative Examples � 2

1.4 Objective of the Research � 4

1.5 Related Work � 4

1.6 Outline of the Thesis � 6

2 Background on Rendering 8

2.1 Physics of Lights and Surfaces, Lighting Models � � � � � � � � � � 8

2.1.1 Physics of Lights and Surfaces � � � � � � � � � � � � � � � � 9

2.1.2 Lighting Models � 11

2.2 Shading Models � 13

2.2.1 Flat Shading � 13

2.2.2 Gouraud Shading � 14

vii

2.2.3 Phong Shading � 15

2.3 Ray Tracing � 16

2.4 Radiosity � 17

2.5 How CRTs Work � 18

2.5.1 CRT Structure � 19

2.5.2 Gamma Correction � 21

2.5.3 CRT Set Up and CRT Contrast Limitation � � � � � � � � � � 22

3 Background on Visual Perception 24

3.1 How Human Beings Perceive a Scene � � � � � � � � � � � � � � � � 24

3.1.1 Eye � 26

3.1.2 Higher Level Visual Processing � � � � � � � � � � � � � � � � 30

3.2 The Interaction of Brightness and Spatial Relation � � � � � � � � � 31

3.3 The Sensitivity of Human Vision with Intensity Variation � � � � � 36

4 A Model of Constraint-Based Rendering 38

4.1 Incorporating Device Limitation and Visual Perception into Ren-

dering � 38

4.2 Measurement of Luminance and Contrast � � � � � � � � � � � � � � 43

4.2.1 Luminance � 43

4.2.2 Contrast � 48

4.3 The Rendering Pipeline � 48

4.4 Formalization of Constraints � 52

viii

5 Implementation 58

5.1 Preprocessing � 60

5.2 Input, Projection, and Clipping � 60

5.2.1 Input � 60

5.2.2 Projection � 61

5.2.3 Clipping � 63

5.3 Constraint Generation � 66

5.3.1 A Modified Visible Surface Algorithm � � � � � � � � � � � � 67

5.4 Constraint Solving � 92

5.5 2D Rendering � 94

6 Conclusions and Future Work 96

6.1 Conclusions � 96

6.2 Future Work � 98

A Transformation Matrices 100

A.1 Matrices of Geometrical Transformations � � � � � � � � � � � � � � 100

A.2 Matrices of Viewing Transformations � � � � � � � � � � � � � � � � 101

A.2.1 Projection in Canonical Form � � � � � � � � � � � � � � � � � 101

A.2.2 Projection in Arbitrary Form � � � � � � � � � � � � � � � � � 103

B Sweeping for Constraint Generation 105

B.1 Handling the Edges Above the SPs � � � � � � � � � � � � � � � � � � 109

ix

B.2 Handling the Edges Below the SPs � � � � � � � � � � � � � � � � � � 110

B.2.1 SP Is Not An Intersection � � � � � � � � � � � � � � � � � � � 111

B.2.2 SP Is An Intersection � 112

B.3 Running Time � 115

C Data Structures and Pseudo-Code 117

C.1 Data Structures � 117

C.2 Pseudo-Code of Sweeping Algorithm � � � � � � � � � � � � � � � � 121

Bibliography 130

x

List of Tables

4.1 Colour Models � 46

5.1 Window Edge Coordinates � 63

5.2 A Progressive List of �D Vertices And Visible Segments � � � � � � 74

5.3 A Progressive List of Strong Constraints � � � � � � � � � � � � � � � 75

5.4 Visible Segments and their Start/End Vertices � � � � � � � � � � � 90

xi

List of Figures

2.1 Colour Mixture Functions for Red, Green, and Blue Primaries for

the Visible Spectrum (Primaries are at 436, 546, and 700nm respec-

tively) � 10

2.2 Diffuse and Specular Reflections � � � � � � � � � � � � � � � � � � � 11

2.3 Gouraud shading � 14

2.4 Phong shading � 15

2.5 Schematic Diagram of A Monochrome CRT � � � � � � � � � � � � � 19

2.6 Shadow-Mask � 20

3.1 The Visual Process � 25

3.2 A Cross Section of The Eye � 27

3.3 Spectral Sensitivities for Rods and Cones � � � � � � � � � � � � � � 28

3.4 Spectral Sensitivities for Three Cones � � � � � � � � � � � � � � � � 29

3.5 Brightness Is Not A Simple Function of Intensity � � � � � � � � � � 32

3.6 The Mach Band Effect � 33

3.7 The Heinemann’s Experiment � 33

xii

3.8 Results of Heinemann’s Experiment (It � ���) � � � � � � � � � � � 34

3.9 Inhibition Between Receptors � 35

3.10 Modulation Transfer Function of A Human Eye � � � � � � � � � � 36

4.1 Dynamic Ranges of Image and Device � � � � � � � � � � � � � � � � 40

4.2 Transformation RGB to HSV � 45

4.3 Transformation HSV to RGB � 47

4.4 The Rendering Pipeline � 49

4.5 Strong Constraints � 53

5.1 System Architecture of Constraint-Based Renderer � � � � � � � � � 59

5.2 Polygons Overlap After Projection � � � � � � � � � � � � � � � � � � 65

5.3 Visible Polygons � 66

5.4 Directions of Visible Segments � 69

5.5 A Hole in A Polygon � 70

5.6 Sweeping Points � 72

5.7 At Sweeping Point O � 76

5.8 At Sweeping Point E � 77

5.9 At Sweeping Point F � 78

5.10 At Sweeping Point A � 79

5.11 At Sweeping Point D � 81

5.12 At Sweeping Point G � 82

xiii

5.13 At Sweeping Point C � 83

5.14 At Sweeping Point P � 84

5.15 At Sweeping Point H � 85

5.16 At Sweeping Point I � 86

5.17 At Sweeping Point B � 87

5.18 At Sweeping Point Q � 88

A.1 Perspective Projection � 102

B.1 Sweeping Points and Their Corresponding Edges � � � � � � � � � 106

B.2 Output a �D Vertex � 107

B.3 � Variable Constraints Corresponding to “Above” Edges � � � � � 109

B.4 Visible Segments and Coincident Edges � � � � � � � � � � � � � � � 112

B.5 Intersection Sweeping Points � 113

B.6 � Variable Constraints Between Above And Below Vertices � � � � 114

xiv

Chapter 1

Introduction

1.1 Rendering in the Context of Computer Graphics

Two major areas of research in computer graphics are modelling and rendering.

Research on modelling attempts to provide easy and powerful ways for a user

to specify and manipulate a scene. Rendering refers to the procedure of creating

a visible image on display hardware from the input model. It can be viewed

as a function which maps a scene description to pixel values on specific display

hardware. The rendering procedure can be divided into several stages: the mod-

elling transformation, the viewing transformation, projection, clipping, window

to view-port mapping, scan conversion, and digital to analog conversion (DAC)

for the display hardware (e.g. shadow-masked cathode ray tube (CRT) controlled

by the voltage). These stages constitute the rendering pipeline. The objective of

research on rendering is to improve the image quality and the computational effi-

ciency of rendering algorithms (the mapping functions). As reviewed in Chapter

2, many researchers have examined rendering techniques with a focus on real-

1

CHAPTER 1. INTRODUCTION 2

istic image synthesis. Ray tracing and radiosity are the most successful current

rendering methodologies.

1.2 Display Device Limitation

There are many different display devices, such as the CRT, liquid-crystal display

(LCD), plasma display, electrostatic printer, and thermal-transfer printer. In this

thesis, display device refers to the CRT because it is the most popular display

medium in interactive computer graphics, but the techniques apply to all devices.

A CRT is not able to emit a radiance smaller than a minimal radiance or bigger

than a maximal radiance. These restrictions cause many problems in computer

graphics. In this thesis, we only focus on the fact that it is impossible for a CRT

to display absolute dark as discussed in detail in Chapter 2. Because of this

limitation, the contrast available on a CRT is also limited. If we want to render a

scene whose contrast is much higher than the attainable contrast on a CRT using

straightforward rasterization techniques, the scene sustains a loss of information

(Chapter 4 will discuss this problem in detail).

1.3 Motivative Examples

Some examples in photography and painting inspire our interest on addressing

the problem of display device limitation in computer graphics. Let us describe a

scene that we see quite often in daily life. A bright sun in the sky illuminates a

tree from behind. We would like to take a picture of this scene. Because we are

looking in shadow, if we focus our camera at the tree, we get a photograph in

CHAPTER 1. INTRODUCTION 3

which the sun is not as bright as it should be and does not look too much different

from the surrounding sky. On the other hand, if we focus the camera at the sun,

although the sun is very bright, but the tree looks extremely dark with little or

no visible detail. The reason why we have this problem is that the contrast of the

scene is far out of the range of the available contrast on the photograph.

In his The Empire of Lights ([Gim87, illustrations 61-65] and [Sob65]), Magritte

painted a picture which consists of a dark night scene with a light shining on a

house and its surrounding trees, etc., together with a bright day sky. The original

brightness contrast of these two components are far out of the range which a

painting could deliver. However, Magritte skillfully varied the luminances along

the picture, and we have a feeling that the sky is as bright as the day sky and the

house and its surrounding are in the night, and we still can see the details of the

sky and the details of the house and its surroundings. We did a measurement

using a radiometer on the luminance distribution with this painting. We found,

for instance, that in one tree, some parts which look at the same brightness

actually have different luminances. We also found that the leaves bordering with

the sky have lower luminances, resulting in a high contrast which makes the sky

look brighter.

From these two examples, we can see that the synthetic camera model in

graphics rendering has its weakness with high contrast images, and the artistic

approach may provide better results.

CHAPTER 1. INTRODUCTION 4

1.4 Objective of the Research

From the discussion in Sections 1.1-1.3, we see that the display hardware in com-

puter graphics restricts the contrast attainable in the image, and the synthetic

camera rendering model cannot cope with this deficiency. In this thesis, we ex-

amine the restriction on display devices in depth, and propose a new framework

for rendering that takes into account properties of the human visual system. To

the human visual system, the absolute luminance of an object is less important

than comparing the luminances of neighbouring objects (i.e. local contrast). In

the proposed framework, we will use a constraint-based approach, which con-

siders the relationship among neighbouring objects, and attempts to maintain

the contrast at some places while relaxing the contrast at other places depending

on the relationships.

1.5 Related Work

In the literature, there has been little work done on rendering of high dynamic

range images with the consideration of display device limitation and human

visual properties. However, the following work is related to our research.

Klassen investigated the problems of device dependent image construction

[Kla89]. He examined faithful image reconstruction that takes into account spatial

and temporal properties of individual pixels (pixel structure artifacts). The pixel

intensity profile for a CRT is Gaussian distribution in space and exponential

decay over time. The problem discussed in his work is in fact different from

the one considered in this thesis. His research sought to reduce or eliminate the

pixel structure artifacts with given image intensity distribution and to minimize

CHAPTER 1. INTRODUCTION 5

the difference between the given image and the image displayed. The problem

considered here is to reduce the information loss during the rasterization. In our

research, when a high contrast image is rendered, some of its intensities may be

altered in order to preserve the contrast at important locations.

Tumblin and Rushmeier addressed the drawback of simple normalization in

realistic computer generated images [TR91]. Because the simple normalization

just divides all the radiance values, which are computed by radiosity or ray

tracing methods, by the strongest radiance in an image, a firefly-powered image

and a searchlight-powered image become undistinguishable. They applied the

Stevens and Stevens models of brightness versus luminance relations [SS60, SS63]

to create a tone reproduction operator for black and white computer generated

images. As a result, dark scenes look dark and bright scenes look bright. Their

work is related to this thesis in the sense that it also considers display device

restrictions and properties of the human visual system, but its focus is different

from ours.

Chiu et al. presented an algorithm that spatially nonuniformly scales the pixel

intensities of a computer generated grey-scale image so that the intensities are all

displayable on a CRT [CHS�93]. The scaling function is constructed from a low

pass filter. For the same intensity at different pixels, the function value is larger at

a pixel whose neighbouring pixels have lower intensities and is smaller at a pixel

whose neighbours have higher intensities. The scaling function is built by ad

hoc techniques, and thus it is probably image dependent. Because their method

works in the raster space and it does not know the internal object structure, it is

hard for the algorithm to take advantage of the object structure and it may create

artifacts.

Glassner et al. proposed a device-directed rendering methodology [GFMS93].

CHAPTER 1. INTRODUCTION 6

They represent the image by a symbolic representation that describes the rela-

tionship between the scene lights and surfaces and the pixel colours. If there exist

some pixel colours out of the device gamut in the image, the image is projected

onto the device gamut. The projected image is called the target image. A mini-

mization procedure is then performed to adjust the light and surface parameters

so that the resulting image has minimum distance from the target image. If the

resulting image still has pixel colours out of the device gamut, a new iteration is

carried out again. Their methodology strictly follows the physics of lights and

surfaces. It has the advantage of automatically adjusting the scene so that the

image is guaranteed to be in device gamut without rendering artifacts caused

by gamut-mapping. However, the method alters the scene lights and surfaces,

which may cause the problem of moving the image farther from a modeller’s

intention, and the method does not appeal to the properties of visual perception

to achieve visual effect beyond the physical limitation of a given device.

1.6 Outline of the Thesis

Chapter 2 introduces the background on rendering, including the physics of

light and surfaces, approximate lighting models, shading models, ray tracing,

radiosity, and the working mechanism of CRTs. The background on visual

perception is discussed in Chapter 3, emphasizing properties of spatial vision. We

propose a constraint-based rendering approach in Chapter 4, which incorporates

properties of visual perception into rendering and considers the display device

limitation. The implementation details are explained in Chapter 5. The modified

rendering pipeline is described with the emphasis being on constraint generation

and constraint solving. Finally, we summarize the thesis and point out possible

CHAPTER 1. INTRODUCTION 7

future work in Chapter 6.

Chapter 2

Background on Rendering

Rendering is the process of creating images from models [FvDFH90, page 606].

In frame buffer architecture, rendering is also referred to as rasterization for the

procedure of computing the pixel values from the input graphics models. This

chapter will review the physics foundation behind rendering and the work done

by other researchers on rendering techniques. We will find that these researchers

do not pay any attention to limitations of the display device (e.g. CRT) and to

the properties of the human visual system.

2.1 Physics of Lights and Surfaces, Lighting Models

The ultimate objective of realistic image synthesis is to produce an image as

close to perceived reality as possible. It does so by simulating the interactions

between lights and surfaces within an environment. However, these simulations

are very computationally expensive, or even untractable. To reduce the compu-

tational complexity, many approximation models have been proposed. We first

8

CHAPTER 2. BACKGROUND ON RENDERING 9

briefly introduce the physics of lights and surfaces, and then give the popular

approximate lighting models.

2.1.1 Physics of Lights and Surfaces

A good introduction to the physical process of light and colour can be found in

[CSW87] or [JW75]. Light rays start from an illuminant (lighting source), fall on

the object, then reflect and/or scatter to the viewer’s eyes. From modern physics,

we know that light is made of particles called photons. A photon is characterized

by energy E, frequency �, wavelength �, and wavenumber ��. These quantities

have the relationships as in Equations 2.1, 2.2, and 2.3.

E � h� (2.1)

�� � c (2.2)

�� �
�

�
(2.3)

where h � ����� ����� joule � seconds and c � ���� � ���metres�second.

An illuminant is specified by its spectral power distribution ��. ���� de-

scribes the number of photons within the wavelength interval 	�� �
���. Photons

of wavelength below ��nm appear blue, photons of wavelength around ���nm

appear green, and photons of wavelength around ��nm appear yellow, while

photons of wavelength above ���nm appear red. When an illuminant emits more

photons of long wavelength, it looks reddish, and when it emits more photons

of short wavelength, it looks bluish.

When the photons from an illuminant reach the surface of an object, the sur-

face re-emits them in two different ways. Some of the photons are reflected with

CHAPTER 2. BACKGROUND ON RENDERING 10

400 500 600 700

0.2

0.4

nm

T
ris

tim
ul

us
 V

al
ue

s

Wave Length

436 546

RG
B

Figure 2.1: Colour Mixture Functions for Red, Green, and Blue Primaries for the

Visible Spectrum (Primaries are at 436, 546, and 700nm respectively) (adapted

from [CSW87])

the angles of reflection nearly equal to the angle of incidence, which is called spec-

ular reflection. Some photons are scattered. However, the number of photons

falling on a surface is not equal to the number of photons leaving the surface.

The number of photons leaving the surface with wavelengths between � and

�
�� is R�������, where R��� is the reflectance of the surface for wavelength

�, which satisfies ��� � R��� � ��� assuming no fluorescence. Effectively the

surface subtracts ���R�������� photons from the arriving photons. This is the

subtractive colour model. The light seen by an observer is determined by the

reflectance function of the surface and the spectral distribution of the illuminants.

Precise spectral representation of lights is extraordinarily inefficient. In com-

puter graphics, lights are usually represented by a mixture of red, green, and

CHAPTER 2. BACKGROUND ON RENDERING 11

θθθ

(b) Specular Reflection(a) Diffuse Reflection

V

R

α

NL L N

Figure 2.2: Diffuse and Specular Reflections

blue primaries. Figure 2.1� shows that most of the colours in the visible spec-

trum can be simulated by adding amounts of red, green, and blue, although the

colour whose wavelength is in the interval 	���nm� ���nm� can not be additively

simulated.

2.1.2 Lighting Models

[FvDFH90, pages 722-734] has a good introduction to lighting models. There are

two types of lights. One type is the light bathing a surface from the surroundings.

The other type is that due to light sources. They are the ambient light and the

direct light from an illuminant. The light re-emitted from a surface is in the form

of diffuse light and specular light. Ambient lighting is the light which constantly

illuminates all the objects in an environment. For a given surface, the intensity

is usually taken to be a constant. Diffuse lighting is the light reflected with equal
�All the figures in this thesis are only to illustrate some concepts or trends. They are not

necessary quantitatively accurate.

CHAPTER 2. BACKGROUND ON RENDERING 12

intensity in all directions. For a given surface, the intensity of diffuse reflection

only depends on the angle � between the normalN of the surface and the incident

light direction L. Specular lighting is the light reflected unevenly in different

directions. It only reflects in directions aligned with, or nearly with, the direction

of reflection R. R can be calculated by R � �N �N � L�� L. Figure 2.2 illustrates

diffuse and specular reflections. In the figure, V is the viewing direction. The

illumination at one point of a particular surface can be calculated by Equations 2.4,

2.5, and 2.6.

IR � SaR � IaR

SdR � ISR � �L �N�

SsR � ISR � �R � V �n (2.4)

IG � SaG � IaG

SdG � ISG � �L �N�

SsG � ISG � �R � V �n (2.5)

IB � SaB � IaB

SdB � ISB � �L �N�

SsB � ISB � �R � V �n (2.6)

where IR, IG, and IB are the intensities for R, G, and B, SaR , SaG, and SaB are the

surface ambient coefficients, IaR, IaG, and IaB are the environmental ambiences,

SdR , SdG , and SdB are the diffuse coefficients, ISR , ISG , and ISB are the intensities

of the lighting source, SsR , SsG , and SsB are specular coefficients, n is a constant

depending on the property of the surface, and L, R, N , and V are the same as in

Figure 2.2.

CHAPTER 2. BACKGROUND ON RENDERING 13

2.2 Shading Models

To shade is to paint a surface with an appropriate colour distribution. A very

detailed introduction on shading can be found in [FvDFH90, pages 734–739]. Its

objective is to display surfaces as close to the surfaces in an ideal camera-shot

photograph as possible. During the last two decades, many shading models

have been proposed. The most frequently used shading models are flat shading,

Gouraud shading, and Phong shading. They vary in image quality and com-

putational cost. The first approach has the cheapest computing cost and worst

image quality, while the third has the most expensive computational cost and

highest image quality.

2.2.1 Flat Shading

It was assumed that the shading of one surface is uniformly distributed, i.e. every

point on one surface has the same properties. Given the surface properties, the

ambient and diffuse coefficients, we can calculate the shade of the surface with

following formulaes:

IR � SaR � IaR
 SdR � ISR � �L �N� (2.7)

IG � SaG � IaG
 SdG � ISG � �L �N � (2.8)

IB � SaB � IaB
 SdB � ISB � �L �N� (2.9)

During the scan conversion, we use the same R, G, and B values for every

pixel within this surface. The result is a set of constant coloured polygons, hence

the term flat shading is used.

CHAPTER 2. BACKGROUND ON RENDERING 14

BAPI = rI + (1-r)I
B

I = tI2 + (1-t)I3

AI = sI1 + (1-s)I5

line
scan

We have:

P = rA + (1-r)B
B = tP2 + (1-t)P3
A = sP1 + (1-s)P5

P5

P4
P3

P2

P1
Assume:

BA

P
.

Figure 2.3: Gouraud shading

2.2.2 Gouraud Shading

Gouraud shading ([Gou71] and [FvDFH90, pages 736-737]) is one of the most

commonly used shading methods. It first computes every polygon normal, then

it computes the normal of a vertex by the average of the normals of all the

polygons which connect to this vertex. Assuming that the optical properties

for all the polygons in one object are the same, after having the normal for a

vertex, it may compute the shading for this vertex by Equations 2.4, 2.5, and

2.6 . It computes the shadings for all the vertices in this way, then it calculates

the shading value for a point on the edge by linearly interpolating between

two end vertices. The shading value for any pixel can be calculated by linearly

interpolating the values of two points on the polygon edges across scan line.

Figure 2.3 illustrates this procedure.

CHAPTER 2. BACKGROUND ON RENDERING 15

line
scan

We have:

P = rA + (1-r)B
B = tP2 + (1-t)P3
A = sP1 + (1-s)P5

P5

P4
P3

P2

P1
Assume:

BA

P
.

NA = s N1 + (1-s)N5

NB = tN2 + (1-t)N3

NP = rNA + (1-r)NB

Figure 2.4: Phong shading

2.2.3 Phong Shading

Phong shading ([BT75] and [FvDFH90, pages 738-739]) is another common shad-

ing method. It has higher image quality than Gouraud shading. We can also

see that Phong shading is more flexible than Gouraud shading because Gouraud

shading has to assume all the polygons in one object have same surface property.

This process is shown in Figure 2.4 .

We see that flat shading only computes the shade once for one surface,

Gouraud shading computes the shade at each vertex and the other pixels use

the linear interpolation of shades for those vertices, and Phong shading com-

putes the shade at every pixel by the interpolation of the normals of the vertices.

Therefore, Phong shading is the most expensive and flat shading is the cheapest.

The aforementioned shading techniques are computationally efficient with

CHAPTER 2. BACKGROUND ON RENDERING 16

reasonable image quality. However, if we wish to have highly realistic im-

ages, these methodologies are not sufficient. For example, shadows can not be

easily accommodated using these models, and interpolation of either normal

or shading values is an approximation. To provide better photo-realistic im-

age synthesis, two different approaches have been taken. One is ray tracing

[FvDFH90, pages701-715, 753, 776-793, 804-806] [Gla89], and the other one is

radiosity [FvDFH90, pages722, 753, 775, 793-806] [GTGB84].

2.3 Ray Tracing

A simple ray tracer casts a viewing ray from the eye point to every pixel on the

screen. If a viewing ray from the eye point to one pixel intersects object surfaces,

only the nearest surface is visible. The colour on this pixel is calculated based

on the lighting properties of this surface. The ray tracer casts lighting rays to all

the light sources from the intersection point of the viewing ray and the nearest

object. If a lighting ray does not intersect any object, then this light contributes

diffuse and specular illumination for that pixel. If the object is reflective, the

ray tracer then recursively fires a reflection ray in the reflection direction of the

viewing ray from the eye point, and the intensities computed from recursive ray

are discounted by a factor and added to the intensity values for the viewing ray.

If the object is refractively transparent, the ray tracer recursively fires a refraction

ray through the object in an appropriate direction and applies the recursively

computed intensity, discounted by a factor, to the viewing ray.

From [FvDFH90], we find that recent trends in ray tracing research divide

into two categories. They are to improve the efficiency of ray tracing and to

improve the image quality. Item buffers [WHG84], reflection maps [Hal86],

CHAPTER 2. BACKGROUND ON RENDERING 17

adaptive tree-depth control [HG83], light buffers [HG86], and ray classification

[AK87] have been proposed to speed up ray tracing. Cone tracing [Ama84], beam

tracing [HH84], pencil tracing [STN87], stochastic sampling [CPC84, Coo86], and

path tracing [Kaj86] have been used to enhance the image qualities of ray traced

images.

2.4 Radiosity

Radiosity is a word borrowed from illumination engineering. Although ray

tracing works well to model specular reflection and dispersionless refractive

transparency, it still uses the ambient light to measure the other global lighting

contributions. Assuming the conservation of light energy in a closed environ-

ment, radiosity treats inter-object reflection more accurately. Suppose that the

environment could be broken into n discrete patches, radiosity assumes that the

light energy leaving a unit area is equal to the energy emitted in unit area from

that patch and the energy reflected in unit area from that patch as shown in

Equation 2.10.

Bi � Ei
 �i
X

��j�n

Bj
Fj�iAj

Ai
(2.10)

Bi andBj are the radiosities of patches iand j, measured in energy�unit time�unit area.

Ei is the rate at which light energy is emitted from patch i, measured in the same

unit as radiosity. �i is the reflectivity of patch i. Ai and Aj are the areas for

patches i and j. Fj�i is a form factor, a value that specifies the percentage of

energy leaving from patch j that reaches patch i.

CHAPTER 2. BACKGROUND ON RENDERING 18

Ai, Ei, and �i are the properties of a patch i which are known. Fj�i can

be computed according to patch i and patch j’s geometries and their relative

locations [FvDFH90, pages795-799]. Therefore, only Bi and Bj are unknown in

Equation 2.10. By solving the system of Equations 2.10 for i from � to n, the

radiosity for each patch is computed. It should be noted from Equation 2.10

that the radiosities of patches i and j do not contain any information about the

viewpoint. Radiosity is a view independent property of a surface.

According to [FvDFH90], current research in radiosity focuses on the effi-

ciency of radiosity and the image qualities of radiosity generated images. Cohen

and Greenberg used a hemicube to improve the efficiency of approximating the

form factor [CG85]. Cohen et al. adaptively subdivided subpatches at places of

high radiosity gradient to reduce the number of patches and still preserve the

image quality [CGIB86]. Immel et al. extended the radiosity method to model

specular reflection [ICG86].

Radiosity is a view-independent image synthesis technique, which has ad-

vantages for calculating the diffuse component of illumination, while ray tracing

is a view-dependent image synthesis technique, which is better in calculating

the specular component. Wallace et al. implemented a two-pass approach to

simulate global illumination within complex environments [WCG87].

2.5 How CRTs Work

After the pixel values are computed by the chosen rendering models, the next

step is to place those calculated values onto a display surface. There exist many

display devices available for computer graphics. They include shadow-masked

CHAPTER 2. BACKGROUND ON RENDERING 19

Heating
filament

Cathode

Control
Grid

Focus
 &
Deflection

Interior metallic coating
at high positive voltage

Light

Glass
Faceplate

Electron Beam

Interior metallic coating
at high positive voltage

Phosphor
Coating

Figure 2.5: Schematic Diagram of A Monochrome CRT (adapted from [Cow87])

cathode ray tubes (CRT), direct-view storage tubes (DVST), laser printers, pen

plotters, and liquid-crystal displays. Currently, the most frequently used display

hardware in interactive computer graphics is the CRT. Therefore, this thesis

selects CRTs to explore the display contrast limitation and its impact on rendering.

2.5.1 CRT Structure

Figure 2.5 is the cross-section of a CRT. The main components of a CRT are labeled

in that figure. The electron gun in a CRT consists of a heating filament and a

CHAPTER 2. BACKGROUND ON RENDERING 20

Red
Light

Green
Light

Blue
Light

From
Blue
Gun

From
Green
Gun

From
Red
Gun

Shadowmask
Phosphor dots

Figure 2.6: Shadow-Mask (adapted from [Cow87])

cathode. The heating filament heats the cathode causing it to emit electrons.

Some of these electrons pass through the control grid which determines how

many electrons are actually in the beam. This determines the brightness of

the spot on the screen where this beam hits. This beam is accelerated by the

interior metallic coating near the screen which has high positive voltage charge.

The focusing system forces the electrons into a narrow stream. This stream is

directed toward a specific point on the screen by the magnetic field generated

by the deflection coils. When the electron beam hits a point on the screen, the

phosphor on the screen emits light.

CHAPTER 2. BACKGROUND ON RENDERING 21

The previous paragraph only describes the principles of a monochromatic

CRT. A colour CRT has a similar operation as a monochromatic CRT. It has three

electron guns, one each for red, green, and blue respectively. A shadow-mask

is mounted behind the screen and each pixel contains three closely grouped

phosphor dots for red, green, and blue. The colour a viewer sees on a pixel

is the mixture of the colours of these three dots. This colour can be controlled

by alternating the strength of red, green, or blue. The shadow-mask has one

hole for each pixel. It is precisely aligned so that only one electron gun is on

the line formed by this hole and one phosphor dot. Hence, a phosphor dot is

only exposed to the electrons shot from a specific gun. Two type of shadow-

mask CRTs exist. They are the delta-delta CRT, in which both the phosphor dots

and the electron guns are aligned in triangle, and the precision in-line delta CRT,

in which both the three guns and the phosphor dots for one pixel are located

in one line instead of in a triangle. An electron beam in the latter is easier to

converge to the destined phosphor dot than that in the former but the latter

slightly reduces image sharpness. Figure 2.6 illustrates the geometrical principle

for the shadow-mask in a shadow-mask CRT.

2.5.2 Gamma Correction

The pixel intensity (I) is determined by the number of electrons (N) exposed to

the phosphor dots for that pixel. However, this relationship is not a simple linear

function. Instead we have the equation I � kN� , where k and � are constants

for the set up of a particular CRT. If the adjustments of CRT controls is unknown,

most CRTs have � between ��� and � [Mac91, MC92]. If a CRT is properly set up,

the typical � value is around ���. The set up of a CRT will be discussed in the

CHAPTER 2. BACKGROUND ON RENDERING 22

next subsection.

The number of electrons in the beam is proportional to the control-grid volt-

age. Hence, the control-grid voltage and the intensity for a pixel have the fol-

lowing correspondence I � KV � , where K is a new constant for the given CRT

setting. This is equivalent to V � � I
K
�
�

� . Therefore, in order to have intensity

I on a pixel, we should adjust the control-grid voltage to V � CI
�

� , where

C � � �
K
�
�

� .

2.5.3 CRT Set Up and CRT Contrast Limitation

It is impossible for a CRT to display absolute zero intensity because light reflects

from the phosphor within the CRT and ambient light scatters on the display

surface. If we denote the maximum intensity as 1.0, the minimum attainable

intensity is from �
��� to �

�� for CRTs [FvDFH90, page 564]. The ratio of the

maximum and minimum intensities is called the dynamic range. The dynamic

range of a CRT is strongly affected by the lighting condition in the room where

the CRT is located. However, if we set up a CRT properly, the dynamic range

can be maintained at a perceptually optimal level. This subsection describes a

standard CRT setup method [Mac91, MC92].

A CRT usually has several controls, such as brightness, contrast, focus, under-

scan/overscan, pedestal, gain, and horizontal/vertical size, to adjust the various

image properties [Cow87, pages 13-15]. The controls that are of importance to

the luminance limit of a CRT are brightness, contrast, and focus controls. The

brightness knob adjusts the background level (black level) of light on the screen

and also varies the aforementioned �. � becomes bigger as the background level

is increased. The contrast control changes the ratio between the intensities of

CHAPTER 2. BACKGROUND ON RENDERING 23

the brightest possible value and the darkest possible value. The focus control

modifies the size of the electron beam. The optimal beam size is just large enough

so that there is no dark grid on a uniform field.

The standard CRT set up to adapt to the lighting condition of a room is

as follows. First, the focus is set by the shrinking-raster method: a flat field is

displayed, and we adjust the focus knob so that the image is as sharp as possible

while the raster lines are still invisible. Second, to set brightness (black level), we

vary the brightness knob to the brightest level consistent to zero input producing

perceived black under the usual ambient illumination conditions. Finally, the

contrast is set by adjusting the contrast level to the maximum at which there

is no blooming when the CRT is used at full intensity input. Blooming is the

phenomenon that the electron guns supply too much energy to the screen. This

results in wide, blurry pixels and desaturated colours. Because brightness and

contrast are adjusted separately, iterations may be required.

Chapter 3

Background on Visual Perception

This chapter offers a tutorial on human visual perception to audiences with a

computer graphics background. Most of the materials to be presented in this

chapter can be found in [Cor70, JW75, CSW87, FLS77]. All or at least most of

the images generated in computer graphics are to be viewed by human beings

regardless of the medium on which the images are produced. Therefore, knowl-

edge of the principles of human visual perception is essential for producing

images with good visual effects. In this chapter, we first explain how human

beings perceive a scene, then we discuss some visual properties that will be used

later.

3.1 How Human Beings Perceive a Scene

Figure 3.1 is a sketch of the flow chart of human visual processing. The visual

process starts at the eyes where the lights enter, and ends at the brain after the

visual information is passed on from the optic nerves. In this section, first we

24

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 25

The World

(reflects light)

Eye Optical Focus System

(focuses light)

Retina

(transfers image into nerve activity)

Lateral Geniculate Nucleus

Cortex

(analyzes object pattern & movement etc)

Rest of Brain

(relays nerve signals)

Optic Nerves

Superior Colliculus

(controls the eye movement)(relays nerve signals)

Figure 3.1: The Visual Process

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 26

explore the eye structure. Then, we discuss the visual processing in higher levels,

such as in the cortex.

3.1.1 Eye

Figure 3.2 is a diagram of a horizontal cross section of the human eye. An eye

has the following main components: cornea, aqueous humour, iris, pupil, lens,

vitreous humour, retina, and optic nerves [JW75, pages 5-21].

The cornea, which covers the iris and pupil, is the transparent part of the coat

of the eyeball. The tear ducts and eyelids keep it clean. The cornea scatters some

portions of the incoming lights, refracts other portions of lights into the interior

of the eye, and focuses the lights almost onto the retina. The remaining focus

is provided by the lens. The aqueous humour is the fluid between the cornea

and lens. If there is too much aqueous humour, the cornea is stressed outwards

and the image is focused in front of the retina, while if there is too little aqueous

humour, the cornea becomes flatter and the image is focused behind the retina.

The pupil is the small hole of the iris diaphragm through which light enters

the lens. The iris diaphragm controls the diameter of the pupil based on the

light intensity. The diameter becomes bigger when the light is dim and becomes

smaller when the light is bright. When the pupil is small, only the centre of

the lens, which is optically the best part of the lens, is used. Hence, the pupil

regulates the light entering the eye, helping to produce a sharp image.

The lens is between the aqueous humour and the vitreous humour. The

aqueous humour’s pressure also adjusts the shape of the lens. The radial muscles

tend to flatten the lens and the sphincter muscles tend to fatten it. These two

muscles cooperate to adjust the focal length of the lens. As indicated in the

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 27

Lid

Cornea

Iris

Muscle

Lens Visual Axis

Foveal pit

Optic nerve

Blind Spot

Vitreous
Humour

Pupil

Aqueous
Humour

To Nose

To Ear

Retina

Figure 3.2: A Cross Section of The Eye [JW75, page 6][Cor70, page 40]

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 28

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

L
um

in
ou

s
E

ff
ic

ie
nc

y

Rods
Cones

400 500 600 700

Figure 3.3: Spectral Sensitivities for Rods and Cones [JW75, page 9]

earlier paragraph, the cornea has already focused the image almost onto the

retina, the lens with its flexible focal length adjusts the image precisely to the

retina. However, both the shapes of optically effective surfaces in the eye and the

distribution of refractive power within the lens are not optically perfect, which

results in some amount of aberration.

The vitreous humour is a viscous fluid filling the interior of the eye. It main-

tains the distance from the lens to the retina close to a constant. The vitreous

humour has large light-scattering tissues and fine light-scattering particles float-

ing in it. They degrade the image quality on the retina, especially when the large

light-scattering tissues are near to the retina. As we will point out later, this

contributes to the fact that the eye is not a simple optical system.

The retina, the light-sensitive part, is at the back of the eyeball. Two types of

cells (the rods and cones), retinal processing cells (including horizontal amacrine

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 29

400 500 600 700

0.0001

0.001

0.01

0.1

1.0

Wavelength (nm)

R
el

at
iv

e
 S

en
si

ti
vi

ty

Blue

Green

Red

Figure 3.4: Spectral Sensitivities for Three Cones [CSW87, page 31]

and bipolar), the optic nerves, and the blood tissues spread over the retina. The

rods and cones are non-uniformly distributed on the retina. At the centre of the

retina, �o in diameter, called the foveal pit, the retina has the highest density of

cones. There are no rods in the centre �o. The rods’ density increases from �o and

reaches a maximum at ��o. Cones are found everywhere in the retina, but most

densely within �o. Points close to the foveal pit, where the optic nerves leave for

the brain, have no rods or cones. The region of these points is called the blind

spot. If an object forms an image on the blind spot, it can not be seen.

Visual perception is indirectly determined by the outside world, but is directly

determined by the retina image. If two different objects form the same image on

the retina, human beings are not able to distinguish between these two objects.

The cones and rods transfer the optical image into a pattern of nerve activity. Most

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 30

of the cones have direct optic nerves connected to the brain, while a bunches of

rods share a nerve. The nerve activities are propagated from these cells to the

brain through the optic nerves. When the light intensity is low, rods are more

sensitive than cones. However, when the light intensity is high, the opposite

is true. The rods and cones have different spectral sensitivities as shown in

Figure 3.3. The rods are more sensitive than the cones to short wavelength light

and less sensitive than the cones to long wavelength light. Unlike the rods, which

can only yield black and white perception, the cones can produce chromatic

perception. When the light is very dim, the rods are active instead of the cones,

and one sees objects as gray instead of coloured. There exist three different types

of cones. They are named the red, blue, and green cones because of the peaks

of their spectral sensitivities. Figure 3.4 shows the spectral sensitivities of red,

green, and blue cones.

The optical focus system in the eye, which is made up by the cornea and

the lens etc., is not a perfect (or simple) geometrically optical system. It has

diffraction, aberration, and scattering [Cor70, pages 56-60]. These imperfections

differentiate it from a simple optical system and have significant influence on

perception.

3.1.2 Higher Level Visual Processing

As stated in the previous subsection, the cones and rods transfer the image on

the retina into patterns of optic nerve activities. The optic nerves pass these

nerve activities to the lateral geniculate nuclei (LGN) [CSW87, page 67]. The

LGN relays the signals from the optic nerves to the visual cortex, where higher

level visual processing occurs, and to the superior colliculus, which controls eye

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 31

movements.

The cortex analyzes the object pattern and movement etc. It is located at

Brodmann’s areas 17, 18, and 19 [CSW87, pages 117-120]. Area 17 receives input

from the LGN, and relays it to areas 18, 19, and the rest of the brain. It is organized

as a retinotopic map, i.e. a cell in area 17 topologically corresponds to the part of

the visual field where its receptive field is found. The left half of the visual field

corresponds to the right half of the cortex. Areas 18 and 19 receive information

both from area 17 and the LGN. Areas 18 and 19 consist of several retinotopic

maps respectively. It is speculated that each retinotopic map extracts specific

information from the input signals.

The physiology of higher level visual processing, such as visual cortex, is

not very well understood. Visual processing can be viewed as a function which

maps outside world to knowledge representation in the brain [Cow93]. If we

regard a function as a black box and explore the properties of input and output

for the function, we can acquire properties of that function. The psychophysical

approach follows this paradigm. Some useful results will be addressed in the

next sections.

3.2 The Interaction of Brightness and Spatial Rela-

tion

It is natural to believe that the brightness a viewer perceives is proportional to

the intensity of a visual field. Unfortunately, it is not true. Many examples prove

that perceived brightness depends on more than intensity alone.

In Figure 3.5, the three small squares have exactly the same level of intensity,

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 32

Figure 3.5: Brightness Is Not A Simple Function of Intensity [Cor70, page 279]

but we perceive that the square with black background is the brightest and the

square with white background is the darkest.

Suppose two areas, separated by an edge, have the intensity distribution

shown in Figure 3.6. Each area has a uniform intensity distribution. However,

examining how perceived brightness varies, we see that it is not evenly dis-

tributed. The black area appears darker closer to the edge between the two areas.

Similarly, the gray area appears brighter closer to the edge between the two areas.

This effect was first described by Ernst Mach in 1865, and the pattern we see is

called the Mach Band [Cor70, pages 276-277] [Rat72].

These two examples stated in previous paragraphs addressed an important

perception concept, simultaneous contrast. The brightness of any object does

not simply depend on the intensity of that object, but is affected by intensities

of other objects close to this object. Heinemann’s experiment [Cor70, page 279]

gives further evidence that brightness is not a simple function of intensity.

The experiment was set up as in Figure 3.7. Heinemann fixed It and Ib, and

then asked a subject to adjust Im to match It. The results for It � ��� with

various Ib’s are illustrated in Figure 3.8. It shows that when Ib increases, starting

from 0, Im also increases and its value is bigger than 100. This does not follow

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 33

Intensity
Distribution

Brightness
Distribution

Position

Area 1

Area 2

Area 1

Area 2

Figure 3.6: The Mach Band Effect

I
Im

t

Fixation
Point

I
b

Figure 3.7: The Heinemann’s Experiment [Cor70, page 279]

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 34

1 10 100 1000

1

10

100

1000

0

I b

I m

Figure 3.8: Results of Heinemann’s Experiment (It � ���) [Cor70, page 280]

the “contrast” effect. However, as Ib reaches a certain value between �� and ���,

Im starts to decrease. It becomes 0 when Ib is 110.

There are few physiological experiments on the human visual system that

examine brightness perception. However, there are interesting experiments on

limulus, a marine animal [Cor70, pages 285-310] [Rat72]. A limulus eye has

many facets, each of which has its own retina. In some sense, a facet of a

limulus is similar to a receptor on the retina of a human being. So, to some

extent, the visual system of a limulus is similar to the visual system of a human

being. Therefore, experiments on limulus might help to explain the brightness

perception of human beings. This experiment measures the frequency of firing

on an optic nerve connected to a facet when the facet is illuminated by a light.

The frequency of firing decreases, when some light also illuminates a facet in

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 35

A B

Excitatory
Synapse

Inhibitory
Synapse

Excitation

Optic
Nerve

Light

Receptors

e
a

F
a

F
b=

eb

e
b ab (F a ab)−

K
ab

(F − ab)

− K

a

Figure 3.9: Inhibition Between Receptors [Cor70, page 295][Rat72]

the neighbourhood. To explain this phenomenon, a simple neural inhibition

model was proposed as in Figure 3.9 [Cor70, page 295-304]. A light excites the

receptor A. When the excitation exceeds a threshold, it is relayed through the

excitatory synapse and the optic nerve fires in frequency Fa. If Fa is above

another threshold �ab, the fires is relayed through a inhibitory synapse to the

optic nerve of a neighbouring receptor B. As a result, the frequency of fires of

B’s optic nerve is reduced.

This experiment helps to explain brightness contrast. When the neighbouring

area of areaA has high intensity, the receptors for that area yield higher frequency

of firing on their optic nerves, reducing the frequency of fires on the optic nerves

of the receptors for area A. Therefore, A looks dimmer.

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 36

0.18 0.60 1.8 6.0 18 60

0.4

0.6

1.0

2.0

4.0

6.0

Frequency (cycles/deg)

R
el

at
iv

e
S

en
si

tiv
ity

Figure 3.10: Modulation Transfer Function of A Human Eye [Cor70, page 341]

3.3 The Sensitivity of Human Vision with Intensity

Variation

Using Fourier analysis, any pattern of light and dark can be represented as

a sum of sinusoidal waves with various frequencies. A modulation transfer

function specifies the sensitivity of a lens with respect to light waves of different

frequencies [Cor70, pages 312-330].

The lens of a human eye also has a modulation transfer function. Figure 3.10

depicts such a function based on an experiment [Cor70, pages 330-342]. From

this curve, we see that human vision is not sensitive to low frequency light waves,

neither is it sensitive to very high frequency light waves. However, it is sensitive

to high frequency light waves. Therefore, human vision is not sensitive to spatial

intensity variation of low or very high frequency, but it is sensitive to spatial

CHAPTER 3. BACKGROUND ON VISUAL PERCEPTION 37

intensity variation of high frequency.

These high frequencies stated in the previous paragraph define edges, and

edges define shapes, the most important properties of objects. It is known that

contrast helps to extract shape information. Thus, we conclude that retaining

contrast at edges is usually important in visual perception.

Chapter 4

A Model of Constraint-Based

Rendering

Chapter 2 reviewed rendering techniques and current research on rendering,

and pointed out that there is little or no research on display contrast limitations,

nor is there much or any research on rendering which uses the human vision

properties. Chapter 3 discussed some properties of human vision system. This

chapter proposes a model for constraint-based rendering, which tries to incor-

porate device contrast limitation into rendering by utilizing the properties of the

human visual system.

4.1 Incorporating Device Limitation and Visual Per-

ception into Rendering

As discussed in Chapter 2, a CRT cannot display absolute black, because the light

reflects from the phosphor within the CRT and ambient light scatters over the

38

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 39

CRT’s display surface. Because of of this restriction, the available contrast on a

CRT is limited. The contrast between two points A and B can be calculated by

the Michelson definition as in Equation 4.1.

CA�B �
LA � LB

LA
 LB
(4.1)

where LA and LB are the luminances at A and B respectively and LA � LB

(when LB 	 LA, just switch LA and LB). If we could display absolute dark on a

CRT, i.e. we would be able to achieve Lmin � �, then we could attain a CA�min

of 1, where LA is any luminance. Unfortunately, Lmin can never be zero, and

Lmax � Lmin
 Lmax
 Lmin. Therefore Cmax�min is always less than 1 on a CRT.

From Chapter 2, we know that the minimum luminance attainable on a CRT

is from �
��� to �

�� of the maximum luminance attainable. From our experience,

when there is ambient light in the room, the minimum luminance attainable on a

CRT is usually higher than �
�� , and is from �� to ��� of the brightest luminance

attainable. Suppose the darkest and brightest luminance attainable on a CRT is

Dmax and Dmin (here D means Device), how can we render a scene whose ratio

of maximum and minimum luminances are much bigger than Dmax�Dmin , such

as depicted in Figure 4.1(a)?

There are two straightforward approaches. One is to replace all luminances

greater than the maximum luminance by the maximum available luminance, and

all the luminances below the minimum available luminance by the minimum

luminance. This method is called clipping and is shown in Figure 4.1(b). It has

a very obvious drawback that all the features whose luminances are out of the

device luminance domain are cut off.

The other approach is to map the highest luminance in the image to the max-

imum attainable luminance on the CRT, and the lowest luminance in the image

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 40

(c) Linear Transformation Approach

(d) New Approach

(b) Clipping Approach

(a) Original Image Luminance

Image Luminance

Max CRT Luminance

Min CRT Luminance

Image Luminance

Max CRT Luminance

Min CRT Luminance

Max CRT Luminance

Min CRT Luminance

Image Luminance

Max CRT Luminance

Min CRT Luminance

Image Luminance

Figure 4.1: Dynamic Ranges of Image and Device

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 41

to the minimum attainable luminance on the CRT, and then linearly interpolate

the other luminances (See Figure 4.1(c)). Suppose the highest and lowest lumi-

nances in the image are Imax and Imin (here I means Image) respectively, and the

maximum and minimum attainable luminances on the CRT are Dmax and Dmin

respectively, then any luminance I in the image and the corresponding device

luminance D have the following relationship:

D � Dmin

Dmax � Dmin

Imax � Imin
�I � Imin�

� aI
 b (4.2)

where a � �Dmax � Dmin���Imax � Imin� and b � Dmin � aImin. If we have

two points with image luminances I� and I� respectively, assuming I� 	 I�,

their contrast is �I� � I����I�
 I��. We would like to know whether the contrast

increases or decreases after the linear transformation, i.e. which is bigger between

�D� �D����D�
D�� and �I� � I����I�
 I��. First, let’s state two propositions.

Proposition 4.1 DminImax � DmaxImin 	 � when Imax�Imin 	 Dmax�Dmin , i.e.

when the dynamic range of the image is higher than the dynamic range of the device.

Proposition 4.2 b 	 � when Imax�Imin 	 Dmax�Dmin where b was defined in

Equation 4.2.

Proof.

b � Dmin �
Dmax �Dmin

Imax � Imin
Imin

�
DminImax � DmaxImin

Imax � Imin

	 � fProposition ���g

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 42

By applying Propositions 4.2, when Imax�Imin 	 Dmax�Dmin , we have:

D� � D�

D�
 D�
�

aI�
 b � aI� � b

aI�
 b
 aI�
 b

�
a�I� � I��

a�I�
 I��
 �b

a�I� � I��

a�I�
 I��
fProposition ���g

�
I� � I�
I�
 I�

(4.3)

We see that the contrast decreases after the linear transformation. We may

replace
 by � in the above inference. That means �D� � D����D�
 D�� �

�I� � I����I�
 I��whenDmax�Dmin� Imax�Imin. Therefore, the contrast between

two points is drastically reduced when the dynamic range of the image is much

higher than that of the CRT. For example, comparing Figures 4.1(a) and 4.1(c),

some features on the curve in Figure 4.1(a) are almost invisible in Figure 4.1(c).

Both of the two approaches discussed above result in the loss of information.

From Chapter 3, we already know that the absolute value of luminance is not

very important, but the contrast among the nearby luminances is important. We

propose a new framework based on this concept. It considers the relationship

among neighbouring objects. It relaxes the contrast where there is not much

information, i.e. the luminance does not vary much, and keeps the contrast

where the density of information is high, i.e. the luminance varies considerably

(See Figure 4.1(d)).

In this new framework, we model the scene as a collection of polygons. At

present, it only works for flat or Gouraud shaded scenes. Each polygon vertex

has its original R, G, and B values as in conventional rendering. These values

can be user specified or the results of preprocessing. We impose a hierarchy of

constraints, with required constraints, strong constraints, medium constraints,

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 43

and weak constraints. The required constraint is that all the luminances are

within the domain of the device contrast. A strong constraint is to maintain the

contrasts across edges at the original value. A medium constraint is to keep the

luminances in one polygon equal, and this constraint does not exist for Gouraud

shaded scenes. A weak constraint is to preserve the luminance for a vertex at

its initial value. In order to satisfy high priority constraints, we may have to

sacrifice low priority constraints.

4.2 Measurement of Luminance and Contrast

This section will discuss the qualitative measurement of luminance and contrast

to be used in the model described in the previous section.

4.2.1 Luminance

Although intensity, luminance, and brightness are closely related, they are in

fact different in colour science. Intensity specifies the amount of electromagnetic

energy in a light [BKT86, page 5-15]. The intensity of a light can be measured as

I �
Z
�
��d� (4.4)

where �� was defined in Chapter 2. The visual system is not equally sensitive

to lights of all wavelengths [BKT86, page 5-15]. A luminous efficiency function

specifies the effectiveness of different wavelengths to vision. V ���� is the scotopic�

relative luminous efficiency function, while V ��� is the photopic luminosity co-

�See [JW75, pages 352-353] for the definitions of scotopic and photopic visions.

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 44

efficient. These two functions are related to a standard scotopic/photopic ob-

server’s perception. Luminance is defined as

L �
Z
�
V ������d� or

L �
Z
�
V �����d� (4.5)

for the scotopic or photopic system respectively. With a CRT, when the intensity

of a pixel increases by a factor a, the number of photons in interval 	�� �
 ���

approximately increases from �� to a��. Therefore, from Equations 4.4 and 4.5,

we can see that L � I . Brightness is the attribute of a visual perception according

to which a visual stimulus appears to be more or less intense, or according to

which the the visual stimulus appears to emit more or less light [BKT86, page

9-3]. The brightness of a light source can be approximated by

B 	 L���� (4.6)

However, from Chapter 3, we know that brightness is not a simple function of

luminance because it is also affected by the neighbouring luminances.

As indicated in Section 4.1, each vertex has a 3-tuple �R� G� B� as input for

our model. We need to calculate the luminance from this 3-tuple. There are

variety of colour models ([FvDFH90, pages 579-600] and [SCB87]). Each has a

3-tuple to represent a colour and has one dimension to represent the luminance

or has a formula to calculate the luminance from the 3-tuple. Table 4.1 lists some

of the frequently used colour models and their luminance calculation. We choose

the HSV (Hue, Saturation, and Value) colour model to measure the luminance

for three reasons. The first is that the model has a single dimension V that varies

with luminance. We only need one variable V instead ofR, G, and B for a vertex

to compute the luminance and contrast, which reduces our problem size by a

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 45

void HSV2RGB(h, s, v, *r, *g, *b) f
if (s == 0) *r = *g = *b = v; �* gray *�
else f
if (h == 360) h = 0; �* h is in [0, 360) *�
h �= 60; �* h is in [0, 6) *�
i = Floor(h);
f = h � i;
p = v * (1 � s);
q = v * (1 � s * f); 10

t = v * (1 � s * (1 � f));
switch (i) f
case 0: (*r, *g, *b) = (v, t, p); break;
case 1: (*r, *g, *b) = (q, v, p); break;
case 2: (*r, *g, *b) = (p, v, t); break;
case 3: (*r, *g, *b) = (p, q, v); break;
case 4: (*r, *g, *b) = (t, p, v); break;
case 5: (*r, *g, *b) = (v, p, q); break;
g �* switch *�
g �* else *� 20

g �* HSV2RGB *�

Figure 4.2: Transformation RGB to HSV [FvDFH90, page 592]

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 46

Name Note Luminance

CIE XYZ Y

RGB Red, Green, and Blue some norm of �R�G�B�

CMY Cyan, Magenta, and Yellow some norm of �C�M� Y �

HSV Hue, Saturation, and Value V

HLS Hue, Lightness, Saturation L

YIQ Y

CIE LAB L

Table 4.1: Colour Models

factor of �. The second reason is that the transformation from RGB to HSV and

vice versa is computationally simple and efficient. The third reason, but not least,

is that the HSV model is prominent in the computer graphics literature [SCB87].

TheHSV colour model was first introduced by Smith [Smi78, SCB87, FvDFH90].

Hue corresponds to a position in the colour spectrum. Red, yellow, and violet etc.

are some sample hue names. Saturation specifies the sharpness of the colour. A

pure spectral colour is saturated, while gray is a desaturated colour. As indicated

earlier, value approximates the luminance of the colour. SupposeR�G�B
 	�� ��,

the value V is the maximum of R, G, and B. Saturation and hue are the polar

coordinates r and � for the projection with respect to the point ��
�
� �
�
� �
�
�, when the

point �R�G�B� is projected to the plane R
 G
 B � �. Figures 4.2 and 4.3

gives the pseudo C code of transformation from RGB to HSV and vice versa

([FvDFH90, pages 592-593] and [SCB87]).

In actuality, the value V described here only approximates the drive lumi-

nance Ld [Mac91, MC92], which controls the digital to analog conversion (DAC).

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 47

void RGB2HSV(r, g, b, *h, *s, *v) f
*v = Max(r, g, b);
min = Min(r, g, b);
delta = *v � min;
if (*v == 0) *s = 0; �* dark gray *�
else *s = delta � *v;
if (*s == 0) *h = UNDEFINED;
else if (r == *v) �* between yellow and magenta *�

h = (g � b) � delta; 10

else if (g == *v) �* between cyan and yellow *�
h = 2 + (b � r) � delta;

else �* between magenta and cyan *�
h = 4 + (r � g) � delta;

h *= 60; �* convert to degree *�
h = (h �= 0) ? h : h + 360; �* non�negative *�
g �* RGB2HSV *�

Figure 4.3: Transformation HSV to RGB[FvDFH90, page 593][SCB87]

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 48

The luminance we are concerned is the emitted luminance Le [Mac91, MC92], and

Le � V � , where � is the parameter of Gamma correction as discussed in Chapter

1. Because our primary interest is the contrast, we will see in next subsection that

using V to approximate the luminance without considering � suffices.

4.2.2 Contrast

There are quite a few definitions of contrast for two points A andB. For example,

one definition of contrast is LB�LA assuming LA � LB (if LA 	 LB , just switch

LA and LB). In fact, all the contrast definitions are functions of LB�LA. For

instance, in the Michelson definition of contrast, if we divide both the numerator

and denominator by LA, we have:

LB � LA

LB
 LA

�
�LB�LA� � �

�LB�LA�
 �
� f�

LB

LA

� (4.7)

Therefore, we use LB�LA as the definition of contrast. From now on, when we

state contrast without explicitly mentioning the other definitions, we refer to this

definition. In Subsection 4.2.1, we use V to approximate the drive luminance,

and also have Le � V � . Thus, following equation holds:

LB

LA
�

�
VB
VA

��
(4.8)

From Equation 4.8, we can see that if we preserve the ratio of VB�VA, the contrast

LB�LA is also maintained. Therefore, we use VB�VA to measure the contrast.

Furthermore, we restrict contrast within the interval 	�� ��, i.e. we always let

the smaller value be the denominator and the larger value be the numerator.

4.3 The Rendering Pipeline

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 49

RGB to HSV

First Linear Transformation

Constraint Solving

HSV to RGB

2D Rendering

Third Linear Transformation

Second Linear Transformation

Projection and Clipping

Strong Constraint Generation

Space 0

Space 1

Space 2

Space 3

Space 4

Space 5

Space 6

Figure 4.4: The Rendering Pipeline

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 50

It is the time to describe our rendering pipeline now that the relative concepts

and measurement have been introduced. The rendering pipeline consists of

following stages: projection and clipping, strong constraint generation, first

linear transformation, RGB to HSV , second linear transformation, constraint

solving, HSV to RGB, third linear transformation, and �D rendering. Figure 4.4

illustrates this pipeline. For the convenience of further reference, we call the

colour space before the first linear transformation as Space 0, the colour space

after the first linear transformation but before the RGB to HSV transformation

as Space 1, and so on as shown in the figure. We will discuss each step briefly in

this section. Implementation details will be explained in the next chapter.

Projection and clipping project the �D scene onto a �D plane and clip the scene

against a viewing volume in the homogeneous coordinate system�. �D rendering

fills the �D polygons with the colours interpolated from the polygons’ vertex

colours. The �D polygons are reconstructed through visible surface processing

after the scene is projected onto �D.

Constraint solving not only solves the constraints, but also first adds the

required, the medium, and the weak constraints to form the constraint hierarchy,

together with the strong constraints created in strong constraint generation.

As we will discuss further in the next section and chapter, strong constraint

generation generates the strong constraints from the relationship of all the edges

in �D. The contrast to be maintained by a strong constraint is computed using

the colour in Space 0 (the luminance is the maximum of the RGB 3-tuple). The

strong constraints are generated through a modified hidden surface removing

algorithm. Hence, a by product of generating the strong constraints is hidden

�Homogeneous coordinate system will be explained in Chapter 5.

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 51

surface removal.

The first linear transformation maps the input RGB into 	�� ��� 	�� ��� 	�� ��.

Suppose the maximum and minimum of all the inputR, G, andB’s areMaxRGB

and MinRGB. The new R, G, and B are:

New R �
R � MinRGB

MaxRGB � MinRGB
(4.9)

New G �
G � MinRGB

MaxRGB � MinRGB
(4.10)

New B �
B � MinRGB

MaxRGB � MinRGB
(4.11)

The second linear transformation transforms the luminance V of theHSV colour

into the device-attainable dynamic ranges. If the minimal luminance attainable

is ����LowerBound� of the maximal luminance available on a CRT, the new V

is computed by:

New V � LowerBound
 �� � LowerBound�V (4.12)

The third linear transformation is used to translate theRGB in 	�� ���	�� ���	�� ��

to 	�� MaxDeviceRGB� � 	�� MaxDeviceRGB� � 	�� MaxDeviceRGB�, where

MaxDeviceRGB is the maximum of the values stored in the frame buffer to

drive the digital to analog converter. For a CRT with 24 bitplanes, there are 8

bitplanes for Red, Green, and Blue respectively, and its MaxDeviceRGB is 255.

The device R, G, and B are:

Device R � Round� MaxDeviceRGB �R � (4.13)

Device G � Round� MaxDeviceRGB �G � (4.14)

Device B � Round�MaxDeviceRGB �B � (4.15)

It should be noted that the first and second linear transformations affect the

contrast between two points. This is the reason why the strong constraints are

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 52

necessary. On the other hand, the third linear transformation does not affect the

contrast between two points as we can see in Equation 4.16.

MaxDeviceRGB � VB
MaxDeviceRGB � VA

�
VB
VA

(4.16)

4.4 Formalization of Constraints

As discussed earlier, a constraint hierarchy has four levels of constraints: the

required constraints, the strong constraints, the medium constraints, and the

weak constraints.

The required constraint is that the luminance must be within the device con-

trast limitation. For each vertex i in every polygon, this required constraint can

be formalized as:

LowerBound � Vi � ��� (4.17)

where LowerBound is the minimum luminance available when the maximum

luminance attainable is ���, and Vi is in Space 3.

The strong constraints maintain the contrast across edges at the contrast in

Space 0. Edges only occur at polygon boundaries. Contrast along the edges helps

a viewer distinguish different polygons, and thus enhances the presentation of

information. We know that the luminance for a point A on a line segment P�P�

is VA � �� � ��V�
 �V� using flat and Gouraud shading models, where V�

and V� are the luminances for P� and P� respectively, and � � jP�Aj�jP�P�j (See

Figure 4.5(a)). As shown in Figure 4.5(b), the contrast for two points A and B

across an edge formed by P�P� and P�P� is:

VA
VB

�
��� ��V�
 �V�
��� ��V�
 �V�

� CA�B�
(4.18)

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 53

AP1 P2

(a)

P1

P
2

P
3

P4(c)

P1

P
2

P
3

P4

B

(d)

P
2

P
3

A

B

(b)

P1 P
2

P
2

P
3

P4

A

B

(e)

P1

P4

Figure 4.5: Strong Constraints

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 54

where � � jP�Bj�jP�P�j and CA�B�
is the original contrast between A and B in

Space 0. In Figure 4.5, for illustration purposes P�P� and P�P� do not overlap,

but in actuality they are co-linear and overlap. Equation 4.18 should be true for

any �
 	�� ��. If we set � to zero, we get:

V�
��� ��V�
 �V�

� C��B�
(4.19)

where C��B�
is the contrast between P� and B in Space 0. Equation 4.19 can be

split into equivalent two cases. The first case is that the projection ofP� onto P�P�

is at P� or P�. Without loss of generality, we assume the projection is at P�. The

� value is then equal to �, and Equation 4.19 becomes (Figure 4.5(c)):

V�
V�

� C���� (4.20)

This is equivalent to:

V� � C����V� � � (4.21)

The other case is that the projection of P� onto P�P� is between P� and P�, i.e. �

in Equation 4.19 is not � or � as in Figure 4.5(d). This can be transformed into the

linear equation:

V� � C��B�
��� ��V� � C��B�

�V� � � (4.22)

If VA�

 VB�

in Equation 4.18 where VA�
� Max�RA� GA� BA� in Space 0 and

similarly for VB�
, the Equation 4.18 should be revised to:

VB
VA

�
��� ��V�
 �V�
��� ��V�
 �V�

� CB�A�
(4.23)

and as a consequence, Equation 4.22 becomes:

�CB���V�
 �� � ��V�
 �V� � � (4.24)

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 55

We did not revise Equations 4.20 or 4.21 because it will not lead to a different

format of equation. In fact, the first case is a special case of the second one, but

it has the merit of only involving two variables.

We have shown that to maintain the contrast across an edge, either Equa-

tion 4.21, Equation 4.22, or Equation 4.24 must be satisfied. Now we will show

that if the aforementioned equations are satisfied, the contrasts for mid-points

are roughly maintained to their values in Space 0. When the shading model is flat

shading, we have (at least we try to have by enforcing the medium constraints)

V� � V� and V� � V�, and it is easy to show that VA�VB � VA�
�VB�

. When the

shading model is Gouraud shading, if the average luminance ofA’s polygon is Ua

and the average luminance ofB’s polygon is Ub, we can write VA asUa
 �VA, VB

as Ub
 �VB , and so on. In a polygon with average luminance U , we may assume

j�Vij�U � � for each vertex in that polygon, otherwise, we can subdivide the

polygon until the assumption holds. Suppose Ub
 Ua, we have:

V�
V�

�
Ua
 �V�
Ub
 �V�

	
Ua

Ub

(4.25)

V�
V�

�
Ua
 �V�
Ub
 �V�

	
Ua

Ub

(4.26)

Hence,

V�
V�

	
V�
V�

(4.27)

It is equivalent to�:

�� � s�V�
�� � s�V�

	
sV�
sV�

(4.28)

It is again equivalent to:

��� s�V�
sV�

	
�� � s�V�

sV�
(4.29)

�In the following inference, s �� � and s �� �. When s � �, it is the simple case that VA � V�

and VB � V�, and when s � �, VA � V� and VB � V�.

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 56

Then, we have:

�� � s�V�
 sV�
sV�

	
�� � s�V�
 sV�

sV�
(4.30)

That is:

��� s�V�
 sV�
��� s�V�
 sV�

	
sV�
sV�

�
V�
V�

(4.31)

Follow the same reasoning, we can derive:

��� s�V��
 sV��
��� s�V��
 sV��

	
V��
V��

(4.32)

Therefore, in our problem domain, VA�VB is a reasonable approximation to

VA�
�VB�

when V��V� � V���V�� and V��V� � V���V�� .

For flat shading model, a medium constraint tries to keep all vertices in one

polygon the same luminance. For any pair of vertices in each polygon:

Vi � Vj � �� i �� j (4.33)

Unfortunately, this yields n� medium constraints for a polygon with n vertices.

Instead we only impose the constraint that each vertex has the same luminance

as its neighbouring vertices. For each vertex in every polygon:

Vi � V�i��	 � �� (4.34)

where i
 � � � when i � n � �. This not only reduces the number of medium

constraints from n� to n, but also has justification in visual perception. The visual

system is sensitive to local variations, but not sensitive to slow variation across

large area.

The weak constraints preserve the luminance for vertices close to their initial

values in Space 3. Every vertex in each polygon has a weak constraint:

Vi � Vi� (4.35)

CHAPTER 4. A MODEL OF CONSTRAINT-BASED RENDERING 57

where Vi� is the initial luminance for vertex i in Space 3.

It is desired to get a solution V, where V � 	V�� V�� ���� Vnum� and num is the

total number of vertices in the scene, within the interval defined by Equation 4.17

to satisfy all the linear equations derived from Equations 4.21, 4.22, 4.24, 4.34,

and 4.35. Unfortunately, most of the time, this system of linear equations does

not have a solution. Then a vector V, which results in the minimum Euclidian

norm of the residuals for all the equations, is the optimal choice. To achieve the

minimum Euclidian norm is equivalent to achieve the minimum summation of

squares of the residuals for all the equations. However, we wish to satisfy the

equations derived from strong constraints more than other equations. This can

be accommodated by first multiplying the equations of strong constraints by a

large weight, the equations of medium constraints by a medium weight, and

the the equations of weak constraints by a small weight, then finding the vector

V resulting in minimum summation of squares of the residuals. In fact, this is

called a bounded linear least squares (BLLS) problem and is well studied in scien-

tific computation [GMSW84, GHMS86, Sto71]. Moreover, there is a commercial

software package available to solve a BLLS problem [NAG91].

Chapter 5

Implementation

A prototype system of constraint-based rendering as addressed in Chapter 4 has

been implemented on DECstation 5000/200 running ULTRIX and X Window

System [Nye88, Nye90]. The prototype system is written in ANSI C [KR88] with

the exception of the interface to the NAG package [NAG91], which is written in

Fortran 77.

This chapter describes the implementation of this prototype system. It con-

sists of seven functional blocks. They are (1) preprocessing, (2) input, (3) pro-

jection, (4) clipping, (5) constraint generation, (6) constraint solving, and (7) 2D

rendering. The system architecture is shown in Figure 5.1. Note that the system

architecture does not exactly follow the rendering pipeline stated in Chapter 4 be-

cause we compact some steps of the pipeline into one block for the convenience

of implementation. Nevertheless, each of the steps in the pipeline addressed

there are performed in the same order.

58

CHAPTER 5. IMPLEMENTATION 59

Preprocessor

Constraint Solver

2D Renderer

3D Input

Projector

Clipper

Constraint Generator

Figure 5.1: System Architecture of Constraint-Based Renderer

CHAPTER 5. IMPLEMENTATION 60

5.1 Preprocessing

The preprocessor reads in a scene description, and creates the input for the

constraint-based renderer (CBR). The scene description consists of global ambient

and diffuse lighting information, viewing parameters, and a list of objects. Each

object has a list of polygons and the local lighting information for this object.

Viewing information is passed transparently while the polygonal objects are

processed as follows: the R, G, and B values for all the vertices in each object

are computed according to the shading model specified by a command line

argument. The shading model is either flat shading or Gouraud shading. The

preprocessor outputs a list of polygons. Each polygon is specified as a list of

vertices. Every vertex has six real numbers as its attributes. The first three real

numbers represent the X , Y , and Z coordinates for a vertex, while the last three

specify the R, G, and B values for that vertex.

5.2 Input, Projection, and Clipping

Input, projection, and clipping are performed in the traditional approach. Back-

ground materials on projection and clipping can be found in [FvDFH90, pages

229-281] and [BN78].

5.2.1 Input

This part is very similar to the parser in the preprocessor. It reads in the input and

stores information in internal data structures. The input consists of the viewing

parameters such as the eye location, the viewing vector, the up vector etc. and

CHAPTER 5. IMPLEMENTATION 61

a list of polygons. Each polygon is represented by a list of vertices, and every

vertex is specified by six real numbers as indicated in the output format of the

preprocessor.

5.2.2 Projection

Before projection, back-face culling ([FvDFH90, pages 663-664]) is performed. A

polygon is regarded as a back-face if its normal points away from the eye point.

Mathematically, a polygon is back-facing if the dot product between its normal

and the sight vector is positive. The normal for a polygon is computed by the

following formulae:

Normal �
�

�

n��X
i
�

�Vi � Vi��� (5.1)

where i
 � is in fact �i
 �� mod n, n is the number of vertices in the polygon,

and Vi’s are the vertices. Since we are only interested in the orientation of the

normal, the constant �
�

is not necessary.

The input viewing parameters are: eye point �ex� ey� ez�, sight vector �sx� sy� sz�,

up vector �ux� uy� uz�, the distance from near plane to the eye point n, the distance

from far plane to the eye point f , the horizontal viewing angle � which decides

the world window size from n, and the ratio r between X and Y in the world

window.

A homogeneous coordinate system uses a � component vector to represent a

point [FvDFH90, page 204, pages 213-214]. �x� y� z� w� is equivalent to �x
w
� y
w
� z
w
� in

a Euclidian coordinate system. Using homogeneous coordinates, a geometrical

transformation can be conveniently expressed as a �� � matrix.

�x� y� z� w� � �x�� y�� z�� w��T (5.2)

CHAPTER 5. IMPLEMENTATION 62

where T is a transformation matrix, �x�� y�� z�� w�� is the coordinate before

the transformation, and �x� y� z� w� is the coordinate after the transformation.

Appendix A lists a few matrices for a variety of modelling transformations and

viewing transformations used in this implementation.

There are two basic classes of projections, perspective projection and parallel

projection [FvDFH90, pages 229-271]. We use perspective projection in the im-

plementation. When the eye point is at ��� �� ��, the sight vector is in the �Z

direction, and the up vector is at the Y direction, the projection is in the canonical

form. Equation 5.3 is the projection matrix in the canonical form. Its derivation

is given in Appendix A.

P �

�
���������

cot��
�
	

n
� � �

�
r cot��

�
	

n
� �

� � f
n�n � f	

� �
n

� � f
n � f

�

�
���������

(5.3)

The eye point, the projection plane, and sight vector etc. are at arbitrary

locations or in arbitrary orientation in �D. We first transform this into a canonical

form by translating the eye point to ��� �� ��, rotating the sight vector into the

�Z direction, and rotating the up vector into the Y direction. This will yield

a viewing transformation matrix V iew as defined in Appendix A. After these

viewing transformation steps, the vertices will be projected onto the near plane.

The projection procedure multiplies every vertex by the projection matrix to

produce the projected vertices as in Equation 5.4.

�x��� y��� z��� w��� � �x� y� z� �� �V iew P � (5.4)

CHAPTER 5. IMPLEMENTATION 63

Clipping Bound W.E.C.

Left w
 x

Right w � x

Bottom w
 y

Up w � y

Near z

Far w � z

Table 5.1: Window Edge Coordinates

5.2.3 Clipping

Clipping is the procedure of eliminating the object parts which lie out of the

viewing volume. After the polygons pass through the projection stage, the

polygons are represented by homogeneous coordinates [FvDFH90, page 204,

pages 213-214]. The clipping can be done in homogeneous coordinate space

effectively ([BN78] and [FvDFH90, pages 275-278]).

The viewing volume is defined as 	��� �� � 	��� �� � 	�� �� in the projected

space, i.e. a vertex �x� y� z� w� is in the viewing volume if and only if it satisfies:

�� �
x

w
� �

�� �
y

w
� �

� �
z

w
� � (5.5)

From Equation 5.3, it is easy to show that w 	 �, so the above equations are

equivalent to:

w
 x �

CHAPTER 5. IMPLEMENTATION 64

w � x �

w
 y �

w � y �

z �

w � z � (5.6)

Therefore, to see whether a vertex is to the right of the viewing volume’s left

bound, we only need to see if w
 x �. w
 x is called the window edge

coordinate (WEC) for the left bound. The window edge coordinates for other

bounds are listed in Table 5.1. A vertex is in the viewing volume if and only if its

window edge coordinates for all the clipping bounds are non-negative.

Now let us describe a polygon clipping algorithm. It is a �D extension to

the Sutherland-Hodgman polygon clipping algorithm discussed in [FvDFH90,

pages 124-127]. Each of the six clipping bounds clips a polygon consecutively.

The previous clipper’s output is the next clipper’s input. A clipper transforms an

input vertex sequence into an output vertex sequence. At a vertex U in the input

sequence, a clipper first computes the window edge coordinates for vertex U and

vertex V which follows� U in the input sequence. If both WEC’s are less than zero,

the edge UV is out of the viewing volume, and the clipper outputs nothing. On

the other hand, if both WEC’s are non-negative, the entire edge is in the viewing

volume. Hence the clipper outputs vertex V . If U ’s WEC is less than 0, but V ’s

WEC is non-negative, the clipper outputs two vertices, the intersection between

the clipping bound and edge UV and the vertex V . If U ’s WEC is non-negative,

but V ’s WEC is less than zero, the clipper outputs the intersection between the

�The last vertex of the input sequence is followed by the first vertex of the input sequence.

CHAPTER 5. IMPLEMENTATION 65

A

B

C

D

E

O

P

Q

Figure 5.2: Polygons Overlap After Projection

clipping bound and edge UV . The intersection is calculated by Equation 5.7.

� �
WECu

WECu �WECv

xi � xu
 ��xv � xu�

yi � yu
 ��yv � yu�

zi � zu
 ��zv � zu�

wi � wu
 ��wv � wu� (5.7)

whereU � �xu� yu� zu� wu�, V � �xv� yv� zv� wv�, the intersection is �xi� yi� zi� wi�,

andWECu andWECv are the window edge coordinates forU and V respectively.

After the clipping is finished, the homogeneous coordinates are no longer

needed. We translate the homogeneous coordinates back to the Euclidian coor-

dinates. That is �x��� y��� z��� w��� is replaced by � x
��

w��
� y��

w��
� z��

w��
�.

CHAPTER 5. IMPLEMENTATION 66

A

B

C

D

E

O

P

Q

F

G

H I

Figure 5.3: Visible Polygons

5.3 Constraint Generation

The purpose of constraint generation is to create the strong constraints according

to the geometrical relationships among the polygon edges as discussed in Chapter

4. After the polygons are projected onto a �D plane, they may overlap. What

we are interested in are the visible polygon edges instead of the original polygon

edges, which may be hidden. The polygons should be reconstructed so that only

the visible parts of the polygons are included in the new collection of polygons.

For example, two polygons ABCDE and OPQ in Figure 5.2 are projected onto

a plane, and they overlap. What concerns us is their visible polygon edges

in polygons ABCDE, PHG and OFDCIQ as in Figure 5.3. It is desirable to

maintain the contrast across the edges DF , CD, IC , and GH .

CHAPTER 5. IMPLEMENTATION 67

5.3.1 A Modified Visible Surface Algorithm

Many visible surface algorithms have been published in the last two decades.

However, we need an algorithm that outputs explicit polygonal representation.

An algorithm proposed by Sechrest and Greenberg [SG82] and an algorithm by

Nurmi have such a property [Nur85]. Both Sechrest and Greenberg’s algorithm

and Nurmi’s algorithm are based on a sweeping paradigm. The sweeping ap-

proach has been mostly used for intersection problems, triangulation, and order

problems [Meh84, page 147]. The sweeping paradigm was introduced by Shamos

and Hoey to solve geometric intersection problems in 1976 [SH76]. Hamlin and

Gear [HG77] used the sweeping method to solve the visible surface problem in

1977.

In Sechrest and Greenberg’s algorithm, edges and vertices shared by more

than one polygon are explicitly represented as shared, but the Nurmi’s algorithm

assumes that each edge only belongs to one polygon. We keep separate copies for

the shared vertices and edges in the relative polygons because in our problem,

though those shared vertices have the same �D geometrical coordinates, they

may have different colours. Sechrest and Greenberg’s algorithm does not con-

sider the cases of coincident edges� or coincident sweeping points�, and Nurmi’s

algorithm does not consider the coincident edges either. Of course neither of

them produce the constraints we desire. We use a modified algorithm based on

these two algorithms to generate the strong constraints. This algorithm sweeps

the polygons from top to bottom. It uses an Active Edge List (AEL) to record the

status of the sweep at the current position of the sweeping line. The status of

�Two edges are coincident, if they have the same slope and have at least one point in common.
�the term sweeping point will be defined later.

CHAPTER 5. IMPLEMENTATION 68

the sweep is all information about the polygon visibility, polygon edge location

(the sequence of active edges in AEL), and so on, above the sweep line which is

relevant to solving the polygon visibility, polygon edge location below the sweep

line. The sweeping procedure updates the AEL at sweeping points (to be defined

later), outputs �D vertices and visible segments to relevant polygons, and creates

two and three variable constraints as defined in Equations 4.21, 4.22, and 4.24

during the process of sweeping. Then a polygon reconstruction function is called

to reconstruct polygons from the visible segments.

We assume that the input polygons are all convex, though it is possible to

produce concave polygons after the visible surface determination, and that no

polygons penetrate each other.

Data Structures

We describe some data structures used to store the necessary information. They

are defined precisely in Appendix C. In this subsection we only address a few

interesting features of the data structures. The description is not necessarily

sufficient for the implementation.

There are two types of vertices. One type is �D. It refers to the vertices before

the visible surface determination. The other type is �D, which refers to the

vertices output by the visible surface determination algorithm. The information

stored in a �D vertex is: the Euclidian coordinate �x� y� z�, the homogeneous

coordinate �hx� hy� hz� hw�, and the initial colour in Space 0 �r�� g�� b��. The

information a �D vertex stores are:

� the coordinate in �D �x� y�,

CHAPTER 5. IMPLEMENTATION 69

Left
Left

Start

End

End

Start

Edge

Right Visible Segment

Left Visible Segment

Figure 5.4: Directions of Visible Segments

� the identifying number for this vertex to be used in solving the BLLS,

� the colour in Space 0 �r�� g�� b��,

� the colour after the first linear transformation �r�� g�� b��, and

� all the HSV or RGB colours in other spaces during various stages of the

rendering pipeline.

Two overlapping visible polygons are always separated by an edge. For an

edge that is visible, a visible segment is added to the left shallowest� polygon,

and another visible segment is added to the right shallowest polygon. A visible

segment is a candidate for a polygon edge during the polygon reconstruction

process (which will be addressed later). An edge has the following attributes:

� the pointer to its polygon,

�“Shallowest" means that a polygon is closest to the view point.

CHAPTER 5. IMPLEMENTATION 70

A

B

C

D

E

F

aa

b

c

d

Figure 5.5: A Hole in A Polygon

� the pointers to the shallowest polygons to the left and right of the edge,

� its start and end �D vertices,

� the pointers to the left and right visible segments,

� a pointer to a �D vertex where this edge becomes visible, and

� a list of three variable constraints related to this edge to be completed.

A visible segment structure contains:

� the pointers to start and end �D vertices,

� a pointer to the polygon this visible segment belongs to, and

� a thread flag denoting if this visible edge is a thread�.

�A thread is a pseudo visible segment directed from a vertex to another. The contour the start

vertex belongs to might be a hole of the contour the end vertex belongs to. See Appendix B for

more detail.

CHAPTER 5. IMPLEMENTATION 71

An outer contour of a polygon has a counter-clockwise orientation, while a hole�

has a clockwise orientation. Therefore, when we walk through a visible segment

from its start vertex to its end vertex, the polygon to which this visible segment

belongs is always to the left of the visible segment. That means the left visible

segment of an edge starts at the lower �D vertex, and ends at the upper �D vertex;

the right visible segment of an edge starts at the upper �D vertex, and ends at

the lower �D vertex (See Figure 5.4).

A polygon structure has:

� a list of �D vertices that form the contour of this polygon,

� a list of �D vertices output for this polygon by the algorithm,

� a list of visible segments output for this polygon,

� the polygon equation, and

� a list of slave polygons that will be produced from this polygon during the

polygon reconstruction.

The algorithm also maintains a few global data structures: a priority queue,

an active edge list, and a list of strong constraints. A priority queue (PQ) consists

of sweeping points (SP) sorted by Y and X . A sweep point is either a �D vertex

of the polygons or an intersection of the polygon edges in �D. An active edge

list (AEL) holds the polygon edges intersecting the current sweeping line sorted

byX . A sweeping line is a horizontal line passing through a sweeping point. An

�A hole is an interior contour of a polygon. For example, as shown in Figure 5.5, polygon

ABCDEF � abcd has outer contour ABCDEF , and interior contour abcd. abcd is a hole of this

polygon.

CHAPTER 5. IMPLEMENTATION 72

Top Vertex

Bottom Vertex

Side VertexSide Vertex

Intersection

Figure 5.6: Sweeping Points

CHAPTER 5. IMPLEMENTATION 73

element in the active edge list has two components: a pointer to an edge and a

pointer to a node list (NL). A node list is a list of pointers to polygons which lie

in the span between this edge and the next non-coincident edge in the AEL. An

NL is sorted by the polygons’ depths at the sweeping point, and is used during

the sweeping to find the shallowest polygon efficiently.

Sweeping

A sweeping point is either a �D polygon vertex or an intersection point of polygon

edges. A �D vertex can be either a top vertex, bottom vertex, or side vertex (See

Figure 5.6). Because two edges intersect only if they are next to each other in the

AEL, an intersection point can be detected by checking if an edge e intersects its

predecessor and/or successor when e is inserted into the AEL, and by checking

if an edge e’s predecessor intersects e’s successor when e is removed from the

AEL. The sweeping procedure halts at the sweeping points: all the polygon

vertices and all the intersection points of the polygon edges. At these sweeping

points, the sweeping procedure outputs �D vertices and visible segments to

relevant polygons so that the polygon reconstruction routine can reconstruct the

polygons from these visible segments and �D vertices. It also outputs strong

constraints to the global list of strong constraints, which are to be solved by the

constraint solver.

The implementation of the complete sweeping algorithm is rather compli-

cated. In this section, we only give a rough description of this algorithm and

provide a simple example, so that a reader may have some intuitive understand-

ing of its operation. The detailed description of this algorithm is in Appendix B

and the pseudo-code is in Appendix C.

CHAPTER 5. IMPLEMENTATION 74

Polygon OPQ Polygon ABCDE

S.P. �D Vertices Visible Segments �D vertices Visible Segments

O o 1,2

E o 1,2 e 3,4

F o� f 1,2,5 e 3,4

A o� f 1,2,5 e� a 3,4,6

D o� f� d� 1,2,5,8 e� a� d 3,4,6,7

G o� f� d�� g 1,2,5,8,9,10 e� a� d 3,4,6,7

C o� f� d�� g� c� 1,2,5,8,9,10,12 e� a� d� c 3,4,6,7,11

P o� f� d�� g� c�� p 1,2,5,8,9,10,12,13 e� a� d� c 3,4,6,7,11

H o� f� d�� g� c�� p� h 1,2,5,8,9,10,12,13 e� a� d� c 3,4,6,7,11

I o� f� d�� g� c�� p� h� i 1,2,5,8,9,10,12,13,14 e� a� d� c 3,4,6,7,11

B o� f� d�� g� c�� p� h� i 1,2,5,8,9,10,12,13,14 e� a� d� c� b 3,4,6,7,11

Q o� f� d�� g� c�� p� h� i� q 1,2,5,8,9,10,12,13,14 e� a� d� c� b 3,4,6,7,11

Table 5.2: A Progressive List of �D Vertices And Visible Segments

CHAPTER 5. IMPLEMENTATION 75

S.P. Strong Constraints

O

E

F {f� e� �}

A {f� e� �}

D {f� e� d}{d� d�}

G {f� e� d}{d� d�}{g� a� �}

C {f� e� d}{d� d�}{g� a� �}{c� c�}

P {f� e� d}{d� d�}{g� a� �}{c� c�}

H {f� e� d}{d� d�}{g� a� �}{c� c�}{h� a� �}

I {f� e� d}{d� d�}{g� a� �}{c� c�}{h� a� �}{i� c� �}

B {f� e� d}{d� d�}{g� a� b}{c� c�}{h� a� b}{i� c� b}

Q {f� e� d}{d� d�}{g� a� b}{c� c�}{h� a� b}{i� c� b}

Table 5.3: A Progressive List of Strong Constraints. In the table {x� y}means there is

a two variable constraint between x and y; {x� y� z}means x, y, and z have a three variable

constraint; � means this vertex is not known yet.

CHAPTER 5. IMPLEMENTATION 76

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

Figure 5.7: At Sweeping Point O

The theme of this sweeping algorithm is that when we handle an edge, we

look to the left/right of the edge, then perform some actions based on the cir-

cumstances. At a SP, first, we deal with the edges above this sweeping point.

Then, we handle the edges below it.

To an edge above the SP, if the SP is an intersection, we do not do anything

because this edge will continue after the SP. If the SP is not an intersection, and if

the edge has a left visible segment, we emit a �D vertex to the polygon the visible

segment belongs to, and close this visible segment by giving the last output vertex

as its start/end vertex. If the edge has a right visible segment, similar operations

are conducted. Two or three variable constraints are created in accordance with

the geometrical relationship among the �D vertices’ corresponding visible seg-

ments. For an edge below this SP, if the edge is visible and does not have visible

CHAPTER 5. IMPLEMENTATION 77

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

e

3 4

Figure 5.8: At Sweeping Point E

segment(s) yet, we output �D vertices and visible segments to the shallowest

polygons left and right of this edge. Strong constraints are also generated based

on the geometrical relationships.

We will go through the sweeping process for the scene composed of polygons

ABCDE and OPQ as in Figure 5.3. The operations on relevant data structures

are to be addressed. A progressive list of the �D vertices and visible segments

emitted during the sweeping procedure is in Table 5.2, while a progressive list of

the strong constraints created during the sweeping is in Table 5.3.

From top to bottom, the first SP is O (Figure 5.7). Since there are no edges

above O, we handle the edges below O immediately. At O, edge OP is visible,

hence we output a �D vertex o to OP ’s polygon (polygon OPQ). There is no

polygon to the left of OP , so OP does not have a left visible segment. OP has

CHAPTER 5. IMPLEMENTATION 78

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

e

3 4 f
5

Figure 5.9: At Sweeping Point F

right visible segment �, whose start vertex is o, and segment � is output to the

shallowest polygon right of OP (polygon OPQ). Edge QO is also visible at O,

so we want to output a �D vertex to QO’s polygon, but we find o already exists

at O, thus we take it instead of outputting a �D vertex again. QO’s left visible

segment �, with o as its end vertex, is output to polygon OPQ. The sweeping

point E is also a top vertex, and the edges EA and DE are dealt with in a similar

fashion (See Figure 5.8).

The sweeping point F is an intersection point (Figure 5.9). The edges above

this SP are DE and OP . We do not output anything because the edges will

continue after F , but we must remember that DE is visible above F and the

shallowest polygon left of DE is polygon ABCDE, and so on. We now deal

with the edges below F . OP becomes invisible, so we output a �D vertex to

CHAPTER 5. IMPLEMENTATION 79

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

e

3 4 f
5

a

6

Figure 5.10: At Sweeping Point A

CHAPTER 5. IMPLEMENTATION 80

the shallowest polygon right of OP before F , i.e. we output f to polygon OPQ.

Visible segment �’s end vertex is assigned to be f and segment 1 is closed. Edge

DE is still visible, and the shallowest polygon left ofDE is the same one as before

the SP, thus we do not do anything to DE’s left visible segment. The shallowest

polygon right of DE (polygonOPQ) is not the same one as before F , so we want

to output a �D vertex to OPQ, but we find f exists at F . Therefore we just take f

and set it to be the start vertex of the visible segment � which is output to polygon

OPQ. As we discussed in Chapter 4, we want to retain the contrast across visible

segments 5 and 4, hence we produce a three variable constraint among f , e, and

the start vertex of segment 4, which has not been reached yet. The sweeping

points G, H , and I are also intersection points. The edges corresponding to these

SPs are treated in a similar way to the edges DE and OP . Figures 5.12, 5.15, and

5.16 depict their treatment respectively.

In Figure 5.10, the sweeping point A is a side vertex. We output a �D vertex

a to polygon ABCDE, and close visible segment 3 with a as its end vertex. A

right visible segment 6 for edge AB is output to polygon ABCDE, and a is its

start vertex. At the sweeping point D (See Figure 5.11), to edge above D, DE

has both left and right visible segments, so we output �D vertices d and d� to the

left and right polygons respectively, and close these visible segments by setting

d as segment 4’s start vertex and d� as segment 5’s end vertex. A two variable

constraint {d� d�} is generated in order to maintain the contrast across visible

segments 4 and 5. Then we handle the edges below D, visible segments 7 and

8 are created as edge CD’s left and right visible segments. Segment 7’s end

vertex is d, while 8’s start vertex is d�. The sweeping points C and P are also side

vertices, they are dealt with in the same style, as shown in Figures 5.13 and 5.14.

Sweeping point B is a bottom vertex (Figure 5.17). It does not have edges

CHAPTER 5. IMPLEMENTATION 81

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

8

Figure 5.11: At Sweeping Point D

CHAPTER 5. IMPLEMENTATION 82

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

Figure 5.12: At Sweeping Point G

CHAPTER 5. IMPLEMENTATION 83

A

B

C

D

E

O

P

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

11

12

c
c’

Figure 5.13: At Sweeping Point C

CHAPTER 5. IMPLEMENTATION 84

A

B

C

D

E

O

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

11

12

c
c’

pP 13

Figure 5.14: At Sweeping Point P

CHAPTER 5. IMPLEMENTATION 85

A

B

C

D

E

O

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

11

12

c
c’

pP 13
h

Figure 5.15: At Sweeping Point H

CHAPTER 5. IMPLEMENTATION 86

A

B

C

D

E

O

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

11

12

c
c’

pP 13
h

i

14

Figure 5.16: At Sweeping Point I

CHAPTER 5. IMPLEMENTATION 87

A

B

C

D

E

O

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

11

12

c
c’

pP 13
h

i

14

b

Figure 5.17: At Sweeping Point B

CHAPTER 5. IMPLEMENTATION 88

A

B

C

D

E

O

Q

F

G

H I

1

2

o

e

3 4 f
5

7

a d’

6

d

g

8

9
10

11

12

c
c’

pP 13
h

i

14

b

q

Figure 5.18: At Sweeping Point Q

CHAPTER 5. IMPLEMENTATION 89

below it. The above edgeAB does not have left visible segment, but it has a right

visible segment, so we output a �D vertex b to the shallowest polygon right of

AB (polygon ABCDE), and AB’s right visible segment 6’s end vertex is set to b.

Later, we deal with the edge BC , and b is set to be the start vertex of edge BC’s

left visible segment (segment 11). The edges relevant to the sweeping point Q

are handled in a similar approach, as shown in Figure 5.18.

In summary, the sweeping procedure has output �D vertices o, f , d�, g,

c�, p, h, i, q and visible segments 1, 2, 5, 8, 9, 10, 12, 13, 14 to polygon OPQ.

It has as well output �D vertices e, a, d, c, b and visible segments 3, 4, 6, 7, 11

to polygon ABCDE. The polygon reconstruction function will reconstruct new

polygons from these �D vertex lists and visible segment lists. Strong constraints

{f� e� d}, {d� d�}, {g� a� b}, {c� c�}, {h� a� b}, and {i� c� b} have been imposed, and they

will be solved in the constraint solving block.

Appendix B shows that the running time for this sweeping algorithm isO��n

k�n�, where n is the number of vertices and k is the number of edge intersections

in a scene respectively.

Polygon Reconstruction

After the sweeping procedure is finished, every polygon has a list of �D vertices

and visible segments. The next step is to reconstruct polygons from these visible

segments. Each polygon may yield a few disjoint polygons, and each new

polygon (slave polygon) may have holes. We will discuss how to reconstruct

polygons from the visible segments for a polygon. A visible segment becomes

an edge of a new polygon.

It is easy to show that during the sweeping the first visible segment for an

CHAPTER 5. IMPLEMENTATION 90

Visible Segment Starting �D Vertex Ending �D Vertex

1 o f

2 q o

3 e a

4 d e

5 f d�

6 a b

7 c d

8 d� c�

9 g p

10 h g

11 b c

12 c� i

13 p h

14 i q

Table 5.4: Visible Segments and their Start/End Vertices

CHAPTER 5. IMPLEMENTATION 91

outer contour of a new polygon is always output earlier than the first visible

segment for a hole of this new polygon. We start at the beginning of the list of

visible segments, and pick a visible segment, whose start vertex is the same as the

previous visible segment’s end vertex, as the next edge, until we reach a visible

segment whose end vertex is the same as the first visible segment’s start vertex.

These visible segments make up the outer contour of a new polygon. If there

are any threads directly or indirectly ending at vertices of this contour, then

for each thread we find the visible segment with a start vertex the same as this

thread’s start vertex, and repeat the process of constructing the outer contour.

The resulting contours are the holes of this new polygon. If there are still visible

segments remaining in the list, we repeat the whole process and create other new

polygons until the list is empty.

For instance, Table 5.4 lists the visible segments and their corresponding start

and end vertices produced in the example illustrated in the sweeping subsub-

section. The original polygon OPQ has visible segment list {1, 2, 5, 8, 9, 10, 12,

13, 14}. The first visible segment starts at o and ends at f . We look for the visible

segment starting at f , and it is segment 5, so segment 5 becomes the second edge

of the polygon we are constructing. So on and so forth, we will reach visible

segment �, which ends at o. Thus we have constructed an outer contour {1, 5, 8,

12, 14, 2} for a new polygon ofd�c�iq. Because we do not see any threads ending

at the visible segments for this contour, this new polygon does not have any hole.

Similarly, the remaining visible segments {9, 10, 13} also form a new polygon gph.

After the constraint generation, the first linear transformation, RGB to HSV

transformation, and the second linear transformation (as described in Chapter 4)

�“Indirectly ending at a vertex of this contour" refers to a thread ending at a hole which in

turn has a thread directly or indirectly ending at a vertex of this contour.

CHAPTER 5. IMPLEMENTATION 92

are performed for all the vertices of the new polygons.

5.4 Constraint Solving

From Chapter 4, we know that the constraint hierarchy can be formalized as a

bounded linear least squares problem. Bounded constraint is the simplest linear

constraint. The NAG package [NAG91] has a function E04NCF, which solves

linearly constrained linear least squares problems and quadratic programming

problems. Therefore, we use the NAG library to solve our constraint satisfaction

problem. The University of Waterloo only has a site license for the Fortran bind-

ing of the NAG package. Fortunately, it is not hard to call a Fortran function from

C or to call a C function from Fortran except that some attention must be spent on

function name conventions and function parameter passing. Although Fortran

does not have dynamic memory management, we can dynamically allocate a

block of memory in C, then pass it to Fortran.

The BLLS can be written as:

Minimize kAX � Bk��

subject to L � X � U (5.8)

where A is the least square matrix, B is the vector of observations, L is the vector

of lower bounds, U is the vector of upper bounds, and X is the vector of variables.

The constraint solver first allocates the matrix A, and vectors B, L, U, and X

based on the problem size and the number of strong constraints created. The

solver walks through the internal data structures which store the strong con-

straints produced in the constraint generation block. When it meets a strong

CHAPTER 5. IMPLEMENTATION 93

constraint in the format of Equation 4.21, the luminances of two vertices in-

volved have the relationship Vj � cVk � �, where j and k are the identifying

numbers for these two vertices separately, and c is the contrast in Space 0. It

assigns A	i�	j� � �, A	i�	k� � �c�, and B 	i� � �, where � is the weight

for the strong constraints, and i is a count initialized to be � and i increases by

� whenever one row of A is set up. When the solver comes into a strong con-

straint like Equation 4.22, the luminances of three vertices have the relationship

Vj � c�� � ��Vk � c�Vl � �, where l is also an identifying number for a vertex.

It sets A	i�	j� � �, A	i�	k� � �c�� � ���, A	i�	l� � �c��, andB 	i� � �. When it

sees a strong constraint in the format of Equation 4.24, three vertices’ luminances

have the relationship �cVj
 �� � ��Vk
 �Vl � �. It assigns A	i�	j� � �c�,

A	i�	k� � �� � ���, A	i�	l� � ��, and B 	i� � �.

The solver now sets up the rows in A and B for the medium constraints.

For every vertex and every polygon, suppose the vertex’s identifying number

is j and the identifying number for the vertex next to it in the same polygon

is k, the solver assigns A	i�	j� � �, A	i�	k� � ��, and B 	i� � �, where

� is the weight for the medium constraints. To set up the rows for the weak

constraints, for each vertex in each polygon, assuming its identifying number

is j, and its luminance after the second linear transformation is Vj� , the solver

lets A	i�	j� � �, and B 	i� � Vj��, where � is the weight for weak constraint.

The NAG function E04NCF requires the caller to supply an initial estimate of

the solution. We use the luminance in Space 3 as the initial estimate, thus the

solver assigns X 	j� � Vj� . In our problem, all the luminances have the same

lower bounds and upper bounds, hence the solver sets L	j� � LowerBound and

U 	j� � �, where the meaning of LowerBound was explained in Chapter 4.

After all the relevant matrices and vectors have been set up, the solver calls

CHAPTER 5. IMPLEMENTATION 94

the NAG function E04NCF. When E04NCF returns, the solver sets the luminance

V for each vertex in the internal data structures to be the value of corresponding

X 	j�.

Because the NAG function E04NCF uses an iterative method to solve the BLLS

problem, the expected running time is not reflected by the worst case running

time. In practice, with our problem size, we have prompt response. When

the problem size increases, other constraint solving methods may need to be

investigated.

TheHSV to RGB transformation as described in Chapter 4 is also performed

in this block. H and S are the old H and S, but V is the new one produced

by the constraint solver. The third linear transformation is carried out here as

well. Another task performed in this block is window to view-port mapping.

The window is 	��� �� � 	��� ��, and the view-port is 	�� MaxX� � 	�� MaxY �.

A vertex �x� y� z�’s x and y are mapped by Equation 5.9, but z is not mapped

because z is not meaningful anymore.

New x �
MaxX

�
�x
 ��

New y �
MaxY

�
�y
 �� (5.9)

5.5 2D Rendering

After the constraint generation has been performed, the hidden surface removal

has also been finished. We have a list of polygons that do not overlap in �D.

Therefore, it does not make any difference which polygon we render before the

other. The �D renderer scan converts polygons one by one. A polygon may be

CHAPTER 5. IMPLEMENTATION 95

concave or may have holes. The scan conversion algorithm we used is based on

an algorithm by Heckbert [Gla90, pages 87-91 and 681-684].

The scan converter sorts all the vertices by their Y coordinates and maintains

an active edge list. An active edge is an edge which intersects the present scan

line. When the scan converter goes to the next scan line, it updates the active

edge list efficiently according to the sorted vertex list. At each scan line, every

other horizontal segment of the scan line separated by the polygon edges should

be filled. In each segment to be filled, the R, G, and B values are linearly

interpolated from theR, G, and B values at the intersections of the scan line with

the polygon edges, which in turn are the linear interpolations of the R, G, and B

values at polygon vertices.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Display hardware contrast limitations were addressed in depth in this thesis,

along with related properties of the human visual system. Based on the display

device restriction and properties of human visual system, a new constraint-

based rendering framework was proposed, and a modified rendering pipeline

was implemented based on this framework.

The prototype system has rendered some scenes with high dynamic ranges.

Comparing with the images rendered by a conventional rendering method (called

RMA) without considering limitation on the display device dynamic range and

by a rendering method (called RMB) with simple linear transformation (which

transforms the high dynamic range into the low dynamic range as discussed

in Chapter 4), the image rendered by the proposed constraint-based rendering

method (called RMC) has better image quality and presents more information to

a viewer.

96

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 97

An experiment was conducted by measuring luminances in a real world high

dynamic range scene, whose highest luminance was 1200 and lowest luminance

was 2, with a radiometer, taking photographs on the scene with a camera, and

rendering the scene by RMA, RMB, and RMC based on the data collected by

the radiometer. In the photographs of the scene, either the dark part had no

perceivable detail or the bright part was washed out. The image produced by

RMA has the worst quality, and the image created by RMC has the best image

quality. We also found that the weights for the constraint hierarchy influence

the image quality heavily. In fact, it is not necessary that the weight for strong

constraints is the largest and the weight for weak constraints is the smallest. We

did not explore the optimal weight combination for a scene.

The contributions of this thesis can be summarized as following:

� The research offers a way to overcome the display contrast limitation. Display

hardwares always have their limitations in today’s technology, and they

will still have in the near future. To render scenes with high dynamic

ranges onto the display devices with lower dynamic ranges, the constraint-

based technique developed in this thesis will preserve the visual contrast

and thus we expect to enhance the perceived image quality.

� The constraint-based model developed is useful for device independent image repre-

sentation. Different devices have different limitations. The constraint-based

rendering model developed in this thesis is not only valuable in solving the

problems caused by CRT contrast restriction, but also useful for device in-

dependent image representation. In a constraint-based device independent

image representation scheme, the attributes of a scene are expressed as a

set of constraints among the attributes. A constraint satisfier dedicated to a

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 98

particular device solves the constraints and generates the explicit attribute

values to be displayed on the specific device.

� Constraint-based approach is also useful for geometrical relations. Although this

thesis dealt with the constraints on colour, the principles of constraint-based

image representation should also apply to geometrical relationships. For

instance, in his master’s thesis, Schlueter worked on perceptual synchro-

nization in window systems [Sch90]. If the window edges of two adjacent

windows are colinear, it causes ambiguity to a user. We can impose a

constraint that no adjacent window edge are allowed to be colinear. A con-

straint satisfier will then assign the coordinates to window edges so that no

adjacent windows’ edges are colinear. Similar considerations seem to be

important to human renderers, from draughtsmen to artists.

6.2 Future Work

This thesis has explored the display device contrast limitations and opened av-

enues for future research. Some further research topics are:

� Our constraint-based rendering model only works for flat and Gouraud

shadings. A natural extension to this model is to make it also work for

Phong shading, ray tracing, and radiosity.

� If we slowly vary the luminance, a viewer is not able to detect it. How

much luminance variation within a unit distance is considered as slow? We

need to add this quantitative measurement into the constraints.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 99

� As stated in the conclusion, weights for the constraint hierarchy affect image

quality heavily. Automatic determination of optimal weights for a scene

needs to be systemically explored.

� In the constraint formalization of Chapter 4 and the constraint solving of

Chapter 5, we can see that the least squares matrix of BLLS is very sparse. In

general, BLLS is computationally expensive to solve. Can we take advan-

tage of the sparse structure of this matrix to solve our BLLS more efficiently?

Another minimization principle might have been to minimize absolute val-

ues. This is directly convertable to a linear programming problem for which

sparsity handling is well known. We need to know which minimization

principle, minimizing the summation of squares or minimizing the absolute

values, results better visual effect.

� As stated in the previous section, we can develop a constraint-based device

independent image representation scheme based on the principles derived

in this thesis.

� In constraint generation as described in Chapter 5, we impose constraints

based on the �D polygon geometrical relationships. The calculation of

the geometrical relationship is sometimes numerically sensitive, and thus

robust geometrical algorithms are needed.

� If we apply the rendering techniques to animation, how can we take ad-

vantage of temporal coherence to make constraint solution efficient?

Appendix A

Transformation Matrices

A.1 Matrices of Geometrical Transformations

The matrix of translation by �x� y� z�:

T�x�y�z	 �

�
���������

� � � �

� � � �

� � � �

x y z �

�
���������

(A.1)

The matrices of rotation about an axis X , Y , or Z by an angle �:

Rx��� �

�
���������

� � � �

� cos � sin � �

� � sin � cos � �

� � � �

�
���������

(A.2)

100

APPENDIX A. TRANSFORMATION MATRICES 101

Ry��� �

�
���������

cos � � � sin � �

� � � �

sin � � cos � �

� � � �

�
���������

(A.3)

Rz��� �

�
���������

cos � sin � � �

� sin � cos � � �

� � � �

� � � �

�
���������

(A.4)

The matrix of scaling by �Sx� Sy� Sz�:

S�x�y�z	 �

�
���������

Sx � � �

� Sy � �

� � Sz �

� � � �

�
���������

(A.5)

A.2 Matrices of Viewing Transformations

A.2.1 Projection in Canonical Form

Figure A.1 is a cross-section of the viewing frustum which goes through the eye

point and a point �x� y� z�, and is perpendicular to the XZ plane. From the

figure, we have:

y�

y
�

jEP j

jEQj
(A.6)

It is easy to show that jEP j
jEQj

� n
�z

. Thus, we have:

y�

y
�

�n

z
(A.7)

APPENDIX A. TRANSFORMATION MATRICES 102

Eye

Near

Far

(x, y, z)

(x’, y’, z’)

E P Q

Figure A.1: Perspective Projection

Following the same reasoning, we have:

x�

x
�

�n

z
(A.8)

We now only do not have the formulae for calculating z�. After the �D points

are projected onto a �D plane, the purpose for the Z coordinates is to preserve

the depth information. According to Equations A.7 and A.8, if we represent

the projection as a � � � matrix, only two entries in the matrix have not been

determined:

�x��� y��� z��� w��� � �x� y� z� ��P (A.9)

P �

�
���������

� � � �

� � � �

� � � � �
n

� � �

�
���������

(A.10)

APPENDIX A. TRANSFORMATION MATRICES 103

where x� � x��

w��
, y� � y��

w��
, and z� � z��

w��
. From these two equations, z� � �z � �

� z
n

.

We can see in subsection 5.2.3 that it is desired to have z�
 	�� ��. It is reasonable

to let z� � � when z � �f , and z� � � when z � �n:

���f�

f
n

� � (A.11)

���n�
 � � (A.12)

Solving the system of Equations A.11 and A.12, we obtain � � f
n�n � f	

and

 � f
n � f

.

For the convenience of doing clipping, we mapx� � n tan��
�
� to�, x� � �n tan��

�
�

to ��, y� �
n tan��

�
	

r
to �, and y� � �

n tan��
�
	

r
to ��. As a result, P is revised to be:

P �

�
���������

cot��
�
	

n
� � �

�
r cot��

�
	

n
� �

� � f
n�n � f	 � �

n

� � f
n � f

�

�
���������

(A.13)

A.2.2 Projection in Arbitrary Form

To the projection in arbitrary form, we transform it into the canonical form. To

do so, we first translate the eye point to the origin ��� �� ��, then we rotate the

sight vector into �Z direction and the up vector into the Y direction.

Suppose the sight vector is �Sx� Sy� Sz�, the matrix to rotate the sight vector

to �Z is:

Rs � Ry��y��Rx��x� (A.14)

where:

sin��x� �
�Syq

S�
x
 S�

y
 S�
z

(A.15)

APPENDIX A. TRANSFORMATION MATRICES 104

cos��x� �

q
S�
x
 S�

zq
S�
x
 S�

y
 S�
z

(A.16)

sin��y� �
Sxq

S�
x
 S�

z

(A.17)

cos��y� �
�Szq

S�
x
 S�

z

(A.18)

Suppose the up vector is �Ux� Uy� Uz�, after these rotations, the up vector

becomes:

�Ux
�� Uy

�� Uz
�� � �Ux� Uy� Uz�Rs (A.19)

Now we want to align the up vector with Y . Because the up vector is perpen-

dicular to the sight vector, we only need to rotate it into the
Y half plane of the

Y � Z plane.

Ru � Rz��z� (A.20)

where:

�z � arctan�
Ux

�

Uy
� � (A.21)

Suppose, the eye point is �Ex� Ey� Ez�, the viewing transformation matrix is:

V iew � T ��Ex��Ey��Ez��Rs �Ru (A.22)

Therefore, the projection matrix in the arbitrary form is V iew� P

Appendix B

Sweeping for Constraint Generation

The algorithm stops at all the vertices and all the intersections of the polygon

edges from top to bottom and performs various actions at these sweeping points

based on different circumstances.

Before the start of the sweeping, all the edge structures are created and initial-

ized. Because the sweeping algorithm will assume no horizontal edges, all the

�D vertices’ XY coordinates are rotated by an angle � if there exists a horizontal

edge. The � is chosen so that no edge becomes horizontal after the rotation. After

the sweeping, all the new output �D vertices are rotated by angle �� to offset

the first rotation. All the vertices are classified to be certain types as defined in

Figure 5.6 and inserted into the priority queue. The algorithm also computes the

plane equations for all the polygons before the sweeping starts.

Overall, sweeping is an iterative procedure. At each iteration, it deletes the

first sweeping point(s) from the priority queue, and conducts operations until

the priority queue is empty. If it detects a new intersection point, the point is

inserted into the priority queue. Because two edges intersect only if they are next

105

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 106

a
b c d

e

d
b

f
g h

Figure B.1: Sweeping Points and Their Corresponding Edges

to each other in the AEL, an intersection point can be detected by checking if

an edge e intersects its predecessor and/or successor when e is inserted into the

AEL, and by checking if an edge e’s predecessor intersects e’s successor when e

is removed from the AEL. It is possible that several sweeping points overlap in

�D, i.e. they have the same XY coordinates. These sweeping points should be

handled at the same time, so the sweeper deletes all the sweeping points with

the same XY coordinates from the top of the priority queue in one iteration. In

the following few paragraphs, the phrase “these sweeping points” also includes

the case that there is only one current sweeping point.

Some edges corresponding to the current sweeping points end at these SPs,

while other edges will continue after these SPs or start from them. For example

in Figure B.1, edges a and c forms a bottom vertex; edges b and d intersect at this

SP; edges e and h correspond to a side vertex; edges f and g forms a top vertex.

Edges a, c, and e end at these SPs, while edges d, b, f , g, and h continue/start

at these SPs. Above these SPs, from left to right, the edges are a, b, c, d, and e,

but below the SPs, from left to right, the edges are d, f , b, g, and h. We want

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 107

a b

P

V

S

Figure B.2: Output a �D Vertex

to process the edges corresponding to the current SPs from left to right. Thus,

we have two lists of edges related to the current SPs, one for the edges above

the sweeping line and another for the edges below the sweeping line. They are

sorted from left to right as the previous example. We first handle the edges in

the above edge list, and then deal with the edges in the below edge list.

Two edges are coincident if they have the same slope and have at least one

point in common. It is possible that several polygon edges coincide. All the

coincident edges are consecutive in the AEL, the above edge list, and the below

edge list. To make the computation of the NLs and the handling of visible

segments easy, the edges which are coincident to each other are sorted such that

the edges whose polygons are to their left are placed before the edges whose

polygons are to their right. The edges whose polygons are to their left are sorted

such that the edges farther from the view point are placed before the shallower

edges. Symmetrically, the edges whose polygons are to their right are sorted such

that the shallower edges are placed before the edges farther from the view point.

As a result, the edge whose polygon is the shallowest and is to the left of the

coincident edges is placed just before the edge whose polygon is the shallowest

and is to the right of the coincident edges.

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 108

To output a �D vertex to a polygon at a SP, we add a �D vertex into that

polygon’s list of �D vertices. TheXY coordinates for this �D vertex are assigned

to be the XY coordinates of the current SP. The RGB colour for this �D vertex

is set to the colour at this point when the polygon is rendered by the linear

interpolating method. If the SP is a �D vertex of the polygon where we wish to

output a �D vertex, the �D vertex just inherits its colour from that �D vertex.

Otherwise the problem becomes: given a point �x� y� in a polygon and the

colours of all the polygon vertices, which colour should this point have? Because

we assume the input polygon is a convex polygon, and �x� y� is in the polygon, a

line Y � y intersects two polygon edges. We find these two edges by searching

through all the edges in this polygon. The colour of an intersection point between

one of these edges and the line Y � y is the linear interpolation of the colours

of its edge start/end vertices. The colour of �x� y� is then the linear interpolation

of these two intersections’ colours�.

It is possible that when we want to output a �D vertex to a polygon, the

polygon already has a �D vertex at the present SP. For example, in Figure B.2,

when we deal with the edge b, and want to output a �D vertex to the polygon

P at the SP S, a �D vertex V in fact has already been output when we handled

the edge a. Therefore, in this section, when we say “output a �D vertex to a

polygon”, we mean to output a �D vertex to a polygon if that polygon does not

have a �D vertex at the current SPs yet (a �D vertex with the XY coordinates

the same as these SPs’). If the polygon already has one, take the existing one last

output.

�If the vertex colours are not coplanar, linear interpolation may cause inconsistency [Bli92].

However, as discussed in Chapter 4, our model assumes that the variation of colour within any

polygon is small, so that linear interpolation is acceptable

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 109

a

b c d

e

Figure B.3: � Variable Constraints Corresponding to “Above” Edges

B.1 Handling the Edges Above the SPs

For each edge e in the “above” list, if the SP corresponding to e is an intersection,

we do not do anything except store the pointers to the shallowest polygons to

the left and right of e into e’s data structure to be used when we deal with e as a

below edge. Otherwise, the SP corresponding to e is not an intersection. If e has

a left visible segment, a �D vertex is output to the shallowest polygon to e’s left.

The left visible segment is closed by giving this �D vertex as its start vertex. If e’s

polygon is to the left of e, the start and end vertices of the visible segment might

be the V� and V� of a three-variable constraint as in Equations 4.22 or 4.24. As we

will see later, when we generate a three-variable constraint, only two vertices are

known and thus specified. Hence we complete all the three-variable constraints

related to this visible segment by specifying the third vertex of the constraints

as the �D vertex at this SP. If the SP corresponding to e is a bottom vertex, it is

possible that the left visible segment is part of a hole. If it is part of a hole, the

hole can only be a hole of the polygon to which the nearest visible segment to the

left belongs. For the convenience of polygon reconstruction, we output a pseudo

visible segment, named thread, from this �D vertex to the top vertex of the nearest

visible segment to the left. If e has a right visible segment, similar processing is

also performed except no thread is considered.

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 110

We need to create two-variable strong constraints among the �D vertices

relevant to these “above” edges because we wish to retain the contrast across

their visible segments. For example, in Figure B.3, vertices a and b, b and c, c and

d, and d and e have two-variable strong constraints respectively. In the figure,

for illustration purposes, these vertices do not coincide. In fact, they all coincide

with the SP except that they are in different polygons.

All the edges in the above edge list are then removed from the AEL regardless

of whether they will continue or not after the current SPs. When we delete an

edge e from the AEL, we check if the edge before e and the edge after e in the

AEL intersect. If they do, the intersection is inserted into the PQ.

B.2 Handling the Edges Below the SPs

All the edges in the below edge list are inserted into the AEL. The node list for an

edge e is first copied from its predecessor in the AEL. If e’s polygon is to the left of

e, e’s polygon is removed from its NL. Otherwise, if e’s polygon is to the right of

e, e’s polygon is added to its NL. To ensure the node lists are correct for the edges

that coincide, those coincident edges’ NLs are computed together. We first insert

the first one of the coincident edges into the AEL. The NL of the predecessor

is copied. All the coincident edges’ polygons are then either removed from or

added to the NL according to the previously mentioned criteria. The resulting

NL is then copied to all the coincident edges as their NLs.

Now we are going to examine the edges in the below edge list. There exist a

few cases for an edge e:

1. SP corresponding to e is not an intersection

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 111

(a) e is visible and e’s polygon is to its left

(b) e is visible and e’s polygon is to its right

(c) e is invisible

2. SP corresponding to e is an intersection

(a) e was visible before the intersection and e’s polygon is to its left

i. e is still visible

ii. e becomes invisible

(b) e was visible before the intersection and its polygon is to its right

i. e is still visible,

ii. e becomes invisible

(c) e was not visible before the intersection

i. e becomes visible and its polyon is to its left

ii. e becomes visible and its polygon is to its right

iii. e is still invisible

Each case has its own characteristics, and thus we need to handle them in different

ways. We elaborate how to deal with the edges case by case.

B.2.1 SP Is Not An Intersection

If the SP related to edge e is not an intersection, the SP is either a top vertex or

a side vertex, and e just starts at this SP. First, let us consider when e is visible

and its polygon is to its left. We output a �D vertex to e’s polygon at the current

SP. e’s left visible segment is output to e’s polygon. The shallowest polygon

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 112

P1
P2

e2

e1
 visible segment visible segment

Figure B.4: Visible Segments and Coincident Edges

right of e should also have a �D vertex at this SP and a visible segment along e.

However, if that polygon is the polygon of e’s coincident edge, we do not output

anything for this polygon because we will deal with this visible segment when

we handle that coincident edge (See Figure B.4). In the figure, edges e� and e� and

their respective visible segments do not overlap. This is a distortion for a clear

illustration, in reality they do overlap. The case that e is visible and its polygon

is to its right is treated in a similar manner. We do not need to do anything in the

case that e is invisible.

B.2.2 SP Is An Intersection

e was visible

If the SP corresponding to e is an intersection, ewas visible before the intersection,

and e’s polygon is to its left, e might be still visible or become invisible after the

intersection. In the case that e is still visible, if the polygon to e’s right before the

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 113

P

P

P

e

1

2

2

(b)

P

P

P

e

1

2

(a)

3

P
1

e

P
1

P
2

P
3

P
3

(c)

Figure B.5: Intersection Sweeping Points

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 114

a b

c d

Figure B.6: � Variable Constraints Between Above And Below Vertices

intersection is not the same one after the intersection as shown in Figure B.5(a),

we output a �D vertex to polygon P� at this SP, and close e’s right visible segment

by giving this vertex as its end vertex in case e has a right visible segment. Here

a three-variable constraint, among P�’s �D vertex at this SP and the start and

end vertices of e’s left visible segment, is output. The start vertex is not actually

known yet and this three-variable constraint will be completed when it is known.

We also output a �D vertex to polygon P�. A three-variable constraint is also

output among P�’s �D vertex at this SP and the start and end vertices of e’s

left visible segment. P� should have a visible segment along e as well. As in

Case 1.(a), we output e’s right visible segment for P� if P� is not the polygon of an

e’s coincident edge. Otherwise, if the polygon to e’s right before the intersection

is the same one as after the intersection as shown in Figure B.5(b), nothing needs

to be done. In the case that e becomes invisible as illustrated in Figure B.5(c), we

output a �D vertex to e’s polygon. e’s left visible segment is closed by assigning

this vertex as its start vertex. All the three-variable constraints related to e’s

left visible segment are completed with this start vertex. If e has a right visible

segment, we output a �D vertex to the polygon to e’s right. e’s right visible

segment is closed with this vertex as its end vertex. If e was visible before the

intersection and its polygon is to its right, e is treated in a similar way.

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 115

e was not visible

If the SP corresponding to e is an intersection, and it was not visible before the

intersection, e may become visible or may still be invisible. If e becomes visible

and its polygon is to its left, we output a �D vertex to this polygon at current

SP. e’s left visible segment is output to this polygon with that vertex as its end

vertex. If the shallowest polygon right of e is not the polygon of e’s coincident

edge, a �D vertex is output to that polygon, and e’s right visible segment is

output to the shallowest polygon right of e with that vertex as its start vertex.

Otherwise, nothing is done at this time because we deal with it when we handle

that coincident edge. If e becomes visible and its polygon is to its right is a case

that is dealt with in a similar approach. If e is still invisible, we do not need to

do anything with it.

Similar to the treatment of edges in the above edge list, we create two-variable

constraints among the �D vertices output corresponding to those edges in the

below edge list. One two-variable constraint is created between the first �D

vertex above and the first �D vertex below, and another two-variable constraint

is also created between the last �D vertex above and the last �D vertex below.

For example, in Figure B.6, vertices a and b are created during the processing of

above edges, and c and d are created during the processing of below edges. a

and c have a two-variable constraint, so do b and d.

B.3 Running Time

Suppose that there aren vertices and k edge intersections in a scene, the sweeping

procedure stops n
 k times in total. Because in a convex polygon the number of

APPENDIX B. SWEEPING FOR CONSTRAINT GENERATION 116

edges is equal to the number of vertices, there are n polygon edges in this scene.

We know that each sweeping point has two corresponding edges. To each edge,

all the other operations can be done in constant time except searching for an edge

in AEL, inserting an edge into the AEL, deleting an edge from AEL, copying a

node list, inserting a polygon into a node list, deleting a polygon from a node

list, inserting an intersection into the priority queue, and completing the three-

variable constraints for an edge. AEL, node list, and priority are all implemented

as linked lists. The running time of searching, inserting, and deleting to an AEL

is proportional to the size of AEL, which in the worst case is n, the number of

edges in the scene. The running time of copying a node list in worst case is

proportional to the number of polygons in the scene, which is smaller than n.

Inserting an intersection into the priority queue takes O�n� time. The number

of uncompleted three-variable constraints for an edge, in worst case, is also

proportional to the number of edges in the scene. Therefore, the worst case

running time for sweeping is O��n
 k�n�.

Appendix C

Data Structures and Pseudo-Code

This chapter lists the C definitions of some major data structures used in the

constraint generation and the C like pseudo-code for sweeping algorithm.

C.1 Data Structures

typedef double Real;
/* so we can switch between float or double easily */

/* the structure for a 3D vertex, the input vertex */
typedef struct VertexStr {

Real x, y, z; /* 3D coordinates */
Real hx, hy, hz, hw; /* homogeneous coordinates */
Real r0, g0, b0; /* initial r, g, b */

} Vertex;

/* the structure for a 2D vertex, the output vertex */
typedef struct Vertex2DStr {

Real x, y; /* the 2D coordinates */
int id; /* the id number of the vertex used for optimization */
Real r0, g0, b0; /* initial r, g, b */

117

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 118

Real r1, g1, b1;
/* r, g, b after the first linear transformation

r1, g1, and b1 also store h, s, v in HSV model after
r1, g1, and b1 are transformed into h, s, and v, and other RGB
values during other stages of the rendering pipeline */

struct Vertex2DStr *next;
/* the next output vertex in the polygon */

} Vertex2D, *Vertex2DPtr;

/* the first type strong constraint, V1 / V2 = C0 */
typedef struct EdgeCons1Str {

Vertex2D *v1, *v2; /* the first and second vertex */
Real C0; /* the initial contrast */

} EdgeCons1;

/* C0 = V1 / (t*V2 + (1-t)*V3) when the Tag is EDGE_CONS2;
C0 = (t*V2 + (1-t)*V3) / V1 when Tag is EDGE_CONS3 */

typedef struct EdgeCons2Str {
Vertex2D *v1, *v2, *v3; /* the first, second, and third vertex */
Real C0; /* intial contrast */
Real t; /* projection of v1 on segment v2, v3 */

} EdgeCons2_3;

/* an enumeration for edge constraint tag */
typedef enum {EDGE_CONS1, EDGE_CONS2, EDGE_CONS3} EdgeConTag;

/* type definition for strong constraints across edges */
typedef struct EdgeConsStr {

EdgeConTag tag;
union {
EdgeCons1 *cons1;
EdgeCons2_3 *cons2;

} Con;
struct EdgeConsStr *next;
/* a pointer to next constraint in the list of constraints */

} EdgeCons;

/* the structure of visible segments */
typedef struct VisibleSegmentStr {

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 119

Vertex2D *start, *end; /* the indices of output vertices */
struct VisibleSegmentStr *next;
/* the next visible segment in that polygon */
short thread; /* 1 is a thread, 0 nope */
struct MasterPolyStr *master;
/* the master polygon, this visible segment belons to */

} VisibleSegment;

typedef enum {NONE, LEFT, RIGHT} LeftOrRight;

/* the uncompleted constraint list for an edge */
typedef struct Constraint3Ptr {

EdgeCons *EdgeC;
struct Constraint3Ptr *next;

} CListForEdge;

/* the structure for an edge */
typedef struct EdgeStr {

struct MasterPolyStr *poly,
/* pointer to the polygon, the edge belongs */

struct MasterPolyStr *LeftPoly, *RightPoly;
/* the right and left topest polygons of an edge before a sweeping

point these pointers are used to decide the cases when a SP is
an intersection */

Vertex *first, *second;
/* the start and end vertices of an edge */
VisibleSegment *left, *right;
/* left and right visible segments */
LeftOrRight PolyLocation;
/* Polygon is in the left or right side of the edge */
LeftOrRight coin;
/* whether this edge coidcides with other edges, and if

so the type LEFT: this edge’s polygon is to the left of
this edge RIGHT: this edge’s polygon is to the right of
this edge */

struct EdgeStr *shared;
/* the coincident edge, shared means the edge shares the same

position As stated in Chapter 5, we really concern the LEFT
and RIGHT coincident edges whose polygons are the frontest in

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 120

the left and right respectively, so only one pointer is enough
instead of a list of coincident edges */

Vertex2D *StartVis;
/* vertex where this edge starts to be visible */
/* it is used to specify one of the starting/ending vertices of a

visible edge for a 3 variable constraint */
CListForEdge *CList;
/* list of uncompleted 3 variable constraints */

} Edge;

/* the structure for polygon information */
typedef struct PolyInfoStr {

Vertex *first; /* the list of 3D vertices */
int num; /* number of 3D vertices */
Real A, B, C, D; /* the plane equation of the polygon */
Vertex2D *OutFirst;
/* the output vertices after visible surface determination */
Vertex2D *OutLast; /* pointer to the last such vertex */
VisibleSegment *SegFirst; /* the first visible segment */
VisibleSegment *SegLast; /* the last visible segment */

} PolyInfo;

/* the structure for a hole */
typedef struct HoleInfoStr {

Vertex2DPtr *first; /* list of 2D vertices for the hole */
int num;

} HoleInfoType;

/* the information for a slave polygon, a slave polygon is a new
polygon which was part of a master polygon before the
visible algorithm determination */

typedef struct SlavePolyInfoStr {
Vertex2DPtr *first; /* array of vertices for the out contour */
int num; /* number of vertices */
HoleInfoType *holes; /* the array of holes in the polygon */
int HoleNum; /* number of holes */

} SlavePolyInfo;

/* the structure of slave polygon */

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 121

typedef struct SlavePolyStr {
SlavePolyInfo poly;
struct MasterPolyStr *master; /* the master polygon */
struct SlavePolyStr *next; /* next slave polygon */

} SlavePoly;

/* master polygon is a polygon before visible
surface determination */

typedef struct MasterPolyStr {
PolyInfo poly; /* the information about this polygon */
SlavePoly *slave; /* the first slave polygon */

} MasterPoly, *MasterPolyPtr;

/* the structure of master polygon list */
typedef struct MasterPolyListStr {

MasterPolyPtr *master; /* array of pointers to master polygons */
int n; /* number of master polygons */

} MasterPolyList;

C.2 Pseudo-Code of Sweeping Algorithm

/* sweep until the PQ is empty */
void SweepAll() {

while (PQ is not empty) {
S1 = DeleteSameSPs();
/* delete all the SPs with the same XY at the top of

PQ from PQ, S1 is a set */
SweepMult(S1);

} /* while */
} /* SweepAll */

/* output a 2D vertex to polygon Poly, if a 2D vertex has
already exist at this SP, just retrun the existing one */

Vertex2D *OutputVertex(Poly, SP) {

if(poly == NULL) return;
GetSweepXY(SP, &X, &Y);

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 122

if (Poly->poly.OutLast != NULL && Poly->poly.OutLast->x == X &&
Poly->poly.OutLast->y == Y) return(Poly->poly.OutLast);

OutVer = (Vertex2D*) malloc(sizeof(Vewrtex2D));
OutVer->x = X;
OutVer->y = Y;
Compute the colour for OutVer;
poly->OutLast->next = OutVer;
OutVer->next = NULL;
return(OutVer);

} /* OutputVertex */

/* process the edges corresponding to the SPs in S1 */
void SweepMult(S1) {

/* sort all the corresponding edges above the current SPs
and keep them in a Above Edge List */

SortAndKeepAbove(S1);
/* sort all the corresponding edges below the current SPs

and keep them in a Below Edge List */
SortAndKeepBelow(S1);

/* handle all the edges above these sweeping points */
e = FirstAboveEdge(&SP);
/* get first edge in the above edge list,

SP is the sweeping point corresponding to e */
while (e != NULL) {
/* there are edges in the above edge list */

if (SP is an intersection) {
e->LeftPoly = The shallowest polygon left of e;
e->RightPoly = The shallowest polygon right of e;
/* remember these information For handling e in the

below edge list */

} else { /* SP is not an intersection, e ends at SP */
if (e->left != NULL) {
/* e has left visible segment, e is visible */

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 123

PrePoly = e->left->master;
OutVer = OutputVertex(PrePoly, SP);
/* output a 2D vertex to polygon left of e at SP */
e->left->start = OutVer;
/* close the left visible segment */
e->left = NULL;
if (e->PolyLocation == LEFT)

CompleteConstraints(e, OutVer);
/* complete the 3 variable constraints

associated with e */
if (SP is a bottom vertex) Create a thread;

} /* if */

if (e->right != NULL) {
SuccPoly = e->right->master;
OutVer = OutputVertex(OutPoly, SP);
/* output a 2D vertex to polygon right of e at SP */
e->right->end = OutVer;
/* close the right visible segment */
e->right = NULL;
if (e->PolyLocation == RIGHT)

CompleteConstraints(e, OutVer);
/* complete the 3 variable constraints

associated with e */
} /* if */

} /* else */

/* get the next edge in the above edge list */
e = NextAboveEdge(&SP);

} /* while */

Create 2 variable constraints among the 2D vertices
output For edges above SP;

Delete all the edges in the Above Edge List from AEL;

/* Insert all the edges in the Below Edge List into AEL */
e = FirstBelowEdge(&SP);
/* get the first edge in the below edge list */

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 124

while (e != NULL) {
Insert e into AEL;
NodeL = The Node List of the edge before e in the AEL;
e1 = NextBelowEdge(&SP);
CoinList = {};
/* the coincident edge list is empty at begin */

while (e1 is coincident to e) {
CoinList += {e1}; /* insert e1 to coincident edge */
if (e1->PolyLocation == LEFT)

/* e’s polygon is to e’s left */
Delete e1->poly from NodeL;

else /* e’s polygon is to e’s right */
Insert e1->poly into NodeL;

e1 = NextBelowEdge(&SP);
} /* while */

e’s NL is copied from NodeL;
Insert all the edges in CoinList into AEL and their NLs
are all copied from NodeL;

e = e1;
} /* while */

/* handle all the edges below the SP */
e = FirstBelow(&SP);
/* the first edge in the below edge list */
while (e != NULL) {
/* there are edges left in the below edge list */

PrePoly = the shallowest polygon to the left of e;
SuccPoly = the shallowest polygon to the right of e;
if (SP is not an intersection) {

if (PrePoly == e->poly) {
/* e is visible, its poly is to its left */

OutVer = OutputVertex(PrePoly, SP);
e->StartVis = OutVer; /* where e starts to be visible */
e->left = OutputVisibleSegment(PrePoly, NULL, OutVer);
/* OutVer is the ending vertex of this visible

segment, because we have not known the starting

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 125

vertex yet, use NULL. this visible segment will be
completed later by assigning a starting
vertex For it */

if (SuccPoly is not the polygon of e’s coincident edge) {
OutVer = OutputVertex(SuccPoly, SP);
e->right = OutputVisibleSegment(SuccPoly, OutVer, NULL);
/* we have not known the ending vertex yet */

} else e->right = NULL;

} else if (SuccPoly == e->poly) {
/* e is visible,its poly is to its right */

if (PrePoly is not the polygon of e’s coincident edge) {
OutVer = OutputVertex(PrePoly, SP);
e->left = OutputVisibleSegment(PrePoly, NULL, OutVer);

} else e->left = NULL;

OutVer = OutputVertex(SuccPoly, SP);
e->StartVis = OutVer;
e->right = OutputVisibleSegment(SuccPoly, OutVer, NULL);

} else { /* e is invisible */
e->left = NULL;
e->right = NULL;

} /* else */

} else { /* SP is an intersection */

if (e->LeftPoly == e->poly) {
/* e was visible before the intersection,

its poly is/was to its left */

if (PrePoly == e->poly) { /* e is still visible */

if (e->RightPoly != SuccPoly) {
/* 3 variable constraints needed */

if (e->RightPoly != NULL) {
OutVer = OutputVertex(e->RightPoly, SP);

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 126

if (e->right != NULL) {
e->right->end = OutVer;
e->right = NULL;

} /* if */
CreateConstraint3(e, OutVer, e->StartVis);
/* output a 3 variable constraint associated

with e. we only know two variables right now.
this constraint will be completed when another
vertex of e’s left visible segment is known */

} /* if */

if (SuccPoly ! = NULL) {
OutVer = OutputVertex(SuccPoly, SP);
if (SuccPoly is not the polygon of

e’s coincident edge)
e->right =
OutputVisibleSegment(SuccPoly, OutVer, NULL);

CreateConstraint3(e, OutVer, e->StartVis);
} /* if */

} /* if */

} else { /* e becomes invisible */

OutVer = OutputVertex(e->LeftPoly, SP);
e->left->start = OutVer;
CompleteConstraints(e, OutVer);
/* complete the 3 variable constraints by giving

the starting vertex of e’s left visible segment */

if (e->right != NULL) {
OutVer = OutputVertex(e->RightPoly, SP);
e->right->end = OutVer;

} /* if */

e->left = NULL:
e->right = NULL;

} /* else */

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 127

} else if (e->RightPoly == e->poly) {
/* e was visible before intersection*/

if (SuccPoly == e->poly) { /* e is still visible */
if (e->LeftPoly != PrePoly) {
/* 3 variable constraint */

if (e->LeftPoly != NULL) {
OutVer = OutputVertex(e->LeftPoly, SP);
if (e->left != NULL) {

e->left->start = OutVer;
e->left = NULL;

} /* if */
CreateConstraint3(e, OutVer, e->StartVis);

} /* if */

if (PrePoly != NULL) {
OutVer = OutputVertex(PrePoly, SP);
if (PrePoly is not the polygon of

e’s coincident edge) e->left =
OutputVisibleSegment(PrePoly, NULL, OutVer);

CreateConstraint3(e, OutVer, e->StartVis);
} /* if */

} /* if */

} else { /* e becomes invisible */
OutVer = OutputVertex(e->RightPoly, SP);
e->right->end = OutVer;
CompleteConstraints(e, OutVer);

if (e->left != NULL) {
OutVer = OutputVertex(e->LeftPoly, SP);
e->left->start = OutVer;

} /* if */

e->left = NULL;
e->right = NULL;

} /* else */

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 128

} else { /* e was invisible before the intersection */

if (PrePoly == e->poly) {
/* e becomes visible and its poly is to its left */

OutVer = OutputVertex(PrePoly, SP);
e->left = OutputVisibleSegment(PrePoly, NULL, OutVer);
e->StartVis = OutVer;

if (SuccPoly is not the polygon of e’s
coincident edge) {
OutVer = OutputVertex(SuccPoly, OutVer);
e->right = OutputVisibleSegment(SuccPoly,

OutVer, NULL);
} /* if */

} else if (SuccPoly == e->poly) {
/* e becomes visible and its poly is to its left */
OutVer = OutputVertex(SuccPoly, SP);
e->right = OutputVisibleSegment(SuccPoly,

OutVer, NULL);
e->StartVis = OutVer;

if (PrePoly is not the polygon of e’s
coincident edge) {

OutVer = OutputVertex(PrePoly, SP);
e->left = OutputVisibleSegment(PrePoly,

NULL, OutVer);
} /* if */

} /* else if */

} /* else, e was invisible */

} /* else, SP is an intersection */

Create 2 variable constraints among the vertices
output with the edges below the SP;

Create a 2 varibele constraint between the first
above 2D vertex and the first below vertex;

APPENDIX C. DATA STRUCTURES AND PSEUDO-CODE 129

Create a 2 variable constraint between the last
above 2D vertex and the last below vertex;

/* it is possible that sometimes the first and the last
above vertices are the same one, so are the below
vertices. In that case, caution should be spent.
The principle is that the neighbouring 2D vertices
whose visible segments have the relationship as described
in the 2 variable constraint case should have
a 2 variable constraint */

} /* while */

} /* SweepMult */

Bibliography

[AK87] J. Arvo and D. Kirk. Fast ray tracing by ray classification. In SIG-

GRAPH ’87 Proceedings, pages 55–64, 1987.

[Ama84] J. Amanatides. Ray tracing with cones. In SIGGRAPH ’84 Proceedings,

pages 129–135, 1984.

[BKT86] K.R. Boff, L. Kaufman, and J.P. Thomas, editors. Handbook of Per-

ception and Human Performance, volume I. John Wiley & Sons, Now

York, 1986.

[Bli92] J.F. Blinn. Hyperbolic interpolation. IEEE Computer Graphics and

Applications, 12(4):89–94, 1992.

[BN78] J.F. Blinn and M.E. Newell. Clipping using homogeneous coordi-

nates. In SIGGRAPH ’78 Proceedings, pages 245–251, 1978.

[BT75] P. Bui-Tuong. Illumination for computer generated pictures. Com-

munications of the ACM, 18(6):311–317, June 1975.

[CG85] M.F. Cohen and D.P. Greenberg. The hemi-cube: A radiosity solution

for complex environments. In SIGGRAPH ’85 Proceedings, pages 31–

40, 1985.

130

BIBLIOGRAPHY 131

[CGIB86] M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock. An effi-

cient radiosity approach for realistic image synthesis. IEEE Computer

Graphics and Applications, 6(3):26–35, March 1986.

[CHS�93] K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman.

Spatially nonuniform scaling functions for high contrast images. In

Proceedings of Graphics Interface ’93, pages 245–253, 1993.

[Coo86] R.L. Cook. Stochastic sampling in computer graphics. ACM Trans-

actions on Graphics, 5(1):51–72, January 1986.

[Cor70] T.N. Cornsweet. Visual Perception. Academic Press, 1970.

[Cow87] W.B. Cowan. Colorimetric properties of video monitors. Notes for a

short course presented at the Annual Meeting of the Optical Society

of America, October 1987.

[Cow93] W.B. Cowan. Personal communication, 1993.

[CPC84] R.L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In

SIGGRAPH ’84 Proceedings, pages 137–145, 1984.

[CSW87] W.B. Cowan, M. Stone, and C. Ware. Colour perception. Graphics

Interface ’87 and SIGCHI ’87 Tutorial Notes, 1987.

[FLS77] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on

Physics, volume 1, chapter 35. Addison-Wesley Publishing Company,

1977. also in J.C. Beatty and K.S. Booth (eds.) Tutorial: Computer

Graphics, pp. 354-363.

BIBLIOGRAPHY 132

[FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J.F. Hughes. Computer

Graphics: Principles and Practice. Addison-Wesley, Reading, MA,

second edition, 1990.

[GFMS93] A.S. Glassner, K.P. Fishkin, D.H. Marimont, and M.C. Stone. Render-

ing within constraints. Submitted to ACM Transactions on Graphics,

1993.

[GHMS86] P.E. Gill, S.J. Hammarling, W. Murray, and M.A. Saunders. User’s

Guide for LSSOL (Vertion 1.0): A Fortran package for constrained linear

least-squares and convex quadratic programming. Systems Optimization

Laboratory, Department of Operations Research, Stanford Univer-

sity, Stanford, California 94305, 1986.

[Gim87] P. Gimferrer. Magritte. Academy Editions, London, 1987.

[Gla89] A.S. Glassner, editor. An Introduction to Ray Tracing. Academic Press,

San Diego, 1989.

[Gla90] A.S. Glassner, editor. Graphics Gems. Academic Press, San Diego,

1990.

[GMSW84] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Procedures

for optimization problems with a mixture of bounds and general

linear constraints. ACM Transactions on Math. Software, 10:282–298,

1984.

[Gou71] H. Gouraud. Continuous shading of curved surfaces. IEEE Trans. on

Computers, C-20(6):623–629, June 1971.

BIBLIOGRAPHY 133

[GTGB84] C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile. Modeling

the interaction of light between diffuse surfaces. In SIGGRAPH ’84

Proceedings, pages 213–222, 1984.

[Hal86] R. Hall. Hybrid techniques for rapid image synthesis. In T. Whitted

and R. Cook, editors, Image Rendering Tricks. Course Notes 16 for

SIGGRAPH 86, Dallas, 1986.

[HG77] G Hamlin and C.W. Gear. Raster-scan hidden surface algorithm

techniques. In SIGGRAPH ’77 Proceedings, pages 206–213, 1977.

[HG83] R.A. Hall and D.P. Greenberg. A testbed for realistic image synthesis.

IEEE Computer Graphics and Applications, 3(8):10–20, November 1983.

[HG86] E.A. Haines and D.P. Greenberg. The light buffer: A shadow-

testing accelerator. IEEE Computer Graphics and Applications, 6(9):6–

16, September 1986.

[HH84] P.S. Heckbert and P. Hanrahan. Beam tracing polygonal objects. In

SIGGRAPH ’84 Proceedings, pages 119–127, 1984.

[ICG86] D.S. Immel, M.F. Cohen, and D.P. Greenberg. A radiosity method

for non-diffuse environments. In SIGGRAPH ’86 Proceedings, pages

133–142, 1986.

[JW75] D.B. Judd and G. Wyszecki. Color in Business, Science and Industry.

John Wiley & Sons, New York, 3rd edition, 1975.

[Kaj86] J.T. Kajiya. The rendering equation. In SIGGRAPH ’86 Proceedings,

pages 143–150, 1986.

BIBLIOGRAPHY 134

[Kla89] R. V. Klassen. Device Dependent Image Construction for Computer

Graphics. PhD thesis, Department of Computer Science, University

of Waterloo, Waterloo, Ontario, Canada N2L 3G1, 1989.

[KR88] B.W. Kernighan and D.M. Ritchie. The C Programming Language.

Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 1988.

[Mac91] B. MacIntyre. A constraint-based approach to dynamic colour man-

agement for windowing interfaces. Master’s thesis, Department

of Computer Science, University of Waterloo, Waterloo, Ontario,

Canada N2L 3G1, 1991.

[MC92] B. MacIntyre and W. B. Cowan. A practical approach to calculat-

ing luminance contrast on a CRT. ACM Transactions on Graphics,

11(4):336–347, Oct. 1992.

[Meh84] K Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional

Searching and Computational Geometry. Monographs on Theoretical

Computer Science (Editors: W. Brauer, G. Rozenberg, and A. Salo-

maa). Springer-Verlag, Berlin, 1984.

[NAG91] NAG. NAG Fortran Library Manual Mark 15. Numerical Algorithms

Group Limited, 1991.

[Nur85] O. Nurmi. A fast line-sweep algorithm for hidden line elimination.

BIT, 25(3):466–472, 1985.

[Nye88] Adrian Nye. Xlib Programming Manual, volume One of X Window

System. O’Reilly & Associates, Inc, 1988.

BIBLIOGRAPHY 135

[Nye90] Adrian Nye, editor. Xlib Reference Manual, volume Two of X Window

System. O’Reilly & Associates, Inc, second edition, 1990.

[Rat72] F. Ratliff. Contour and contrast. Scientific American, pages 90–101,

1972. also in J.C. Beatty and K.S. Booth (eds.) Tutorial: Computer

Graphics, pp. 365-375.

[SCB87] M.W. Schwarz, W.B. Cowan, and J.C. Beatty. An experimental com-

parison of RGB, YIQ, LAB, HSV, and opponent color models. ACM

Transactions on Graphics, 6(2):123–158, 1987.

[Sch90] K.G. Schlueter. Perceptual synchronization in window systems. Mas-

ter’s thesis, Department of Computer Science, University of Water-

loo, Waterloo, Ontario, Canada N2L 3G1, 1990.

[SG82] S. Sechrest and D.P. Greenberg. A visible polygon reconstruction

algorithm. ACM Transactions on Graphics, 1(1):25–42, 1982.

[SH76] M.I. Shamos and D. Hoey. Geometric intersection problems. In 17th

IEEE Symposium on Foundations of Computer Science, pages 208–215,

1976.

[Smi78] A.R. Smith. Color gamut transform pairs. Computer Graphics,

12(3):12–19, 1978.

[Sob65] J.T. Soby. René Magritte. The Museum of Modern Art, New York,

1965.

[SS60] S.S. Stevens and J.C. Stevens. Brightness function: Parametric effects

of adaptation and contrast. Journal of the Optical Society of America,

50(11):1139, November 1960.

BIBLIOGRAPHY 136

[SS63] J.C. Stevens and S.S. Stevens. Brightness function: Effects of adap-

ation. Journal of the Optical Society of America, 53(3):375–385, March

1963.

[STN87] M. Shinya, T. Takahashi, and S. Naito. Principles and applications

of pencil tracing. In SIGGRAPH ’87 Proceedings, pages 45–54, 1987.

[Sto71] J. Stoer. On the numerical solution of constrained least-squares prob-

lems. SIAM J. Num. Anal., 8:382–411, 1971.

[TR91] J. Tumblin and H. Rushmeier. Tone reproduction for realistic com-

puter generated images. Technical Report GIT-GVU-91-13, Graphics,

Visualization, & Usability Center, College of Computing, Georgia In-

stitute of Technology, Atlanta GA, 1991.

[WCG87] J.R. Wallace, M.F. Cohen, and D.P. Greenberg. A two-pass solution

to the rendering equation: A synthesis of ray tracing and radiosity

methods. In SIGGRAPH ’87 Proceedings, pages 311–320, 1987.

[WHG84] H. Weghorst, G. Hooper, and D.P. Greenberg. Improved computa-

tional methods for ray tracing. ACM Transactions on Graphics, 3(1):52–

69, 1984.

