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Abstract

A �nite element modelling of three dimensional elasticity problems gives rise

to large sparse matrices� To improve upon direct solution methods� various new

preconditioning methods are developed and examined� as well as some generally

standard techniques� for use in preconditioned conjugate gradient iterative solution

techniques� Developments of incomplete factorizations based on levels of �ll� drop

tolerance� and a two level hierarchical basis are used to build the preconditioning

matrices� The problem of non�positive pivots occurring during factorization is also

addressed by the use of several techniques� Computational tests are carried out

for problems generated using unstructured tetrahedral meshes with quadratic basis

functions� The performance of the iterative methods is compared to a standard

direct sparse matrix solver� Various problems with up to �	�			 degrees of freedom

are considered during which the e
ect of a range of average element aspect ratios�

including small �� �� aspect ratios� on the performance of the PCG method is

examined� A brief review is also made of stopping criteria for conjugate gradient

solvers� One method based on the norm of the residual and an estimate of the

smallest eigenvalue of the matrix system was implemented and tested with poor

results�
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Chapter �

Introduction

��� Preconditioned Conjugate Gradient Methods

Three dimensional �nite element stress analysis gives rise to large� sparse matrices�

Though the cost of generating the matrix system for solution can be expensive� for

larger analyses the overall cost is dominated by the cost of solving the resulting large

sparse system� In many �elds� such as computational �uid dynamics ���� ��� ���

petroleum reservoir simulation ���� �� and semiconductor device simulation �����

iterative methods are typically used for the solution of three dimensional problems

due to their less demanding requirements on a computer�s CPU and memory re�

sources� However� for elasticity problems� direct methods are still commonly used�

There is a growing use of �nite element methods to analyse fully three dimen�

sional elasticity problems� The cost of solution and storage requirements when

using direct methods increases dramatically when moving from two dimensional to

three dimensional problems� Consequently� there has been a recent upsurge of in�

terest in applications of iterative methods for three dimensional elasticity problems

�
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���� ��� �� ��� � ��� ��� ��� ��� �� ����

Iterative methods have been quite successful in some cases� especially in com�

parison to direct solvers� However� there are situations where the performance of

iterative methods has been demonstrated to be quite poor ���� In general this

seems to occur for problems where the elements have a small �� �� aspect ratio

���� ��� resulting in matrices which have a large condition number� Although it is

advisable to produce meshes which result in well shaped elements in order to avoid

ill�conditioned systems of equations� in practice� this may not always be possi�

ble� Also� many problems which were traditionally modelled using two dimensional

plate and shell elements� can now be modelled using recently developed quasi�three�

dimensional elements� This is particularly useful for analysing laminated composite

materials ��	� ��� In this case� any practical �nite element mesh will be composed

of elements with poor aspect ratios�

The objective of this thesis is to investigate� develop and compare some existing

iterative techniques for three dimensional elastic analysis� which can be applied to

problems with unstructured� tetrahedral meshes� Previous work has shown that

some iterative techniques will provide highly varying levels of performance depend�

ing on the particular problem the technique is applied to� Thus the goal of this

thesis is not to �nd an �ultimate� technique but rather one that is robust and

capable of reliably outperforming direct methods�

It is expected that for various types of problems� di
erent techniques will show

more promise� By using some knowledge of the problem to be solved� it should be

possible to choose a better suited technique than just a generally robust method�

Thus� any signi�cant trends discovered in the performance of individual techniques

are also highlighted in this work�
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In particular� the focus of this research is on studying iterative solvers for the

case of three dimensional elasticity problems on unstructured tetrahedral meshes�

This is of special interest due to the extensive variety of geometries that can be

accurately modelled by a tetrahedral mesh� It is also of interest because an un�

structured tetrahedral mesh does not lend itself to easy application of some popular

hierarchical or multi�grid ���� ��� approaches which combine elements to generate

a coarser �level� mesh� Connell and Holmes �	� have recently developed an algo�

rithm which can re�ne a tetrahedral mesh� but because of the apparent complexity

of the algorithm it would not be easy to immediately implement� Consequently� in

this work� attention will be restricted to PCG methods�

The convergence of a PCG method is strongly in�uenced by the type of pre�

conditioning� Both level based ���� �� �� �� and drop tolerance based ���� �	�

�� �� � incomplete LU factorization �ILU� preconditioning will be examined� In

addition� the ILU methods will be combined with a two level hierarchical basis

��� �� �� �	� �� �� ��� ���� If storage limitations permit� the PCG method�s solutions

and CPU costs will also be compared with a direct method�s solution and CPU

cost�

The above methods have been tested on a variety of example problems� The

selected problems range from simple model problems �a cube with varying aspect

ratio� to fairly realistic complex three dimensional objects� These problems have

from ��			 to �	�			 degrees of freedom and all results were obtained on a Sun

SPARCserver ��	MP�

The tests were done using single precision storage for both the matrix A and the

preconditioning matrix unless otherwise noted� All other terms for the conjugate

gradient iterative technique were stored in double precision� This was done to help

reduce memory requirements�
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��� Stopping Criteria

The main focus of this thesis was an investigative search for a robust iterative

solution technique� However� when using an iterative technique it is necessary to

have some form of convergence check in order to decide when an acceptable solution

has been found�

While studying the various iterative techniques� a drop of the initial residual

by a factor of �	�� was used as the convergence criteria� This proved to work

well for the iterative tests� Examination of the solution vectors� compared to those

found using a residual drop of �	��� showed that no further signi�cant gain in the

accuracy of the solution could be achieved without storing the matrices in double�

rather than single� precision�

Included in this thesis is a brief study of stopping criteria for iterative methods�

This review of stopping criteria includes some tests done using a modi�ed technique

presented by Kaasschieter in ����� To properly run these tests it was necessary to

use double precision storage for the matrix element terms� This is discussed in

more detail in Chapter ��



Chapter �

The Problem

As has already been mentioned� elasticity problems on unstructured tetrahedral

meshes are of particular interest� It is fairly obvious why it is di�cult to combine

elements in an unstructured tetrahedral mesh to achieve a coarser discretization

for a multigrid approach� It is not as apparent as to why a mesh can�t be re�ned

instead�

It seems to be common knowledge that dividing a tetrahedra into several smaller

tetrahedra often results in elements with poor aspect ratios� Doing the obvious

thing and chopping four tetrahedra o
 the corners of the original results in an

eight�triangular�faced polygon remaining in the center which must then also be

modelled by tetrahedra� This can result in elements with a poor aspect ratios

even if the initial element had a good aspect ratio� As mentioned earlier� Connell

and Holmes �	� describe a method to avoid poor resultant aspect ratios but these

techniques seem non�trivial to implement�

�



CHAPTER �� THE PROBLEM �

��� Formulation

The three dimensional linear elasticity problem for an isotropic material is given

�in terms of the displacement vector u� by

�r�u� �� � ��rr � u � 	 ����

where the boundary conditions are stipulated by specifying some values of u� some

surface tractions� or by allocating natural boundary conditions �freedom of value�

to occur� In the above� u is the vector of displacements in the three co�ordinate

directions� and

� �
E

�� � ��

� �
E�

�� � ���� � ��

where E is Young�s modulus� and � is Poisson�s ratio�

To develop a system of linear equations in the matrix form Au � b to be solved�

a standard �nite element method using some de�ned basis can be applied to the

partial di
erential equation ����� Basis functions are dependent on both the mesh

elements being used and the desired polynomial degree for the basis being chosen�

��� Hierarchical Basis Functions

Tetrahedra are the logical mesh elements for general three dimensional bodies when

compared to other common three dimensional elements including hexahedra and

triangular prisms� This preference is due to the fact that the tetrahedra�s geometry

allows better mesh approximations of irregular objects�
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Standard Nodal Numbering                        Nodal Numbering in Thesis
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For reasons of sign consistency when calculating the volume of a tetrahedral

element �using determinants�� or during coordinate transformations� most books

and papers use a standard numbering convention for element nodes �Figure ����

This requires the proper assignment of local node numbers to an arbitrarily ordered

set of four points describing a tetrahedra� To achieve this� extra calculations must

be performed� or a pre�determined order for supplying the vertices of an element

must be set� However� by simply using just the magnitude of any calculation

dependent on these conditions� most sign problems can be avoided� During this

research� this was a more practical solution as the test meshes came from several

sources� Thus the nodal numbering convention was not adhered to in this research�

Figure �� also demonstrates the tetrahedral barycentric coordinate convention

�L � �L�� L�� L�� L��� for describing a point�s position within an element� Barycen�

tric coordinates �also known as the natural coordinate system� for tetrahedra are

based on four coordinates which range from 	 to �� The advantage of using this

coordinate system is that common basis functions can be easily expressed in terms

of these coordinates�

Barycentric coordinates are de�ned such that for each vertex i� Lj � � for j � i

and Lj � 	 for j �� i �i� j � f�� � �� �g�� Due to the linearity of the coordinate

system it is also possible to show that L� � L� � L� � L� � �� and that for any

point P � the coordinates are Li � Vi�V � i � f�� � �� �g �where Vi is the volume of

the tetrahedra described by P and all vertex nodes except i and V is the volume

of the whole tetrahedral element��

It is necessary to be able to determine the value for any unknown�s��variable�s�

u at position xP �or in barycentric coordinates LP � in an element based on values

calculated at the nodes �ui�� Note that u� and therefore ui� can be a scalar or a

vector depending on the number of degrees of freedom in the system� The three
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dimensional elasticity problem described in equation ���� has three degrees of

freedom for each node representing the displacements in each coordinate direction�

For any general basis with N nodes u�xP � is�

u�xP � �
i�NX
i��

ui�i�xP � ���

where �i�xP � are the basis functions at coordinate xP � For the standard �� node�

linear and ��	 node� quadratic tetrahedral element cases using barycentric coordi�

nates u�LP � is�

u�LP � �
i��X
i��

ui�i�LP �

with� �i�LP � � Li ����

and

u�LP � �
i���X
i��

ui�i�LP �

for i � f�� � �� �g �i�LP � � Li�Li � ��

and i � f�� �� ���� �	g �i�LP � � �Lv�Lv� ����

where v� and v are each midpoint�s neighbouring vertex nodes� The �i basis equa�

tions shown in equations ��� and ��� are the standard Lagrangian basis functions

with polynomial degrees of � and  respectively� For these basis functions� �i equals

� at node i and 	 at all other nodes�

As mentioned earlier� when a standard �nite element method using these La�

grangian polynomial basis functions is applied to equation ���� the result is a

system of linear equations

Au � b ����

where A is a symmetric positive de�nite matrix�
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But there is no reason to be limited to using the standard Lagrangian quadratic

basis functions ����� Instead� a hierarchical quadratic basis as in ��� ��� �� ��� ��

��� ��� could also be used�

The hierarchical basis � ��i� used in this thesis was de�ned to be the standard lin�

ear basis for equations i � f�� � �� �g and the standard quadratic basis for equations

i � f�� �� ���� �	g� In other words�

��i�LP � � Li i � f�� � �� �g

��i�LP � � �Lv�Lv� i � f�� �� ���� �	g ����

where v� and v are each midpoint�s neighbouring vertex nodes� Note that this

means�

��i � � at node i

� 	 at nodes j � j �� i

i� j � f�� � �� �g ����

and

��i � � at node i

� 	 at nodes j � j �� i

i � f�� �� ���� �	g � j � f�� � ���� �	g ����

and that ��i� i � f�� � �� �g does not vanish at the neighbouring midside nodes as in

the Lagrangian basis� In fact� ��i �
�
� for i � f�� � �� �g at the neighbouring midside

nodes�

Thus for this hierarchical basis� the analogue of equation ���� is

u�LP� �
i���X
i��


ui
��i�LP �

ui � 
ui i � �� ���� �

ui � 
ui �

uv� � 
uv�


i � �� ���� �	 ����
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where v�� v are the neighbouring vertex nodes to a midside node and 
ui are the

�displacement� vectors calculated at each node in the element� Note that 
ui will

not be equal the actual displacement vector ui at the mid�edge nodes because of

the basis functions being used�

The hierarchical structure found in the basis functions can also be preserved in

an equivalent hierarchical version of the matrix equation �����

AH
u �

�
�� Amm Amv

Avm Avv

�
��
��	
�

�um

�uv

���
� �

��	
�

�bm

�bv

���
� � ���	�

To achieve this the midside unknowns are ordered �rst� and the vertex unknowns

last� The block element Avv in equation ���	� is the usual sti
ness matrix de�

veloped when using the linear basis functions in equation ���� to solve equation

�����

Since the usual quadratic basis can be written as linear combination of the hier�

archical basis� it is possible to simply transform equation ���� into a new sti
ness

matrix ����� To develop the transform matrix� let the matrix T be de�ned so that

�� � T� for one element� In other words� T is the transform from the old element

basis � to the new element basis ��� Then� proceeding in a fashion similar to ����

�where Nb is number of equations in the basis��

since �� � T�

then ��i �
NbX
j

Ti�j�j

and since u �
NbX
i

ui�i or
NbX
i

�ui
��i

then u �
NbX
i

�ui
��i �

NbX
i

�ui

�
�NbX

j

Ti�j�j

�
A

�
NbX
i

NbX
j

T t
j�i�ui�j
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�
NbX
l

NbX
i

T t
i�l�ul�i

and since
NbX
i

ui�i � u �
NbX
i

NbX
l

T t
i�l�ul�i

� ui �
NbX
l

T t
i�l�ul

� u � T t�u � �����

This shows that when T is de�ned as the basis transform matrix such that

�� � T� then u � T t�u� By inspection of the u and �u terms of equation ���� it is

possible to see that on an element by element basis� for just one degree of freedom

per node� the non�symmetric transform matrix �T �� for the hierarchical basis and

node numbering used in this work is�

T � �

�
�������������������������������

� 	 	 	 �
�

�
�

�
� 	 	 	

	 � 	 	 �
� 	 	 �

�
�
� 	

	 	 � 	 	 �
� 	 �

� 	 �
�

	 	 	 � 	 	 �
�
	 �

�
�
�

	 	 	 	 � 	 	 	 	 	

	 	 	 	 	 � 	 	 	 	

	 	 	 	 	 	 � 	 	 	

	 	 	 	 	 	 	 � 	 	

	 	 	 	 	 	 	 	 � 	

	 	 	 	 	 	 	 	 	 �

�
�������������������������������

� ����

For three degrees of freedom� the transformation matrix T � must be applied sepa�

rately to each degree of freedom� In this thesis� the coordinate displacement terms

for each node were ordered consecutively� Thus� to construct T � each � entry in the

matrix T � would become a � � � identity matrix �I���� and each
�
� would become
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a �
�
� I��� matrix while the rest of the matrix entries would become � � � zero

matrices�

The right�hand side terms bj are the result of inner product ��j� f� de�ned as

the surface integral
R
f�jds� where f is the speci�ed surface traction vector applied

to the element� Intuitively� the surface integral determines the component of the

surface traction vector f is applied at each node� To �nd �b in terms of b remember

that bj � ��j� f� and also�

�bi �
�
��i� f

�

�

�
� NbX

j

Ti�j�j � f

�
A

�
NbX
j

Ti�j ��j� f�

giving �bi �
NbX
j

Ti�jbj

� �b � Tb � �����

Using u � T t�u and �b � Tb� AH can be found in terms of A�

Au � b

AT t�u � b

TAT t�u � Tb

TAT t�u � �b

but AH�u � �b

therefore AH � TAT t � �����

This has shown that�

	 AH � TAT t
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	 u � T t�u

	 �b � Tb �

is true for a tetrahedral element analysed using the basis functions de�ned in

equations ��� and ����

To extend T to a global transformation matrix it is also necessary to de�ne

global versions of A� u and b� For the three�dimensional elasticity problem there

are three degrees of freedom �p or q� for each node �i� j� l or m�� For example�

considering each axis of displacement separately� ui	p
 is the global displacement

for node i in direction p� and similarly bj	q
 is the global right�hand side entry for

node j in direction q� Logically Aj	q
�i	p
 is the A matrix term in row j�direction q�

and column i�direction p�� This means the expression�

NnX
i

�X
p��

�
Aj	q
�i	p
ui	p


�
� bj	q
 �����

�where Nn is the number of nodes� is the dot product of row j�q� of A with the

vector u giving the right hand side term bj	q
�

The matrix T also depends on both the node �i� j� l or m� and on the dis�

placement direction �p or q�� So the global equivalents of equations ���� and ����

are�

ui	p
 �
NnX
l

T t
i	p
�l	p
�ul	p
 �����

�bm	q
 �
NnX
j

Tm	q
�j	q
bj	q
 � �����

Substituting these equations into equation ����� leads to the equivalent of the

algebra applied to get equation ������

NnX
i

�X
p��

�
Aj	q
�i	p


NnX
l

T t
i	p
�l	p
�ul	p


�
� bj	q
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and multiplying by Tm	q
�j	q
�

NnX
j

Tm	q
�j	q


�
�NnX

i

�X
p��

�
Aj	q
�i	p


NnX
l

T t
i	p
�l	p
�ul	p


��� �
NnX
j

Tm	q
�j	q


h
bj	q


i
NnX
j�i�l

�X
p��

�
Tm	q
�j	q
Aj	q
�i	p
T

t
i	p
�l	p
�ul	p


�
� �bm	q


or
NnX
j�i�l

�X
p��

�
Tm	q
�j	q
Aj	q
�i	p
T

t
i	p
�l	p


� �
�ul	p


�
� �bm	q


simplifying to
NnX
l

�X
p��

AH
m	q
�l	p
�ul	p
 � �bm	q
 �����

Equation ����� would be the complete matrix multiplication if m�q� was also in�

dexed through� Thus� this implies that AH � TAT t is true for the global system

also� To get the exact form of equation ���	� some node reordering would also

be required to attain an ordering where the midside nodes come �rst and then the

vertex nodes�

For the purposes of this thesis� it was easier to construct the sti
ness matrix

using the hierarchical basis from the beginning rather than perform the translation

later�

Various other new basis functions could be employed ���� ��� �� ���� and de�

pending on the type of preconditioning used they might prove to be superior to a

hierarchical basis if many hierarchical levels are used with a very simple precon�

ditioning method ����� However� by employing a suitable preconditioning method�

it is possible to obtain good results with an hierarchical basis in three dimensions�

even when using a large number of levels in the hierarchical basis functions ��� ���

This work restricts its attention to a two level p�version of the of the hierar�

chical basis ����� As has been demonstrated� this can be easily developed for use

with a quadratic basis on an unstructured tetrahedral mesh even with possible

discontinuous material properties�
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Even higher numbers of p�levels could be used in a basis as is considered by

Foresti� Hassanzadeh� Murakami and Sonnad in ����� but this line of research is not

pursued here� Rather� the focus is on the developing the idea of implementing a

simple two�level method similar to the technique used in ���� in the context of a

multi�grid�like method�
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Preconditioning Methods

The basic purpose of preconditioning an iterative method is to improve the rate

of convergence towards solution� For good convergence rates when using conjugate

gradient methods� it is best to have a condition number for the system to be close

to �� Thus the �ideal� preconditioning matrix C for the system Au � b would be

C � A��� However� this is much too expensive to calculate and store and essentially

constitutes a direct solve of the problem�

Choosing the best preconditioning matrix C is a complicated issue� It is desir�

able that�

	 C to be as close to A�� as possible�

	 it is possible to calculate C quickly�

	 C requires only limited storage space�

	 multiplying by C is not too expensive for each iterative step�

��
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Because the �rst desired property usually con�icts with the others� the decision

becomes an optimization question which is highly dependent on the problem� The

�nal goal is to minimize the memory and time required to �nd the solution�

One of the most robust and widely used methods is incomplete LU �ILU� pre�

conditioning� However� there are many di
erent issues which arise when using ILU

preconditioning�

Perhaps the most fundamental issue concerns the method used to determine the

�nal form of the preconditioning matrix� The basic idea is to limit the amount of

�ll that occurs during an LU factorization� Usually� an ILU will be based on the

graph of the matrix �levels of �ll� ��� ��� a drop tolerance ���� �	�� or both ����

Another issue which has been demonstrated to have a strong e
ect on the con�

vergence rate is the ordering of the unknowns ��� ��� Many ordering techniques

cannot be generalized to unstructured graphs� The two common ordering tech�

niques used in this thesis were the Reverse Cuthill�McKee �RCM� and Minimum

Degree ordering� RCM ordering was used because it is cheap to compute and has

been shown to be a reasonable ordering for ILU techniques ���� Minimum degree

ordering was used for similar reasons except that it is better for direct solves� Better

orderings are known but� again� they cannot be generalized to apply to unstruc�

tured graphs or are too expensive to compute for this problem ���� The e
ect of

these and many other ordering techniques on conjugate gradient methods are also

discussed in more detail by Du
 and Meurant in ����

Attention must also be given to the fact that FE analysis of elasticity problems

typically do not result in M�matrices� Consequently� an incomplete LU factorization

�ILU� of a symmetric positive de�nite matrix which is not an M�matrix may produce

negative pivots ����� For the conjugate gradient method to work� these negative
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pivots must be replaced with positive values�

Finally the implications of using a hierarchical basis must be considered� In

contrast to applying one ILU method over an entire matrix� it is possible to apply

di
erent methods to each �block� of a matrix generated using hierarchical basis

functions�

��� Notation

A few notation conventions should be set before discussing preconditioning methods

speci�cs�

The notation ILU�level� �� will be used to denote an incomplete factorization�

with level level� and drop tolerance � �method speci�cs in see Section ���� For

example

ILU�
� 	�	��

would refer to a pure drop tolerance ILU �drop tolerance � 	�	��� while

ILU��� 	�	�

would refer to a pure level based �level � �� ILU� This convention is also extended

to describe the ILU methods used with the hierarchical basis�

ILUm�
� 	�	��� ILUv��� 	�	�

refers to a drop tolerance of � � 	�	� being used to precondition the matrix block

Amm �midpoint�quadratic region of A� and a level � � based ILU to precondition

the matrix block Avv �vertex�linear region of A��
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During factorization in a given pivot sequence� let A	k
 be the submatrix in the

incomplete factorization which remains after eliminating the �rst k � � variables

�columns �� ��� k� � have been eliminated�� This implies the following equivalences

of notation�

A	�
 � A

fA	k
gij � a
	k

ij �

It should also be mentioned that when applying standard FE methods to the

three dimensional elasticity problem� the resulting system of equations is symmetric�

Thus� both memory and CPU time can be saved by calculating and storing only

the upper half of the matrix� This was done for all tests made for this thesis�

��� Method Speci�cs

For a given ordering of the unknowns� there is a standard de�nition of a level based

ILU ��� based on edge generation during node elimination in a graph� The same is

not true for a drop tolerance based ILU� There are several ways to de�ne a dropping

criteria for possible �ll terms ���� �	� ��� In this work� if a drop tolerance ILU is

selected� and when

ja	k
ij j 	 � a
	k

ii

where� i � k � j 
 i �����

is true then the element a
	k

ij is dropped from the ILU� otherwise it is kept� Remem�

ber that since A is symmetric� only the upper triangular factor need be considered�

Experiments were made with various criteria� and� in accordance with previous

works ���� ��� have shown that the quality of the ILU seems to be fairly insensitive
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to the precise form of the drop tolerance� However� it is of course sensitive to the

drop parameter �� The criteria ����� happens to be easy to implement e�ciently in

the test code� The precise choice of the best drop tolerance criterion remains an

open question� More discussion of this may be found in ���� �	� �� ���

As mentioned previously� an incomplete factorization of a symmetric positive

de�nite matrix which is not an M�matrix� may result in a negative diagonal� i�e�

a
	k

kk 	 	� This problem is well known� but has not been considered as being too

serious in the past� In many codes� if a negative pivot is encountered� the pivot

is simply replaced by a suitably chosen positive number� and the factorization

proceeds ��	� ���� From experience� this approach works well in many �uid dynamics

applications� but is very poor for stress analysis problems� possibly because sti
ness

matrices may have o
�diagonals which are several orders of magnitude larger �in

absolute value� than the diagonals�

Another possibility is to add suitable multiples of the absolute value of any

dropped �ll terms �for either a drop tolerance or level based ILU� to the diagonal

of the ILU� It was shown by Jennings and Malik that the resulting ILU matrix is

positive de�nite ����� However� the addition of the dropped terms to the diagonal

may produce a poor ILU� and can result in slow convergence� It is clear that this

approach overestimates the amount that must be added to the diagonal in order to

preserve positive de�niteness� To see this� consider an ILU of a symmetric positive

de�nite� diagonally dominant M�matrix� It is well known that a ILU of such a

matrix will be positive de�nite� without addition of any terms to the diagonal�

However� the approach described above ���� �	� �� would unnecessarily increase

the size of the diagonal of the ILU� and hence slow convergence� Nevertheless�

this method is completely reliable� in that a successful ILU factorization is always

guaranteed� In the following� we will refer to this approach as J�M Add�



CHAPTER �� PRECONDITIONING METHODS 

Assuming that the original diagonals of the sti
ness matrix have been scaled to

one� then the following implementation of the method ��� is used in this work� If

a
	k

ij is a term which is dropped from the ILU �for either level or drop tolerance��

then�

a
	k

ii �� a

	k

ii � ja

	k

ij j

a
	k

jj �� a

	k

jj � ja

	k

ij j

i � k � j 
 i � ����

Again remember that in equation ���� it is assumed that only the upper triangular

part of A is being processed�

The negative pivot problem can also be avoided in the following way� The

diagonal a
	k

kk is monitored� If

a
	k

kk 	 � Rk

Rk � max
m�k

�
ja

	k

kmj

�
� �����

Then the ILU factorization is aborted� and a new ILU is attempted on the perturbed

system ����

�i �
�
a
	�

ii

��
� �� � ��a	�
ii � �����

If equation ����� is violated again� then � is increased� and the ILU is repeated�

until equation ����� is satis�ed for all k� Typically� the following parameters were

used�

� � 	�	

� � �p � �� 

 � �	�� �����
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where p is the number of the current attempt to ILU factor the matrix� In other

words� if a
	k

kk 	 	�	 then the ILU factor is restarted after each diagonal matrix entry

is multiplied by �� � 	�		��� �� � 	�		�� and so on�

It is possible to simply precondition the sti
ness matrix A resulting from the

standard Lagrange quadratic basis� using an ILU factorization� In other words�

incompletely factor A in equation ���� as

P� � LLt  A � �����

Henceforth� this preconditioning will be referred to as P��

If the hierarchical basis is used� then we will consider two approximate block fac�

torizations of the hierarchical sti
ness matrix ���	�� The simplest preconditioning

��� ���� which will referred to as P�� is

P� �

�
B� LmL

t
m 	

	 LvL
t
v

�
CA 

�
B� Amm Amv

Avm Avv

�
CA �����

where Lm� Lv are �possibly� approximate factors of the block diagonals

LmL
t
m  Amm

LvL
t
v  Avv �����

A more accurate preconditioning� which will be referred to as P� attempts to

take into account some of the vertex�midside coupling terms Amv� Avm ��� ���

P� �

�
B� LmL

t
m 	

Avm LvL
t
v

�
CA
�
B� I �LmL

t
m�

��
Amv

	 I

�
CA 

�
B� Amm Amv

Avm Avv

�
CA �����

If h is the mesh size parameter� then the spectral condition number of Avv

is O�h���� since Avv is the usual sti
ness matrix for a linear basis function dis�

cretization of equation ����� It can be shown that the condition number of Amm
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is independent of h ��� ���� An intuitive explanation for this is simply that Amm

represents the sti
ness matrix of a discretization of equation ���� with all vertex

�v� nodes �xed ����

Since Amm has condition number independent of h� then� at least in theory� a

very simple preconditioning of Amm can be used� Various authors have proposed a

P� preconditioning of the form ��� ���

LmL
t
m � diag �Amm�

LvL
t
v � ILU�
� 	�	� ����	�

�i�e� an exact factorization of Avv� and diagonal scaling of Amm�� Consider a

sequence of discretizations of equation ���� with di
erent mesh sizes h� then if xh

is a vector in the �nite element solution space Vh� for a given mesh size h� then it

can be shown for P� �equation ����	�� that

c��xh�P�hxh� � �xh� A
H
h xh� � c��xh�P�hxh� � �xh � Vh � �h ������

where c�� c� are independent of h ����� In other words� P� and AH are spectrally

equivalent� which implies that the number of iterations required to solve the sti
ness

matrix using a PCG method is independent of mesh size� It is also known that if

LvL
t
v is an exact factorization of Avv and LmL

t
m is any approximate factorization

which is spectrally equivalent to Amm� then P� and AH are also spectrally equivalent

����

Of course� this assumes that LvL
t
v is an exact factorization of Avv� This matrix

is about ��� the size of A for typical three dimensional triangulations� and is much

more sparse than A �linear basis functions as opposed to quadratic�� Hence the

cost of exactly factoring Avv is small compared to the cost of exactly factoring A�

However� it is possible to use more hierarchical levels� and to use a recursive form
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of the P� preconditioner� to develop a preconditioner which is spectrally equivalent

to A� but does not require an exact factorization� except on the coarsest level ��� ���

Note that in this case the preconditioner ��� �� is no longer simply based on diagonal

scaling of high levels� but uses an accurate approximation to the Schur complement

at each level�

However� use of more than two levels requires the de�nition of �coarse grid� lin�

ear basis functions� which is a non�trivial task for unstructured tetrahedral meshes�

or the use of higher order elements� Consequently� only two levels will be considered

in this thesis� As mentioned above� the computational work for an exact factoriza�

tion of Avv is small compared to a direct solve of the original problem� and this is

a small price to pay for a robust iterative method�

Unfortunately� the situation is not as rosy as it might appear� Although the con�

stants c�� c� are independent of h for suitable Lm� Lv� these constants are functions

of Poisson�s ratio � and the element aspect ratio ����� In fact� if the P� precon�

ditioner with Lm de�ned as in equation ����	� is used� the condition number of

the preconditioned system �c��c�� may be very large for bad �� �� element aspect

ratios ����� Consequently� it will often be necessary to use a more accurate ILU

factorization of Amm� even though Amm has condition number independent of h�

Note that Farhat and Sobh advocate the use of an exact factorization of Amm in

����

As mentioned previously� the ordering of the unknowns can have a signi�cant

e
ect on the convergence of PCG methods ��� ��� In this work� a Reverse Cuthill

McKee �RCM� ordering will be used ��� for an ILU factored submatrix� The RCM

ordering is based on the nodal graph of the �nite element mesh� This nodal ordering

is then converted to a degree of freedom ordering by ordering all the displacements

at each node consecutively� In other words� this is a block RCM ordering� with
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all displacements at a single node contained in each block� Recent studies have

indicated that it is desirable to have all unknowns of a node ordered consecutively�

If an exact factorization of a submatrix is used� then minimum degree ordering ���

is used to minimize work and �ll�

Note that these preconditionings all require some operation like

A��pp x �����

which is approximated by

�LpL
t
p�
��x � p � fm� vg ������

where x is some vector� Instead of simply approximating the inverse in equation

������ by the ILU LpL
t
p� it is possible to determine the solution to equation �����

to any degree of precision by using a PCG method� with LpL
t
p as a preconditioner

to solve equation ������ This gives rise to nested levels of a PCG iteration� Each

outer PCG iteration� requires several inner PCG iterations to solve equation ������
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Test Problems

The test matrices were formed using a standard Gelerkin FE method approach�

Dirichlet boundary conditions �where displacements are speci�ed� were applied by

adjusting the values of both the matrix entry aii and the right�hand vector com�

ponent bi� When aii is very large compared to the rest of the terms in row i then

ui  bi�aii� Thus to satisfy the Dirichlet boundary conditions aii was multiplied

by a large number �typically �	�� and bi had the speci�ed displacement times the

large number added to it�

As previously mentioned� the convergence tolerance used for all the tests was

krkk�
kr�k�

	 �	�� �����

where kr�k� is the initial l� norm of the residual� and krkk� is the norm of the resid�

ual after k iterations� After symmetrically scaling the matrix �and consequently

the solution vector and right�hand side�� a slightly modi�ed zero vector was used

as the initial guess� The modi�ed zero vector was adjusted to contain any speci�ed

displacements �Dirichlet boundary conditions��

�
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Note that in some cases we will be comparing results for an ILU of the original

sti
ness matrix A and the hierarchical basis AH� in which case the residual� and

hence the convergence criteria� are not precisely the same� However� we have com�

puted the di
erence between the usual residual and the hierarchical basis residual

�at convergence� in all our runs� The maximum di
erence in the norms of these two

residuals �at convergence� was about 	 � indicating that if a nodal residual was

used in the convergence test for the hierarchical basis� or vice versa� the number

of iterations would change by one or two� which would not have any appreciable

impact on our results�

Where storage limitations permit� we have also solved the test problems using

the Yale Sparse Matrix Package �YSMP�� which is a direct solver ���� Minimum

degree ordering was used for the direct solve�

A summary of test problem data for each problem is given in Table ���� For

general tetrahedral meshes� it is useful to have a well de�ned measure of element

aspect ratio� A common measure ���� is three times the ratio of the radius of

the circumsphere to the radius of the inscribed sphere for each tetrahedra� Table

��� shows the element aspect ratio for each test problem� The test problems are

described in detail below�

��� Test Cases

����� Cube Problem

This problem consists of a cube�like solid� with physical dimensions l � l � lz�

This solid is �rst gridded using an n � n � n rectangular grid� which results in

�n � �� � �n � �� � �n � �� bricks� Each brick is then further subdivided into
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Figure ���� Surface Mesh of Cube with l�lz � �	 Test Problem
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Table ���� Summary of Test Problem Data

Problem Descriptions Degrees of Nonzeros Element Aspect Ratios Material
Freedom in U�A� Minimum Average Properties �

�� �� � �l�lz � �� ���� 	�	

 ��
�
 ��
�
 �����
Cube �l�lz � ��� ����� �����

�l�lz � ���� ����� �����

��� ��� �� �l�lz � �� ���

 ���� ��
�
 ��
�
 �����
Cube �l�lz � ��� ����� �����

�l�lz � ���� ����� �����

Balljoint ����� �

�� ���� ���� ��

� �����

Block Containing ���
� 
�
��� ���� ���� ��
� Block ��	��
Prism Prism �����

Bushing ���� ������� ����� ����� ��	��

Multi�material ���	
 ���	
� ���� ���� ��
	 Supports �����
Bracket Base �����

Corroded Pipe 
	��� �����	� ���� ��	�� ��	��

six tetrahedra� A depiction of the surface mesh of a Cube with an aspect ratio of

l�lz � �	 is shown in Figure ����

The solid is constrained at the four bottom corners� and has a speci�ed de�ection

at one top corner� By varying the thickness lz� the e
ect of varying element aspect

ratio can be observed� This problem was solved using a �� �� � and �	� �	� �	

mesh�

����� Balljoint Problem

The balljoint problem is a quarter model of a balljoint� The ball has a radius of

	�	� m and the shaft extending from it has a radius of 	�		� m and a length of 	�	��

m from the center of the ball� The back of the ball has been cut o
 perpendicular

to the axis of the shaft at a distance of 	�		� m from the center of the ball� A

depiction of the surface mesh is shown in Figure ��� The tetrahedral mesh was
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Figure ��� Surface Mesh of Balljoint Test Problem
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Figure ���� Surface Mesh of the Outer Block with Hole for Prism

generated by the I�DEAS VI� Mesh Generation Package ����

For boundary conditions� the end of the shaft has been de�ected along and

across the direction of the shaft axis� The ball surface was �xed in a slanted band

near where the shaft connects to the ball�

����� Block Containing Prism Problem

This problem consists of a block made of one material with a prism of another
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Figure ���� Surface Mesh of the Prism
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material through the length of the block� The block has a width of 	�	� m� a height

of 	�� m and a length of 	�� m� The cross section of the triangular prism is de�ned

by the three points �	�	� 	�	��� �	�	�� 	�	� and �	�	�� 	�	��� The tetrahedral

meshes were generated by the I�DEAS VI� Mesh Generation Package ���� Refer to

Figures ��� � ��� to see the surface mesh of the two separated components�

Boundary conditions are created by �rst �xing the position of all the nodes on

one of the exposed ends of the prism and then applying a uniform� skewed force

over the entire surface area of the other end of the block�

����� Bushing Problem

The bushing problem is a model of thick washer made from a soft material� The

bushing has an outer radius of 	�	� m� an inner radius of 	�	� m� and a thickness

of 	�	� m� A view of the surface mesh for the bushing can be found in Figure ����

The boundary conditions are designed to simulate the use of the bushing to

protect a block of material from direct contact with a C�clamp being applied right

on the edge of the block� Thus the bushing is being bent over the lip of the block

by a skew load� The position of all nodes on the bottom surface of the bushing to

the right of 	�	� m are �xed and every surface triangle on the top of the bushing is

subjected to a skew load�

����� Multi�material Bracket Problem

The bracket problem is another multi�material test problem� The base and face

plates are made of the same material and the supports are made of a di
erent

material� The base and face plates are 	�	� m deep�thick� the two triangular plate
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Figure ���� Surface Mesh of the Bushing
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Figure ���� Surface Mesh of the Bracket Face and Base Plates
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Figure ���� Surface Mesh of the Bracket Supports
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supports are also 	�	� m thick� and the supports are 	�� m apart� In total the

bracket�brace is 	��� m deep� 	��� m high and 	��� m wide� Figure ��� depicts

the surface mesh for the base and face plates combined and Figure ��� depicts the

surface mesh for the supports� The tetrahedral mesh was generated by the I�DEAS

VI� Mesh Generation Package ����

For boundary conditions the base of the plate is �xed� and the face plate nodes

are displaced perpendicular to the plate�s surface as a function of displacement from

the base plate �i�e� 	�		� � z coordinate�� This e
ectively slants the face plate as

if heavily loaded�

����� Corroded Pipe Problem

The mesh for the pipe problem was contributed by B� Chouchaoui ���� who is

studying the impact of corrosion on pipe strengths� Only the mesh representing half

the arc of the pipe was used� The boundary conditions were a simpli�ed version

of the original experimental data� The pipe segment is ��	�	 mm long with an

inner and outer radius of ������ and ������ mm respectively� The corrosion pit is

centered on the pipe segment and is marked by a �ner grid� For our analysis� each

hexahedral element was divided into six tetrahedral elements� Figure ��� shows the

surface mesh from the hexahedral discretization�

For boundary conditions� the pipe experiences tension along its length caused

by �xing the nodes of one end and applying a normal force to all surface triangles

on the other end� To avoid rotation around the pipe�s axis� the positions of the

nodes along one lengthwise edge are �xed so no motion is allowed out of the cut

plane� while allowing displacements within the cut plane�
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Figure ���� Surface Mesh of the Corroded Pipe
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Results

��� Preliminary Background

There are too many possible combinations of preconditioning matrices �for the

hierarchical system� for every conceivable version to be tested� Therefore� the choice

of which later experiments might prove worthwhile to investigate where based on

any trends that were observed during the initial testing�

To save space and the reader�s patience� detailed results are given only for a

representative sample of tests rather than a complete and exhaustive catalogue of

the results� Where appropriate� qualitative statements are made regarding any

trends observed in test cases not reported in detail herein�

There were a couple of cases where the lack of trends in the results suggests

further study needs to be done before any proper conclusions can be made� These

cases will also be commented on�

It is worth emphasising that in the following tables the notation ILU���� ���

will refer to an ILU factorization of the original nodal basis� while ILUv���� ����

�	
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ILUm���� ��� will refer to the ILU of Avv� and Amm � as in equation ���	�� This was

previously mentioned in Section ��� �

Unless otherwise indicated� the method of equations ���� and ���� was used to

ensure a positive de�nite ILU factor� The parameters are the same as those given

in equations ������ If a negative pivot was encountered on the �fth attempt at ILU

factoring �p � � in equation ������� the matrix solve was aborted�

All results are given in terms of total CPU time and number of iterations� The

total CPU time includes all the time required to symbolically and numerically ILU

factor the matrix �these steps are combined when a drop tolerance ILU is used��

and the iteration cost �forward and backward solves� gradient acceleration work��

In addition� the total CPU time includes all the time required for repeated attempts

to perform the ILU factorization �equations ���� and ����� to ensure positive pivots�

The CPU time does not include the time required for construction of the sti
ness

matrix� CPU times are reported for a SUN ��	�MP�

The initial tests were done on the Cube problem because of the ease with which

both the material properties of the Cube and the mesh size being used could be

changed� Any discovered trends were further investigated using both the Cube

problem and the more complex geometry problems� The test results for the Cube

will thus be presented �rst followed by the experimental results for problems with

more complex geometries�
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Table ���� P	 Preconditioning for Cube �x�x�
CPU seconds �iterations�

Preconditioning l�lz � ��� l�lz � �� l�lz � ���

ILU��� ���� �� ��� ����� �� ������ �����
J � M add ����	 ���� ����� ���
� �

ILU��� ���� �	��
 ���� ���� ���� ����� �����
J � M Add ��	� ��
� 		�� ����� ����
 ����

ILU��� ����� ���� ��� ���� ���� �
�		 �	�
�
J � M Add ����� ��	� 	��
 ���� �����
 �����

ILU��� ����� ����� �	� ���� ��� �	�
� ��
��
J � M Add ����� �� ���� �	�� 
��� �	���
�Did not converge in ���� iterations

��� Test Results

����� Cube Results

Some representative results for the Cube problem are given in Tables ���� ��� ��� and

��� � In both Tables ��� and ��� the line J � M Add refers to the procedure used in

���� �	� �� �described in Section ���� applied to the preconditioning method listed in

the line above� Table ��� clearly shows that for P� preconditioning �equation �������

the number of iterations increases drastically as the Cube�s aspect ratio becomes

smaller �decreases�� Similar behaviour has been noted by Jung� Langer � Semmler

and Poole� Knight � Dale ���� �� and is expected because of the correspondingly

poorer condition number of the matrix�

Tables �� and ��� indicate that P� preconditioning �equation������ requires on

average about one half the iterations as did a similar P� preconditioning� However�

since each P� preconditioning iteration required more than twice the work of a P�

preconditioning iteration� the P� method always required more total CPU time

than an equivalent P� technique� Consequently� there does not appear to be any

advantage to using a P� preconditioning� even for problems with poor aspect ratios
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�l�lz � ���

Table �� shows that for problems with aspect ratios near unity� a diagonal

scaling preconditioning ILUm � diag�Amm� was quite e
ective� However� the per�

formance of this method degrades severely as l�lz increased� Note that the very

accurate ILU factorizations of Amm� ILUm�
� 	�	� and ILUm�
� �	��� are more

robust �fewer iterations� and require less CPU time than the less accurate ILU

factorizations of Amm as l�lz increases� This is not surprising as it has been noted

by Jung� Langer � Semmler ���� that systems of equations based on �elongated�

elements require more accurate ILU preconditioners to achieve good convergence

rates�

Tables ��� and �� indicate that the J � M Add technique ���� became slower

as the aspect ratio deteriorated �became smaller� for relatively inaccurate ILU fac�

torizations� During inaccurate ILU factorizations� the discarded �ll terms are fairly

large� so that the amount added to the diagonal is also quite large� This tends to

cause an iterative method which uses J � M Add to slow down� However� as the ILU

becomes more accurate �higher level or smaller drop tolerance�� the amount added

to the diagonal is smaller� and hence this technique becomes more competitive�

Tables ��� and �� also demonstrate a markedly poorer performance of the J �

M Add technique ���� overall� This trend is not as clear in later test results making

a conclusion hard to reach�

Representative computations for the �	��	��	 Cube problem are given in Table

��� � The level based ILU P� methods are competitive with P� preconditionings for

l�lz small� but are poor for l�lz � �� As for the smaller version of the Cube problem�

the preconditioners ILUm � diag�Amm�� ILUm�	� 	�	� provide worse performance

as the aspect ratio becomes more extreme �� ��� This suggests again that more
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Table ��� P� Preconditioning for Cube �x�x�

CPU seconds �iterations�

Preconditioning l�lz � ��� l�lz � �� l�lz � ���

ILU
v
��� ���� ��
 ��� 	��� ��	�� �

ILU
m
� diag�A

mm
�

ILU
v
��� ���� ��� �	� ���� ���� �
��� �	���

ILUm��� ����
J � M Add 
�� ���� ���� ���� ����� �
��

ILU
v
��� ���� �� �	�� ��
� ��	� ��� �	���

ILUm��� ����
J � M Add ���	 �	� �	�� ���� 

�� ���	�

ILU
v
��� ���� �
��� �	�� ����� �	
� ����� �����

ILUm��� ����

ILUv��� ���� ����� �	�� ������ ���� ���
� ����
ILU

m
��� �����

J � M Add ���� �	
� ���
 ���� ��� �����

ILU
v
��� ���� �
��� �	�� ����� �	� �
��� �����

ILU
m
��� �����

J � M Add ���
 �	�� ��

 ��	� �	�� �����
�Failure to converge after ���� iterations�

Table ���� P Preconditioning for Cube �x�x�

CPU seconds �iterations�

Preconditioning l�lz � ��� l�lz � �� l�lz � ���

ILU
v
��� ���� 
�� ���� ����� ���� 
� �����

ILU
m
��� ����

ILU
v
��� ���� ��
 ���� ����� ���� 
�� �����

ILU
m
��� ����

ILU
v
��� ���� ���� ��
� �
��� ���� 	���� ����

ILU
m
��� ����

ILU
v
��� ���� ���	 ���� ���	 ���� ���� �����

ILU
m
��� �����

ILU
v
��� ���� ����
 ��� ���� ���� ��� ��	��

ILU
m
��� �����
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Table ���� P	� P� Preconditioning for Cube �	x�	x�	

vv CPU seconds �iterations�

Preconditioning l�lz � ��� l�lz � �� l�lz � ���

P�

ILU��� ���� ��
 ���	� �� ��

ILU��� ���� ��	 ��
� ��		 �	��� ���

ILU��� ���� ��� ��	� ���� ��
� �

ILU��� ����� ��� ����� �� ��

ILU��� ����� 	�� ��� �� ��

ILU��� ����� ��� ���� ��� �	��� �

ILU��� ����� �	� ����� ��� ���
� �

ILU��� ����� �	� ����� 	
�� ����� �

P�

ILU
v
��� ���� ��� ��� ���

ILU
m
��� ����

ILU
v
��� ���� ��� ��� ��
� �	�	� ���

ILU
m
� diag�A

mm
�

ILUv��� ���� ��� ���� �� �	�� ��
ILU

m
��� ����

ILU
v
��� ���� ��
 �	�� ��� ���� �	�� ����

ILUm��� ����

ILUv��� ���� �� �	�� ��	 �	�� ��	� �����
ILU

m
��� ����

ILU
v
��� ���� �� ���� �� ��

ILU
m
��� �����

ILU
v
��� ���� 	�� �	�� �� ��

ILU
m
��� �����

ILU
v
��� ���� ��
 �	�� �	
 ��� ���� �	���

ILU
m
��� �����

ILU
v
��� ���� �
 �	� �		 �	�� �	
 �����

ILU
m
��� �����

ILUv��� ���� ��� �	� ���	 �	�� ��
� �����
ILU

m
��� �����

ILU
v
��� ���� ��� ���� �	�� �	�� ����

ILUm��� �����
�Failure to converge after ���� iterations�
��Failed due to negative pivot in ILU ��ve attempts��
� � �CPU time limit ����� seconds� exceeded�
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accurate factorizations of Amm are required as l�lz increases�

Table ��� also shows an interesting phenomenon� The very small drop tolerance

ILU factorizations of Amm require more CPU time for cubes having aspect ratio

near unity compared to problems with poor aspect ratios �l�lz � ��� When using

a given �small� drop tolerance� the larger CPU costs are caused by more �ll being

generated for l�lz � � than for l�lz � �� For anisotropic M�matrix problems� this

e
ect has been noted previously by D�Azevedo� Forsyth and Tang���� however�

it was noted in ��� that this e
ect is strongly dependent on the ordering of the

unknowns� It would appear that for problems with small �� �� aspect ratios� a

small drop tolerance ILU is more e
ective than for problems with aspect ratios � ��

Table ��� repeats many of the tests given in Table ���� except that the J �

M Add method was used to prevent negative pivots �instead of adding an a priori

number to the diagonal �equations ���� and ������ Generally� the J � M Add

method was slower than the method of equations ���� and ����� even if the ILU was

attempted several times before no negative pivots were encountered� However� the

poorer performance by the J � M Add method was not as consistent as found in

the � � �� � Cube test cases �Tables ��� and ����

In summary� it seems that a robust method for various aspect ratios uses a P�

preconditioning with

ILUm��� 	�	� � ILUm�� 	�	�

ILUm�
� �	��� � ILUm�
� �	���

preconditionings for Amm� and an exact factorization of Avv� If it is known that the

aspect ratio is near 	��	 �Cube l�lz � �� or better� then P� with ILUm � diag�Amm�

is e
ective� as are P� methods�
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Table ���� P� Preconditioning for Cube �	x�	x�	 with J � M Add

CPU seconds �iterations�

Preconditioning l�lz � ��� l�lz � �� l�lz � ���

ILU
v
��� ���� ��� ��	� �
 ��
�� �

ILU
m
��� ����

ILU
v
��� ���� �
� ���� ��
 �
�� �

ILU
m
��� ����

ILU
v
��� ���� �	� �	�� ��
 ���� 	�
� �����

ILUm��� ����

ILUv��� ���� 	�� ��	� ��� ����� �
ILU

m
��� �����

ILU
v
��� ���� 			 ���� ��
 ����� �

ILUm��� �����

ILU
v
��� ���� ��� �	�� ��� ��� 	��� �����

ILU
m
��� �����

ILU
v
��� ���� ��
� �	�� 

� ���� ��� �����

ILU
m
��� �����

ILU
v
��� ���� 			� �	�� �
�	 �	�� ��� �����

ILU
m
��� �����

ILU
v
��� ���� ��� 	
	� �	�� �
�� ����

ILU
m
��� �����

�Failure to converge after ���� iterations�
� � �CPU time limit ����� seconds� exceeded�

Further tests were carried out to determine the e
ect of having a nonconstant

Young�s modulus �E� within the Cube� A problem with l�lz � �	� and P� pre�

conditioning with ILUm�� 	�	� and ILUv�
� 	�	� was used� Even if E had large

jump discontinuities of several orders of magnitude� there was very little e
ect on

convergence�

A similar test was carried out to determine the e
ect of varying Poisson�s ratio�

� was kept constant in the Cube� but di
erent values of � were used in di
erent

tests� The performance of the iterative methods was highly dependent on � as

expected ����� For example� the problem with � � 	������ required about �� times
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Table ���� P	 Preconditioning for Complex Geometry Problems

CPU seconds �iterations�

Preconditioning Balljoint Block � Bushing Multi�Material Corroded
Prism Bracket Pipe

ILU��� ����� �	� ����� �� ��	� ����� �� ��
J � M Add 	� ����� �� ���� 
�� ����� ��� ���� �

ILU��� ����� 	�� ��
� ��� ���� ���� ����� ��
� ����� ��
J � M Add 
�� ����� 
�
 ����� 
��� ��	� ��
� ����� �

ILU��� ����� �� �		� 	�� �	�� ��
	 ����� ��
 ���� ���� �
��
J � M Add �� ����� �� ����� �
� ��	�� �� �	
�� �

ILU��� ����� ��	 ���� ��� ���� ���� ���� ���� �	�� 
�
 �	���
J � M Add �
�	 ���� ���� �
�� ��� ���� ���� ����� �

ILU��� ����� ���� ��� ��	� ��� ����� ��� �		� ���� ��
�� �	���
J � M Add ���� �		� 	��� �		� ����� ��	�� ����� ���� �	��
 �����

ILU��� ���� �� �� 	
�
 ����� �� ��
J � M Add �� ����� �� ���	� � �� ���� �

ILU��� ���� �� ��
� ��� ���� �
	� ���	� ��

 ����� ��
J � M Add �� ���	� �� ����� ���� ���� ��
� �	��� �

ILU��� ���� ���� ��� �� ��
� ��
� ���� 	��
 ��� ��
J � M Add ��	 ���� ���� ���� 
��� ���� ���� ����� �
�Failure to converge after ���� iterations�
��Failed due to negative pivot in ILU ��ve attempts��

the number of iterations as for the same problem with � � 	��	 �

����� Results from more Geometrically Complex Problems

The test results from the problems having more complex geometries basically con�

�rm the conclusions developed in the previous section� Tables ���� ��� and ���

contain some representative results�

A comparison of Table ��� �P� preconditioning� and Table ��� �P� precondition�

ing with direct solve of Avv� clearly shows that using a hierarchical basis provides
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generally better computation times� For one choice of preconditioning parameters

the P� preconditioning method does give slightly better performance for the two

smaller problems� Balljoint and Block � Prism� However� this performance gain

was not repeated for any of the larger test problems� In particular� P� was an ex�

tremely poor technique for application to the Corroded Pipe problem �worse aspect

ratio��

The best preconditioners seem to be based on using an exact factorization for

Avv and ILUm�
� �	���� ILUm�
� �	���� or ILUm�
� �	��� for Amm� Smaller

drop tolerances were required for worse �smaller� aspect ratios �see Table �����

as would be expected ����� As the complex geometry problems do not have as

extreme aspect ratios as were used in the Cube problems� the recommended drop

tolerance is larger� In general� the most robust method in these tests was found to

be preconditioning by ILUm�
� �	��� �and exact factorization of Avv��

Unlike the results from the previous section� it is not clear that a level based

drop tolerance would provide good results� The test results indicate that a level

based preconditioning technique is almost always out�performed by the suggested

drop tolerance technique �P�� ILUm�
� �	���� ILUv�
� 	�	�� and that the level

based preconditioning provides less consistent results across the tested range of

aspect ratios�

Given more information about the equations to be solved� it is possible to im�

prove on these techniques� As discussed earlier� experimentation demonstrates two

dominant factors that a
ect the rate of convergence of the iterative techniques�

They are the average aspect ratio of the elements in the mesh and the value of ��

However� the value of � seems to have a uniform a
ect on all iterative techniques

leaving only the element aspect ratios to be considered�
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Table ���� P� Preconditioning with Direct Solve of Avv for Complex Geometry
Problems

CPU seconds �iterations�

Preconditioning Balljoint Block � Bushing Multi�Material Corroded
Prism Bracket Pipe

ILUv��� ���� 	
� ��� 	�� ���� ��	� ��
� �	�� �
� ��
ILU

m
��� �����

J � M Add 	�� ���� 	�� ��� �
�� �
�� ��	
 �
�� ���� �	���

ILUv��� ���� 	� ���� 	�� ��� ���� ���� ��	� �
�� 
��	 �����
ILU

m
��� �����

J � M Add ��� ��� 	� ���� ���� ��
� ���� �
�� ���� ����

ILUv��� ���� ��� ���� ��� ��� �
�� ���� ���� �
�� �� �����
ILU

m
��� �����

J � M Add ��� ��
� ��
 �� � ��	� ���� �
�� ��� �����

ILUv��� ���� � ���� 
�� �
�� ���� ���� �	
	 �
�� ���	 �����
ILU

m
��� �����

J � M Add ���
 ���� �	� ��� 	��� ��	� ���� �
�� ��� �����

ILUv��� ���� ���	 ���� �		 �
�� ���� ���� ��� �
�� ��� �����
ILU

m
��� �����

J � M Add �	�� ���� ���	 ��� �
�� ���� ���� �
�� �
�� �����

ILUv��� ���� ��� ���� 	� ���� ���� ��� �� ��
ILU

m
��� ����

J � M Add ��� ���� 	� ��� ��� �
�� ���	 �
�� ���
 �����

ILU
v
��� ���� ��� ���� ��� �� ���� ���� �
		 �
�� �	�	 ��	�

ILU
m
��� ����

J � M Add ��� ��
� �	 �
� ��
� ��	� �
 �
�� ���� �����

ILU
v
��� ���� 
�� ���� ��
 ��� ���� ��	� ��
� �
�� ��
� �����

ILU
m
��� ����

J � M Add 
�� ���� 
�� ��� �		 ��	� �	�� �
�� ��
 �����

ILU
v
��� ���� ��	 ��� ��� ���	� �	 ����� �	
� ����� ���� �
	��

ILU
m
� diag�A

mm
�

��Failed due to negative pivot in ILU ��ve attempts��
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For the test case meshes generated by the I�DEAS VI� Mesh Generation Package

���� it is noted that the average aspect ratio was always approximately 	��� �

With these aspect ratios� the maximum rate of convergence using a preconditioner

with an exact factorization of Avv was attained by using a coarse drop tolerance

of ILUm�
� �	��� or� for fast results and minimum space requirements� using a

ILUm � diag�Amm�� However� even these rapid convergence rates can be improved

upon�

Table ��� shows results from incomplete factorization of both Avv and Amm�

Examination of these results shows that for average aspect ratios of 	��� or more�

very fast convergence can be attained by a P� preconditioning with ILUv�
� �	���

or ILUv�
� �	���� and ILUm�
� �	��� or ILUm�
� �	���� This technique was not

e
ective for worse �smaller� aspect ratios�

Extensive testing of the J � M Add ���� method was also done� Table ��� shows

the results for a P� preconditioning with direct solve of Avv with and without using

the J � M Add technique� This technique demonstrates several positive features�

For these test cases� it usually only resulted in a small increase in convergence times

for the complex geometry problems� For the three cases where attempts to avoid a

negative pivot by adding an a priori number to the diagonal failed� the J � M Add

technique did succeed� In several cases� faster convergence times were observed for

speci�c tests of the Corroded Pipe and Multi�Material Bracket problems� However�

the J � M Add method was never faster than the recommended P� technique

�direct solve of Avv� ILUv�
� �	���� alone �Table �����

In general� there is little reason to use the J � M Add method for problems

with average aspect ratios of � 	��� and better or � 	�	 �Cube with l�lz � �		�

and worse� For problems in between these extremes �Multi�Material Bracket �

Corroded Pipe� the results seem to indicate that the method may provide reasonable
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Table ���� P� Preconditioning with ILU Factoring of Both Domains for Complex
Geometry Problems

CPU seconds �iterations�

Preconditioning Block � Bushing Multi�Material Corroded
Prism Bracket Pipe

ILU
v
��� ������ ILU

m
��� ����� ��� ����� ���	 ����� �� ��

ILUv��� ������ ILU
m
��� ����� ��	 ���� ��� ����� �� ��

ILU
v
��� ������ ILU

m
��� ����� �

 ���� 
� ���
� 
�	 �
� ��

ILU
v
��� ������ ILU

m
��� ����� 	�� ���� ��	� ��� 

� �
� ��

ILU
v
��� ������ ILU

m
��� ����� 	�� ����� ���� ����� �� ��

ILU
v
��� ������ ILU

m
��� ����� �
� ���� ��� ���	� �� ��

ILU
v
��� ������ ILU

m
��� ����� �� ��� ��� ����� �� �
	� ��

ILU
v
��� ������ ILU

m
��� ����� 	�� ��� ��� �
� 
�� �
�� ���� ���	�

ILU
v
��� ������ ILU

m
��� ����� ��� ����� ���� ���	� �� ��

ILUv��� ������ ILU
m
��� ����� 	� ���� ���� ����� �� ��

ILUv��� ������ ILU
m
��� ����� 	� �� ��	 ����� ���� �
�� ��

ILU
v
��� ������ ILU

m
��� ����� ��� �	� ���� �
�� ���� �
�� 	��� ���
�

ILU
v
��� ������ ILU

m
��� ����� 

 ����� 	��� ����� �� ��

ILU
v
��� ������ ILU

m
��� ����� 
�	 ���� ��
� ����� �� ��

ILU
v
��� ������ ILU

m
��� ����� 
�� �
� �	� ����� ���� �
�� ��

ILU
v
��� ������ ILU

m
��� ����� 
	� ��� 	�� �
�� �

� �
�� 	�
� �����

ILU
v
��� ����� ILU

m
��� ���� �� ���� ����� �� ��

ILU
v
��� ����� ILU

m
��� ���� �
	 ����� ���� ���
� �� ��

ILUv��� ����� ILUm��� ���� �	 ��� �� ����� �� ��

ILUv��� ����� ILUm��� ���� �� ��
� ����� �� ��

ILU
v
��� ����� ILU

m
��� ���� 		� ���� ���� ���
� ���� ����� ��

ILU
v
��� ����� ILU

m
��� ���� 		� ���� ��� ���
� ���
 ��� ���� �����

ILU
v
��� ����� ILU

m
��� ���� �� �	� ����� �� ��

ILU
v
��� ����� ILU

m
��� ���� ��� ���� ��� ����� ��� ����� ��

ILU
v
��� ����� ILU

m
��� ���� ��� ���� ���� ����� ���� ��� �
�� �		��

��Failed due to negative pivot in ILU ��ve attempts��
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computation times with more stability than the recommended P� technique alone

�Table ����� No �rm conclusion could be drawn from just these test results�

When the J � M Add method was combined with a P� �Table ���� approach

with ILU preconditioning for both Avv and Amm� convergence would generally take

twice as long or more� depending on the average element aspect ratio� This was

also found to be true when the J � M Add method was used with a P� �Table

���� preconditioning technique� There is some evidence the J � M Add method

improved the robustness of the both the P� and P� technique� but only for non�

recommended ILU�s �i�e� ILU�	� 	�	�� ILU�
� �	�����

Some experiments were also carried out using a iterative method to carry out

the operation in equation ������ for the midpoint block �Amm�� and an ILU pre�

conditioner� This performed very poorly compared with simply using an ILU of

Amm� and hence no results are given�

It is worth noting the both the Block � Prism and Multi�Material Bracket

problems contained two di
erent materials �Table ����� For both test cases� the

physical properties � and E di
ered between the component materials� However�

there was no indication of any adverse e
ect on the performance of any of the

iterative solving techniques�

In summary� a P� preconditioning with an exact factorization of Avv and a

drop tolerance of ILUm�
� �	��� or ILUm�
� �	��� appears to be a generally ro�

bust method for a range of average element aspect ratios� A smaller drop tolerance

should be favoured as the aspect ratio becomes worse� When the element aspect

ratio is known to be above 	���� even better results can be had by using incom�

plete factorization for both Avv and Amm� In this case having ILUv�
� �	��� or

ILUv�
� �	���� and ILUm�
� �	��� or ILUm�
� �	��� is recommended�
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Note that the above remarks are concerned solely with average element aspect

ratio� The minimum aspect ratios for the Balljoint and Block � Prism problems

were much smaller than the minimum �which was also the average in this case�

aspect ratio for the Cube problem with l�lz � �		� but clearly the Cube problem

was much more di�cult to solve than the former two problems�

��� Solution Accuracy

Having compared the CPU costs of the solutions and determined the most robust

iterative technique� the actual achieved accuracy of the generated solutions should

also be considered�

For the iterative tests� convergence was assumed to have occurred when the

initial residual was reduced by a speci�ed amount� However� the residuals during

the tests where calculated by using vector terms found during the conjugate gradient

process� Thus the residual vector was a sum of vectors rather than being explicitly

calculated by r � b�Ax� It common knowledge that a residual determined during

the conjugate gradient step can become a quite poor approximation of the current

residual� To avoid misleading results when comparing solutions� a true residual

�r � b�Ax� was often calculated upon convergence� When residuals are compared

in the following subsections� this true residual was used�

The same residual was also calculated for the solutions found by using a direct

solver for comparison to the true iterative residuals�
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����� Iterative vs� Direct Solve Results

A direct solve was attempted for the �	 � �	 � �	 Cube �l�lz � �	� and for each

of the �ve complex geometry problems using the Yale Sparse Matrix Package ����

Minimum degree ordering was used for each of the direct solves� To match the

iterative solutions� the direct solutions were also calculated in single precision� De�

spite only using single precision storage� memory constraints �maximum of �� Meg

available� limited the testing of the direct method to only three of the �ve complex

geometry test problems �Table �����

For the Balljoint� Multi�Material Bracket� and Cube problems� the direct solve

cost from six to seventeen times the CPU time to complete compared to the recom�

mended iterative technique �direct solve of Avv� ILUv�
� �	����� The direct solve

of the Block � Prism required only three times the CPU time compared to the iter�

ative technique because of the small amount of �ll which occurred� The remaining

two problems �Bushing and Pipe� required too much memory for a direct solve to

be performed�

Table ��� shows both the solution times and the amount of storage required for

the direct and iterative factored matrices� It can easily be seen that the iterative

factored matrix requires only about a �fth of the storage as needed by the direct

solver as well as taking less CPU time�

The solutions for each problem from both the direct and the iterative approaches

were compared� This comparison was done by calculating�

kXdirect �Xiterativek�
kXmaxk�

�
kYdirect � Yiterativek�

kYmaxk�
�
kZdirect � Ziterativek�

kZmaxk�

where�

	 X� Y � and Z are vectors of the calculated x� y� and z displacements for each
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Table ���� Direct Solve vs� Suggested P� Technique

CPU seconds �iterations�

Preconditioning ��� ��� �� Balljoint Block � Bushing Multi� Corroded
Cube Prism Material Pipe

�l�lz � ��� Bracket

ILUv��� ���� �	
 ��� ��� ���� ��� ��� �
�� ���� ���� �
�� �� �����
ILU

m
��� �����

Memory ������� ������
� ��������� ��������� 
������
 
�
������

Direct ��� 


� 	��� �	�� � ���
� �
Solve
Memory �������		� �������
�� 
�	����
 � 	���		��� �
�Insu	cient memory available to complete a direct solve�
Memory is the number of single precision words required to store the matrix factors and
integer pointers�

node�

	 subscripts direct and iterative refer to method used to calculate displacement

vector� and

	 subscript max means the maximum displacement from both the iterative and

direct solutions�

For all problems� the maximum disagreement between solutions was less than

	�		� �or 	�� � and was often as small as 	�	� � Thus the iterative solution can

be expected to have roughly three or more signi�cant digits of the direct solution�

with the applied tolerance �equation �������

In fact� when the true residuals for both the direct method and the iterative

technique� using single precision storage� were compared the residual for the direct

method was no better than the true residual of the iterative technique� The direct

method�s residual was at best almost identical to the iterative residual and at worst
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almost �		 times larger�

From these facts it can be concluded that the recommended iterative solver will

�nd at least a comparable solution to the direct method while providing a large

CPU cost savings and using less memory�

����� Single vs� Double Precision

During all the previous tests� only single precision storage was used to store the

matrix terms to help reduce memory demands� The iterative tests were considered

converged after a reduction of the initial residual by a factor of �	��� However�

some tests were made with higher residual reductions to measure the e
ectiveness

of the �	�� criteria�

Comparison of the true residuals for both a residual reduction of �	�� and �	��

demonstrated that no further accuracy was actually achieved in the hopefully higher

precision solution� In other words� when using single precision storage� a residual

reduction of �	�� has driven the solution to the limits of the attainable accuracy

because of round�o
�

However some tests were also made while using double precision storage� These

tests show that it is possible to achieve a residual reduction of approximately �	���

before round�o
 makes further gains negligible� To achieve this residual reduction

requires a little less than �� times the CPU time compared to a single precision

residual reduction of �	���
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Convergence Criteria

��� Introduction

The convergence criteria used to determine the results given in the previous chapters

was a simple reduction of the initial residual by a user speci�ed factor and also a

user set limit for a maximum number of iterations� A residual reduction of �	��

has in general� provided a good solution by driving the iterative scheme to a point

where no further improvement could be seen in the solution vector due to numerical

round�o
� This rather coarse accuracy limit is because of the matrix terms were

only stored using single� rather than double precision� More accurate results could

be achieved by storing all terms in double precision�

However� it is often the case that a solution with a speci�c accuracy is required�

Error estimates can be evaluated for a solution after it has been calculated� Ohtsubo

and Kitamura ���� present an a posteriori method for determining and possibly

improving the error of a solution to a �nite element analysis of a three dimensional

elastic problem� The error estimate is calculated by solving the FEA equilibrium

��
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equations for each element using the next higher order basis than was used for the

initial stress analysis�

Determining the error of a solution after it is created is not su�cient for current

requirements though� Time is money on large computers� and a stopping criteria

which terminates the iterative process as soon as a desired accuracy is achieved

could save much valuable computation time� But� a premature termination could

lead to even worse consequences which may later cost more than just a few more

minutes of CPU time�

Thus� a stopping criteria mustn�t be too optimistic and give misleading results�

nor be so pessimistic that valuable computation time is wasted� A criteria must also

be relatively inexpensive to check or the cost of deciding when to halt computations

will begin to inhibit the e�ciency of the iterative solver� More expensive stopping

criteria can be used� but checks should be made less frequently� Instead of checking

the criteria after each step� checks could be made every two or more steps�

Arioli� Du
 and Ruiz ��� suggest a stopping criteria for iterative solvers based

on the quantity � de�ned by�

� � max
i

jr��x�ij

�Ej�xj� f�i
where� r��x� � b�A�x �

Iteration is terminated when � is reduced to a speci�ed size or has clearly ceased

to decrease� However� this technique is very dependent on the choice of E and f�

Several possible assignments are suggested but Arioli� Du
 and Ruiz conclude that

setting

� �
kr��x�ik�

�kAk�k�xk� � kbk��
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was the best of their presented criteria� Despite being easy to compute� the question

of what the termination value of � should be and how to decide if � has ceased to

decrease remains somewhat open�

Kaasschieter ���� o
ers a technique based on estimating the smallest eigenvalue

���� of a matrix from the information gained during the application of an iterative

conjugate gradient method� The principle advantage of Kaasschieter�s method is

that the stopping criteria is already expressed in terms of the desired accuracy of

the solution� Theoretically� the criteria is designed to halt the iterative procedure

when kx�xik��kxk� � � �where x is the exact solution vector and xi is the solution

vector after the ith step� thus resulting in an solution with an accuracy of ��

This technique was implemented because of the expected simplicity of adding

it to the program�s existing PCG algorithms and also because of the direct formu�

lation of the terminating criteria in terms of the required accuracy� Unfortunately�

implementation of the algorithm was not simple because the accurate estimation

of the �norm of a triangular matrix turned out to be non�trivial�

��� Theory

Before discussing the necessary theory� a quick note is needed to explain the no�

tation conventions used� All norms in the following theory and application are

�norms� It should also be mentioned that the vectors x� y� z are exact solu�

tion vectors and xi� yi� zi are the approximate solution vectors found after the i
th

iteration�

Kaasschieter�s technique is meant for direct application to conjugate gradient

code and thus requires modi�cations before being used with a preconditioned con�
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jugate gradient system�

As stated earlier the desired stopping criteria is

kx� xik�kxk � � �����

where x is the exact solution vector and xi is the solution vector after the ith step�

As the exact solution vector is unknown� the inequality will be replaced by using

the following theorem�

Theorem ��� If kx� xik � kxik���� � ��� then kx� xik � kxk��

This theorem is proven in Kaasschieter�s paper and allows for a more easily devel�

oped bound of the solution vector�s error�

From Kaasschieter�s paper� the conjugate gradient algorithm �after i iterations��

x� xi � A���b�Axi� � A��ri ����

and therefore�

kx� xik � kA��rik � krik��� �����

where �� is the minimum eigenvalue for A and is used to approximate kA
��k� Thus

if krik��� is made to be less than kxik���� � �� by su�cient iterations then the

inequality�

kx� xik � krik��� � kxik���� � �� �����

is satis�ed and it follows from Theorem ��� that the desired accuracy has been

achieved�

What is needed is to construct an equivalent of equation ����� for the scaled

preconditioned conjugate gradient system which can be used to satisfy a similar
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inequality as in equation ������ To start� this requires the expression and manipu�

lation of the equations for the preconditioned scaled conjugate gradient system� as

are found in the existing test code� First� the scaled conjugate gradient system is�

DADD��x � Db or !Ay � !b �����

where !A � DAD� y � D��x� and !b � Db� Simple algebra shows that the residual

of the new system is�

!ri � !b � !Ayi � D�� �b�Axi� � D��ri �

When preconditioned�

L�� !AL�tLty � L��!b or !!Az � !!b �����

where !!A � L�� !AL�t� z � Lty� !!b � L��!b� and LLt � !A� The next residual !!ri

logically follows�

!!ri �
!!b � !!Azi � L��!ri � �����

Finally� from the de�nition of y �equation ������ and z �equation �������

x � Dy � DL�tz � �����

Using the above de�nitions of the preconditioned conjugate gradient system� the

equivalent of equation ����� can be derived� Combining !!Az � !!b and !!Azi �
!!b� !!ri

yields�

!!A �z� zi� � !!ri or �z� zi� �
!!A
��
!!ri �����

and equation ����� implies�

�z� zi� � LtD�� �x� xi� � ����	�
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From equations ����� and ����	��

LtD�� �x� xi� �
!!A
��
!!ri

�x� xi� �
�
LtD��

��� !!A��
!!ri

kx� xik � k
�
LtD��

���
k k !!A

��

k k!!rik

kx� xik � kxik � k
�
LtD��

���
k k !!A

��

k k!!rik � kxik

kx� xik � kxik � k
�
LtD��

���
k ���� kL��!rik � kDyik ������

which is similar to equation ������ The reason for this form for the inequality is to

make maximum use of values which are already available or easily calculated� ��

is calculated by Kaasschieter�s algorithm and yi and kL��!rik are generated during

each iteration by the PCG routines� This leaves multiplying yi by the diagonal

matrix D and having some sort of estimate for k �LtD���
��
k� Unfortunately� the

last term is the most di�cult to acquire cheaply�

Direct evaluation of k �LtD���
��
k is possible but would be extremely expensive�

�
LtD��

��� �
LtD��

�
�x� xi� � �x� xi��

LtD��
���

Lt �y � yi� � �x� xi��
LtD��

���
Lt �y � yi� � D �y � yi�

k
�
LtD��

���
k kLt �y � yi� k � kD �y � yi� k �����

or

k
�
LtD��

���
k �

kD �y� yi� k

kLt �y� yi� k
������

forms a lower bound estimate for k �LtD���
��
k� but y is not known and so it

is approximated with yi��� This estimate can be calculated easily as the PCG

algorithm used supplies the di
erence of the vectors �yi�� � yi� after each iterative

step and D and Lt are known�
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Thus a stopping criteria has been formed out of equations ������ and �������

kx� xik

kxik
�

kD �yi�� � yi� k

kLt �yi�� � yi� k

�

��

kL��!rik

kDyik
�

�

�� � ��
� ������

Similar to what was stated for equation ������ if the right hand inequality is sat�

is�ed then Theorem ��� can be used to show that the desired accuracy has been

achieved� As kD �yi�� � yi� k�kLt �yi�� � yi� k provides only a lower bound esti�

mate for k �LtD���
��
k it becomes easier than it should be to satisfy the right hand

inequality of equation ������� To help counter this� the maximum estimate found

for k �LtD���
��
k over all the iterations is used instead of the current estimate for

the stopping criteria check�

max
i

�
kD �yi�� � yi� k

kLt �yi�� � yi� k

�
�

��

kL��!rik

kDyik
�

�

�� � ��
� ������

Kaasschieter�s algorithm for estimating �� is explained in his paper ���� and so

it will not be rewritten here� It is based on the relationship between CG methods

and the Lanczos procedure� Essentially� the minimum eigenvalue ���� is calculated

from a sub�space of the Krylov space �spfr��Ar��A�r�� ����A
N��r�g�� By using

the above derived terminating criteria and the estimated minimum eigenvalue it is

hoped an e
ective stopping criteria can be developed�

It should be noted that the algorithm presented by Kaasschieter is being ap�

plied to the scaled and preconditioned system so the resulting minimum eigenvalue

estimate is not for the original matrix A� but rather for !!A
��

�

��� Results

Once implemented� Kaasschieter�s algorithm was initially tested with all conju�

gate gradient values calculated and stored in double precision� but the A and fac�

tored matrices in single precision� It was soon demonstrated that the solution
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Table ���� Desired vs� Attained Accuracy

��� ��� �� ��� ��� �� Balljoint Block � Prism
Cube �l�lz � �� Cube �l�lz � ���

Aspect Ratio ��
�
 ����� ��

� ��
�

Desired Accuracy Attained Accuracy �� of iterations�

� � ���� ��	������ ���
	����� ��
������� ��
������

���� ���� ��� ����

� � ���� 	��
������ ���
����� �������� ���������

���� ���� ���� ����

� � ���� ��������� ���������� ����
����� ���������

��	� ���� ���� �	��

� � ���� ��������� ��������� ��
������� ��		������

���� ���� ���� ����

� � ���� ���������� ���	������ 	��������� ����������

���� ���� �	
� �
��

� � ���� 	��	������ ���������� ���������� 	���������

���� �	�� ���� ����

� � ���� ��������� ���������� ���������� ���
�����

��	� �	�� ���� ����

� � ���	 ���	����� 	��������� ���
����� 	���	�����

��
� ���� ��
� ���	�

All tests done with ILU
m
��� ����� preconditioning in double precision�

vector couldn�t be iterated to an arbitrary level of accuracy due to round o
 errors�

Each of the test problem solutions attained a maximum accuracy of roughly 	��  

�kx� xik�kxk � � � �	����

The accuracy of each generated solution vector was determined by comparison

to a solution vector generated by a double precision iterative solve which was run

until the initial residual was reduced by a factor of �	���� This solution vector was

then considered to be the exact solution�

The tests were then rerun with everything stored in double precision� These

results proved to be more indicative of the capabilities of the modi�ed Kaasschieter
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algorithm which were unfortunately not very promising �Table �����

The �rst thing that can be seen is that the average aspect ratio of the mesh

elements seems to have no correlation with the performance of the convergence

criteria� There may be some correspondence but it is not obvious from this data�

The individual aspect ratios of the elements does have an e
ect on the estimate of

the minimum eigenvalue ���� but this is mentioned later�

For almost all the test cases the stopping criteria terminated the iterations

prematurely� The only exceptions are some of the coarser accuracy �� 
 �	��� tests
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for the more complex problems �the Balljoint and Block � Prism�� This implies

that there are inaccuracies in the inequality being used to determine the stopping

point �inequality equation �������� The three terms in the inequality equation which

could have have errors are the estimate of k �LtD���
��
k� the estimate of ��� and

the calculated !ri�

A plot of the all estimates made of k �LtD���
��
k is given in Figure ��� when

the desired accuracy was speci�ed to be � � �	��� Remember that the terminating

criteria only used the maximum estimate found up to and including the current

iteration and not just the current estimate� The plot suggests that the estimate for

the k �LtD���
��
k was fairly good as the magnitude of the estimate never signi��

cantly changed� Had the magnitudes varied more� it would have indicated that the

estimate was poor� and probably untrustworthy�

It is worth noting that the estimate of the k �LtD���
��
k for the Cube problems

is a little worse �more variable� than the estimate found for the more complex

problems� Though this would e
ect the stopping criteria� it alone is not su�cient

to explain the poor convergence criteria results found for the Cube test cases�

Another di�culty with the modi�ed Kaasschieter algorithms is the poor ini�

tial estimate for the minimum eigenvalue which can be seen in Figure ��� This

poor estimate explains the premature terminations of the two Cube test cases when

a coarse accuracy was required �� 
 �	���� This is to be expected due to the

extremely small sub�space of the Krylov space being used to estimate !!A�s mini�

mum eigenvalue� This could be easily avoided by specifying a minimum number of

iterative steps to be taken�

The initial guess of the solution vector will strongly in�uence how the estimates

of �� develop� For Figure ��� the initial guess was the zero vector except for where
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a node had a speci�ed displacement� A couple of tests were also made with an

initial guess which was just the zero vector� This small change �less than � of the

initial vector altered� resulted in a pronounced e
ect on the resulting �� estimates�

A few tests have also shown that when the iterative algorithms are forced to

continue beyond the believed points of convergence as reached in Figure �� �and

noted in Table ����� it is found that the �� estimate does not change signi�cantly

anymore� This suggests that Kaasschieter�s algorithm does actually converge on the

minimum eigenvalues� However the convergence for the more complex problems

is much slower than for the Cube problems� This is caused by the the meshes

containing some elements with extremely poor aspect ratios resulting in smaller

minimum eigenvalues�

Despite these observations� that the �� estimate takes longer to converge for

the more complex geometry problems and that the �� estimate is sensitive to ini�

tial guess of the solution vector� no further conclusions could be made about the

performance of the stopping criteria relative to the estimate of ���

Finally� consider the calculated residual !ri� This residual is calculated during

each step of the iterative procedure by adding an adjustment vector to the !ri vector�

Thus the residual vector will be highly susceptible to truncation of information as

the residual and the adjustment vectors become smaller and smaller in magnitude�

It has been noted before that the residual vector calculated in the iterative routines

will become inaccurate after a number of iterations� A possible solution would be

to re�calculate the true residual periodically during the iterative procedure�

Having an incorrect residual vector accounts for the slowly deteriorating perfor�

mance of the stopping criteria for the more complex geometry problems as higher

and higher accuracies are speci�ed�
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����� Conclusion

Unfortunately� the modi�ed Kaasschieter�s approach seems to only work consis�

tently for the Block � Prism problem with a mid�range desired accuracy ��	�� 	

� 	 �	���� Somewhat passable performance was also observed for the Balljoint

problem with the same range of speci�ed accuracies� However� for higher accura�

cies for the Block � Prism and the Balljoint problems and for any accuracy for the

two Cube problems the stopping criteria proved itself to be premature�

The reasons for this seem to depend on the di�culty of �nding good estimates

of k �LtD���
��
k and ��� and maintaining an accurate value of !ri� It possible to see

speci�c regions where a poor estimate of one of these values clearly is the cause of

the incorrect termination of the iterative procedures but in general it is more likely

a combination of these factors which lead to the poor stopping criteria results�

I believed initially that Kaasschieter�s method would be easy to modify and

implement within my existing code� However� because of the di�culties in getting

accurate values for the terms in the stopping criteria inequality� I have come to

conclude that this method needs more modi�cation or is simply inappropriate for

the problems being tested�

Future research could be done on the importance of the initial guess on the

convergence of the �� estimate� A good initial guess for the solution vector will

result in rapid convergence to the correct solution but this is not necessarily true

for the convergence of the �� estimates�

Other possible avenues of research which might prove fruitful are possible com�

binations of terminating criteria and the recalculation of the exact residual pe�

riodically� The residual used in the iterative CG method is a summation which

can be quite sensitive to round�o
 and truncation errors common to ill�conditioned
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matrices�

Finally� any future work should include a few experiments with some of the

criteria developed by Ashby� Holst� Manteu
el and Saylor ���� Their criteria are

based on using dynamically calculated estimates of the condition number and inner

products already calculated in the conjugate gradient process�
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Conclusions

	�� Preconditioning

The performance of PCG iterative methods for linear elasticity is highly dependent

on the average element aspect ratio� With an average aspect ratio better than 	��	�

many preconditioning methods will be successful� However� as the average aspect

ratio becomes smaller� the iterative methods encounter di�culty unless powerful

preconditioning methods are used� The test problems used in this study had average

tetrahedral aspect ratios varying between 	��� and 	�	�

For unstructured grids with quadratic tetrahedral elements� a robust iterative

method for a wide range of aspect ratios uses a hierarchical basis block precondi�

tioner �P��� and a direct solve of the vertex block �ILUv�
� 	�	��� coupled with

a drop tolerance incomplete factorization �ILUm�
� �	���� of the midpoint block�

This method can be �ne�tuned by using a coarser or �ner drop tolerance for sit�

uations where the average aspect ratio is known�expected to be better or worse

than 	��	 respectively� Level based ILU methods were not� in general� consistently

�
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competitive with the drop tolerance ILU techniques �for the full range of the test

problems��

With this type of preconditioning� the recommended iterative methods achieved

at least comparable if not better solutions while outperforming the direct solution

method by a factor of between three and seventeen times in terms of CPU cost� For

the larger problems� the direct solutions could not be obtained due to the excessive

memory requirements �
 �� Meg� necessary to complete the direct solve� In those

cases where direct solution method did succeed� the iterative and direct solutions for

the displacements agreed to at least three Figures �a di
erence of 	�� or smaller��

The hierarchical basis P� block preconditioner with ILUv�
� 	�	� and

ILUm�
� �	��� generally outperformed a level based or drop tolerance based in�

complete factorization preconditioning �P�� of the nodal basis sti
ness matrix�

There also did not appear to be any advantage to using the more accurate block

preconditioner �P�� with the hierarchical basis�

Faster convergence rates can be achieved for meshes with average aspect ratios

above 	��� by using an incomplete factorization for both Avv and Amm regions�

ILUv�
� �	��� or ILUv�
� �	���� and ILUm�
� �	��� or ILUm�
� �	��� seem to

be the best combinations�

There are two standard methods for ensuring that the incomplete factorization

of a symmetric positive de�nite matrix produces positive diagonal pivots� The J

� M Add method ��� adds the dropped terms in the incomplete factorization to

the diagonal� This method is guaranteed to produce positive pivots� but overesti�

mates the amount necessary to add to the diagonal� and hence may produce a poor

preconditioner� The alternative� is to keep adding a small relative amount to the

diagonal until the incomplete factorization succeeds �see equation ������ ����� The
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situation regarding these two methods is not altogether clear� For a hierarchical

basis block preconditioner �P��� with a small drop tolerance for the ILU of the

midpoint block �ILUmm� the method of equation ����� was generally superior to

the J � Add method� However� if a larger drop tolerance �or low level� is used for

the ILU of the midpoint blocks� then there are some cases where the J � M Add

method does succeed� while the technique of equation ����� fails due to an excessive

number of attempts to incompletely factor the midpoint block �Amm��

For fully three dimensional objects� available mesh generators appear to be ca�

pable of producing tetrahedral meshes with average element aspect ratios greater

than 	��	� in which case we can expect good performance from a block hierarchi�

cal basis preconditioner compared to a direct solver� However� even for extreme

element aspect ratios � �	�� the block hierarchical basis preconditioner will also

outperform a direct solver when a small drop tolerance is used for the midpoint

preconditioner� Such extreme aspect ratios may arise in full three dimensional

modelling of plates and shells constructed of composite materials�

	�� Stopping Criteria

Unfortunately� the modi�ed Kaasschieter�s approach seemed to only work some�

what consistently for the Block � Prism problem and the Balljoint problem with

desired accuracies in the range of �	�� 	 � 	 �	��� Partially to blame for this is the

modi�cations made to Kaasschieter�s algorithms in order to apply it to precondi�

tioned conjugate gradient �PCG� routines as compared to conjugate gradient �CG�

routines� These modi�cations turned out to be di�cult and not very accurate�

Thus Kaasschieter�s technique ���� is inappropriate for a general use PCG iterative

solver without further developments�
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The large e
ect the initial guess has on the convergence of the estimate for the

smallest eigenvalue ���� is also worth noting� Unfortunately� the best guess for the

convergence of the PCG method may not be the best for the convergence of the ��

estimates�
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