
A Framework for Advancing Front Techniques of Finite

Element Mesh Generation �

S Farestam yand R B Simpson z

September �� ����

Abstract

Advancing front techniques are a family of methods for �nite element mesh gener�
ation that are particularly e�ective in dealing with complicated boundary geometries�
In the �rst part of this paper� conditions are presented which ensure that any planar
aft algorithm that meets these conditions terminates in a �nite number of steps with a
valid triangulation of the input domain� These conditions are described by specifying
a framework of subtasks that can accommodate many aft methods and by prescribing
the minimal requirements on each subtask that ensure correctness of an algorithm that
conforms to the framework�

An important e�ciency factor in implementing an aft is the data structure used to
represent the unmeshed regions during the execution of the algorithm� In the second
part of the paper� we discuss the use of the constrained Delaunay triangulation as an
e�cient abstract data structure for the unmeshed regions� We indicate how the cor�
rectness conditions of the �rst part of the paper can be met using this representation�
In this case� we also discuss the additional requirements on the framework which en�
sure that the generated mesh is a constrained Delaunay triangulation for the original
boundary�

Classi�cations AMS�MSC� 	
N
� � 	
Y�

 CR G����� I���

Keywords unstructured meshes� �nite element method� Delaunay triangulation

� Introduction

Advancing front techniques are a family of closely related heuristic mesh generation meth�
ods for the �nite element method particularly suited for domains with complicated boundary
curves and internal interfaces� The name refers to the strategy of generating triangles se�
quentially from an ever shrinking set of dynamic curves that start at the boundaries and

�The �rst author has been supported by CERFACS� Toulouse� France� Support was provided to the
second author by the Natural Sciences and Engineering Research Council of Canada� and by the Inf ormation
Technology Research Centre of Ontario� The second author also enjoyed the hospitality of CERFACS during
the collaboration on this research

yCERFACS� ��� Ave� Coriolis� ���	
 � Toulouse� France
zDepartment of Computer Science� University of Waterloo� Waterloo� Ontario� Canada� N�L �G�

�

internal interfaces of the domain and advance into its interior� like the ice�liquid surface of a
freezing ice�cube� These methods � like all mesh generation methods� balance considerations
of correctness� execution e�ciency� and suitability of the resulting triangular meshes to the
application� �See Bern and Eppstein� �	
 for a review of unstructured triangular meshes gen�
erally� and comments on advancing front techniques as heuristics�� In most of the literature
on methods based on the advancing front technique �aft�� the authors concentrate on the
details that di�erentiate the particular version being presented from others in this family�
by its contributions to e�ciency and mesh quality�

In the �rst part of this paper� we present a foundation� or framework� which can ac�
commodate most features of the aft family of methods by various specializations and which
ensures that algorithms which adhere to this framework terminate in a �nite number of steps
having constructed a triangulation of the input domain� i�e� a framework for the correctness
of aft methods� We are not aware of literature that addresses the correctness of a partic�
ular version of the aft� In fact� in George� ��

� there is a discussion of an example of the
failure of the aft method presented in that book� An algorithm is usually expected to be
totally prescriptive of the computation that it is describing� However� the framework that
we discuss only sets minimal requirements for correctness that can be met in a variety of
ways to address goals of e�ciency and mesh quality� In this sense it admits a variety of
algorithms� so we refer to it as a polyalgorithm� The basic polyalgorithm for the advancing
front technique is introduced in x	� An important issue for the discussion of the correctness
of the polyalgorithm is a rigorous description of the geometry of an advancing front� We
refer to this set of edges as a frontal edge set and describe its geometry in x	���

For the generation of unstructured triangular meshes on a polygonal domain� D� two
closely related strategies are common� In the Voronoi� �alternatively referred to as Delaunay
triangulation� approaches� the nodes of the mesh are generated in D by some technique for
suitably distributing them� and then appropriate triangle incidence connections are com�
puted� Standard Delaunay triangulation algorithms compute a mesh on the convex hull of
the node set to form triangles that are as close to equilateral as possible� in a well de�ned
sense� Algorithms for this construct are well known and their correctness long established�
An extensive review� including references to these algorithms� has been published by Auren�
hammer� ��
� For �nite element mesh generation� the mesh must conform to the typically
non�convex boundary of D� and possibly to some internal interfaces� so the classical Delau�
nay triangulation may be replaced for this task by the constrained Delaunay triangulation�
Algorithms and correctness arguments for the constrained Delaunay triangulation have been
published by Borgers� �

� Chew� ��
� Cline and Renka� ��
� Lee and Lin� ���
� and Lo� ���
�
Finite element mesh generation techniques based on this Voronoi approach have been pre�
sented by Chew� ��
� Jian�Ming et al� ���
 � and Vallet� Hecht� and Mantel� �	�
� and are
reviewed in the book by George� ��

� and in the thesis of M�G Vallet� �	�
�

In the aft approaches� the creation of mesh nodes is interspersed with the selection of
triangle incidences for the mesh and the two tasks are directly coupled� I�e� the distinction
between the Voronoi and aft approaches is primarily a methodological one concerned with
the stage at which� and the mechanism by which� the nodes of the mesh are created� Various
versions of the aft have been presented by Bykat� ��
� Cabello et al� ��
� Dannelongue and
Tanguy� ���
� Farestam� ���
� Lohner and Parikh� ���
� Peraire et al� �	�
� and Tilch� �	�
 �
�	�
� Our direct experience with aft algorithms that conform to the framework presented

	

here has been reported in ���
� �	�
� and �	�
� It appears to us that the methods discussed
in the other references could conform to the framework� however� their descriptions give
insu�cient algorithmic detail to be certain�

Bui and Hanh� ��
� and Lo� ���
� illustrate well the close connection between the the aft
and Voronoi approaches� in the methods presented in each of these papers� a node set in D is
�rst generated � and then a triangulation constructed based on it� The authors refer to the
construction of the triangles as being carried out by an advancing front technique� because
the triangles are formed on an ever shrinking boundary�like strip� However� in our view
these methods are probably better categorized as Voronoi approaches since the positions of
the nodes are speci�ed prior to the formation of the triangle incidences�

The second part of this paper discusses the constrained Delaunay triangulation as an
e�cient high level data representation for aft methods� and discusses how the minimal re�
quirements of the polyalgorithm of x	 can be met using this data representation� The use
of the constrained Delaunay triangulation as a data structure for the aft has recently been
proposed by M�uller� Roe and Deconinck� �	�
� We then conclude with comments on how to
extend the basic aft framework to ensure that the generated triangulation is the constrained
Delaunay triangulation of its nodes and the original boundary curves�

Aft methods require e�cient techniques for establishing the visibility in the unmeshed
region of a vertex from an edge� Actually� any triangulation of the unmeshed region can
support e�cient visibility checking� as we indicate in x
� and as has been noted in di�erent
forms by Chew� ��
� Guibas et al� ���
� �	�
� and Lo� ���
� The use of the constrained Delaunay
triangulation in particular has some additional e�ciencies if it is desired that the mesh to
be generated be the constrained Delaunay triangulation of its vertices and boundary and
interface edges of D� To underscore these distinctions� we could have elected to discuss the
extensions of the polyalgorithm of x	 �rst to the use of arbitrary triangulations to support
visibility checking� and then to the use of the constrained Delaunay triangulation� However�
the resulting cross referencing of ideas in these two closely linked topics would seem overly
tedious� so we combine the two discussions and leave it to the reader to note the distinctions
in question�

� The Basic Polyalgorithm

The polyalgorithm is given as the procedure Basic aft in Figure �� It has been broken down
into subtasks with the usual modularity properties of having simpler� relatively independent
substrategies and reduced data access requirements� Each subtask is discussed subsequently�
specifying minimal requirements for it that will ensure a correct algorithm� These minimal
requirements underspecify the subtasks� the remaining �exibility can be directed to e�ciency
and mesh quality goals� Some commentary on possible� or typical� strategies for these pur�
poses is included but the subtasks are not required to use them� The minimal requirements
ensure the correctness of the polyalgorithm in the sense that�

a� the minimal requirements are feasible

b� if subtasks are speci�ed which conform to the minimal requirements� their use in the
framework of the polyalgorithm results in an algorithm that is guaranteed to terminate

P

E

Figure �� Triangle creation pinches o� a multiply connected unmeshed subdomain

producing a triangulation of the input domain�

Naturally� subtask strategies which only meet the minimal requirements� while producing
valid triangulations for complex geometries� will almost certainly yield aft methods that
produce meshes of unacceptably low triangle quality or high execution cost�

Before discussing Basic aft� however� we need to discuss the basic data structure that
it operates on�

��� Boundary curves and frontal edge sets

Afts maintain dynamic lists of edges which form boundary curves� called fronts� for subsets of
the domain that have not yet been triangulated� In this section we describe some geometric
properties of these curves and domains� and give a formal description of this set of edges
� which we will refer to as a frontal edge set� The complexity of an accurate description
of these curves and domains is strongly in�uenced by the form of connectedness of the
input domains to the aft that we chose to allow in our discussion� If we restrict the input
domains to be the simply connected interiors of simple closed polygonal curves� then the
least complicated exposition results� since during an aft� the unmeshed region is a collection
of subdomains of this same simple type� If we allow the input domains to be connected� but
not necessarily simply connected� the description is a bit more complex� For example� if the
input domain� D� is the annulus between two simple closed polygonal curves� C� and C��
then the unmeshed region of an aft will contain a subdomain that is an annulus� until the
aft forms a triangle with base edge� E� on one curve and opposite vertex� P � on the other
�see Figure ��� Immediately after the creation of this triangle� all the connected components
of the unmeshed region will be simply connected� But the component containing the node
P will not be bounded by a simple closed curve� its bounding curve intersects itself at P �

�

D1

D2
=

+

Figure 	� Geometry of modeling an inclusion region

Regions of �nite element modeling interest are commonly collections of connected do�
mains with disjoint interiors representing subregions of di�ering material properties� For
example� Figure 	 shows a rectangular region with an outer annular subdomain� D�� of one
material and an inner core rectangular subdomain� D	� of a second material� As input to an
aft� this region would be presented as the pair of connected domains D�� D	 � which must
satisfy some consistency conditions on their common boundaries� Afts typically build meshes
on each domain of such an input set independently� although not necessarily sequentially�
Hence we can assume without loss of generality that the input to the polyalgorithm is a
connected polygonal domain� We will now give a formal description of the boundary curves
and frontal edge set that occurs in the meshing of such a domain by the polyalgorithm�

formal description

An edge� E� is a directed line segment between an origin node� E�orign� and a destination
node� E�destn� i�e� an ordered pair of nodes� We will use �E to denote the edge between
the same nodes but with the opposite direction�

We now specify the required mathematical properties that will qualify a collection of edges
to be a frontal edge set� �fes�� in the balance of this paper� We will designate the frontal
edge sets of our discussion by C� By virtue of these de�ning properties� a fes has a basic
geometric structure� i�e� its edges form the bounding polygonal curves of a disjoint collection
of connected regions� The rationale for these de�nitions is that if an algorithm conforms to
the polyalgorithm� the sequence of boundary edge updates that it makes maintains the
collection of boundary edges as a frontal edge set� Thus� at each stage of the aft� we can
identify the connected subdomains of the fes as the unmeshed regions of the input domain�

For a collection of edges to be a fes� we require that the edges not intersect except
possibly at their end nodes� and we require each edge� E� to have a unique predecessor
edge� pred�E�� in C i�e� pred�E��destn � E�orign� and a unique successor edge� succ�E��
However� an aft requires that more than two edges should be allowed to meet at a vertex�
so we require further quali�cation of the uniqueness of predecessor and successor edges� For

�

this� we de�ne the turning angle� ��E�F �� �� � � � �� between any two edges E and F for
which E�destn � F�orign as shown in Figure
� positive in the counter clockwise direction�
We require that the successor edge of E make the maximum turning angle of any edge� F �

T

Q

P

F

E

Figure
� Turning angle from edge E to edge F

for which F�orign � E�destn� So� for example� in the case of edges E� V� U� W of Figure �
in which all the edges have Q as an endpoint� and E�destn � Q� we identify the successor

U

W
E

V

Q

Figure �� Multiple edges incident on node Q

of E to be the �rst edge on the left of E� e�g�

��E� succ�E�� � max
G�fU�Wg

���E�G��� ���

This implies that U � succ�E�� Since W must have a unique predecessor� there must be
an edge V with V�destn � Q such that W � succ�V � as shown� We can see that ��� and
the uniqueness of predecessor and successor edges ensures that edges which are incoming to
and outgoing from a single vertex such as Q of Figure � must alternate� with the unmeshed
region contained between a clockwise sequential pair of incoming and outgoing edges�

It follows from these de�nitions that a frontal edge set� C� can be partitioned into closed
oriented polygonal curves which we will call the component curves of C� In fact� these

�

component curves can be identi�ed as the equivalence classes of edges in C determined by
the equivalence relation de�ned between edges E and F in C if there is a chain of successor
edges starting with E and ending with F � Although these curves can intersect themselves at
isolated nodes� ��� ensures that they cannot cross themselves at such a node� so that their
orientation is well de�ned� We identify the point set to the left of the curve as its interior�
which may be bounded or unbounded� If the curve does not intersect itself� the Jordan
curve theorem establishes that it divides the plane into two connected subdomains� and the
bounded one of them is simply connected� If the curve does intersect itself at one or more
isolated nodes� then a limiting argument involving circular arcs about these nodes from each
edge to its successor can be used to ensure that the curve interiors continue to be connected�
although the exteriors are no longer necessarily connected� We will now use curve to mean
a closed polygonal curve of frontal edges� �i�e� an equivalence class of the frontal edge set��
The curve that includes an edge E will be denoted C�E� and referred to as a component
curve of C�

Through these component curves� a frontal edge set de�nes the collection of subdomains
of the region that remain to be meshed� If C�E� has a bounded interior which contains
no other component curves of C� it identi�es one such connected subdomain that is simply
connected� A description of these subdomains is complicated� however� by the possibility
that they may have �holes� in them� i�e� C�E� may contain m component curves C�Fk�� for k�
��	����m� with unbounded interiors �i�e� clockwise orientations�� We can unify our notation
by relabelling E as F�� Then

S �
m�

k��

interior C�Fk� �	�

is a multiply connected subdomain of the region de�ned by the fes� Each component curve
of C of �nite interior determines one such connected subdomain� We will refer to them as
component subdomains of C and to their union as the interior of C� When we wish to identify
a component subdomain with an edge� G� on its boundary� we will designate it S�G�� In the
appendix� we establish a formula for the number of triangles in a mesh on S which is used
in the next section to control the polyalgorithm�

We assume that the input to the polyalgorithm is some boundary description� D� for a
multiply connected domain� It is common in the aft methods to modify the edges of D to
provide control over the sizes and shapes of triangles generated� We assume that this has
already been done� i�e� a method conforming to the polyalgorithm will produce meshes with
the input edges unmodi�ed in the triangulation�

The polyalgorithm initializes its frontal edge set to represent this domain� it then main�
tains the fes as a description of the unmeshed regions and terminates when it is empty� The
fact that the updating of the fes by the polyalgorithm maintains its de�ning properties is
essential to the argument that algorithms which conform to the polyalgorithm are correct
afts� The choice of data structure that an aft algorithm employs to represent the fes is an
important e�ciency consideration� The polyalgorithm has been written without specifying
a particular representation for a fes� C� and the minimal requirements of the subtasks re�
fer to searching C for edges� or nodes� with speci�c properties� Some of the accompanying
comments mention e�ciencies possible if some particular representation of the component
curves� or subregions is available� In x
� the use of the constrained Delaunay triangulation to

�

represent the connected component subregions� S�E�� provides an representation of C that
maintains its geometry explicitly and a corresponding measure of e�ciency�

��� The polyalgorithm

In Figure �� we show the top level decomposition of the polyalgorithm for aft methods as
a procedure named Basic aft� The substeps are given as procedures and functions that
are described subsequently � These procedures appear to have actual argument lists� with
arguments typed in Basic aft� The lists have the form�

�input variables� � �output variables�

with updated data appearing twice� In fact� however� most of the data for the algorithm
can be regarded as global� and each procedure is used once to perform a task on these data�
except for Visible and Add triangle� We have included this typing and parameter listing
as an aid to understanding the task of each procedure�

The algorithm input consists of the original edge set D and a parameter� fin� which
will ensure that a �nite triangulation is generated� There are two fundamentally di�er�
ent strategies for this which are described in the minimal requirements for the function
Mesh size constraint below� The polyalgorithm is organized so that exactly one triangle
is added to the triangulation T for each pass through the while loop�

We now describe the minimal requirements for each subtask� as well as commenting on
possible� or typical strategies for meeting these requirements�

Convert to frontal edge set�D � C�

minimal requirement � A frontal edge set is constructed from D such that the region to be
meshed is contained in its interior and this fes is assigned to C�

Get next edge�C � E�

minimal requirement � Any edge of C is returned� which will be referred to as the current
edge�

The next triangle to be generated will have this current edge as a side� This subtask
speci�es an ordering strategy for processing the edges in C� such as longest or shortest �rst
cf� Tilch� �	�
�

Two alternate candidate vertices for the third vertex of a triangle to be constructed on
the current edge are now located�

Compute new candidate�E � R�

minimal requirement � This subtask may return any point of the plane on the left of the
current edge�

�

Procedure Basic aft�D� fin�
type node R� S

edge E
logical New� New is preferred� Mesh size constraint� Visible
control parameter fin
boundary edge set D
frontal edge set C

Convert to frontal edge set�D � C�
while C �� �

Get next edge�C � E�
Compute new candidate� E � R �
Compute existing candidate� E� C � S �
New � New is preferred�R�S� and not Mesh size constraint�fin�
if New

then
New � Visible�E� C� R�

endif
if New

then
Update internal�C�E�R� fin � C�fin�
Add triangle�T � E�R � T �

else
Update boundary�C� E� S� fin � C� fin�
Add triangle�T � E� S � T �

endif
endwhile

Figure �� Basic Advancing Front Technique Polyalgorithm

Compute existing candidate� E� C � S �

minimal requirement � A vertex� S� from C is returned which is visible from the current edge�

A simple geometric argument can be used to assure that there is at least one node of
C visible from E� Although elementary� this observation is crucial to the correctness claim
that each subtask of the polyalgorithm can be accomplished� This subtask may require the
logical function� Visible� discussed below�

The triangles of the mesh serve a variety of perhaps competing goals� error control�
desired sti�ness matrix properties� as well as meeting the geometric constraints that they
tile the domain� D �see discussions in �	
 or �	�
�� The candidate triangle based on R is
typically selected to serve the goals that are independent of the geometric constraints� i�e�
R is typically an �ideal� choice of vertex selected independently of C� It is not clear at this

�

stage of the polyalgorithm that this triangle is feasible� i�e� that it lies entirely in the interior
of S�E�� Even if it is feasible� its use may force edges into C for which it is di�cult to form
satisfactory triangles subsequently� The candidate vertex S is a feasible default alternative to
R from the vertices of S�E� which could create a triangle that takes account of the geometry
of the domain being meshed� typically serving the nongeometric goals of triangle shape as
well as possible�

logical function New is preferred�R�S�

minimal requirement � New is preferred must be assigned false if R and S are the same
node�

Otherwise� New is preferred can be assigned arbitrarily in the polyalgorithm� In the
extreme case that New is preferred is always set false� the corresponding aft method
becomes a form of greedy algorithm for computing a triangulation of D ��

The logical function� New is preferred� embodies the strategy of a preference for one
of these candidates� As incorporated in the polyalgorithm� this decision is made assuming
that both triangles are feasible� and then if a preference for R is established� its feasibility
is checked by the function Visible� This organization is based on the assumption that
checking the visibility is computationally expensive compared to the preference decision�
which is typically the case�

logical function Mesh size constraint�fin�

minimal requirement � This function must ensure that only a �nite number of new vertices
are generated�

In mesh generation algorithms generally� there are two approaches to ensuring that a
�nite number of triangles are generated� One is to directly control the number of triangles�
and the other is to control some aspect of the triangles which ensures termination of the
method accepting whatever number of triangles results� For each of these approaches� we
give an example of how the minimal requirement for Mesh size constraint�fin� could be
met�

For the �rst approach� a maximum number of triangles permitted in the �nal mesh
is speci�ed� We need to be able to predict the minimum number of triangles required
to complete the triangulation of the interior of a fes� It is well known that the minimal
triangulation of a connected �nite domain with m holes and m� � simple closed boundary
curves having a total of Eb edges is

Nmin � Eb � 	�m� �� �
�

using only the boundary vertices��e�g� Fuhring� ��	
�� In the appendix� we show that this
formula holds for the minimal triangulation of a component subdomain of a fes �the S of
�	��� even though the boundary curves �the C�Fi� of �	�� may not be simple� Since the
edges of di�erent component subdomains are distinct� we can conclude that the minimal
triangulation of the interior of a fes is also given by �
�� where Eb is the total number of

�See x����� of ���
�

��

edges in the fes and m is the sum of the number of holes in all component subdomains of
the fes�

To use this to limit the number of triangles produced by an aft� we require the control
parameter� fin� to be an array of four integers carrying the information�

N�T � � the number of triangles currently in the triangulation T �

N�C� � the number of edges in C� the current fes�

m � the sum of the number of holes in the interior of C

Nmax � the maximum allowable number of triangles in the �nal mesh�

We can ensure that the polyalgorithm will not produce more than Nmax triangles if we
set�

Mesh size constraint � true if N�T � �N�C� � 	�m� �� � Nmax ���

� false otherwise

The numbers N�T �� N�C� and m can be updated in the update operations of the polyalgo�
rithm� However� we note that an aft conforming to the polyalgorithm produces a sequence
of fes � Cj for which mj is non�increasing� starting with m� � the number of �holes� in the
original domain D� Consequently� a practical simpli�cation of ��� would be to use for m the
number of holes in the original domain�

In the second approach� we require the control parameter� fin� to be an array of two
positive real numbers� One of these is a minimum area to be permitted for a triangle to be
formed by introducing a new node� Amin� The second is the area� A�E�R�� of the triangle
de�ned by the current edge E� and the new candidate node� R� If we set

Mesh size constraint � true if A�E�R� � Amin ���

� false otherwise

then only a �nite number of new vertices will be created�

logical function Visible�E� C� U�

minimal requirement � Visible must be assigned true if the line segments from each point
on edge E do not intersect the boundary curve�s� of S�E�� false otherwise�

This function is used with U � R ensure that a new candidate node� R� is feasible for
the creation of a new triangle�

Update internal�C�E�R� fin � C�fin�

minimal requirement � This subtask must insert new edges F from E�orign to R and G from
R to E�destn into C� It deletes E from C and updates the control parameter� �n�

We note that the insertion of F and G� plus the deletion of E maintains the connectivity
of S�E� and it results in a net increase of one edge in C�E��

��

S

E

succ(B)

B
S

pred(E)

succ(E)E

succ(E)pred(E)

succ(B)

S

pred(E)

E

B
S

succ(E)E

succ(E)

pred(E)

succ(B)

B= =

a)
b)

c)d)

Figure �� Updating the boundary of C�E� for existing candidate node S � four cases

Update boundary�C� E� S� fin � C� fin�

minimal requirement � This subtask must update fin and make modi�cations to C that are
described in terms of new edges F from E�orign to S and G from S to E�destn�

� if �F � C then delete �F from C else insert F in C

� if �G � C then delete �G from C else insert G in C

� delete E from C

To see that this update maintains C as a frontal edge set� we note from Figure � that
there are basically three di�erent cases that occur� In the �gure� edge B is the edge of S�E�
with B�destn � S� The �rst case is illustrated by sub�gures marked a� and b� in Figure �
and which illustrate �F � C and �G � C respectively� The connectivity of the subdomain
S�E� remains unchanged and C�E� undergoes a net reduction of � edge� The second case
is marked c�� in this case C�E� simply consists of three edges� They form the next triangle
and the e�ect of the update is to remove C�E� from C� The third case is illustrated by
d� of Figure���� The e�ect on S�E� depends on whether S lies on C�E�� in which case
S�E� is subdivided into two new subdomains� or S�E� is multiply connected� and S lies on
C�B� �� C�E�� In this latter subcase� after the update� C�E� will intersect itself at S� and
S�E� remains a connected subdomain but its connectivity �i�e� number of �holes�� is reduced
by one� In both versions of this third case� the number of edges in C increases by one�

�	

The statement of the minimal requirements for this update is correct and succinct� but
it may not re�ect the typical e�ciency considerations of aft algorithms adequately� A direct
interpretation might suggest that e�ciency would be served by having a rapid and inexpen�
sive way to determine whether a given edge is present in C� or not� However� the use of the
special geometric context of this question in this update can be used to avoid requiring a
general mechanism� In the next section� we comment on how a particular data representation
of the subregions S�E� can be used for this purpose�

Add triangle��T � E� U � T �

minimal requirement � The triangle formed by edge E and opposite vertex U is added to T �

The correctness of the polyalgorithm follows from making the following observations�

� each subtask can be successfully executed for its minimal requirements

� the properties of the frontal edge set are maintained

� the while loop terminates�

� Using a constrained Delaunay triangulation for S�E�

A key e�ciency issue in the performance of an aft is the representation of the frontal edge set�
C� The representation must support insertions� deletions� and searching in the sense of point
location and checking visibility� List oriented data structures from computational geometry
for these tasks have been discussed by Dannelongue and Tanguy� ���
 and by Tilch� �	�
� In
this section� we propose that an e�cient� high level representation for the unmeshed region
in an aft algorithm is the use of its constrained Delaunay triangulation� I�e� each connected
component� S�E�� would be represented by its constrained Delaunay triangulation� We can
describe the constrained Delaunay triangulation of S�E� as a triangulation with the de�ning
property that if any node is contained in the interior of the circumcircle of a triangle� then
every interior point of the triangle is separated from this node by a boundary edge of S�E��
We will shorten �the constrained Delaunay triangulation of S�E�� to cd�S�E�� in the sequel�
Although� strictly speaking� cd�S�E�� is a collection of triangles� we will refer to an edge of
cd�S�E�� meaning an edge of one of the triangles�

The e�ciency of using a triangulation to represent S�E� for visibility checking has been
noted by Chew ��
� by Guibas et al ���
� by Lo ���
� and by M�uller� Roe� and Deconinck �	�
�
The use of the constrained Delaunay triangulation has some additional e�ciency advantages
if there are mesh quality goals of avoiding small angles in the generated mesh� or other
reasons why the resulting mesh should be the constrained Delaunay triangulation of its
vertices plus the region�s boundary and interface edges� We will refer to mesh generation
with these quality goals as isotropic mesh generation� �Simpson� �	�
��

In x	� we saw that during an aft algorithm�s execution� the domain� D� is partitioned
into the unmeshed region � �E�C S�E�� and the subregion which has already been trian�
gulated� D � �E�C S�E�� with the frontal edge set� C� as the boundary between the two

�

subregions� In the preceding paragraph� we proposed that there are signi�cant e�ciencies to
be gained by representing the unmeshed subregion by its constrained Delaunay triangulation�
For isotropic mesh generation� it is appropriate to extend this proposal to maintaining the
meshed subregion also as the constrained Delaunay triangulation of its nodes� the required
edges of the input domain D� and the frontal edge set� C� Since C is part of the required
edge set for both these subregions� it can be seen that the extended proposal is equivalent
to proposing that aft methods for isotropic mesh generation maintain at each stage the
constrained Delaunay triangulation of the total con�guration of nodes� boundary edges and
frontal edges that it is processing� We have introduced this idea via the two subregions of
D� the meshed and unmeshed regions� because the motivations for each are di�erent� The
major motivation in the case of the unmeshed region is e�ciency� while the major motivation
in the case of the meshed region is the quality goal of isotropic mesh generation�

We discuss the implications of this representation for the subtasks of the polyalgorithm
of Figure � that are a�ected by it� We assume that a data structure for cd�S�E�� is used
that allows easy access from a boundary edge to the triangle incident on it� and from one
triangle to its neighbour sharing an edge in common�

Convert to frontal edge set�D � C�

In addition to constructing C from D� this subtask requires the identi�cation of the com�
ponents S�E� of D� and the construction of cd�S�E�� for each� Several algorithms for
computing the constrained Delaunay triangulation appear in the literature� e�g� Chew� ��
�
or Lee and Lin� ���
� The primary source for this study� however� is Cline and Renka� ��

which is supported by a publically available implementation�

Compute existing candidate� E � S�E� � S �

If we select S to be the node of the triangle of cd�S�E�� incident on E� we can be sure that
S is visible from E� If the goal is isotropic mesh generation� then this is an appropriate
heuristic for selecting S� which can ensure that the resultant triangulation is the constrained
Delaunay triangulation of its vertices if combined with edge swapping in T as discussed
below under Add triangle� If some other choice of S is used to pursue other mesh quality
goals then cd�S�E�� can be used in checking the visibility of S as discussed below�

New is preferred�R�S�

A useful criterion for isotropic mesh generation is to prefer the new candidate node� R� if the
triangle formed by E and R is in cd�S�E� �R�� Let us assume that the existing candidate
node� S� is selected to be the vertex of the triangle of cd�S�E�� with base E as suggested
above� Then an e�ciency of using cd�S�E�� arises from the fact that it is su�cient to check
that S lies outside the circumcircle of the triangle formed by E and R� The justi�cation for
this claim of e�ciency is provided in the following lemma� In it we will designate the triangle
formed by E and a node V by T �E� V � and the circumcircle of T �E� V � by C�E� V ��

��

o

o

o ox

M

V
C(E,V)

T(E,V)

d(V)

b

Figure �� Con�guration of T�E�V� � C�E�V� for lemma
��

Lemma ��� If R is visible from E� and T �E�S� � cd�S�E�� and E� R� S are not cocircular�
then

T �E�R� � cd�S�E� �R� � S �� C�E�R�

Proof Let M be the midpoint of E and b be the perpendicular bisector of E� Then� for any
node V � the center of C�E� V � lies on b� Let the distance from M to this point on b be d�V ��
measured positively if the center lies to the left of E as illustrated in Figure ��

It is easy to see that

V � C�E�W � � d�V � � d�W �

and E� V and W are cocircular if and only if d�V � � d�W �� Hence� if E� R� and S are not
cocircular then either d�R� � d�S� or d�R� � d�S�� In the �rst case� T �E�S� continues to
satisfy the empty circle criterion when R is added to cd�S�E��� so T �E�S� � cd�S�E��R�
and consequently T �E�R� �� cd�S�E��R�

In the second case� we note that for any node V of S�E� visible from T �E�S�

d�V � � d�S� � d�R�

and hence no edge of S�E� can terminate at a visible node inside either C�E�R� or C�E�S��
To conclude that if d�R� � d�S� then T �E�R� � cd�S�E��R� � we must check that either
C�E�R� is empty� or if V � C�E�R� then V is separated from T �E�R� by the boundary
of S�E�� If V � S�E� is in C�E�R�� then V � C�E�S� � and hence V is separated from
T �E�S� by a boundary edge� F of S�E�� which cannot have its endpoints in C�E�S�� Since
the endpoints of F cannot lie in C�E�S�� T �E�R� must lie on the same side of F as T �E�S��
Consequently� V is separated from T �E�R� by F and T �E�R� satis�es the empty circle
criterion for cd�S�E��R��

logical function Visible�E�R�

For the visibility subtask of the polyalgorithm� with the cd�S�E�� triangulation� and can�
didate node R preferred according to the discussion of New is preferred� we can make

��

Procedure Check visible�E�R� cd�S�E���V isible� Left�Right�
type node R�M

edge E�F�G
triangle T
constr� Del� triangul� cd�S�E��
logical V isible
edge list Left�Right

V isible� true
M � �E�orgn � E�destn��	
G� E
T � select triangle� given G�

where triangle � cd�S�E�� and has edge G
while R �� T and V isible

F � select edge given R�M�T where edge � T and RM cuts edge
if F � S�E�

then V isible� false
else

if F�destn � G�orgn
then

add F to Right
else

add F to Left
M � compute intersection point of RM and F
G� �F
T � select triangle� given G�

where triangle � cd�S�E�� and has edge G
endwhile

Figure �� Visibility check using triangulation of cd�S�E��

the following speci�c discussion� In this case� we can conclude that there are no nodes in
the circumcircle of E and R that are visible from E� Consequently� if R is not visible from
any one point on E� there must be a boundary edge�H � of S�E� that passes through this
circumcircle� and consequently� R is hidden from every point on E� So it su�ces to check
that R is visible from one point of E� which we choose to be the midpoint� M � In Figure ��
we give a description of an algorithm to check this visibility� the SQL like syntax of this
description is discussed in �	�
� In this algorithm� two queues of edges of cd�S�E�� that
cut the line segment M to R are created which will be used by Update internal if R is
visible� Since we now are returning these two lists to the polyalgorithm� to be conveyed to
the update subtask� we change Visible from being a function to being a procedure� named
Check visible� The operation

F � select edge given R�G� T where edge � T and RM cuts edge

��

selects the edge of triangle T which the line of sight MR cuts if it leaves T � Note that this
operation does not fail since there are no visible vertices of cd�S�E�� in the circumcircle of
the triangle formed by E and R � see New is preferred��

Update internal�C�E�R� fin � C�fin��� Update boundary�C� E� S� fin � C� fin�

With the use of �E�Ccd�S�E�� to represent C � the insertions of new edges� F and G� referred
to in x	�	 involve the retriangulation of a subset of cd�S�E��� In theorem � of Cline and
Renka� ��
� a speci�cation for this subset is provided � and several algorithms are presented for
support of the retriangulation� This process could� in principle� be carried out sequentially
for edges F and G� but the theorem and techniques of ��
 can be trivially extended to show
that if T e is the set of triangles whose interiors intersect either edge F or edge G� and Be is
the boundary of

S
T e� then it is su�cient to construct cd�Be

S
F
S
G��

In the case of Update boundary�C� E� S� fin � C� fin�� the test �F � C� becomes
simply whether F is an edge of the triangle of base E and opposite vertex S in cd�S�E���

Add�triangle�T � E� U �T �

Under the updates just described � the edges of C partition D into the unmeshed subregion�
�E�CS�E�� which is triangulated by �E�C cd�S�E�� and the meshed region� D��E�CS�E��
which is triangulated by T � We are not � however� assured the T is the constrained Delaunay
triangulation of its vertices with regard to edges of C and D�

We now designate the meshed region as D�meshed� and discuss the minimal requirement
forAdd�triangle of ensuring that T is maintained as the constrained Delaunay triangulation
of D�meshed�� We return to the notation of Lemma
�� in which T �E�U� designates the
triangle formed by edge E and opposite vertex U � Let us further designate the meshed
regions before and after the addition of T �E�U� by Dold�meshed� and Dnew�meshed�� and
their triangulations as Told and Tnew� If E is an edge of the constrained Delaunay triangulation
of Dnew�meshed� � then the minimal requirement of Add�triangle remains to simply add
T �E�U� to the data structure for Told� However� if not� then a series of edge swaps as
described in ��
 will be necessary to obtain Tnew from Told�

A test for whether E is in Tnew can be described by an extension of Lemma
��� Let
T ��E� S� be the triangle with edge �E in Told� If S �� C�E�U�� or S is not visible from
T �E�U�� then T �E�U� is in the constrained Delaunay triangulation of Dnew�meshed��

� Conclusion

Practical unstructured FEM mesh generation requires attention to issues of

	 conformance to geometric constraints

	 performance e�ciency�

	 implications of triangle shapes for properties of the global sti�ness matrix

	 control of discretization errors in the computed solutions

��

The polyalgorithm of x	 addresses the �rst of these issues by providing a framework such
that meeting the minimal requirements of each step assures that a mesh conforming to the
geometry is generated� The �exibility that remains unspeci�ed by this polyalgorithm can
then be directed to other issues of this list�

During the execution of an aft algorithm� the unmeshed region is the union of disjoint�
connected subdomains and the representation of these subdomains has an important in�u�
ence on performance e�ciency� the second of the issues in the above list� The constrained
Delaunay triangulation is an e�ective high level data structure for representing the individual
subdomains� In x
� we discussed this observation and the extensions of the polyalgorithm
that can be made to incorporate it�

It is natural to contemplate how this framework for aft methods can be extended to
generating three dimensional tetrahedral meshes for polytopes with two dimensional trian�
gulated surfaces� However� we can quickly demonstrate that the polyalgorithm of x	 cannot
be extended directly to three dimensions� As mentioned in the discussion of the logical
function New is preferred� if this function is simply set to false for all inputs� then the
polyalgorithm generates a triangulation of the input domain using its existing vertices� A
direct extension of it should have the same property� But� we know that there are polytopes
with triangulated surfaces that cannot be meshed by tetrahedra using existing vertices only�
e�g� Ruppert and Seidel� �	

� It is easy to see� using the examples of �	

� that the attempt
to extend the subtask Compute existing candidate to three dimensions can fail�

References

��
 F Aurenhammer� Voronoi diagrams � a survey of a fundamental geometric data struc�
ture� ACM Computing Surveys� 	
�
��!���� �����

�	
 M Bern and D Eppstein� Mesh generation and optimal triangulation� In F K Huang�
editor� Computing in Euclidean Geometry� World Scienti�c� ���	�

�

 C Borgers� Generalized Delaunay triangulations of non�convex domains� Computers
and Math Applns� 	����!��� �����

��
 T D Bui and V N Hanh� Automatic mesh generation for �nite element analysis� Com�
puting� ���
��!
	�� �����

��
 A Bykat� Automatic generation of triangular grid�i�subdivision of a general polygon
into convex subregions�ii � triangulation of convex polygons� Intl J for Num Meth in
Engrg� ����
	�!�
�	� �����

��
 J Cabello� R Lohner� and O�P Jacquotte� A variational method for the optimization
of directionally stretched elements generated by the advancing front method� In A S
Arcilla� J Hauser� P R Eiseman� and J F Thompson� editors� Numerical Grid Generation
in Computational Fluid Dynamics and Related Fields� pages �	�!�
	� Elsevier Science
Pub� North Holland� �����

��
 L P Chew� Constrained Delaunay triangulations� Algorithmica� ��	��!	��� �����

��

��
 L P Chew� Guaranteed�quality mesh generation for curved surfaces� In �th Annual
Symposium on Comp Geometry� pages 	��!	��� San Diego� California� ���
� ACM�

��
 A K Cline and R J Renka� A constrained two�dimensional triangulation and the solution
of closest node problems in the presence of barriers� SIAM J of Num Anal� 	���
��!�
	��
�����

���
 H H Dannelongue and P A Tanguy� E�cient data structures for adaptive remeshing
with the FEM� JCP� �����!���� �����

���
 S Farestam� A geometry based approach to the generation of unstructured surface grids�
In P��J� Laurent� A� LeMehaute� and L� Schumaker� editors� Curves and Surfaces II�
AKPeters� Boston� �����

��	
 H Fuhring� The application of node�element rules for forecasting problems in the gen�
eration of �nite element meshes� Inter J of Numer methods in Engrg�� 	�����!�	��
�����

��

 P L George� Automatic Mesh Generation 	 application to �nite element methods� John
Wiley and Sons� Paris � Masson� �����

���
 L Guibas� J Hershberger� D Leven� M Sharir� and R E Tarjan� Linear�time algorithms for
visibility and shortest path problems inside triangulated simple polygons� Algorithmica�
	�	��!	

� �����

���
 C M Ho�mann� Geometric and Solid Modeling	 An Introduction� Morgan Kaufmann�
San Mateo� Calif� �����

���
 Z Jian�Ming� S Ke�Ran� Z Ke�Ding� and Z Qiong�Hua� Computing constrained tri�
angulation and Delaunay triangulation� A new algorithm� IEEE Trans on Magnetics�
	�����!���� �����

���
 D T Lee and A Lin� Generalized Delaunay triangulation for planar graphs� Disc and
Comp Geom� ��	��!	��� �����

���
 S H Lo� Delaunay triangulation of non�convex planar domains� Intl J for Num Methods
in Engrg� 	��	���!	���� �����

���
 R Lohner and P Parikh� Generation of three�dimensional unstructured grids by the
advancing front method� Intl J for Num Methods in Fluids� ����
�!����� �����

�	�
 J D M�uller� P L Roe� and H Deconinck� A frontal approach for node generation in
Delaunay triangulations� In Unstructured Grid Methods for Advection Dominated Flows�
number R����� AGARD� ���	� presented in an AGARD�FDP�VKI Special Course
Unstructured Grid Methods for Advection Dominated Flows at the VKI 	�� March
���	 and at NASA Ames� 	� Sep � 	 Oct ���	�

�	�
 J Peraire� M Vahdati� K Morgan� and O C Zienkiewicz� Adaptive remeshing for com�
pressible �ow computations� JCP� �	� �����

��

�		
 F P Preparata and M I Shamos� Computational Geometry	 An Introduction� Springer�
Verlag� �����

�	

 J Ruppert and R Seidel� On the di�culty of tretrahedralizing
�dimensional non� convex
polyhedra� Proc Fifth Annual Symposium on Comp Geometry� pages
��!
�	� �����

�	�
 R B Simpson� A data base abstraction for unstructured triangular mesh algorithms�
Technical Report CS��	��
� Dept of Computer Sci� U of Waterloo� Waterloo� Ontario�
Canada � N	L
G�� March ���	�

�	�
 R B Simpson� Anisotropic mesh transformations and optimal error control� Applied
Num Math� ���to appear� �����

�	�
 R Tilch� Unstructured grids� adaptive remeshing and mesh generation for Navier�stokes�
In
�th Intern�l Conf� on Numerical Methods in Fluid Dynamics� Oxford University� July
�����

�	�
 R Tilch� Unstructured Grids for the Compressible Navier�Stokes Equations� PhD thesis�
CERFACS�
����� Toulouse� France� �����

�	�
 M�G Vallet� G
en
eration de maillages
el
ements �nis anisotropes et adaptatifs� PhD
thesis� Paris �� ���	�

�	�
 M G Vallet� F Hecht� and B Mantel� Anisotropic control of mesh generation based on a
Vornoi type method� In A S Arcilla� J Hauser� P R Eiseman� and J F Thompson� editors�
Numerical Grid Generation in Computational Fluid Dynamics and Related Fields� pages
�
!���� Elsevier Science Pub� North Holland� �����

Appendix � How many triangles in a mesh on the interior of a frontal edge set	

In x	� we require a formula for the minimal number of triangles required to triangulate
the interior of a fes� The interior of a fes comprises the interiors of its separate connected
subdomains� S� with boundary curves C�Fk� for k � � to m� as described in �	�� If the
boundary curves of S are all simple closed curves� then there is a standard formula for the
number of triangles in a mesh on the interior of S� If we let T be the number of triangles�
Eb the number of edges on the boundary� and Vb and Vi be the number of vertices on the
boundary and in the interior of S respectively� then Eb � Vb and

T � Eb � 	Vi � 	�m� �� ���

�e�g� Fuhring page ��� � ��	
��
For a component subdomain of a fes� the boundary curves are oriented and closed � but

need not be simple� The standard argument for ��� breaks down for non simple boundary
curves because we no longer have Eb � Vb� The following lemma states that formula ���
holds for a component of a fes� nevertheless� We note that in the context of an aft method
the interiors of the component subdomains of a fes are the unmeshed parts of the region D�
so they normally are considered to have no interior vertices�

	�

F

F1

0

Figure �� Example of a component subdomain of a frontal edge set

Lemma Let S be a component subdomain of a frontal edge set� The number of triangles
in a triangulation of S is given by ����
Proof� A basic starting point for formula relating the number of components in a mesh
is the Euler�Poincare formula for planar graphs

f � v � e � 	 ���

where f is the number of faces in the graph� v the number of vertices and e the number of
edges �e�g� Ho�man� ���
� x 	�
�
�

To apply this to a triangulation of the interior of S� we must specialize ��� to triangular
meshes� It is well known that for a triangular mesh that

e � Eb � Ei �

	
T �

�

	
Eb ���

where Ei is the number of edges internal to the mesh� ���	
��
In this context� the faces of the graph interior to S are triangles of the mesh and the faces

exterior to S are the simply connected subdomains of �nite area in the exteriors of the C�Fk�
plus the one in�nite subdomain exterior to C�F��� Let us designate the number of simply
connected subdomains of �nite area in the exterior of C�Fk� by Hk for k � � to m� If C�Fk�
is a simple closed curve� then Hk � � for k � � and H� � � by the Jordan curve theorem�
In Figure �� we show an example where m � � � H� � � and H� �
� The simply connected
subdomains of �nite area in the exterior of the C�Fk� are shaded� The single lightly shaded
triangle at the left is the face of �nite area in the exterior of C�F��� The regions of mixed light
and dark shading in the centre of the �gure are the faces determined by C�F��� The darker
shaded portions of these regions are three �holes� in the original domain D� As this example
illustrates� each face of the exterior of C�Fk� for k � � contains one or more holes of the

	�

original domain� plus possibly some triangles external to the fes� however� this substructure
is irrelevant to our current derivation� So

f � T �
mX

k��

Hk � � � v � Vb � Vi ���

If we substitute ��� and ��� into ���� we get

T � 	Vb � Eb � 	Vi � 	
mX

k��

Hk � 	 ����

This equation has not taken account of the connection between Vb� Hk and Eb� In the
common case of a domain S with simple closed curves for all its boundaries� we have

H� � ��Hk � �� Vb � Eb

For a component subdomain with non simple boundary curves� these relations are replaced
by

Eb � Vb �
mX

k��

Hk �m ����

To establish ����� consider the following scan of the edges of the boundary curves of the
component subdomain� We accumulate the number of vertices in s� and

Pm
k��Hk �m in s��

�Initializations�
m�P � � � for all P in S �marker for counting visits to vertex P �
H� � � �because simply connected C�F�� has no exterior face

of �nite area�
for k � � to m

Hk � � �because simply connected C�Fk� has one exterior face
of �nite area�

s� � � � s� � �
�Edge scan�

for k � � to m
for E � C�Fk�

P � E�destn
m�P � � m�P���
if m�P � � �

then s� � s� � �
else s� � s� � �

We note that as each edge is scanned either s� � or s� is incremented� The �rst time a
vertex is visited s� is incremented� Each subsequent time a vertex is visited� the current face
of the exterior of C�Fk� is closed� and a new face is initiated� hence s� is incremented�

Now� we can use ���� to replace
P

�

k��Hk in ���� to get ���� Note that since the variables
in ��� are all additive for an ensemble of component subdomains� this formula also holds for
the fes itself� if the variables refer to the subdomain ensemble totals�

		

