THE SPARSE BASIS PROBLEM AND MULTILINEAR ALGEBRA*
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Abstract. Let A be a k by n underdetermined matrix. The sparse basis problem for the row
space W of A is to find a basis of W with the fewest number of nonzeros. Suppose that all the entries
of A are nonzero, and that they are algebraically independent over the rational number field. Then
every nonzero vector in W has at least n — k + 1 nonzero entries. Those vectors in W with exactly
n — k 4+ 1 nonzero entries are the elementary vectors of W. A simple combinatorial condition that is
both necessary and sufficient for a set of k elementary vectors of W to form a basis of W is presented
here. A similar result holds for the null space of A where the elementary vectors now have exactly
k + 1 nonzero entries. These results follow from a theorem about nonzero minors of order m of the
(m — 1)st compound of an m by n matrix with algebraically independent entries, which is proved
using multilinear algebra techniques. This combinatorial condition for linear independence is a first
step towards the design of algorithms that compute sparse bases for the row and null space without
imposing artificial structure constraints to ensure linear independence.
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1. Introduction. Many situations in computational linear algebra and numerical
optimization require the computation of a sparse basis for the row space or the null space
of a sparse, underdetermined matrix A. The sparse row space basis problem (hereafter
the row space problem) is to compute a basis for the row space of A with the fewest
number of nonzeros. Similarly, the sparse null space basis problem (hereafter the null
space problem) is to compute a basis for the null space of A with the fewest number
of nonzeros. It turns out that both these problems are computationally intractable:
they are NP-hard [1, 8, 9]. Under a nondegeneracy assumption called the matching
property, Hoffman and McCormick [5, 8] designed polynomial time algorithms to solve
the row space problem. Sparsest null bases can be characterized by means of a matroid
greedy algorithm [1, 9], yet the null space problem turned out to be harder than the
row space problem; heuristic algorithms to compute sparse null bases were designed
and implemented in [2, 4].

All algorithms known to us for computing sparse null bases have two components:
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a method to compute a sparse vector in the null space of the given matrix, and a
mechanism for ensuring linear independence when previously computed null vectors
are augmented with the new null vector. To keep the time complexity of null basis
algorithms low, the latter is achieved by insisting that the null basis be a trapezoidal
matrix, that is, a matrix of the form [ B, L ] where L is either an identity matrix
or a lower triangular matrix with nonzero diagonal elements. However, this might be
a severe restriction on the structure of the null basis since there may be sparser null
bases that are not trapezoidal.

The fundamental question that we consider is the following: Given an underde-
termined matrix A whose nonzero elements are algebraically independent, is there a
combinatorial condition that characterizes a set of linearly independent vectors in the
row space (or null space) of A? By a combinatorial condition we mean a condition that
uses only the zero-nonzero structure of the set of vectors. This question was raised as
an unsolved problem in [9]." A solution to this problem will enable us to design algo-
rithms for computing sparse bases for the row and null space without imposing artificial
structure constraints to ensure linear independence.

Since we are concerned only with sparse bases, we can restrict our attention to ele-
mentary vectors of the subspace (Fulkerson [3], Rockafellar [10], and Tutte [12]). (This
restriction is necessary to obtain a nontrivial solution of the problem.) Accordingly we
now turn to a discussion of elementary vectors. Let z = (1, 22,...,2,) be a vector in
the n-dimensional real vector space R". The support of z is the subset of {1,2,...,n}
given by supp(z) = {7 : z; # 0}. Now let W be a subspace of dimension k¥ of R". An
elementary vector of W is a nonzero vector of W whose support is minimal, that is,
does not properly contain the support of any nonzero vector of W. It is easy to verify
that two elementary vectors of W with the same support are scalar multiples of each
other and hence, up to scalar multiples, W has only finitely many elementary vectors.
It is also easy to verify that the elementary vectors of W span W. It follows that a
sparsest basis of W contains only elementary vectors. Thus it is natural to look for a
basis of W among its elementary vectors.

Hence a more precise statement of the problem is to combinatorially characterize
a set of linearly independent elementary vectors in the row space or the null space
of an underdetermined matrix whose nonzero elements are algebraically independent.
This problem turns out to be quite difficult, since the set of supports of the elementary
vectors of a subspace W can have an intricate structure. However, we now consider a
situation in which the set of supports of the elementary vectors has a simple structure,
and in this case, we provide a combinatorial characterization of linear independence.

! We thank Steve Vavasis for rekindling our interest in this problem by raising it during the open
problem session at the IMA workshop on Sparse Matrix Computations in October 1991.
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Our proof of this result uses techniques from multilinear algebra.

Let A be a k by n matrix that is nondegenerate in the sense that every submatrix
of A of order k is nonsingular. Then the support of each elementary vector in the
row space of A has cardinality n — k 4+ 1 and each subset of {1,2,...,n} of cardinality
n —k+1 is the support of some elementary vector (see the next section). Similarly the
support of each vector in the null space of W has cardinality £ 4+ 1 and each subset of
{1,2,...,n} of cardinality k+ 1 is the support of some elementary vector. Even in the
restrictive case in which W is the row space or null space of a nondegenerate matrix, it
seems difficult to determine if a set of elementary vectors of W is linearly independent.
The linear independence of elementary vectors of such subspaces W does not in general
depend only on the supports of the elementary vectors. Thus we need a more restrictive
assumption than nondegeneracy.

A k by n matrix A is generic if all of its kn elements are nonzero, and they form
an algebraically independent set over the rational number field Q. If A is generic over
Q, then obviously every submatrix of A of order k£ has a nonzero determinant. Hence,
generic matrices are nondegenerate.

In this paper we identify a necessary and sufficient condition that must be satisfied
by the supports of the elementary vectors of the row space (respectively, null space)
of a generic matrix in order that the elementary vectors be linearly independent. This
condition leads to a polynomial algorithm for determining whether a set of elementary
vectors in one of these two subspaces is a basis.

Let J = {J1,J2,...,J:} be t subsets of {1,2,...,n} each of cardinality m — 1.
Then J satisfies the m-intersection property provided

(1.1) |Miep Ji| <m —|P| (YP C{1,2,...,t},P +0).

The main results of this paper, as they apply to the row space and null space problems,
are the following two theorems.

THEOREM 1.1. Let A be a k by n matriz that is generic over Q, and {1, I, ..., 1;}
denote a collection of t < k subsets of {1,2,...,n} each of cardinality n—k+1. Then the
elementary vectors z(I1),z(l2),...,z(l;) with supports I, I, ..., I;, respectively, of the
row space of A are linearly independent if and only if the set {I.,1,,...,I;} consisting
of the complements of their supports satisfies the k-intersection property, that 1s,

|mi€PTi|§k_|P| (VPQ{1727---7t}7P7£0)'

THEOREM 1.2. Let A be a k by n matriz that is generic over Q and {1, I5,...,1;}
denote a collection of t < n—k subsets of {1,2,...,n} each of cardinality k+1. Then the
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elementary vectors y(I1),y(Is),...,y(I;) with supports I1, I, ..., I, respectively, of the
null space of A are linearly independent if and only if the set {I,,I,,...,I;} consisting
of the complements of their supports satisfies the (n — k)-intersection property, that is,

|mi€PTi|§n_k_|P| (VPQ{1727---7t}7P7£0)'

The combinatorial conditions given in these two theorems can be used to test the
linear independence of a set of elementary vectors in polynomial time. We now show
how this can be accomplished for the row space.

Let P be a nonempty subset of {1,...,k}. The condition in Theorem 1.1 can be
restated as

| Uiep I| > n — k+ |P|,

since | Niep I;| + | Usep I;] = n. Without loss of generality, assume that the rows in P
are numbered P = {1,...,p}. The last inequality yields

| Usep\gpy Li \ | > |P| =1 (VP C{L,2,...,p},p € P).

If we let X denote the k by n matrix with rows z(I1),z(l2),...,#(Iz), then this is the
set of Philip Hall conditions for the submatrix X[{1,...,p—1},,] to have a row-perfect
matching.

We can use the above condition to test the linear independence of a set of elementary
vectors in the row space when a partial basis of p — 1 rows is augmented by a newly
computed row p. We assume inductively that the partial basis satisfies the k-intersection
property. Now when the p-th row is added to the partial basis, we check whether the
submatrix in the preceding paragraph has a row-perfect matching. If it does, then
clearly every set P’ C P that includes p satisfies the k-intersection property. Also,
every set P’ C P that does not include p satisfies the k-intersection property by the
inductive hypothesis. Hence the k-intersection property for row space bases can be
checked by solving & maximum matching problems. The matchings can be computed
in O(k'%e) time, where e is the number of nonzeros in the sparse row basis.

Theorems 1.1 and 1.2 are consequences of a theorem (Theorem 2.1) about com-
pound matrices, and we briefly review this matrix construction. Let X be a p by ¢
matrix and let r be a positive integer with » < p,q. Let S,, denote the sequence of
all subsets of {1,2,...,p} of cardinality r ordered lexicographically. Similarly, let S, ,
denote the sequence of all subsets of {1,2,...,q} of cardinality r ordered lexicographi-
cally. The r*®-compound of X is the (f) by (3) matrix C,(X) with rows indexed by S, ,,
and columns indexed by S, , whose entry in the position corresponding to K in S, , and
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L in S, , is the determinant det X[K, L] of the submatrix of X with row indices in K
and column indices in L. An important fact about compounds is that the multiplica-
tive property C,.(XY) = C,(X)C,(Y) holds. In particular, if X is a square nonsingular
matrix of order n and Y = X!, then C,(X)C,(X™') = C.(I,) = Iy, where N = (:),
and hence C,(X) is nonsingular. Notice that if X is a square matrix of order n, then
Cn-1(X) is, up to multiplication of some of its rows and columns by —1, the adjoint of
X.

The rest of this paper is organized as follows. In Section 2, first we show that the
problem of linear independence of a set of elementary vectors (of the row space and null
space) of a k by n nondegenerate matrix A is equivalent to the problem of determin-
ing whether the determinant of a certain submatrix of the (k — 1)th compound matrix
Cr-1(A) of A is not zero. The entries of Cy_1(A) are the determinants of all the sub-
matrices of A of order k — 1 arranged in lexicographical order of their set of row indices
and of their set of column indices. If the determinant of this submatrix of Cy_1(A4)
is nonzero, then we show that k-intersection property must be satisfied. However, to
prove the converse for generic matrices, we must show that the k-intersection property
implies that this determinant is not identically zero. Since the determinant of a sub-
matrix of Cp_1(A) is an expression involving determinants of submatrices of A of order
k —1, we are faced with the task of showing that it is not a determinantal identity.? We
conclude Section 2 by stating our main result (Theorem 2.1) about compound matrices.
In Section 3 we discuss certain concepts in multilinear algebra, namely, tensor spaces
and exterior vector spaces that are needed to obtain our results. In Section 4 we state
our main theorem (Theorem 4.1) in multilinear algebra. In Section 5 we apply this
theorem to prove Theorem 2.1. In Section 6 we give the proof of the main theorem. In
Section 7 we make a few concluding remarks and state a conjecture.

2. Elementary vectors and matrix compounds. Let A be a k by n nonde-
generate, real matrix and let W be the row space of A. Then each elementary vector of
W contains exactly & — 1 zeros and n — k + 1 nonzeros. Moreover, given any subset [
of {1,2,...,n} of cardinality n — k + 1 there is an elementary vector z(I) of W whose
support equals I. The nonzero coordinates of the vector z(I) are given by

(2.1) z(I); = (—1)» " det A[;, TU {5}] (5 €I),

2 One could argue that our task would have been a lot simpler if we had only to verify that a
certain expression involving determinants of submatrices of A was a determinantal identity, that is,
was equal to zero no matter what real values were substituted for the indeterminate entries of A. To
show that an expression is not a determinant identity, one has to verify that one can choose real values
for the indeterminate entries in order that the expression is not zero. One cannot expect to be able to
construct these real values but only to show that they must exist.
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where p; equals the number of integers 7 in I that are less than j. Here I is the
complement of I in {1,2,...,n} and A[:,T U {j}] denotes the full-rowed submatrix of
A of order k determined by the columns indexed by the integers in T U {j}. To see
that this defines a vector in the row space of A whose support is I, we expand the
determinant in (2.1) by column j of A and obtain

(2.2) o(I); = Y(~1) det AR, Tlay; (j € I)

=1

where ¢ denotes the complement of {i} in {1,2,...,k} and A[7,I] is the submatrix of
A determined by the rows and columns indexed by the integers in ¢ and I, respectively.
For jin I, z(I); is a linear combination of the elements in column j of A by (2.2). For
7 in I, z(I); is zero by (2.1), since it is the determinant of a matrix in which column j
of A occurs twice. Thus z([]) is a linear combination of the rows of A and hence belongs
to the row space of A.

Let z(I1),2(I2),...,z(l;) be t elementary vectors of W. For each vector z(1;) there
exists a unique vector y(/;) in R* such that

z(1;) = y(I;)A.

Moreover, since the rank of Ais k, #(I1),z(1l5),...,z(I;) are linearly independent vectors
in R™ if and only y(I1),y(l3),-..,y(I;) are linearly independent vectors in R¥. Since
z(I;); = 0 for 4 in I, the vector y(I;) is the unique (up to scalar multiples) nontrivial
solution z in R* of the k — 1 equations

zA[:, T} = 0.
Thus by Cramer’s rule
(2.3) y(L;); = (1) det A[s,I;] (i =1,2,...,k)
where, as before, 7 is the complement of {i} in {1,2,...,k}. Hence

[ y(I)" y(L)T - ()" |

is a k by ¢ submatrix of the (k — 1)st compound Cj_1(A) of A. (More precisely, it is a
k by t submatrix of Cj_1(A) with row ¢ multiplied by (—1) for 7 = 1,2,...,k.) Note
that Cr_1(A4) is a k by (,:1) matrix. Summarizing, we have the following:

(I) The elementary vectors z(I1),#(l2),...,z(I;) of the row space W

of the k by n nondegenerate matrix A are linearly independent if and
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only if the k by ¢ submatrix Cj_1(A)[:, {I1, I, ..., 1:}] of Cr_1(A) de-
termined by its columns indexed by I1,I5,..., I, has rank equal to %.
Equivalently, the elementary vectors z(I1), (l2),...,z(l;) are linearly
independent if and only if not all of the determinants

det Ok_1(A)[{E,E, .- 75}7{I_17I_27' . '7I_t}7
(1§7:1<7:2<"‘<7:t§k)

vanish.

If we assume that the matrix A is generic over Q, then by taking ¢t = k we see that
the problem of determining whether a set of k elementary vectors of the subspace W
(the row space of the k by n generic matrix A over Q) is a basis of W is equivalent
to the problem of determining whether the determinant of a submatrix of order k& of
the (k — 1)st compound Cy_1(A) does not vanish identically (that is, is not an identity
satisfied by the determinants of the submatrices of order £ — 1 of k by n real matrices).

Considerations similar to the above apply to the null space U of the matrix A.
Assume again that A is nondegenerate. Then the supports of elementary vectors of U
are exactly the subsets I of {1,2,...,n} of cardinality k¥ + 1. Indeed by Cramer’s rule
again, it follows that for each subset I of {1,2,...,n} of cardinality k+1 the elementary
vector y(I) of U with support I satisfies

y(I)i = (1) det A[, I\ {i}] (i € I).

Let y(I1),y(I2),...,y(I:) be t elementary vectors of U. There exists an n — k by n
matrix B with rank equal to » — k such that the row space of B equals U. Suppose that
some submatrix of B of order n — k has a zero determinant. Then after elementary row
operations we may assume that some row of B has at least n — k zeros. Since ABT = O
this implies that some set of k columns of A is linearly dependent contradicting the
nondegeneracy of A. We conclude that the matrix B is also nondegenerate. Let z(1) be
the unique vector in R"* such that y(I) = z(I)B. The vectors y(I1),y(I2),...,y(I;)
are linearly independent if and only if z([y),2(I2),...,2(l;) are linearly independent.
The vector z(I;) is the unique (up to scalar multiples) nontrivial solution v of

vBl:;, I;] = 0.

Using Cramer’s rule as above we conclude the following:
(II) The elementary vectors y(I1),y(I2),...,y(I;) of the null space
U of the k by n nondegenerate matrix A are linearly independent if
and only if the n — k by ¢ submatrix of C,,__1(B) determined by its
columns indexed by {I,I,...,I;} has rank equal to ¢t. Equivalently,
7



the elementary vectors y(I1),y(ls),...,y(l;) are linearly independent
if and only if not all of the determinants

det Corr(B)(Em, 20 s Th {5 T oY,
(1§i1<i2<---<it§n—k)

vanish.

If A is generic over Q, then by taking { = n — k we see that the problem of
determining whether a set of n — k elementary vectors of the null space U of A is a
basis of U is equivalent to the problem of determining whether the determinant of a
full-rowed submatrix of order n — k of the (n — k — 1)st compound of the matrix B does
not vanish identically.

Now let A denote an m by n real matrix. Let Ji,Js,...,J; be ¢ < m subsets of
{1,2,...,n} each of cardinality m — 1. We consider the m by ¢ (full-rowed) submatrix

(2.4) Cr-1(A) [, {J1, 2y - .-, Ji}]

of the (m — 1)st compound of A. If for some 7 # j we have J; = J;, then two columns
of (2.4) are identical and hence the matrix has linearly dependent columns. If ¢ > m
then (2.4) has more columns than rows and hence has linearly dependent columns. We
generalize these observations by showing that if the ¢ sets Jy,Js,...,J; do not satisfy
the m-intersection property, then the columns of (2.4) are linearly dependent.

Assume that p > 2 of the sets, say Ji,Js,...,J,, satisfy

JNnJyNn---NJ,=J where |[J| =¢>m—p+ 1.

First suppose that the columns of A with index in J are linearly dependent. Then
the matrix A[:, ;] has linearly dependent columns and hence its rank is at most m — 2.
We may multiply A with nonsingular matrices corresponding to elementary row opera-
tions without changing linearly independent sets of columns of A. By the multiplicative
property of compounds, the same observation can be made for compound matrices of
A. Hence we may assume that the last two rows of A[:, J;] are zero rows. This implies
that the column of C,,,—1(A) with index J; is a zero column and hence (2.4) has linearly
dependent columns.

Now suppose that the columns of A with index in J are linearly independent. Using
the multiplicative property of compounds again we may assume that

[

where I, is the identity matrix of order ¢, O is an m — ¢ by ¢ zero matrix and F' is
an m — ¢ by n — ¢ matrix. Let Z be the m by p submatrix of (2.4) corresponding to
8



the index sets Ji,Ja,...,Jp. Let J! = J;\J (i = 1,2,...,p). The submatrix of Z

determined by its last m — g rows equals
Cra(A){g+1,...,m5 {1, Jay oo Jpt] = Conega (F) 5, {1, Jos - - -5 S}

By the Laplace expansion for determinants along a set of rows it follows that for each
7 between 1 and g, the row of Z indexed by j is a linear combination of its last m — ¢
rows. Hence the rank of Z is at most

m—qg<m—-(m—-—p+1)=p—1.

Thus the columns of Z, and hence the columns of (2.4), are linearly dependent if
J1,J2,...,J; do not satisfy the m-intersection property.

Our main result about compound matrices asserts that for generic matrices, the
converse holds as well.

THEOREM 2.1. Let A be a m by n matriz that is generic over Q. Let Jy,Js,...,J;
be t subsets of {1,2,...,n} each of cardinality m — 1. Then the rank of the m by t
submatriz of the (m — 1)st compound Cp,—1(A) given by

(2.5) Cn—1(A)[5, {J1, Iz, - -, Je}]

equals t of and only of J1,Js,...,J; satisfy the m-intersection property.
In the next section we discuss the multilinear algebra that we use in order to show

that if A is generic over Q and Jq,Js, ..., J; are subsets of cardinality m — 1 that satisfy
the m-intersection property

(2.6) | Niep J; | <m —|P| (P C{1,2,...,t})

then the columns of (2.5) are linearly independent.
Theorem 2.1 is proved in Section 5.

3. Tensor and exterior spaces. We refer the reader to Marcus ([6] and [7]) for
the basic multilinear algebra discussed in this section. As already pointed out, our task
is made more complicated by the fact that we have to show that a certain expression
is not a determinantal identity. The multilinear algebra is needed (apparently) to show
the existence of certain numbers without actually being able to construct them.

Let W be a n-dimensional vector space over R. The tensor product of W with itself
is the n?-dimensional real vector space W @ W spanned by the decomposable tensors
z @ y with ¢ and y in W. The tensor product is an abstract algebraic construction. If
W equals R", and ¢ = (z1,22,...,2,) and ¥y = (y1,¥2,...,Yn) are vectors in W, then a
concrete realization of z @ y is the outer product zTy. In this case W ® W is the vector
space spanned by the outer products of vectors in W.
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The m'™ tensor power of W is the n™-dimensional real vector space
QW =W®g---@W (m W)

spanned by all of the decomposable tensors w; ® -+ ® w,, where {wy,...,w,} C W.
The essential facts to keep in mind about the tensor power ™ W are:
(1) the map

(W1yeeny W) = W1 Q-+ @ Wi
is multilinear: for instance,

(cw] +dw])@wz - @ Wy = c(W; QW @+ W) + (W] QW ® + -+ Q wy,)

for all real numbers ¢ and d and all vectors w},w},ws,...,w, in W,
(2) (w1 QW@ Qwp) =(cw1) QW Q@+ QW =+ =W QWs Q-+ ® (cwp,)
for all real numbers ¢ and all vectors wq,ws,...,w, in W, and

(3) if {®1,22,...,2,} is a basis of W then the set of n™ vectors
{2;, @@z, 11 <41,...,0, <n}

is a basis of @™ W.
An inner product (-,-) on W induces an inner product on @™ W by defining

m

(@01 @ ® Wy 01 @+ @ o) = [ (03, 7)

=1

and extending linearly.?
The wedge product of vectors wy,...,w,, is the element of @ W defined by

Wy A e Awy, = E Sign (0 )we(1) ® +++ @ Wo(m)

where the summation extends over all permutations o of {1,2,...,m} and sign(o) is
+1 if o is an even permutation and —1 otherwise. If w;,ws,,...w,, are the row vectors
of an m by n matrix B, then C,,(B) is a concrete realization of w; A --- A w,,. The
subspace of Q"W spanned by all the wedge products of m vectors of W is the mth
exterior space* over W and is denoted by A™W. The essential facts to keep in mind
about the exterior space AW are:

3 All of this applies to the complex number field provided we use a unitary inner product.
4 Tt is also called the mth Grassmann space over W and the mth skew-symmetric space over W.
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(i) if {y1,Y2,-..,Yn} is a basis of W then the set of vectors
{yiy Ao ANy, 11 <4y < oo <y < m}

is a basis of A™W (in particular, these vectors are linearly independent) and

dim AW = (”)

m

(ii) wy A -+ A wy = 0 if and only if the vectors wy,...,w,, are linearly dependent,
and

(i) if U is a subspace of W of dimension m with a basis ui, ..., %m, then {u; A

-+« A\ Up } is the subspace A™U of AW of dimension 1.
Using the definition of wedge product we calculate that the induced inner product on
the exterior space AW satisfies

(3.1) (U Ao AUy 01 A AVy) = MU @+ @ Uy V1 A v A V)

(’11,1,’1)1) ot (u17vm)
= mldet

(Ums 1) o (Ums V)

Hereafter we shall denote any matrix of the form as the one appearing in (3.1) by
specifying its (7, j)th element:

[ (wsy v;) ] (for ¢,7=1,...,m).

If U and V are two subspaces of W of dimension m, then it follows from (ii) and

(iii) that for bases {ui,...,um} of U and {vy,....,v,} of V, whether or not (ug A--- A
Um,V1 A -++ A V) equals zero is independent of the choice of the bases {u1,...,unm}
and {v,....,vm} of V. For convenience we denote any of these inner products (u; A

“ o AU,V A -+ - Avy,) by [U,V]. The orthogonal complement of a subspace V of W is
denoted by V*.

LEMMA 3.1. Let U and V be subspaces of W of dimension m. Then the following
are equivalent:

(a) [U,V]#0,

(b) U+ NV ={0},

(¢) UNnV+={0}.
Proof. Let uy,...,u,, be a basis of U. If there were a nonzero vector v; in U+ NV,
then extending v; to a basis v1,...,v, of V we see that the determinant in (3.1) is
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zero and hence [U,V] = 0. Therefore (a) implies (b). Now assume that (b) holds and
consider the vector space U; = (uq,...,%—1,%it1,...,Uy) spanned by all but the ith
basis vector u;. It follows from (b) that dim U NV = 1, since we can obtain a vector in
this subspace by subtracting appropriate multiples of the vectors in a basis of U; from
u;. Let v; be any nonzero vector in U;- N V. By (b) again we conclude that (u;,v;) # 0.

We can repeat this argment to conclude that (u;,v;) # 0, for ¢ = 1, ..., m. Hence the
determinant in (3.1), T2, (u;,v;) # 0 and thus (a) holds. Since [U, V] = [V, U], (b) and
(c) are equivalent and the lemma follows. O

4. A theorem in multilinear algebra. We now formulate a theorem concerning
exterior spaces that enables us to solve our original problems concerning bases for the
row space and null space of a generic matrix. In the next section we show how this
theorem and a combinatorial lemma can be used to prove Theorems 1.1 and 1.2. In the
final section we prove the multilinear algebra theorem. It will be convenient to use the
language of projective geometry and algebraic varieties to describe the theorem.

We obtain an equivalence relation on points in RV¥*! by defining two points z =
(zo,...,zn) and ' = (zo/,...,zy) to be equivalent if there is a real constant A such that
z = Az'. Then N-dimensional projective space over the real field PV (R) is the set of
equivalence classes of this relation on R¥+1\ {0}, and (zo, ..., zx) are the homogeneous
coordinates of . Note that the projective dimension is one less than the number of
coordinates.

Let
Us={p:p=(z0,...,25) € PY(R) and z, # 0}.

Then the map ® taking (z1,...,zx) € RY to (1,z4,...,zx5) € PY(R) is a one-to-
one correspondence between RY and U, because given p = (zo,...,zx) € Up, we can
multiply by (1/z) to obtain an equivalent point and then compute the inverse map
from Uy to RY. Thus we can identify Uy with RN. f H={p#0:p = (0,zy,...,2zx)}
‘the hyperplane at infinity’, then N-dimensional projective space has the representation
PY(R)= Uy U H, i.e., it consists of RY augmented with the hyperplane at infinity.

A wvariety is the solution set of a system of multivariate polynomials p;=0, ...,
ps = 0 in the variables zg, ..., zx. It is a projective variety if each p; is a homogeneous
polynomial, i.e., each term in p; has the same total degree.

Let W be an inner product space of dimension n over R. Let m be an integer
with 1 < m < n. The set of all subspaces X of W of dimension m are the points
of a projective variety W,,. Choose an m by n matrix F whose rows form a basis of
X, and consider the map X — C,,(F) that maps the subspace X to the set of (Z)
determinants of all submatrices of order m of E. This is a well-defined, injective map
from the set of m-dimensional subspaces of W to real projective space P of (projective)
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dimension (Z) —1. The (Z) homogeneous coordinates are called the Plicker coordinates
of X, and they satisfy certain quadratic relations called the Plicker relations. If we
choose another matrix F' whose rows form a basis of X, then the effect is to multiply the
Pliicker coordinates of X by a common nonzero scale factor. The projective variety W,,
consists of all points that satisfy the Plicker relations, and is known as the Grassmann
variety.

A subvariety of W,, is a variety that is a nonempty subset of the subspaces in W,,.
A subvariety of W,, is proper provided that it does not contain at least one subspace of
w.

Let X denote a subspace of W of dimension m. By property (i) of exterior spaces,
A™"1X is a subspace of @™ 'W of dimension m. By property (ii) A™(A™1X) is a
subspace of @™ VW of dimension 1. Let Uy,Us,...,U, be m subspaces of W of
dimension m — 1. Then each A™7'U; is a subspace of ™ 'W of dimension one, and
(/\m_lUl) A (/\m_1U2) Ao A (/\m_lUm) is a subspace of Q™Mm=DW of dimension zero

or one. The subspaces Uy, Us,...,U,, satisfy the dimension m-intersection property
provided that
(4.1) dim Niep U; <m — |P| (VP C{L1,2,...,m},P #£0)

Clearly the dimension m-intersection property is the analogue for subspaces of the m-
intersection property for subsets.
We now come to the main theorem, the proof of which is given in the final section.
THEOREM 4.1. Let W be an inner product space over R of dimension n, let m be
an integer with 2 < m < n, and let Uy,U,,...,U, be m subspaces of W of dimension
m — 1. Define Wy, (U1, Us,...,Uy) to be the set of all subspaces X of W of dimension

m satisfying
(4.2) [ANATTEX), (A™TTO) A (ATTOR) A - A(A™H0,,)] = 0.
Then Wy (U1, Us, ..., Uy) is a proper subvariety of W, if and only if Uy, ..., U, satisfy

the dimension m-intersection property.

In other words, the theorem states that there exists an m-dimensional subspace X
of W for which (4.2) is not satisfied if and only if Uy, ..., U, satisfy the dimension
m-intersection property.

Let X have a basis #{,...,2,,, and for ¢ = 1,...,m, let X; be a subspace of X
spanned by @1, ..., ®;_1, Tit1, ..., &m. LThen making use of (3.1), we can express the
inner product in (4.2) as

(4.3) [(A™TE X)) A (AT X)) A - A (AT X)),
(AU A (ANTTO) A oo A (AT
= det [ (X, Uj] ] (fori,7 =1,...,m).
13



We will make use of this representation of the inner product in the remaining sections
of the paper.

5. Proofs of Theorems 1.1,1.2 and 2.1. Before applying Theorem 4.1 to com-
pound matrices, we prove the following lemma that may be of interest in its own right.

LEMMA 5.1. Let I, I,,...,I; be t < m subsets of {1,2,...,n} each of cardinality
m — 1, and assume that the m-intersection property

(5.1) | Niep I;| <m — | P

holds for all nonempty subsets P of {1,2,...,t}. Then there exist m — t subsets
Livi,. .., Ly of {1,2,...,n} of cardinality m — 1 such that (5.1) holds for all nonempty
subsets P of {1,2,...,m}.

Proof. It suffices to show that there exists a subset ;11 of {1,2,...,n} of cardinality
m — 1 such that (5.1) holds for all nonempty subsets P of {1,2,...,t+1}. If |Niep I;| <
m — |P| for all subsets P of {1,2,...,¢} with |P| > 2, then we may choose I;,; to be
any subset of {1,2,...,n} of cardinality m — 1 different from I, I,..., L.

Hence consider the situation when there exists a subset P with |P| > 2 that satisfies
the m-intersection property (5.1) as an equality. We show that then {1,2,...,t} can
be partitioned into maximal subsets that satisfy (5.1) as equalities.

Let P and @ be two nondisjoint subsets of {1,2,...,¢} satisfying |N;epl;| = m—|P]
and |N;eqli| = m—|Q|, respectively. Write X = N;cpl; and Y = N;cgl;. Then applying
the identity | X NY| = |X| + |Y| — |X U Y| we obtain

| Niepug Lil = [ Niep Lil 4 | Nicq L — [(NiepLi) U (Nicgs)|-

Since miepfi, ﬂieQIi g ﬂieanIi, we see that
(NiepI;) U (Niceli) € Nicpngli-
Putting it all together, we obtain
m—|PUQ| > |Nicpuo i

| Miep Li| + | Nieg Lil — [(MiepLi) U (Nicgls)]
= m— |P|+m —|Q| — |(NiepLi) U (VicgL;)|
m — [P|+m — [Q| — [(MiePneli)]
m — |[P[+m—[Q| - (m—|PNQ)
m— |PUQ|.

VAN,

Therefore

| Niepug Lil =m — |PUQ)|.
14



It follows that there exists a partition {P;, Ps,..., P} of {1,2,...,t} into £ > 1 sets
such that (5.1) holds with equality for each P; and

| Nicg I;| = m — |@| implies that @ C P; for some 3.

We proceed to show how the set I;,; may be chosen in this situation. Let = be any
element of N;cp, I1, and choose I;;; to be any subset of m — 1 elements of {1,2,...,n}
such that

Iiia N (Niep ) = Niep i \ {z}.

Since |I;41| = m — 1 and by the choice of 1,1 we have |I;41 N (Niep ;)| = m — |P1| — 1,
I;11 contains exactly |P;| elements not in N;ep, ;. To prove that (5.1) holds for all
nonempty subsets P of {1,2,...,¢ + 1}, it suffices to show that for each nonempty
subset @ of {1,2,...,t} for which | N;cq I;| = m — |Q], we have

(52) ﬂieQ I; g It_|_1.
Case 1: (@ C P;. Then
z € Niepl; € Niegli and z & Iy

imply that (5.2) holds.
Case 2: @ C P; for some j # 1. Then using (5.1) and the fact that P; is maximal with
respect to the property that | N;cp, I;| = m — | P;|, we obtain

g = |(Nier, i) N (Nicgli| = | Niepyue Ll <m — |Py| — Q] — 1.

Hence

[(MicoLi) \ (Niep, ;)| = m — |Q| — ¢ > |Py| + 1.

Now by construction, I;; contains exactly |Pi| elements not in N;cp I;. Since Nicol;
contains at least |P;| + 1 elements not in N;cp I;, there exists an element y in N;col;
that is not an element of I;;. This completes the proof. a

Proof of Theorem 2.1: In Section 2 we showed that the m-intersection property is

a necessary condition for the matrix (2.5) to have full row rank. Now suppose that the

m-intersection property holds. It follows from Lemma 5.1 that it suffices to prove that

the rank of the matrix (2.5) equals m when ¢ = m. Thus assume that ¢ = m, that

is, that (2.5) is a square matrix. Since the entries of A are algebraically independent

over Q and since the determinant of the matrix (2.5) is a polynomial in the entries of
15



A with integer coefficients, it suffices to show that this determinant is not identically
zero. Let ej,es,...,e, be the standard basis of R”, and let U denote the subspace
spanned by {e; : i € Ji} (k = 1,2,...,t). We shall write the standard basis of Uy
as {e¥, ... ek ). Since {J1,Js,. .., m} satisfy the m-intersection property, it follows
easily that {U;,Us,...,U,,} satisfy the dimension m-intersection property. By Theorem
4.1 there exists a subspace X of R" of dimension m such that (4.2) does not hold.

Let B be an m by n matrix whose rows 1, ..., €, form a basis of X. Now

[ X, Uk]

= (2 Ao Azig Nz Ao Ay el Ao A ek )

= det [ (z;,€F) ] (forj=1,...,i—1,04+1,....m, £=1,...,m—1)

= Cm_1(B)[7, Jr].
Hence from (4.2) and (4.3), we have

(AT X)) A(A™TIX) A - A (AT X,

(AU A (ATUR) A -+ A(AN™H0)]
det [ (X, Uj] ] (fori,7=1,...,m)
= det Om_l(B)[:,{Jl,J2, .o ,Jm}] 7£ 0.

a

Proofs of Theorems 1.1 and 1.2: The proof of Theorem 1.1 follows immediately
from Theorem 2.1 and the calculations of Section 2. The necessity of the (n — k)-
intersection property for the linear independence of the elementary vectors of the null
space of A, y(I1),y(Is),...,y(l;), is an immediate consequence of the calculations of
Section 2.

An argument is needed to derive the converse of Theorem 1.2 from Theorem 2.1,
since the assumption that the matrix A is generic does not imply that the matrix B
(defined in Section 2), whose row space is the null space of A, is generic. But we shall
overcome this by first choosing a generic B and then defining A.

Assume first only that A is a nondegenerate matrix and the sets {I;,I,,..., 1}
satisfy the (n — k)-intersection property. Since the entries of each elementary vector are
polynomials in the entries of A, it follows that the elementary vectors in the null space of
A,y(I),y(I2),...,y(I;), are linearly dependent if and only if the determinantal polyno-
mial vanishes identically for every submatrix of order ¢ of the ¢ by n matrix Y formed by
these elementary vectors. The theorem follows if we can show that there exists at least
one nondegenerate k by n matrix A of rank & for which y(I1),y(I2),...,y(I;) are linearly
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independent, for then at least one of these determinantal polynomials does not vanish
identically. Let B be an n—k by n generic matrix. Let #(I1),z(l2),...,z(l;) be elemen-
tary vectors of the row space of B with supports I, I, ..., I;, respectively. Choose A to
be any k by n matrix of rank %k such that ABT = O. Since BAT = O the arguments in
Section 2 show that A is nondegenerate. Since the (n — k)-intersection property holds,
we conclude from Theorem 1.1 that z([;),z(1ls),...,=(l;) are linearly independent ele-

mentary vectors in the row space of B. We now take the vectors z(I1), z(l2),...,z(1;)
as the elementary vectors y(I1),y(I2),...,y(l;) in the null space of A. This completes
the proof. a

6. Proof of the Main Theorem. In this section we give the proof of Theo-
rem 4.1. The following two elementary lemmas, used in our proof, concern vector
spaces generated by certain operations on subspaces of a vector space, and we review
these operations now. If V; and V; are subspaces of a finite dimensional vector space
W, then their union

ViUV ={v:veVi}U{v:v eV}

is in general not a vector space, since it is not necessarily closed under vector addition.
The sum

V1_|_V2:{v1—|—v2:v1 eV1,v2€V2},
and intersection
VlmV2:{v:v€V1ﬂV2}7

are vector spaces, and it is easy to verify that the sum is the smallest vector space that
contains the vectors in V; U V5.

LEMMA 6.1. Let k be a positive integer and let V,V1,..., Vi be subspaces of a finite
dimensional vector space W over R. Then V C ViU ---UV, if and only if V C V; for
some 1.

Proof. Let V! = V,NV for ¢ = 1,...,k. Then each V' is a subspace of V. If each V/
is a proper subspace of V, then V \ U |V, = V \ UE V! is a set of positive Lebesgue
measure of dimension dim V. O

LEMMA 6.2. Let k > 2 be an integer and let Vi,..., Vi be subspaces of a finite
dimensional inner product space W over R. Then

N Vi= (Vi 4+ W)™
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Proof. First suppose that £ = 2. Then the proof follows by choosing an orthonormal
basis Bis of V1 N Vs, extending to orthonormal bases B, U By of V; and By, U By of Vs,
and then extending to an orthonormal basis B UB; U By U B of W. Then BU B; U B,
is an orthonormal basis of V;* + V,*, and it follows that Bj, is an orthonormal basis of
(V1L + V2L)L. We now assume that k& > 2 and use induction on k. Using the inductive

assumption twice, we obtain
Mia Vi = (NS V) O Ve = (M) + V) = (W + - Ve + W)

a

Proof of Theorem 4.1: Let U;,U,,...,U, be m subspaces of W of dimension m — 1.
Then Wy, (U1, Us,...,Uy) is clearly a subvariety of W,,. Thus the theorem is only
concerned with whether or not it equals W,,.

This proof is technically the most demanding part of the paper, and hence we pro-
vide a sketch of our proof technique before we embark on proving the theorem. The
necessity of the dimension intersection property is the easier part of the proof. We
use dimension counting arguments to show that certain subspaces occurring in the de-
terminantal representation (4.3) of the inner product (4.2) have nontrivial intersection,
leading to a large zero submatrix that makes the determinant zero. Sufficiency is harder,
and is proved by induction on m, by showing that when the dimension intersection prop-
erty is satisfied there exists a subspace X of dimension m, constructed using U7, ...,
UL, such that (4.2) does not hold.

First assume that the dimension m-intersection property (4.1) does not hold. With-
out loss of generality, assume that V = N?_; U; satisfies

(6.1) dmV=m—-p+1

where p is an integer with 2 < p < m. Let X be any subspace of W of dimension
m. We have dim X+ = n — m, and by (6.1), dimV* = n — m + p — 1; hence there
exists a subspace F', contained in both V1 and X, of dimension p — 1. Choose a set
{z1,%2,...,25-1} of p— 1 linearly independent vectors spanning F. For j = 1,2,...,p,
by Lemma 6.2

Ur C(Uf+---+U;)=V".
Since F' and UjL are subspaces of V1, and
dimF—I—dimUjL:(p—l)—l—(n—m—l—l):n—m—l—p>dimVL:n—m—l—p—l,
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we have F' N UjL # {0} for each j = 1,2,...,p. We extend z1,s,...,2,-1 to a basis
T1,%g,..., 2L, of X and let X; be the subspace of X with basis 1,...,2;_1,%11,...,Zm
(1 =1,2,...,m). By the above it follows that

i - ci
X;NnU; #{0} (t=pp+1,...m;5=1,2,...,p),

since such subspaces X; contain F' and F' N UjL # {0}. Hence by Lemma 3.1
[X:,U;] =0 (i=p,p+1,...,m;5=1,2,...,p).

Therefore the matrix in (4.3) whose (7, j)-entry equals [X;,U;] (¢,7 = 1,2,...,m) has
an m — p+ 1 by p zero submatrix with (m —p+ 1) + p = m + 1, and it follows from
the Frobenius-Kénig theorem that its determinant equals zero. This implies that (4.2)
holds for every subspace X of W of dimension m and hence W,,,(U1,Us, ..., Upn) = W,.

Now we prove sufficiency of the dimension intersection property. Assume that
Ui,Us,,...,U, are subspaces of W of dimension m — 1 satisfying the dimension m-
intersection property (4.1); in particular, no two of Uy, Us,..., U, are equal. We prove
by induction on m that there exists a subspace X of W of dimension m for which (4.2)
does not hold.

First we consider the base case m = 2. Then U; and U, are distinct subspaces
of W of dimension 1 and we choose X to be the subspace of dimension 2 spanned
by w; and u, where u; is a basis for U; and us is a basis for U,. Then u; A us €
(A2(ATX)) N ((ATTUL) A (AUR)) and (ug A uz,us A ug) # 0. Hence (4.2) does not hold.

Now suppose that m > 2. If U is a subspace of W of dimension m — 1, then we

define a subvariety F(U) of W,, by
FU)={X:X € Wp,dimX NU* > 2}.

Let X be a subspace in W,, \ F(U). Since dim X = m and dim U+ = n —m + 1, by
the choice of X we have dim X N U+ = 1. Thus the subspace X* = X N (X NUL)* is

in W,,_1. The map
¢v : Wm \ F(U) = W1, where ¢y(X) = X,

is a rational map.

We proceed to construct a subspace X of dimension m, m — 1 subspaces of X of
dimension m — 2, and m — 1 subspaces U, of dimension m — 2 to set up the inductive
step in the proof.

Since Uy, Us,...,U,, are distinct subspaces of the same dimension m — 1, it follows
from Lemma 6.1 that

UtqutuU;yu---UUL_,.
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Let z,, be any vector satisfying
(6.2) Tm €U\ (UFU---UUL_ ).

Let X be a subspace in W,, \ F(U,,) containing ., and let {z,...,Zm_1,2,} be an
orthogonal basis of X containing z,,. Let X; be the subspace of X that is spanned by
{T1,.- s Ti1, Tig1,- -y Tm ), (2 =1,2,...,m). We have X, = ¢p,,(X). Since the vector
z,, belongs to U and X1, ..., X,,_1, by Lemma 3.1 we have

(6.3) (X, Ul =0 (i=1,2,...,m—1).
Further, since dim X N UL = 1,
(6.4) (X, U] # 0.
By (4.3), (4.2) is not zero if and only if

det [ [X;,U5) | (ford,j=1,...,m)
is nonzero, and hence by (6.3) and (6.4), if and only if

det [ [X;,U5] | (fori,j=1,...,m—1)

is nonzero. Thus (4.2) does not hold if and only if

(6.5) [(A™ X)) A (AT X)) A - A A X ),
(A"TTO) A (ANTTO) A oo A (A U1)] # 0.

We now reduce the dimensions of Uy,...,U,,_1 by one in order to apply the induc-
tive assumption.

By (6.2), z,, does not belong to the subspaces U, ..., UL_,, and hence for each

i=1,2,...,m — 1, there exists a basis {ul,u},...,u,_;} of U; with

(6.6) (wm,ué) =0(=1,2,...,m—2) and (2, u’

m—1

) =1
Let subspaces of W be defined by
Ul=Un{zn}" (i=12,...,m—1).

By (6.2) we have



We now use the bases of X; and U;, Lemma 3.1, and the determinantal formula in
(3.1) to compute [X;,U;] for 3,7 = 1,2,...,m — 1. Let X! be the subspace of X; with
basis {z; : j=1,...,i1—1,i+1,...,m —1},(¢ = 1,2,...,m — 1). Using the Laplace
expansion of the determinant in (3.1) by the last row (which is the vector (0,...,0,1)
by (6.6)), we see that each [X;,U;] = m[X],U}]. Hence (6.5) equals

(6.7) [(AT2XD) A A2 XG) A A (ARG, ),
(AU AATT2TR) A A AT T, )

It now follows that (4.2) is not identically zero provided (6.7) is not zero. By the
induction hypothesis (6.7) is not zero provided Uj,U,,...,U; _, satisfy the dimension
(m—1)-intersection property. Our proof will be complete if we show that these subspaces
satisfy the required dimension intersection property for some choice of z,,.

Assume to the contrary that for any admissible choice of z,, in U:\ (U U---UUL_,
there exists an integer k with 2 < k < m — 1 and a subset of {1,2,...,m — 1} (both

depending on z,,) of cardinality k, say the subset {1,2,...,k}, such that
(6.8) dim N, U/ >(m—-1)—k+1=m— k.
Since N¥_,U! C Nk_,U;, we have
dim N%_, U; > m — k,
and since Uy, U, ..., U, satisfy the dimension m-intersection property, we have
(6.9) dim N¥_, U; = m — k.

Hence there exists a set Z C U\ (U U---UUZL_,) of positive Lebesgue measure in
UL such that

(6.10) e, U = N, UYL

We now show that (6.10) leads to a contradiction of the dimension m-intersection prop-
erty (4.1).
If (6.10) holds for all z,, € Z, we claim that

(6.11) Ut CUf+---+ U

(Note that now we are considering the sums of the vector spaces, and not the unions

considered in (6.2).) The proof of the claim is also by contradiction. If the claim were

not true, then (U + -+ + U) N UL is a proper subspace of U and hence we may
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choose the vector z,, € Z in (6.2) so that z,, is in Ui \ (UlL e+ UkL) Let V be the
subspace of W spanned by @,,. Then using the definitions of the subspaces U}, we have

N U =Vin (N U)=(V+ U+ + U C (U + -+ U =N, U,

where we have used Lemma 6.2 twice. The containment relation we have obtained
contradicts (6.10). We conclude that (6.11) is true whenever (6.10) holds.
Writing (6.11) in the form

Up CUS + -+ U = (N, U,

we find

Nk U; C Up.
Therefore
(6.12) Uy 0 (N, U;) =Nk, UL

But now (6.9) and (6.12) contradict the dimension m-intersection property (4.1). This
completes the inductive proof of sufficiency and the proof of the theorem. a

7. Coda. Theorem 4.1 implies a sufficient condition for a collection of vectors in
the wedge product of a vector space to be linearly independent.

COROLLARY 7.1. Let W be an inner product space over R of dimension n and let
m be an integer with 2 < m < n. If Uy,U,,...,U, are m subspaces of W of dimension
m — 1 which satisfy the dimension m-intersection property, then N™ Uy, A" U,, ...,
AU, as vectors in A™ W are linearly independent.
Proof. Assume that Uy, Us,,...,U,, are subspaces of W of dimension m — 1 satisfying
the dimension m-intersection property. Recall that each A™ 71U is a subspace of A™ W
of dimension 1 and thus can be regarded as a nonzero vector of A" 'W. It follows from
Theorem 4.1 that there exists a choice of subspaces X;, X5,...,X,, of W of dimension
m — 1 such that

AT TIX AN X A e AN X, AT O A AT O, A - A AT, £ 0.

Let x; = A™ X, and w; = A™IU; for ¢ = 1,2,...,m. It follows from (3.1) and
elementary column operations that if wy,ws,---,w,, are linearly dependent, then [y; A
X2 A+ A Xmyw1 Aws A -+ -wpy] =0. Hence wy,ws, - -+ ,w,, are linearly independent. O

We remark that the converse of Corollary 7.1 is not true in general. For exam-
ple, let n = 4 and m = 3 and let e1,es,e3,e4 be the standard basis of W = R*.
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Also let Uy, U, and Us be the subspaces of W spanned by {ej, es},{e2, es} and {es, €4},
respectively. Then U;,U,,U; do not satisfy the dimension 3-intersection property,
since Uy N Uy N Us # {0}. Using the concrete realization of the wedge product, we
see that A2U;, A’U, and A? Us are spanned by e; A eg = (0,0,1,0,0,0),es A eg =
(0,0,0,0,1,0) and e3 A es = (0,0,0,0,0,1), respectively, and hence are linearly inde-
pendent.

However the converse of Corollary 7.1 is true if m = n.

COROLLARY 7.2. Let Uy, U,,...,U; be subspaces of R™ of dimension m —1. Then
AU, A Uy, ., AU, are linearly independent if and only iof Uy, Us,...,U; sat-
1sfy the dimension m-intersection property.

Proof. Let J C {1,2,...,t}. Since Uy, Us,...,U; are (m — 1)-dimensional subspaces of
an m-dimensional space, the dimension of N;c;U; is at least m — |J|. By Lemma 6.2,

(mjeJUj)L = (E UjL)L-
ieJ
Hence dim(N;esU;) < m — |J| (and so equals m — |J|) if and only if the vectors
AU, A™ U, ..., A™ LU, are linearly independent. a

The following lemma identifies the supports of the elementary vectors of an arbi-
trary subspace (taken as the row space of a matrix) of R™.

LEMMA 7.3. Let A be an m by n real matriz of rank m. Let I be a subset of
{1,2,...,n}. Then there exists an elementary vector of the row space of A with support
I if and only if (i) the rank of A[:,I] equals m — 1, and (i) the rank of A[:,I U {j}]
equals m for each 7 € I.

Proof. First assume that there is an elementary vector () with support I. If the
rank of A[:,I] equals m, then any linear combination of the rows of A that vanishes on
I is a trivial linear combination. If the rank of A[:,7 U {j}] is less than m for some
J € I, then there is a nontrivial linear combination of the rows of A which vanishes on
T U {j} and hence z(I) is not an elementary vector. Assertions (i) and (ii) now follow.

Now assume that (i) and (ii) hold. Let K be any subset of I of cardinality m — 1
such that the rank of A[:, K] equals m — 1. Then with I replaced by K, (2.1) defines
an elementary vector z(I) in the row space of A with support I. a

We now give a criterion for a set of elementary vectors of a subspace of R™ (again
taken as the row space of a matrix) to be a basis.

THEOREM 7.4. Let A be an m by n real matriz of rank m and let (1), z(I5), ...,
z(L,) be elementary vectors in the row space W of A. Let U; be the subspace of R™
spanned by the columns of A[;,I;] (j = 1,2,...,m) . Then {z(L),z(Ls),...,z(I,)} is a
basis of W of and only if Uy, U,, ..., U,, satisfy the dimension m-intersection property.
Proof. By Lemma 7.3 each of the subspaces U; has dimension m — 1. For each
J = 1,2,...,m there exists a vector y(I;) such that z(I;) = y(I;)A. The vectors
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z(I1),z(1l5),...,z(Iy) are linearly independent if and only if y(I1),y(I2),...,y(In) are.
By Lemma 7.3, there exists K; C I; such that |K;| = m — 1 and the rank of A[:, K}]
equals m — 1. We can identify the vector y(I;) with the vector A™1U; (cf. (2.3)). If
y(I1),y(Is),...,y(Iy) are linearly dependent then A" 1U; A---AA™ U, = 0 and hence
by Theorem 4.1, Uy, Us,...,U,, do not satisfy the dimension m-intersection property.

Conversely, suppose that Uy, U, ..., U,, do not satisfy the dimension m-intersection
property. Then as remarked in the proof of Theorem 4.1 we have

AU A - e AN AT O A - AN, =0
and hence A" Uy, .-+, A™ U, are linearly dependent. O

In the case that A is generic over Q we have shown that the subspaces Uy,...,U,
satisfy the dimension m-intersection property if and only if the sets I1,..., I, satisfy
the m-intersection property. More generally we make the following conjecture.

Conjecture If A is an m by n matrix whose nonzero elements are algebraically in-
dependent over Q, then the elementary vectors z([),z(1ls),...,2(Il) form a basis of
the row space of A (that is, by Theorem 7.4, the subspaces Uy, Us,..., U, satisfy the
dimension m-intersection property) if and only if

rank A[:, Niepl;] <m — |P| (VP C{1,2,...,m},P #0).
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