Computing Values and Derivatives of Bézier and
B-spline Tensor Products

Computer Science Department
University of Waterloo
Research Report CS-93-31

Stephen Mann
University of Waterloo

Tony DeRose, Georges Winkenbach
University of Washington

Abstract

When evaluating tensor product surfaces it is often necessary to calculate both the
position and the normal to the surface. We give an efficient algorithm for evaluating
Bézier and B-spline tensor products for such information. The algorithm is an exten-
sion of a method for computing the position and tangent to a Bézier curve, and is
asymptotically twice as fast as the standard bilinear algorithm. !

1 Introduction

Many applications require evaluating both the value and derivatives of a function. For
example, one way to generate an offset to a degree n Bézier curve F(t) = Y. P, B}(t)
is to evaluate the position and normal to the curve at a sufficiently large number of
values of the parameter £. Similarly, a degree n x m tensor product Bézier surface

F(th17) = Y Py By (") B} (1)
"j

is often rendered by tessellating the surface (for reasons that will become clear in
Section 2, we use superscripts to differentiate between the parametric directions of
F). To use smooth shading, both the position and the normal must be evaluated for
a sufficiently large number of values for ¢! and #2. Finally, scalar tri-variate B-spline
functions have been used for solid three dimensional textures and bump mapping. The

!This work was supported in part by the Xerox Corporation, Hewlett-Packard, the Digital Equipment
Corporation, and the National Science Foundation under grant CCR-8957323.

Figure 1: De Casteljau’s Algorithm. The Bézier control points are shown in white. At each
step, intermediate points are computed as convex combinations of the points in the previous
step.

Figure 2: Bilinear interpolation.

normal to the bump map is given by the gradient of the tri-variate B-spline function.
For a discussion of Bézier curves and surfaces, see [Far90].

A univariate Bézier curve F is typically evaluated using de Casteljau’s algorithm
(Figure 1). For a degree n curve, the algorithm proceeds in n steps. The j-th step
of the algorithm takes n — j + 2 control points and produces a new set of n — 5 + 1
control points. The single point produced by the n-th step is the point of evaluation.
It is well known that the derivative of F' at the point of evaluation is proportional to
the difference of the two points produced at the n — 1st step.

We can evaluate a bi-variate n x n Bézier surface by performing repeated bilinear
interpolation (see Figure 2 and Farin [Far90]). The final point is the point of evaluation,
and again, the points in the next to last step can be used to calculate the derivatives
of the surface. However, this algorithm does not suffice for an n x m tensor product
surface with m # n.

In this paper we develop an algorithm to handle the general case of arbitrary m
and n. Our approach is to run the univariate version of de Casteljau’s algorithm suc-
cessively in each parametric dimension. Each time, we stop the evaluation “one short”
of completion, as described above for the evaluation of a Bézier curve for its position
and derivative. The resulting multi-linear function is then evaluated to compute both
the value and the derivatives.

In Section 2, we develop the theory behind our algorithm. In Section 3, we present
the algorithm, and finally, we analyze the efficiency of our algorithm in section 3.1, and
show that it is asymptotically twice as fast as the bilinear interpolation algorithm.

2 Theory

In this section, we describe the mathematical quantities computed by the algorithm,
quantities that are best characterized using the notion of blossoming. The details of
the computation are presented in the next section.

The blossoming principle states:

For every polynomial F(t) of degree n, there is a unique, symmetric, n-
affine map, f(t1,...,t,), that agrees with F' on the diagonal, i.e., F(f) =
f(t,...,0).
The blossom of a polynomial can be evaluated to obtain the Bézier and B-spline con-
trol points for a segment of the curve. For a degree n Bézier curve F(t) defined on the in-

terval [a, b], the Bézier control points are given by f(a,...,a), f(a,...,a,b), -+, f(b,...

For a degree n B-spline curve F(¢) withknots g < #; < +++ < Zmynyt1, the B-spline con-
trol points are given by f(@;y1, 212,y %itn), for 0 <7 < m+ 1. (Ramshaw [Ram88]
discusses some subtleties that occur with the blossoms of B-splines.) For simplicity, we
will only consider uniform B-splines.

Given the blossom f of an n-th degree polynomial F, we can calculate the deriva-
tives of F(p) by evaluating f at p n — 1 times, leaving an affine function

@)= f(wat)
n—1
We can evaluate either f or f* to obtain the derivative of F"

(?91;(1)) = n[f(l,p,- --,P) - f(Oapa' . '7p)]

= nlf" (1) - F(0)].

Note that, for a Bézier curve defined on the interval [a, b], the derivative is also given

by

OF . f(b,p,---,P)—f(aapa---ap)
E(p) = n b—a '

For notational simplicity, we will use the former varient of the derivative. The imple-
menter should use the latter, however, as these values can be obtained directly from
the intermediate points of de Casteljau’s algorithm.

The blossom of a tensor product is formed by blossoming each of its arguments

independently: For a d-variate tensor product F(t';---;t%) of degree ny X ny X -+ X ng,
the blossom of F is a function f(t},...,t.; --- ;t¢,...,t2) that is symmetric in

-

each block of arguments and agrees with F' on the diagonal, i.e., F(p';p%---;p%) =
f' 0% 5% pY).

For a tensor product F(t';---;t%), the partial derivatives of F' can be determined
by evaluating all but one of the arguments of its blossom f, resulting in a curve. The
i-th partial of F is the derivative of the i-th such curve:

oF , ,
g (PP = [f(Ph P s L p s Pt pY) -

fH . P e 0,050 -ee s Y]

The problem we are solving can be stated as follows:

Given: A d-variate tensor product Bézier function F(¢';- - -;¢%), and a point (p',. .., p%)
in its parameter space.

Find: The value and gradient of F at F(p';---;p%).

As indicated earlier, our approach appeals to properties of f, the blossom of F.
From f, we build the function

L(th---5t%) = f(t,p' .0t - 5t p ., pY).
The value and derivatives of F' are then computed by evaluation of L, using the iden-

tities

and

3 The Algorithm

There are a variety of ways to compute the function L. For efficiency, we evaluate f by
operating on each of the d blocks of arguments in turn (using de Casteljau’s algorithm)
but always stopping “one level short of completion.” The function L is obtained when
all argument blocks have been processed. To make these ideas more precise, after ¢
blocks have been processed, we have computed the control points representing the
function

f(t 71: 7"'71:7 ’!717"'71’ ? N4 ? 2719 7nd)
+
l(? ?)

Thus, after all d blocks have been processed we have constructed a representation of
L4, which by construction is equal to L.

Py

,m

P
Figure 3: Data Flow Diagram of Algorithm

om

The steps needed to compute L are illustrated in Figure 3 for a tensor product
surface (i.e., for d = 2). We first run the de Casteljau algorithm on all the rows
of control points of F, but stop one step short of the top. This leaves us with two
columns of control points that describe the function L;. We then run the de Casteljau
algorithm on each of these two columns, again stopping one evaluation short of the
top, thereby obtaining four control points describing the functions L,(t';¢?) = L(¢';¢?).
This bilinear surface osculates with F(t!;t?) to first order. Thus, F(t';¢?) as well as
both partials of F' can be computed from L. Pictorially, the algorithm is illustrated in
Figure 3. Code for the algorithm appears in Figure 4.

The algorithm readily generalizes to d-variate tensor products, and a similar ap-
proach (based on the Cox-de Boor algorithm) may be used to evaluate tensor products
B-splines. As an example of both generalizations, we give code to compute L for a
triquadratic, uniform, tensor product B-spline (Figure 5).

3.1 Comparison of Algorithms

In this section we compare our algorithm to the bilinear algorithm. We do not compare
algorithms such as forward differencing [Roc87, LSP87] since they are not designed to
evaluate the surface at arbitrary parametric values on demand.

We can use either our algorithm or the bilinear algorithm to evaluate an n X n
tensor product surface F. If the blossom of F is f and we wish to evaluate it at the
point (p',p?) then the bilinear algorithm proceeds by setting one argument in each
argument block. E.g., from the initial blossom

Fl, . th; ..., 82),

/* Given the control points P, ; for a n X m tensor product
Bezier patch F and a pair of parameter values p' and p?,
return the value and partial derivatives of F at p',p? */

EvalTensorProduct(IN: P, ;, n, m, p', p*; OUT: F, %, %)
/* Run de Casteljau’s curve algorithm on the rows of the net */
for (¢ = 0; ¢ < m; i++) { /* for each row */
for (k=1; k <m; k++) {
for (j =0; 5 <m—k;j++) {
Pij=1-p*)xP;+p"*Pjn
}
}
}

/* Now run de Casteljau on the first two columns of the net */
for (j =0; 7 <1; j++4){ /* for each column */
for (k=1; k <n; k++) {
for (i=0;2<n—kjitt) {
Pj;=(1 —p')* F;; + p' * P
}
}
}

/* now we have a bilinear patch in P, ; */
Lpio=(1-p")*Poo+p'* Py
Lyp1=(1—-p")xPo1+p %P
Loy =(1=p*)x Poo+p** P,
Liy=(1-p*)xPio+p° %Py

/* Compute the normal by computing partial derivatives; ignore scale */

aF _ _
w —_— Ll’pz LO,pZ

9F _ B
opz = L1 — Lpro

/* finally, evaluate the function...*/
F=(1-p*)Lpo—p"Lp,

Figure 4: Code to Evaluate Bézier Tensor Product Patch.

/* Given the control points P, ; for a triquadratic tensor product
B-spline volume F' and a triplet of parameter values p', p?, p%,
return the value of F at p',p?, p®, and the gradient L. */

EvalTriquadradic(IN: P, ;, n, m, p', p?, p% OUT: F, L, ;)

for (1=0;:<2;i++) {
for (=057 <2554+ +) {
for(k=0;k<1;k++){

P = (2+i—p") Pi g1+ (p" —5) Ps 5 k41
l:]yk - 2

}
}

for (1=0;:<2;i++) {
for (k=0;k<1;k++){
for (j=0;5<1;5++){

P .. = CH-P)Piint(® —5)Pijnt
i3,k = 2

}

!jlk

}
}

for (j=0;7<1;54++) {
for(k=0;k<1;k++){
for (t=0;:<1;i++) {

L... = (2+k—p°)Pi i 1 +(P° —k)Pi,j, k41
l:]yk - 2

}
}

Figure 5: Code to Evaluate Uniform Tensor Product B-spline Volume.

the bilinear algorithm computes control points representing the function

f(t17' "7t’}1,—]_7p1; tf" * '7t’i—17p2)7

as illustrated in Figure 2. In contrast, our algorithm evaluates one argument block at
at time. Thus, from the initial blossom, our algorithm instead computes control points
for

fEpt o B, 8

as illustrated in Figure 3.

In the bilinear algorithm, successive levels of control points are computed perform-
ing bilinear interpolation on sets of four control points on the previous level, typically
using three linear interpolations, requiring six multiplications and three additions. For
an n X n tensor product surface, there are) ., i* = w such combinations.

For our algorithm, control points for a new level are a linear combination of two
points, each requiring two multiplications and one addition. When evaluating the first
block of arguments, there are (n+1) 7' i = % combinations. For the second
block, there are 23.7"'i = n(n — 1) combinations. After these first two evaluations,
we have reduced the control net to a bilinear patch, and we need an additional six
multiplications and three additions to compute the point on the surface.

Thus, the total number of multiplications used by the bilinear algorithm is
n(n+1)(2n + 1),
while our algorithm uses
(n+)(n+1ln+2(n+1)n

multiplications. (Both algorithms require half the number of additions as multipli-
cations.) While both algorithms have the same asymptotic complexity (O(n?)), our
algorithm has a constant factor about half that of the bilinear algorithm. In particu-
lar, our algorithm is computationally more efficient for surfaces of bi-degree n > 2 (as
expected, both algorithms perform identically for a bilinear surface).

Note that the number of multiplications at each step of the bilinear algorithm can
be reduced from six to four, although three additions would still be required. With
this variant of the bilinear algorithm, our algorithm is slightly slower when evaluating a
bilinear patch, but is still more efficient when n > 2, and asymptotically our algorithm
only requires two-thirds the number of multiplications and only half the additions.

4 Conclusions

We have presented an efficient algorithm for computing values and first derivatives of
multivariate tensor product Bézier and B-spline functions.

A few notes are in order. First, it is computationally advantageous to evaluate the
tensor product first in the parametric direction of lowest degree. Second, we stopped

at the next to last step of the de Casteljau algorithm since we were only interested in
first derivatives. Higher order derivatives can be computed if the evaluation is stopped
at an earlier stage. For example, to compute second derivatives of a tensor product
Bézier surface, we could stop two levels early in the de Casteljau algorithm (when
computing both the rows and the columns). The nine points thus constructed then
form a biquadratic Bézier surface from which all second derivatives can be calculated.

References

[Far90] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Aca-
demic Press, San Diego, second edition, 1990.

[LSP87] Sheue-Ling Lien, Michael Shantz, and Vaughan Pratt. Adaptive forward dif-
ferencing for rendering curves and surfaces. Computer Graphics (SIGGRAPH
’87 Proceedings), 21(4):111-118, July 1987.

[Ram88] L. Ramshaw. Béziers and B-splines as multiaffine maps. In R. Earnshaw,
editor, Theoretical Foundations of Computer Graphics and CAD, pages 757—
776. Springer Verlag, 1988.

[Roc87] Alyn P. Rockwood. A generalized scanning technique for display of paramet-
rically defined surfaces. IEEE Computer Graphics and Applications, 7(8):15—
26, August 1987.

The Computer Graphics Laboratory at the University of Waterloo is a group
of students and faculty doing research within the Computer Science Depart-
ment. Interests include most areas of computer graphics, document prepa-
ration and man-machine interfaces. CGL s affiliated with the Institute for
Computer Research. Graduate work at the masters and doctoral level leads
to a Computer Science degree from the Faculty of Mathematics. Further
mformation may be obtained by writing to the following address:

Computer Graphics Laboratory
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
(519) 888-453/

