
The Design and Analysis of Asynchronous Up-Down Counters 0

by

J.P.L. Segers

Department of Mathematics and Computing Science

Eindhoven University of Technology

The Netherlands

0This report was presented to the Eindhoven University of Technology in fulfillment of the thesis re-

quirement for the degree of Ingenieur in de Technische Informatica. The work was done while visiting the

University of Waterloo from September 1992 until May 1993.

Acknowledgements

I am very thankful to my supervisor Jo Ebergen from the University of Waterloo in Canada for

listening to me, answering my questions, and for carefully reading this manuscript. He made my

stay in Waterloo very educational.

I thank all members of the MAVERIC research group for some interesting discussions on designing

up-down counters. In one of those discussions Peter Mayo gave me the idea for an up-down counter

with constant power consumption.

There are more people at the Computer Science Department of the University of Waterloo that

deserve to be acknowledged. I will not try to mention all of them, because I would undoubtedly

forget someone. Hereby I thank all of them.

The International Council for Canadian Studies is acknowledged for their financial support. The

Government of Canada Award that they awarded to me made my stay in Waterloo financially

possible.

I thank Rudolf Mak for getting me in touch with Jo Ebergen, and Franka van Neerven for helping

with all kinds of organizational details that had to be taken care of before I could go to Waterloo.

Finally, I thank Twan Basten for being patient with me and listening to me during the stay in

Waterloo.

i

Abstract

The goal of this report is to investigate up-down counter implementations in the framework of delay-

insensitive circuits. An up-down counter is a counter on which two operations can be performed:

an increment by one and a decrement by one. For N larger than zero, an up-down N -counter

counts in the range from zero through N . In the counters we design, the value of the counter,

or its count, cannot be read, but it is possible to detect whether the counter’s value is zero, N ,

or somewhere in between. Up-down counters have many applications. For example, they can be

useful in implementing queues or stacks.

Various implementations for up-down N -counters are presented for any N larger than zero. All

counter designs are analyzed with respect to three performance criteria, namely area complexity,

response time, and power consumption. One of the designs is optimal with respect to all three

performance criteria. Its area complexity grows logarithmically with N , and its response time and

power consumption are independent of N .

ii

Contents

0 Introduction 1

0.0 Synchronous Up-Down Counter Implementations . 2

0.1 Designing Asynchronous Circuits . 3

0.2 Results of the Thesis . 5

0.3 Thesis Overview . 6

1 Trace Theory and Delay-Insensitive Circuits 7

1.0 Introduction . 7

1.1 Trace Theory and Commands . 7

1.2 Extending Commands . 9

1.3 Basic Components . 13

1.4 Decomposition . 13

1.5 Delay-Insensitivity and DI decomposition . 17

1.6 Sequence Functions . 18

2 Formal Specification of Up-Down Counters 20

2.0 Introduction . 20

2.1 An Up-Down Counter with an ack-nak Protocol . 20

2.2 An Up-Down Counter with an empty-ack-full Protocol 21

iii

3 Some Simple Designs 24

3.0 Introduction . 24

3.1 Unary Implementations . 25

3.1.0 Specification of the Cells . 26

3.1.1 Correctness of the Implementation . 27

3.1.2 Performance Analysis . 29

3.2 A Binary Implementation . 33

3.2.0 Specification of the Cells . 33

3.2.1 Correctness of the Implementation . 35

3.2.2 Implementations for General N . 37

3.2.3 Performance Analysis . 38

4 An Implementation with Parallelism 40

4.0 Introduction . 40

4.1 Specification of the Cells . 41

4.2 Correctness of the Implementation . 43

4.3 Implementations for General N . 47

4.4 Performance Analysis . 47

4.4.0 Area Complexity . 47

4.4.1 Response Time Analysis . 47

4.4.2 Power Consumption . 55

4.5 The ack-nak Protocol . 55

5 An Implementation with Constant Power Consumption 58

5.0 Introduction . 58

5.1 Specification of the Cells . 60

5.2 Correctness of the Implementation . 61

5.3 Performance Analysis . 64

iv

5.3.0 Response Time . 65

5.3.1 Power Consumption . 69

6 Conclusions and Further Research 71

6.0 Introduction . 71

6.1 Conclusions . 71

6.2 Further Research . 72

Bibliography 76

v

Chapter 0

Introduction

Counters of all kinds are used in a variety of digital circuits. The kinds of counters used include

binary counters, Gray code counters, ring counters, and up-down counters. Most of these counters

cycle through a number of states, each state representing a natural number. Because of this cyclic

behavior, the next state can be determined from the present state. An up-down counter behaves

differently. It counts up or down, depending on the input received.

For many counters, the value of the counter, or its count, can be read by the environment. Some-

times, however, there is no need to be able to read the value of the counter. In the case of a

modulo-N counter, for example, it can be sufficient to detect when the count modulo N is equal

to zero. In the case of an up-down counter with a counting range from zero through N , it can

be sufficient to detect when the counter’s value is one of the boundary values. In [DNS92], for

example, an up-down counter is used to find out whether a FIFO-queue is empty, full, or neither

empty nor full. In [EG93a] the use of an up-down counter is proposed for a similar purpose.

In this report we specify and design up-down counters that count in the range from zero through

N , for N larger than zero. We call such counters up-down N -counters, or just N -counters. The

counters we specify and implement are of the kind where the environment of the counter can only

detect whether the counter’s value is zero, N , or neither zero nor N . It cannot read the counter’s

value. Being able to detect whether a counter’s value is zero is called empty detection. Detecting

whether the counter’s value is N is called full detection.

We want to investigate whether or not it is possible to design N -counters with empty and full

detection of which emptiness and fullness can be detected within an amount of time independent

of N after an input has been sent to the counter. If only empty and full detection are required

in a specific application, such a counter could have a faster response time than a readable counter

1

2 Chapter 0. Introduction

for which the detection of boundary values is implemented a posteriori. A readable up-down N -

counter requires a number of “memory cells” that is at least logarithmic in N . It is hard to imagine

that in such a counter the new value can be read after an amount of time independent of N , if no

broadcasting of signals is allowed.

In the design of counters we can distinguish between synchronous and asynchronous counters. In

this report we devote our attention to asynchronous counters, i.e., counters that do not use a global

clock signal. Before giving some advantages of asynchronous circuits, we briefly discuss synchronous

counter implementations. We have not found any designs for asynchronous up-down counters in

the existing literature.

0.0 Synchronous Up-Down Counter Implementations

A synchronous counter is a counter that uses a global clock for its operation. Designing synchronous

counters is usually considered a standard exercise. Synchronous designs can be found in many

textbooks on logic design, such as [Man91]. There are not many articles on synchronous counters.

In some of them the counters are used to illustrate particular circuit design methods, as in [LT82,

CSS89]. In those articles the maximum clock frequency usually depends on the size of the counter

and the counter size is limited. In the design proposed in [LT82] this is most apparent in the

circuitry that implements the empty detection: it uses gates with a number of inputs that depends

on the size of the counter. The authors of this article say

Traditional counters, both asynchronous and synchronous, suffer either from slow speed

(in the asynchronous case) since there is a carry or borrow propagation during counting,

or from irregularity (in the synchronous case) due to the control gate of each stage being

different.

The counter they design is used as a bracket counter. The object is matching opening and closing

brackets in a string of brackets. Hence the authors are interested in testing whether the counter’s

value is zero. We show that asynchronous counters with empty detection are not necessarily slow

due to carry or borrow propagation, and that their structure can be very regular.

Guibas and Liang [GL81] describe an implementation of a binary up-down counter by a transi-

tion table. They do not formally prove that this implementations is correct. The idea for the

implementation is the same as for the counter design presented in Chapter 4 of this report. Their

counter does not have full detection and requires a global clock signal. Guibas and Liang conjecture

0.1 Designing Asynchronous Circuits 3

that there is a correspondence between their binary up-down counter design and a stack design

presented in the same paper. This conjecture is not explained. A correspondence between stack

implementations and unary counters is much more obvious, as we show in Chapter 3. Finally,

Guibas and Liang claim that their counter design can be made totally asynchronous. They do not

give any justification for this claim.

In [JB88] an up-down 2N -counter is implemented byN identical modules. The inputs for increment-

ing and decrementing the counter are broadcast to all modules. This results in an implementation

where the new value of the counter can be read after a constant number of clock cycles after the

counter has received an input, under the assumption that the input signal can be broadcast to all

modules in a constant amount of time. In this report we look at counter designs in which the inputs

are sent to one module only.

Oberman wrote a textbook on counting and counters [Obe81]. The book contains a large number

of counter implementations of all kinds, among which up-down counters in Chapter 2. Some

commercially available counters are discussed, and some simpler up-down counters are presented

for educational purposes. Oberman does not discuss the performance of the implementations he

presents.

Parhami proposes some up-down counter designs in [Par87]. His counters behave like modulo-N

counters (see e.g. [EP92]) when the counter is incremented in its full state, and the value of the

counter cannot be read. He also considers counters that can represent negative values. His binary

counter design has the drawback that its specification assumes every cell to have two neighbors.

The result is that in the implementation internal signals have to be generated to simulate the

behavior of these (physically nonexistent) cells. Parhami’s work is based on [GL81].

In the above articles no binary counter implementations are presented for general N . Usually the

maximum count is a power of two minus one.

0.1 Designing Asynchronous Circuits

At present, most digital circuits use a global clock. They perform their computations in lockstep

with the pulses of the clock. The correctness of the operation of such synchronous circuits depends

on the delays of its elementary building blocks: they should be no longer than a fixed number of

clock periods.

As circuits become larger and larger, distribution of the clock signal over the circuit becomes

increasingly more difficult. This becomes apparent when looking at DEC’s Alpha microprocessor

4 Chapter 0. Introduction

for example [BBB+92]. In asynchronous circuits there is no global clock signal. The goal of this

report is to design asynchronous up-down counters of a special kind; we aim for delay-insensitive

implementations, see e.g. [Ebe89, Udd86]. The correct operation of delay-insensitive circuits does

not depend on bounds for the delays of its parts, i.e. delays of basic components and connection

wires.

The absence of the need to distribute a global clock signal is not the only advantage of delay-

insensitive circuits. The advantages include the following:

• Delay-insensitive circuits have better scalability than synchronous circuits. The reason for

better scalability is that in scaling down the dimensions of a circuit (size and in synchronous

circuits the clock period), the delays in wires do not scale down proportionally. For syn-

chronous circuits this means that the timing constraints have to be verified again and that

the clock frequency may have to be adjusted. For delay-insensitive circuits it is not a problem

since the correctness of their operation does not depend on delays in connection wires.

• Delay-insensitive circuits have better modifiability than their synchronous counterparts. In

a delay-insensitive circuit parts of the circuit can be redesigned, e.g. to obtain better per-

formance or a smaller circuit, without affecting the correctness of the whole as long as the

functionality of the redesigned part does not change. In synchronous designs this is not

possible without verifying all the timing constraints as well.

• Asynchronous circuits possibly have a better performance than synchronous circuits. Syn-

chronous circuits exhibit worst-case behavior, since the clock frequency has to be adjusted to

the worst-case delay in computations. In asynchronous circuits, a computation step is made

as soon as possible. So asynchronous circuits tend to exhibit average-case behavior.

• Asynchronous circuits possibly have a lower power consumption. A reason for the lower power

consumption of asynchronous circuits is the absence of the clock, which ticks continuously,

even when no computation is being executed. In [BBB+92] it is stated that in DEC’s Alpha

microprocessor chip, 17.3% of the power dissipation comes from the clock generation (clock

distribution is not included in this number). Thus, circuits without a clock may have a

lower power consumption. Moreover, absence of a clock may reduce cooling problems in large

circuits.

• In delay-insensitive circuits metastable behavior does not cause errors. In synchronous cir-

cuits metastable behavior may cause errors when the behavior lasts longer than the clock

0.2 Results of the Thesis 5

period. In delay-insensitive circuits the time it takes to reach a stable state only influences

the performance, not the correctness of the circuit.

Currently a lot of research is devoted to designing and analyzing asynchronous circuits [vBKR+91,

Bru91, Dil89, Ebe89, Gar93, Mar90, JU90, RMCF88, Sut89, Udd86]. There are still many problems

to be solved, like analyzing performance measures of the designed circuits, liveness properties, and

testing.

Some interesting performance criteria for asynchronous circuits are their area complexity, response

time, and power consumption. The area complexity of a circuit can be analyzed by counting the

number of basic elements in the circuit, provided that the circuit does not have long connection

wires between its basic elements. We use this basic element count as a measure for the area

complexity of our designs.

The response time of an asynchronous circuit can be defined as the delay between an output event of

the circuit and the last input event that has to take place before that output can occur. A possible

measure for the response time is the number of internal events that have to occur sequentially

between an input to the circuit and the next output. For a class of asynchronous circuits this can

be formalized by sequence functions [Zwa89, Rem87]. Sometimes counting events is not sufficient.

We show this in a later chapter and propose a different way to estimate the response time.

Van Berkel was one of the first to identify low power consumption as an attractive property of

asynchronous circuits [vB92]. He analyzes power consumption of his implementations by counting

the number of communications of the handshake components in his circuits, see e.g. [vB93]. We

estimate the power consumption of our counter designs by counting the average number of events

per external event in our specification language.

0.2 Results of the Thesis

In this report we concentrate on the design of delay-insensitive up-down counters. The up-down

counters are operated by a handshake protocol between the counter and its environment. The

counters have inputs up and down. If an up is received from the environment, then the counter is

incremented and an acknowledgement is sent to the environment — provided that the counter was

not at its maximum value before the up was received. In the same way, the counter is decremented

if a down is received — provided that the counter’s value was greater than zero before the down was

received. Each input is acknowledged in such a way that the counter’s environment knows whether

the counter is empty, full, or neither. The counter’s value cannot be read by its environment.

6 Chapter 0. Introduction

The proposed implementations are analyzed with respect to the three performance criteria men-

tioned in the previous section. Since we do not present transistor implementations, we do not have

exact numbers for the measures. We analyze the order of growth of the three performance criteria

in terms of N . To indicate the order of growth we use Ω to indicate a lower bound, O to indicate

an upper bound, and Θ to indicate a tight bound. A tight bound is both a lower bound and an

upper bound.

In the following we design a number of up-down counter implementations. Some of them are similar

to synchronous counter implementations found in the literature. These implementations show that

a global clock is not required.

In the response time analysis of one of the counters we show that under certain assumptions

sequence functions may not be adequate to determine the response time of asynchronous circuits.

We analyze the response time under the weaker assumption that basic elements have variable,

but bounded, delays. Ai definition for ‘bounded response time’ is proposed, to be used instead of

‘constant response time’ as defined in [Zwa89] when the weaker assumptions apply.

Furthermore, an up-down N -counter design is presented, for any N greater than zero, with optimal

growth rates for area complexity, response time, and power consumption. The area complexity of

this type of counter is logarithmic in its size, and the response time and power consumption are

independent of its size. We can even prove that the response time is bounded according to our

definition, which is a stronger result than proving constant response time.

0.3 Thesis Overview

The goal of this report is to examine possible delay-insensitive implementations for up-down N -

counters. Before we can give any implementation, we need a specification. In Chapter 1 we give

an overview of the formalism we use for describing the specifications and implementations, and we

introduce the correctness concerns for implementations. In Chapter 2 we present two specifications

for up-down counters and Chapters 3, 4, and 5 are devoted to designing and analyzing implementa-

tions. The implementation presented in Chapter 5 is a new one. It presents a method for designing

up-down counters with constant power consumption, bounded response time, and logarithmic area

complexity for any N . Chapter 6 contains some concluding remarks and suggestions for further

research.

Chapter 1

Trace Theory and Delay-Insensitive

Circuits

1.0 Introduction

The formalism we use to specify delay-insensitive circuits and to verify the correctness of imple-

mentations is introduced in [Ebe89]. Behaviors of circuits are described by strings of events, called

traces, over a certain alphabet. This is formalized in trace theory. Our specifications are so-called

commands. They are similar to regular expressions. Commands are a way to specify regular trace

structures, a subclass of trace structures.

Implementations consist of sets of connected components. Each of the components in an imple-

mentation can be specified by a command. A set of components that implements a specification is

called a decomposition of that specification.

This chapter contains an introduction to trace theory, the command language, and decomposition.

A more extensive introduction can be found in [Ebe91].

1.1 Trace Theory and Commands

Components are specified by commands. Commands prescribe the possible sequences of communi-

cations between components and their environment.

The underlying semantics for commands is trace theory [vdS85, Kal86]. Every command is associ-

ated with a (directed) trace structure. A directed trace structure is a triple 〈I,O, T 〉. I and O are

7

8 Chapter 1. Trace Theory and Delay-Insensitive Circuits

alphabets; I is the input alphabet and O the output alphabet. The input alphabet I represents

the input terminals of the specified component and the output alphabet O represents its output

terminals. The set of possible communication behaviors of the component is given by T ; T is called

the trace set of the trace structure. It is a set of sequences over I ∪ O. A trace structure that

describes the communication between a component and its environment has disjoint input and

output alphabets. There are no bidirectional communication channels.

For a trace structure S, the input alphabet, output alphabet, and trace set are denoted by iS, oS,

and tS respectively. Furthermore we define the alphabet of S as iS ∪ oS. It is denoted by aS. For

command C, we use iC, oC, aC, and tC to denote the input alphabet, output alphabet, alphabet,

and trace set of the corresponding trace structure.

The command language consists of atomic commands and operators. Since commands are used

to described the behavior of components we want the corresponding trace structures to have a

non-empty trace set. Moreover, we want the trace set to be prefix-closed. This means that for any

trace in the trace set, all its prefixes are in the trace set as well. A non-empty, prefix-closed trace

structure is also called a process.

The atomic commands are ∅ ε, b?, b!, and !b?, where b is an element of a sufficiently large set of

names. The atomic commands correspond to trace structures in the following way:

∅ 〈∅, ∅, ∅〉
ε 〈∅, ∅, { ε }〉
b? 〈{ b }, ∅, { b }〉
b! 〈∅, { b }, { b }〉
!b? 〈{ b }, { b }, { b }〉.

In this report we simply write b for the command !b?. This does not cause any confusion; if b occurs

in a command, it is an atomic command, and not a symbol. There are seven operators defined on

commands. For commands C and D and alphabet A we have:

C;D = 〈iC ∪ iD, oC ∪ oD, (tC)(tD)〉
C | D = 〈iC ∪ iD, oC ∪ oD, tC ∪ tD〉
∗[C] = 〈iC, oC, (tC)∗〉

pref C = 〈iC, oC, { t : (∃u :: tu ∈ tC) : t }〉
C |̀A = 〈iC ∩A, oC ∩A, { t : t ∈ tC : t |̀A }〉
C ‖D = 〈iC ∪ iD, oC ∪ oD, { t : t ∈ (aC ∪ aD)∗ ∧ t |̀aC ∈ tC ∧ t |̀aD ∈ tD : t }〉.

The seventh operator is treated separately in the next section. The first three operations are well

known from formal language theory. Juxtaposition and ∗ denote concatenation and Kleene closure

1.2 Extending Commands 9

of sets of strings. The pref operator constructs prefix-closed trace structures from its arguments.

The projection of a trace t on an alphabet A, denoted by t |̀A, is trace t with all occurrences of

symbols not in A deleted. We also use another notation to describe projection. For command C,

we write

|[A :: C]|

as an alternative for

C |̀ (aC \A).

This alternative notation has the advantage that the set of symbols to be hidden, A, appears before

the command C. The symbols occurring in A can be interpreted as internal symbols of C. The trace

set of the weave of two commands C and D, consists of the interleavings of the traces described by

C and D. We stipulate that unary operators have higher binding power than binary operators. Of

the binary operators weaving has the highest priority, followed by concatenation, and finally union.

With these operations every command corresponds to a regular trace structure. This means that

components specified by commands have a finite number of states.

A result from trace theory that we use later is the following.

Property 1.1.0. For trace structures R and S, and alphabet A

(R ‖ S) |̀A = (R |̀A) ‖ (S |̀A) ⇐ aR ∩ aS ⊆ A.

2

A proof can be found in [Kal86].

1.2 Extending Commands

We extend the command language to make it easier to specify finite state machines. Finite state

machines can be expressed with the operators introduced so far, but it is not always easy. In-

troducing tail recursion will remedy this. Ebergen introduced tail recursion to specify finite state

machines in [Ebe89]. The proofs of the claims made in this section can be found there. Defining

the meaning of a tail-recursive specification requires some lattice theory. A general introduction to

lattice theory can be found in [Bir67].

10 Chapter 1. Trace Theory and Delay-Insensitive Circuits

A function f is a tail function if it is defined by

f.R.i = pref (| j : 0 ≤ j < n : (S.i.j)(R.j))

for vector of trace structures R of length n, matrix of trace structures S of size n × n, and for

0 ≤ i < n. Matrix S determines f uniquely. We assume that every row of S contains at least one

non-empty trace structure.

Let I be the union of the input alphabets of the elements of S and let O be the union of the output

alphabets of the elements of S. The set of all vectors of length n of non-empty, prefix-closed trace

structures with input alphabet I and output alphabet O is denoted by T n.I.O. On T n.I.O a partial

order can be defined:

R ¹ R′ ≡ (∀ i : 0 ≤ i < n : t(R.i) ⊆ t(R′.i))

for trace structures R and R′ in T n.I.O. With this partial order, T n.I.O is a complete lattice with

least element ⊥n.I.O, where ⊥.I.O = 〈I,O, { ε }〉. The least upper bound operation on this lattice

is pointwise union of vectors of trace structures and the greatest lower bound operation is pointwise

intersection.

Moreover, for a matrix S that has a non-empty trace structure in each of its rows, the tail function f

induced by S is continuous. This means that this tail function has a least fixpoint (Knaster-Tarski

theorem). As usual, we denote the function that maps tail functions to their least fixpoints by µ.

The relation between finite state machines and fixpoints of tail functions can be described as follows.

Consider a finite state machine with states q.i for 0 ≤ i < n and initial state q.0. If trace structure

S.i.j is non-empty, then there is a transition from q.i to q.j labeled with S.i.j. For 0 ≤ k and

R.k ∈ T n.I.O we define:

R.0 = ⊥n.I.O

R.k = f.(R.(k − 1)) for 1 ≤ k.

In words this means that tR.k.i, for 0 ≤ i < n, is the prefix-closure of the union of the trace sets

obtained by concatenating the k trace structures on a path of length k starting in state q.i. The

trace structure corresponding to the finite automaton is (| k : 0 ≤ k : R.k.0) It can be proved that

µ.f.i = (| k : 0 ≤ k : R.k.i), so µ.f.0 is the trace structure corresponding to the finite automaton.

For a trace structure defined by a tail function we can use fixpoint induction to prove properties of

the trace structure. We use this in Chapter 5. Here we formulate the fixpoint induction theorem

for the lattice of vectors of trace structures and tail functions only.

1.2 Extending Commands 11

Theorem 1.2.0. (Fixpoint induction theorem)

Let f be a (continuous) tail function and let P be an inductive predicate such that P.(⊥n.I.O)

holds and f maintains P , i.e.,

P.R ⇒ P.(f.R),

for R ∈ T n.I.O. Then P.(µ.f) holds. 2

A predicate is inductive if

(∀R : R ∈ V : P.R) ⇒ P.(
⊔

R : R ∈ V : R),

for any non-empty, directed subset V of T n.I.O (a directed set or chain in a partial order is a set

of which the elements are totally ordered).

A tail function can also be specified by a matrix of commands instead of trace structures. This is

essentially the way in which we use tail recursion.

As a small example we give a specification using tail recursion and use fixpoint induction to show

that this specification can be simplified.

Tail function f ∈ T 4.{ a }.{ b } is defined by the matrix















∅ a? ∅ ∅
∅ ∅ b! ∅
∅ ∅ ∅ a?

b! ∅ ∅ ∅















To make tail-recursive specifications more readable, we will use the following format in the rest of

this report:

S.0 = pref (a?;S.1)

S.1 = pref (b!;S.2)

S.2 = pref (a?;S.3)

S.3 = pref (b!;S.0).

We can use fixpoint induction to prove a property of this specification. Predicate P is defined by

P.R ≡ (R.0 = R.2),

for R ∈ T 4.{ a }.{ b }. P is an inductive predicate: for any subset V of T n.{ a }.{ b } we have

12 Chapter 1. Trace Theory and Delay-Insensitive Circuits

P.(
⊔

R : R ∈ V : R)

≡ { Definition of P }
(
⊔

R : R ∈ V : R).0 = (
⊔

R : R ∈ V : R).2

≡ { Definition of
⊔ }

(| R : R ∈ V : R.0) = (| R : R ∈ V : R.2)

⇐ { Leibniz }
(∀R : R ∈ V : (R.0 = R.2))

≡ { Definition of P }
(∀R : R ∈ V : P.R).

All predicates that express that two components of a vector of trace structures are the same are

inductive predicates. For example, predicate Q, defined by:

Q.R ≡ (R.1 = R.3)

is inductive too.

It is obvious that both P.(⊥4.{ a }.{ b }) holds and that P.(⊥4.{ a }.{ b }) holds: all components are

equal to ⊥.{ a }.{ b }.
Next we show that f maintains P ∧Q. For any R such that Q.R holds we derive:

f.R.0

= { Definition of f }
pref (a?;R.1)

= { Q.R }
pref (a?;R.3)

= { Definition of f }
f.R.2.

Similarly we can derive that f.R.1 = f.R.3 if P.R holds. Thus, by the Fixpoint Induction Theorem,

we conclude that µ.f.0 is equal to µ.f.2 and that µ.f.1 is equal to µ.f.3. This means that

µ.f.0 = pref (a?;µ.f.1)

µ.f.1 = pref (b!;µ.f.0).

So (µ.f.0, µ.f.1) is equal to the least fixpoint of the tail function defined by

S.0 = pref (a?;S.1)

S.1 = pref (b!;S.0).

The fixpoint operator µ has some nice properties. A property we use is that µ.f |̀A can be obtained

by removing all symbols not in A from the defining equations for f .

1.3 Basic Components 13

1.3 Basic Components

In this section we discuss a number of basic components that can be used to implement larger

components. We only introduce the components that are used in this report.

The first component is the wire. A wire component has one input and one output. Its commu-

nication behaviors are all sequences in which input and output alternate, starting with an input, if

any.

An iwire component has one input and one output as well. Its communication behaviors are

alternations of inputs and outputs as well, but starting with an output, if any. iwires can be used

for starting computations.

The merge component is a component with two inputs and one output. Again, inputs and outputs

alternate in the communication behaviors. After one of the two inputs is received, an output is

produced.

A toggle has one input and two outputs. Communication behaviors of the toggle start with an

input, if any, and inputs and outputs alternate. The outputs are produced alternatingly at each of

the two output terminals.

The next element is the 1-by-1 join, also called join. It has two inputs and one output and is

used for synchronization. After both inputs have been received, an output is produced, and this

behavior repeats. We also use an initialized join. An initialized join behaves as a join for which

one input event has already taken place.

Table 1.0 contains the commands and schematics for the introduced basic components.

1.4 Decomposition

A decomposition of a specification is a set of components that implements the behavior of the

specification according to four correctness concerns. Before we introduce the correctness concerns

of decomposition, we describe how specifications should be interpreted.

Earlier we saw that every specification corresponds to a regular trace structure with disjoint input

and output alphabets. The alphabet of the trace structure represents the connections between the

component and its environment, the terminals of the component. The input alphabet consists of

the terminals at which the environment may produce events. The output alphabet consists of the

terminals at which the component may produce events.

14 Chapter 1. Trace Theory and Delay-Insensitive Circuits

Basic component Command Schematic

wire(a; b) pref ∗ [a?; b!] - -a? b!

iwire(a; b) pref ∗ [b!; a?] - -a? b!

merge(a, b; c) pref ∗ [a?; c! | b?; c!] --
-

M
b?
a? c!

toggle(a; b, c) pref ∗ [a?; b!; a?; c!]
r
-
-- ©©HH c!
b!a?

join(a, b; c) pref ∗ [(a?‖b?); c!] ±°
²¯

-

-
- c!

b?

a?

Table 1.0: Basic components.

A behavior of the component describes the order in which events occur at the terminals. The trace

set of the trace structure describing the component specifies which behaviors can occur. Initially

the sequence of events that have occurred is empty. Consider a communication behavior t such that

ta is also a valid communication behavior. If a is an input symbol, this means that the environment

may produce an a event after behavior t. If a is an output symbol, this means that the component

may produce an a event after behavior t has occurred.

We note two things. First, an input or output is not guaranteed to occur, even though it might

be the only event that can occur after a certain behavior. Second, our specifications prescribe the

behavior of the environment as well as of the component. This means that correct operation of the

component is guaranteed only in the case that the environment behaves as specified.

In the above we mentioned the environment of a component a number of times. The outputs of the

component are the inputs of its environment and the inputs of the component are the outputs of the

environment. We can turn the environment of component S into a component S̄ by interchanging

the input and output alphabets.

Definition 1.4.0. Let S be a trace structure. Its reflection S̄ is defined by S̄ = 〈oS, iS, tS〉. 2

In a decomposition of a component S into components T.i for 1 ≤ i < n, the network produces the

outputs as specified by S. Its environment produces the inputs as specified by S. Equivalently we

can say that the outputs of S̄ are the inputs to the network. Therefore we consider the network

1.4 Decomposition 15

consisting of S̄, T.1, . . . , T.(n− 1) in defining decomposition formally.

Definition 1.4.1. Let 1 < n. Component S can be decomposed into the components T.1, . . . , T.n,

denoted by

S → (i : 1 ≤ i < n : T.i),

if Conditions (0), (1), (2), and (3) below are satisfied.

Let T.0 be the reflection of S and define W = (‖ i : 0 ≤ i < n : T.i).

(0) The network is closed:

(
⋃

i : 0 ≤ i < n : o(T.i)) = (
⋃

i : 0 ≤ i < n : i(T.i)).

(1) There is no output interference:

(∀ i, j : 0 ≤ i < j < n : o(T.i) ∩ o(T.j) = ∅).

(2) There is no computation interference:

t ∈ tW ∧ x ∈ o(T.i) ∧ tx |̀a(T.i) ∈ t(T.i) ⇒ tx ∈ tW,

for any trace t, symbol x, and index i with 0 ≤ i < n.

(3) The set of network behaviors is complete:

tW |̀aS = tS.

2

Condition (0) states that there are no dangling inputs and outputs. Condition (1) states that no two

outputs are connected to each other. These two conditions are structural conditions on the network.

Conditions (2) and (3) are behavioral conditions. The former states that, after any behavior of

the network, all outputs that can be produced by any of the components, can be accepted by the

components for which that symbol is an input. The last condition ensures that all behaviors of the

specification S may occur in the implementation. This means that an implementation that accepts

all inputs, but never produces any output, is not acceptable. The last condition does not guarantee,

16 Chapter 1. Trace Theory and Delay-Insensitive Circuits

however, that after a certain behavior a specified output or input actually occurs. It merely rules

out implementations where this specified output or input is guaranteed never to occur.

Verifying absence of computation interference formally is often very laborious and the proofs are

not very readable. In the correctness proofs of the counter implementations we verify absence of

computation interference informally.

An automatic verifier for decompositions has been developed and is described in [EG93b]. This

verification tool, called verdect has a slightly more restrictive syntax than the command language

described here. But since there is a standard way to specify finite state machines in this restrictive

syntax, all regular trace structures can be described.

A theorem that is useful in verifying decompositions, is the Substitution Theorem. It allows

hierarchical decomposition of components.

Theorem 1.4.2. (Substitution Theorem)

Let S.0, S.1, S.2, S.3, and T be components such that S.0 → (S.1, T) and T → (S.2, S.3). Then

S.0→ (S.1, S.2, S.3) if (a(S.0) ∪ a(S.1)) ∩ (a(S.2) ∪ a(S.3)) = aT . 2

The condition on the alphabets of the components states that the decompositions of S.0 and T

only have symbols from aT in common. By renaming the internal symbols in the decomposition of

T this condition can always be satisfied.

A proof of the Substitution Theorem can be found in [Ebe89]. The theorem can be generalized to

decompositions with larger numbers of components.

The following lemma is useful for showing that the network behaviors in the decomposition

S → (T.1, T.2)

are complete.

Lemma 1.4.3. Let S, T.1 and T.2 be non-empty, prefix-closed trace structures. Then

t(S̄ ‖ T.1 ‖ T.2) |̀aS = tS ⇐ tS ⊆ t(T.1 ‖ T.2) |̀aS

2

Proof. We derive:

t(S̄ ‖ T.1 ‖ T.2) |̀aS = tS

1.5 Delay-Insensitivity and DI decomposition 17

≡ { Antisymmetry of ⊆ ; definition of reflection }
t(S ‖ T.1 ‖ T.2) |̀aS ⊆ tS ∧ tS ⊆ t(S ‖ T.1 ‖ T.2) |̀aS

≡ { Definition of ‖ }
tS ⊆ t(S ‖ T.1 ‖ T.2) |̀aS

⇐ { Property 1.1.0 }
tS ⊆ t((S |̀aS) ‖ ((T.1 ‖ T.2) |̀aS)) ∧ (a(T.1) ∪ a(T.2)) ∩ aS ⊆ aS

≡ { Set calculus }
tS ⊆ t((S |̀aS) ‖ ((T.1 ‖ T.2) |̀aS))

≡ { tS |̀aS = tS }
tS ⊆ t(S ‖ ((T.1 ‖ T.2) |̀aS))

⇐ { Definition of ‖ }
tS ⊆ t(T.1 ‖ T.2) |̀aS.

2

1.5 Delay-Insensitivity and DI decomposition

Decomposition as introduced in the previous section corresponds to designing speed-independent

implementations. The correct operation of speed-independent circuits does not depend on delays

in components, but it may depend on delays in connection wires. To check whether a network of

components is a delay-insensitive implementation of a specification, we define DI decomposition.

In DI decomposition the delays of connection wires are taken into account.

Taking delays of connection wires into account is done by replacing the components in a decompo-

sition by a version with renamed terminals and by introducing wire components that have one of

the new terminals as input and the corresponding old terminal as output or vice versa.

Formally this is done as follows. For a network of components T.i, with 1 ≤ i < n, we define

enc.(T.i) by renaming every symbol a to ai. Furthermore we define wires.(T.i) as the set of wire

components wire(ai; a) for a an output of T.i and wire(a; ai) for a an input of T.i. Now we say

that the network consisting of components T.i, with 1 ≤ i < n is a DI decomposition of S, denoted

by S
DI→ (i : 0 ≤ i < n : T.i), if and only if

S → (i : 0 ≤ i < n : enc.(T.i), wires.(T.i)).

18 Chapter 1. Trace Theory and Delay-Insensitive Circuits

Verifying DI decomposition is more laborious than verifying (speed-independent) decomposition.

However, if the components in a network are all DI components, then the two forms of decomposition

are equivalent for that network. A component C is a DI component if it can be decomposed into

its enclosure and the corresponding wires, that is,

C → (enc.C,wires.C).

1.6 Sequence Functions

As mentioned before, sequence functions can be used to obtain a measure for the response time

of implementations. For a network of components, the response time is defined as the worst-case

delay between an output from the network and the last input on which that output depends. We

say that for a given trace structure an output event depends on an input event, if the input event

has to precede that output according to the trace structure.

Sequence functions map events of cubic processes onto natural numbers. They are used to describe

the ordering of events of such processes and to estimate response times. We present a short

introduction to sequence functions. Details can be found in [Zwa89].

Let X be a process. If

(∀ t, a, b, c : tac ∈ tX ∧ tbc ∈ tX ∧ a 6= b : tc ∈ tX)

∧ (∀ t, a, b : ta ∈ tX ∧ tb ∈ tX ∧ a 6= b : tab ∈ tX ∧ tba ∈ tX ∧ [tab] = [tba]),

then X is said to be a cubic process.

The set of occurrences of a process X is the set { (a, `.(t |̀ a)) | ta ∈ tX }. It is denoted by occ.X.

A cubic process X can be characterized by a partial order ¿ on the set of occurrences occ.X.

This partial order is given by

(a, i)¿ (b, j) if and only if in each trace of X that contains occurrence (b, j), (a, i)

precedes (b, j),

for (a, i), (b, j) ∈ occ.X.

Let X be a cubic process determined by partial order ¿ and let σ be a function from aX × IN to

IN satisfying

(∀ a, b, i, j : (a, i)¿ (b, j) : σ.a.i < σ.b.j).

Then σ restricted to occ.X is a sequence function for X.

1.6 Sequence Functions 19

For process X and sequence function σ for X, the occurrence (a, i) may be interpreted as the

moment in time at which (a, i) takes place. With this interpretation σ can be seen as a possible

(synchronous) behavior of the component described by X.

For a given network we can define a sequence function for the weave of its components, assuming

that the resulting trace structure is cubic. Doing this, we make the implicit assumption that all

delays in connection wires are zero. Wire delays can be included by introducing explicit wire

components in the network.

A network of components is said to have constant response time if there is a sequence function σ

for the weave of the components W such that σ.b.j − σ.a.i is bounded from above by a constant,

for (b, j) an output occurrence and (a, i) the last input occurrence (the last one according to σ)

such that (a, i)¿ (b, j).

Chapter 2

Formal Specification of Up-Down

Counters

2.0 Introduction

In this chapter we present two formal specifications of up-down counters. Both specifications specify

an up-down counter that counts in the range from 0 to N for some N larger than zero, with both

bounds included. We refer to such a counter as an up-down N -counter or N -counter.

The second of these specifications will be the starting point for the implementations in the rest of

this thesis. As was mentioned before, we use commands as our specification language.

2.1 An Up-Down Counter with an ack-nak Protocol

In the first up-down counter specification we use four terminals, two of which are inputs to the

counter, and two of which are outputs. A behavior of the counter is a sequence of alternating inputs

and outputs.

The two input terminals are up and down. A transition at terminal up indicates that the counter

should be incremented by one. A transition at terminal down indicates that the counter should be

decremented by one.

The output terminals are called ack and nak. A transition at terminal ack indicates that the most

recent input has been processed by the counter and that it is ready to receive the next input.

20

2.2 An Up-Down Counter with an empty-ack-full Protocol 21

A transition at the other output terminal, nak, indicates that the most recent input has not been

processed. Hence it does not influence the current count.

We define the current count of the counter as the number of up transitions that have been processed

minus the number of down transitions that have been processed. Sometimes we refer to the current

count simply by count.

A transition at nak occurs in two cases only. The first case in which it occurs is when the current

count is N and the last input received is an up. The second case is when the current count is 0

and the last input received is a down.

Definition 2.1.0. For 0 < N the up-down N -counter with ack-nak protocol is specified as element

0 of the least fixpoint of the following equations in S = (S.0, . . . , S.N):

S.0 = pref (up?; ack !;S.1 | down?;nak !;S.0)

S.i = pref (up?; ack !;S.(i+ 1) | down?; ack !;S.(i− 1)) for 0 < i < N

S.N = pref (up?;nak !;S.N | down?; ack !;S.(N − 1)).

2

With this specification, the last output produced does in general not give any information about

the state of the counter. If the counter sends an ack output to its environment, the counter may be

empty, full, or neither. In the specification presented in the next section, the last output produced

by the counter contains information about its state.

2.2 An Up-Down Counter with an empty-ack-full Protocol

The up-down counter presented in this section has five terminals, two input and three output

terminals. The input terminals are the same as in the previous specification.

The output terminals are empty, ack, and full. The N -counter sends an empty signal after receiving

an input that makes the current count zero. A full signal is sent after the receipt of an input that

makes the current count N . All other inputs that would not cause the current count to go beyond

the counting range [0..N] are acknowledged by an ack event.

Definition 2.2.0. For 0 < N we define UDC.N , the up-down N -counter with empty-ack-full

protocol, as follows. First we specify UDC.1:

UDC.1 = pref ∗[up?; full !; down?; empty !] ‖ (ack !)0,

22 Chapter 2. Formal Specification of Up-Down Counters

where (ack !)0 specifies trace structure 〈∅, { ack }, { ε }〉. Having weavand (ack !)0 ensures that the

trace structure corresponding to UDC.1 has ack in its output alphabet.

For 1 < N we define UDC.N as element zero of the least fixpoint of

S.0 = pref (up?; ack !;S.1)

S.i =



























pref (up?; ack !;S.(i+ 1) | down?; empty !;S.(i− 1)) for i = 1 and 2 < N

pref (up?; ack !;S.(i+ 1) | down?; ack !;S.(i− 1)) for 1 < i < N − 1

pref (up?; full !;S.(i+ 1) | down?; ack !;S.(i− 1)) for 1 < i and i = N − 1

pref (up?; full !;S.(i+ 1) | down?; empty !;S.(i− 1)) for i = 1 and N = 2

S.N = pref (down?; ack !;S.(N − 1)).

2

From the definition of UDC.N it is obvious that our specifications put constraints on the behavior

of the environment. For the counter to function correctly, its environment should adhere to the

specified protocol. For example, if the counter is in its initial state, the environment is not allowed

to send an up signal followed by two down signals. This means that for this specification the current

count after a certain behavior is simply the number of up’s minus the number of down’s.

The counter specified in Definition 2.1.0 allows any sequence of inputs, but even there some con-

straints are put on the environment’s behavior. The environment is not allowed to send two inputs

to the counter without an ack or nak happening between the two inputs.

Note that it is not hard to build an up-down counter as specified in the previous section, using

an implementation for the specification given in this section. A cell implementing the following

behavior could be added:

S.0 = pref (up?; sup !;S.3 | down?;nak !;S.0)

S.1 = pref (up?; sup !;S.3 | down?; sdown !;S.3)

S.2 = pref (up?;nak !;S.2 | down?; sdown !;S.3)

S.3 = pref (sempty?; ack !;S.0 | sack?; ack !;S.1 | sfull?; ack !;S.2).

The terminals of the UDC implementation should be renamed to sup, sdown, sempty, sack, and

sfull. If the current count of the UDC implementation is zero and the environment sends a down

input, then a nak is sent to the environment. If the current count of the UDC implementation is at

its maximum and an up input is received from the environment, a nak is sent as well. In all other

cases, the input is propagated to the UDC implementation. The type of acknowledgement received

from this counter determines the behavior of the cell upon receiving the next input.

2.2 An Up-Down Counter with an empty-ack-full Protocol 23

Building a UDC.N from an counter with ack-nak protocol is less straightforward.

From now on, we use the words (up-down) N -counter to refer to the counter specified in this

section.

Chapter 3

Some Simple Designs

3.0 Introduction

We design two implementations for UDC.N . The term implementation is used here to denote a

network of components that is a decomposition of the specification (as defined in Chapter 1) and in

which each of the components has a number of states that is independent of the number of states

of the specification. We do not design an implementation at the gate level.

The step from a specification with a variable number of states to a network of a variable number

of components with a constant number of states each, is the most important step in the design

on the way to a low-level implementation (e.g. gate-level implementation). The decomposition of

specifications with a fixed, finite number of states into basic components or gates has been studied

extensively [Chu87, RMCF88, LKSV91, MSB91, ND91, DCS93].

In this chapter two implementations for UDC.N are presented and proved correct, using the four

correctness criteria described in Chapter 1. Furthermore a performance analysis of the two imple-

mentations is given.

All our implementations, in this and in following chapters, consist of linear arrays of cells. There

are two types of cells in such an array: the end cell and the other cells. The end cell has only five

terminals for communication with its environment. The other cells have ten terminals: five for com-

munication with their left environment, and five for communication with their right environment.

Figure 3.0 depicts block diagrams for the two types of cells.

Based on Figure 3.0 we refer to communications at terminals up, down, empty, ack, and full as

communications with the left environment. Communications at the other terminals are referred to

24

3.1 Unary Implementations 25

¾

¾

¾

-

-

-

-

¾

¾

¾

¾

¾

¾

-

-

sack?

sdown !

full !

ack !

empty !

down?

up?

sfull?

sempty?

sup !

full !

ack !

empty !

down?

up?

(b)(a)

Figure 3.0: (a) block diagram for the general cell; (b) block diagram for the end cell.

as communications with the right environment or subcomponent. The terminals for communication

with the subcomponent start with an s as a mnemonic reminder.

In an implementation of an up-down counter we consider the cells to be numbered starting at zero.

The leftmost cell is numbered zero.

3.1 Unary Implementations

In unary counter implementations the current count of the counter is the sum of the internal counts

of the cells in the arrays. Denoting the internal count of cell i by c.i, the current count is

(Σ i : 0 ≤ i < N : c.i).

Unary counter implementations may be useful when the maximum count is small. For large counting

ranges they are not particularly useful, since the number of cells needed to implement an N -counter

is Ω.N .

There is a close relation between unary implementations of up-down counters and the control

structures for stack implementations. A unary counter implementation can be seen as a stack in

which only the number of elements on the stack is relevant, not the actual data values. A number of

(control structures for) delay-insensitive stack implementations have been proposed [Mar90, JU91].

Here, a very simple implementation is presented. The response time is not very good, but the

specified cells have only a few states.

26 Chapter 3. Some Simple Designs

3.1.0 Specification of the Cells

Our unary implementation of the N -counter consists of an array of N cells. Each cell can be either

empty or full. We only allow a prefix of the array of cells to be full, i.e., if a cell is empty, all its

successors are empty. Marking all full cells with a 1, the current count is represented by the string

of 1’s interpreted as a unary number.

Definition 3.1.0. The end cell of the unary N -counter described above is simply a UDC.1. For

the other cells, let C0 = (C0.0, C0.1, C0.1′, C0.2, C0.2′, C0.3) be the least fixpoint of the following

equations in S:

S.0 = pref (up?; ack !;S.1)

S.1 = pref (up?; sup !;S.1′ | down?; empty !;S.0)

S.1′ = pref (sack?; ack !;S.2 | sfull?; full !;S.3)

S.2 = pref (up?; sup !;S.1′ | down?; sdown !;S.2′)

S.2′ = pref (sack?; ack !;S.2 | sempty?; ack !;S.1)

S.3 = pref (down?; sdown !;S.2′).

Now C0.0 specifies the behavior of the cell. 2

verdect shows that the state graph corresponding to command C0.0 has twelve states. The

components of C0 in Definition 3.1.0 can be considered a subset of those states. We often refer to

the elements of this subset as the named states. A specification of an up-down counter cell based on

the stack design in [JU91] has 38 states; our specification of a counter cell based on Martin’s lazy

stack in [Mar90] has sixteen states. The counter cell based on [JU91] may seem to be unnecessarily

complicated, but it has a better response time and the number of cells needed to implement an

N -counter is half the number of C0.0 cells or cells based on the lazy stack needed for an N -counter.

To clarify the behavior of the C0.0 cell we give some assertions that hold in C0.0, C0.1, C0.2, and

C0.3 (in these four states the counter is waiting for input from its environment).

C0.0: the current count is zero,

C0.1: the current count is one,

C0.2: the current count is larger than one and smaller than the maximum count

of the cell and its subcounter,

C0.3: the current count is equal to the maximum count of the cell and its

subcounter.

3.1 Unary Implementations 27

3.1.1 Correctness of the Implementation

Proving that the implementation presented in the previous section satisfies the specification requires

proving that for all N larger than zero

UDC.N → ((i : 0 ≤ i < N − 1 : siC0.0), sN−1UDC.1)

where siC0.0 is C0.0 with all terminals prefixed by i s’s.

We give a proof by induction on N . The basic step is easy: the proof obligation is

UDC.1→ (UDC.1),

which is a property of decomposition.

For the inductive step we reduce the proof obligation by applying the Substitution Theorem. The

remaining proof obligation is:

UDC.(N + 1)→ (C0.0, sUDC.N).

Proving that this simplification is justified requires the careful verification of the alphabet conditions

of the Substitution Theorem, but the proof is not very hard.

Verifying the two structural conditions for the decomposition of UDC.(N + 1) into a C0.0 cell and

a UDC.N is easy. The network consisting of UDC.(N + 1), C0.0, and UDC.N is closed and there

is no output interference. We concentrate on the behavioral conditions. First we verify that the

network behaviors are complete, and then we look at absence of computation interference.

The cases N = 1 and N > 1 are treated separately. The reason is that these two cases were also

distinguished in the specification of UDC.N . We present the proof for the case N > 1 only.

First we construct the set of network behaviors t(UDC.(N + 1) ‖ C0.0 ‖ sUDC.N). We do this by

constructing a set of defining equations for C0.0 ‖ sUDC.N , and then looking at the weave of the

result and UDC.(N + 1).

The set of named states for C0.0 ‖ sUDC.N will correspond to a subset of the Cartesian product of

the named states of the weavands. The starting state corresponds to the product of the two starting

states of the weavands. Then the other states are obtained by looking at the possible events in

the corresponding states of the weavands. An event at a terminal that occurs in both weavands, is

possible in the weave only if it is possible in both weavands. An event at a terminal that occurs

in only one of the weavands, is possible in the weave if it is possible in that weavand. The named

28 Chapter 3. Some Simple Designs

states of the weave are numbered according to the numbers of the states of the weavands to which

they correspond.

The defining equations for C0.0 ‖ sUDC.N are

S.0.0 = pref (up?; ack !;S.1.0)

S.1.0 = pref (up?; sup; sack; ack !;S.2.1

|down?; empty !;S.0.0)

S.2.i =



































































pref (up?; sup; sack; ack !;S.2.(i+ 1)

|down?; sdown; sempty; ack !;S.1.(i− 1)) for i = 1 and 2 < N

pref (up?; sup; sack; ack !;S.2.(i+ 1)

|down?; sdown; sack; ack !;S.2.(i− 1)) for 1 < i < N − 1

pref (up?; sup; sfull; full !;S.3.(i+ 1)

|down?; sdown; sack; ack !;S.2.(i− 1)) for 1 < i and i = N − 1

pref (up?; sup; sfull; full !;S.3.(i+ 1)

|down?; sdown; sempty; ack !;S.1.(i− 1)) for i = 1 and N = 2

S.3.N = pref (down?; sdown; sack; ack !;S.2.(N − 1)).

As before, C0.0 ‖ sUDC.N is the first component of the least fixpoint of this set of equations. Now

we could apply the same construction to these equations and the reflection of UDC.(N + 1). But

if we hide the internal symbols in the equations for C0.0 ‖ sUDC.N , thus obtaining the equations

for |[a(sUDC.N) :: C0.0 ‖ sUDC.N]|, we get:

S.0.0 = pref (up?; ack !;S.1.0)

S.1.0 = pref (up?; ack !;S.2.1

|down?; empty !;S.0.0)

S.2.i =



































































pref (up?; ack !;S.2.(i+ 1)

|down?; ack !;S.1.(i− 1)) for i = 1 and 2 < N

pref (up?; ack !;S.2.(i+ 1)

|down?; ack !;S.2.(i− 1)) for 1 < i < N − 1

pref (up?; full !;S.3.(i+ 1)

|down?; ack !;S.2.(i− 1)) for 1 < i and i = N − 1

pref (up?; full !;S.3.(i+ 1)

|down?; ack !;S.1.(i− 1)) for i = 1 and N = 2

S.3.N = pref (down?; ack !;S.2.(N − 1)).

3.1 Unary Implementations 29

It is easily verified that this is another way to write down the defining equations for UDC.(N +1).

Thus we have established

t(C0.0 ‖ sUDC.N) |̀a(UDC.(N + 1)) = t(UDC.(N + 1)).

We can now apply Lemma 1.4.3 to obtain

t(UDC.(N + 1) ‖ C0.0 ‖ sUDC.N) |̀ a(UDC.(N + 1)) = t(UDC.(N + 1)).

To prove that there is no computation interference, we consider the communication between

UDC.(N + 1) and C0.0 and between sUDC.N and C0.0 separately.

First we check whether C0.0 causes computation interference in UDC.(N + 1). In Definition 2.2.0

we see that after each up event, both full and ack are enabled. In Definition 3.1.0 we see that after

each up event, the next communication with the environment is either a full or an ack. Similarly

we have that after a down event the next output to the environment is one of empty or ack, and

both these events are enabled in UDC.(N + 1) after a down has been sent.

Next we look at the possibility of computation interference in C0.0 caused by UDC.(N + 1). First

we observe that after each occurrence of ack in the definition of C0.0, both inputs are enabled.

Second, we see that after a full event, a down input is allowed. This is also the only enabled event

in UDC.(N + 1) after a full has been received. Third, in both C0.0 and UDC.(N + 1) the only

event that can occur after a transition at empty is up. Hence we may conclude that that there is

no computation interference between C0.0 and UDC.(N + 1).

By similar reasoning it can be verified that there is no computation interference between sUDC.N

and C0.0. Since there are no terminals connecting UDC.(N + 1) to sUDC.N , we can now conclude

that there is no computation interference.

3.1.2 Performance Analysis

In the previous section we proved that an N -counter can be implemented by N − 1 cells of type

C0.0 and a 1-counter. In this section we analyze the area complexity, response time and power

consumption of such an implementation.

Area Complexity

Suppose that we have hardware implementations of C0.0 and the 1-counter. Then a hardware

implementation of an N -counter can be made of a linear array of implementations of cells, with

30 Chapter 3. Some Simple Designs

connections only between neighboring cells. This means that the amount of area used for the

connection wires is relatively small. Since we are only interested in the order of the area used for

possible hardware implementations of counters, the number of cells into which an N -counter is

decomposed gives an accurate enough measure for this.

The number of C0.0 cells into which an N -counter is decomposed grows linearly with N . We may

ask ourselves whether we can do better than that. Consider a network of k components, and assume

that each component has a fixed number of states, which is at least two. Then the number of states

of the network can grow at most exponentially with k. Thus the number of cells for any N -counter

implementation grows at least logarithmically with N . In the next section we show that a number

of cells that grows logarithmically with N indeed enough to implement an N -counter.

Response Time

We judge our designs not only by their area complexity, but also by their response time, i.e., the

time that elapses between an input to the counter and the succeeding output.

Since we use high-level descriptions of our cells, we can only give an estimate for the response time.

In our analysis of the response time, we assume that the cells are implemented such that there is

an upper bound for the delay between two consecutive external events of a cell. This means that

the analysis is not valid for implementations of our cells in which some kind of lock (deadlock or

livelock) may occur. If livelock can occur in the implementation of a cell, then there is no upper

bound for the time elapsing between an input to that cell and the next output.

We cannot give a sequence function for the unary counter implementation presented earlier, since

the behavior of the cells is not cubic. However, for the proposed unary implementation we do

not have to use sequence functions, a more informal analysis will suffice. The reason is that the

behaviors of the unary implementation are purely sequential. As a result, the number of internal

events that occur in the implementation between receiving an input from the environment and

sending the corresponding output to the environment is a good measure for the response time.

In the best case there are no internal events between an input and the next output of the counter.

This occurs when the first cell of the array (the one that communicates with the environment)

is in state S.0 or in state S.1 and the environment sends an up or down respectively. If the first

cell of the counter is in state S.3, then the response time is larger. In this case all cells will go

to state S.3. Upon receiving a down input, the first cell forwards this to the second cell, which in

turn forwards it to the third cell, and so on. After all cells have received an input, all cells send

an acknowledgement to their environment, one after another, starting with the last cell. So the

3.1 Unary Implementations 31

following trace might occur:

s = t down sdown . . . sN−1down sN−1empty . . . sack ack,

where t is a trace with N more up than down events. The number of internal transitions between

the last down and ack is 2(N −1). In general, the response time is determined by the current count

of the counter. If the current count is i, for some i larger than one, then the number of internal

transitions between the next input and corresponding output is 2(i− 1).

Power Consumption

The third performance criterion for the implementation is its power consumption. Power consump-

tion of a circuit consists of static and dynamic power consumption. Charging and discharging of

capacitances and short-circuit current during switching add to the dynamic power consumption.

In CMOS circuits the static power consumption is due to leakage currents. More information on

the power consumption of CMOS circuits can be found in [WE85].

The power consumption is analyzed here by counting the number of internal transitions per external

transition. Some conditions have to be met for this to be an accurate estimate for the power

consumption.

One condition is that the static power consumption is negligible compared to the power consumed

during switching. This assumption is justified if the cells are implemented in CMOS technology and

the frequency at which transitions occur is high enough. If the frequency of transitions becomes

too low, leakage current becomes the main factor in the power consumption.

The other condition is that all transitions require about the same amount of power. The amount

of power needed for a transition depends on the load capacitance and the voltage change required

for that transition. Load capacitances, in turn, depend on the layout. For example, the load

capacitance of a long wire is larger than that of a shorter one. Due to the regular, linear structure

of our implementations, we may assume that the load capacitances are similar. We also assume

that the voltage change for transitions is uniform throughout the implementation.

Furthermore we assume that the number of internal events in a hardware implementation of our

cells is proportional to the number of external events of those cells. This assumption requires the

absence of livelock in the cells and the absence of metastable behavior.

The result of the above assumptions is that we can analyze the power consumption by comparing

the number of external communications in a behavior (communications in which the environment

32 Chapter 3. Some Simple Designs

partakes) to the number of internal communications. For implementations that do not satisfy the

assumptions, counting the numbers of internal and external events gives a lower bound for the

power consumption.

For a given network of components, the power consumption of a behavior t of that network is

defined as the length of t divided by the number of external communications (communications with

the environment) on t. For the power consumption of the network, we take the maximum of the

power consumptions of its behaviors. We say that a network has constant power consumption if

its power consumption is bounded from above by a constant.

The measure that we use for the power consumption is the same as that used by van Berkel in

[vB93].

For the N -counter implementation using C0 cells the power consumption grows linearly with N :

if the count is N and down and up inputs arrive alternatingly, then each of those inputs causes

2(N − 1) internal communications.

The power consumption of any unary up-down counter implementation using cells that have a

bounded number of neighbors is determined by the way in which the cells are connected. For

example, for an implementation consisting of a linear array of cells, the power consumption is at least

linear in N . We show that for unary counter implementations constant power consumption cannot

be attained. This can be seen by looking at a trace consisting of Θ.N consecutive up’s (with their

corresponding acknowledgements). According to our specification in the previous chapter, such a

trace is a possible behavior of UDC.N . So, it is sufficient to prove that for any implementation

of UDC.N and any behavior u of that implementation such that u |̀a(UDC.N) consists of Θ.N

consecutive up’s, the power consumption of u increases with N .

To see that unary counters with constant power consumption do not exist, we reason as follows.

We assume that in the implementation Θ.N cells can be distinguished, each having a maximum

internal count independent of N . If an up is sent to the counter, at least one cell has to change

state so that its internal count goes up. If Θ.N consecutive up’s are sent to the counter, there are

Ω.N changes in internal counts. Since the maximum internal counts of the cells are independent of

N , we even know that the internal counts of Ω.N different cells change.

Let S be the set of cells whose internal counts change, and for cell s ∈ S, define d.s as the number

of cells on the path from the external inputs of the counter to cell s (cell s itself excluded). From

the above it follows that the number of internal transitions for an external behavior consisting of

Θ.N consecutive up’s is bounded from below by

(Σ s : s ∈ S : d.s).

3.2 A Binary Implementation 33

Due to our assumption that each cell has O.1 neighbors, this number is in Ω.(N logN). Hence the

power consumption for Θ.N consecutive up’s is Ω.(logN). By the definition of power consumption,

we see that the power consumption of the counter grows at least logarithmically with N as well.

For implementations consisting of a linear array of cells, the number of internal transitions for

Θ.N consecutive up’s grows at least quadratically with N : the average distance of a cell to the

environment is N/2. So the power consumption for such an implementation grows at least linearly

with N .

Since the control structure of a stack implementation can be translated into a unary up-down

counter implementation, these results for the power consumption of up-down counters also hold

for stack implementations. So the power consumption of the control part of any N -place stack

implementation grows at least logarithmically with N .

3.2 A Binary Implementation

3.2.0 Specification of the Cells

In the counter implementation as proposed in the previous section, a unary representation was

used. In this section we use a binary representation. Again cells can be full or empty, but now

the current count of an array of cells is not the number of cells that is full. The current count is

obtained by assigning weights to the cells. Cell i is assigned weight 2i. The current count is the

sum of the powers of two of the weights of the full cells. In formula, the current count is

(Σ i : 0 ≤ i < k : c.i ∗ 2i),

where k is the number of cells and c.i is the internal count of cell i.

Using only two types of cells, an end cell and a non-end cell, we can make (2k− 1)-counters for any

k larger than zero. In Section 3.2.2 we explain how to make N -counters for any N greater than

zero.

Before we define the behavior of the cells, we give invariants for the states in which an input from

the environment is expected. With binary counting, a cell can be either full or empty and at the

same time the subcounter can be full, empty, or neither. Thus we get the following named states:

34 Chapter 3. Some Simple Designs

S.0: the cell is empty and the subcounter is empty (current count is zero),

S.1: the cell is full and the subcounter is empty (current count is one),

S.2: the cell is empty and the subcounter is neither full nor empty,

S.3: the cell is full and the subcounter is neither full nor empty,

S.4: the cell is empty and the subcounter is full,

S.5: the cell is full and the subcounter is full.

Suppose that the counter is in one of the above states. If an up input is received and the cell is

empty, an output is sent and the cell goes to the next state. Information about the current count

of the subcounter (which is encoded in the state of the cell) determines which output is sent. If

the cell is full and an up input is received, then an sup is sent to the subcounter, provided that the

subcounter is not full. Then the cell waits for an input from the subcomponent, sends and output

to its left environment, and goes to the next state. The operation upon receiving a down input is

analogous.

Definition 3.2.0. The end cell of the binary counter is a UDC.1 cell. Let

C1 = (C1.0, C1.1, C1.1′, C1.2, C1.2′, C1.3, C1.4, C1.5)

be the least fixpoint of

S.0 = pref (up?; ack !;S.1)

S.1 = pref (up?; sup !;S.1′ | down?; empty !;S.0)

S.1′ = pref (sack?; ack !;S.2 | sfull?; ack !;S.4)

S.2 = pref (up?; ack !;S.3 | down?; sdown !;S.2′)

S.2′ = pref (sack?; ack !;S.3 | sempty?; ack !;S.1)

S.3 = pref (up?; sup !;S.1′ | down?; ack !;S.2)

S.4 = pref (up?; full !;S.5 | down?; sdown !;S.2′)

S.5 = pref (down?; ack !;S.4).

The behavior of the counter cell is specified by C1.0. 2

The two extra named states were introduced to avoid having to write down transitions more than

once. In state C1.1′ an sup has been sent to the subcomponent and the cell is waiting for an output

from the subcomponent. In state C1.2′ the cell is waiting for an output from the subcomponent

after having sent an sdown.

3.2 A Binary Implementation 35

If an up-down counter implemented with C1.0 cells is full, then all the cells in the implementation

are full. This means that we can only implement N -counters for numbers N whose binary repre-

sentation does not have any 0’s. How to make counters for general N is discussed in a separate

section.

verdect shows that the state graph for this specification has sixteen states. Although the number

of states per cell is only slightly larger than for the unary counter implementation discussed in

the previous section, the area complexity of N -counter implementations using C1.0 cells grows

logarithmically with N .

3.2.1 Correctness of the Implementation

An implementation of a (2k − 1)-counter using C1 cells and a UDC.1 cell is correct if

UDC.(2k − 1)→ ((i : 0 ≤ i < k − 1 : siC1.0), sk−1UDC.1),

for any k larger than zero. The structure of the proof is the same as that for the unary counter. We

prove the decomposition by induction on k. The basic step of the induction is exactly the same.

For the inductive step we have:

UDC.(2k+1 − 1)→ ((i : 0 ≤ i < k : siC1.0), skUDC.1)

⇐ { Substitution Theorem and induction hypothesis }
UDC.(2k+1 − 1)→ (C1.0, sUDC.(2k − 1)).

We prove something stronger than this, viz.

UDC.(2N + 1)→ (C1.0, sUDC.N),

for 1 ≤ N . For this last decomposition we verify the two behavioral conditions. In particular, we

consider only the case 1 < N .

We start by looking at the weave C1.0‖sUDC.N . We use the construction explained in Section 3.1.1

to obtain a set of equations that define this weave. The equations are

S.0.0 = pref (up?; ack !;S.1.0)

S.1.0 = pref (up?; sup; sack; ack !;S.2.1

|down?; empty !;S.0.0)

S.2.1 = pref (up?; ack !;S.3.1

|down?; sdown; sempty; ack !;S.1.0)

36 Chapter 3. Some Simple Designs

S.2.i = pref (up?; ack !;S.3.i

|down?; sdown; sack; ack !;S.3.(i− 1)) for 2 ≤ i < N

S.3.i = pref (up?; sup; sack; ack !;S.2.(i+ 1)

|down?; ack !;S.2.i) for 1 ≤ i < N − 1

S.3.(N − 1) = pref (up?; sup; sfull; ack !;S.4.N

|down?; ack !;S.2.(N − 1))

S.4.N = pref (up?; full !;S.5.N

|down?; sdown; sack; ack !;S.3.(N − 1))

S.5.N = pref (down?; ack !;S.4.N).

Defining equations for |[a(sUDC.N) :: C1.0 ‖ sUDC.N]| are now obtained by hiding the internal

symbols:

S.0.0 = pref (up?; ack !;S.1.0)

S.1.0 = pref (up?; ack !;S.2.1 | down?; empty !;S.0.0)

S.2.1 = pref (up?; ack !;S.3.1 | down?; ack !;S.1.0)

S.2.i = pref (up?; ack !;S.3.i | down?; ack !;S.3.(i− 1)) for 2 ≤ i < N

S.3.i = pref (up?; ack !;S.2.(i+ 1) | down?; ack !;S.2.i) for 1 ≤ i < N − 1

S.3.(N − 1) = pref (up?; ack !;S.4.N | down?; ack !;S.2.(N − 1))

S.4.N = pref (up?; full !;S.5.N | down?; ack !;S.3.(N − 1))

S.5.N = pref (down?; ack !;S.4.N).

Denote the least fixpoint of these equations by B and denote the least fixpoint of the defining

equations for UDC.(2N+1) by A (so A.0 = UDC.(2N+1)). Then |[a(sUDC.N) :: C1.0‖sUDC.N]|
is equal to B.0.0. In particular

A.0 = B.0.0

A.1 = B.1.0

A.i = B.(2 + (imod 2)).(i div 2) for 1 < i < 2N

A.(2N) = B.4.N

A.(2N + 1) = B.5.N.

This shows that

|[a(sUDC.N) :: C1.0 ‖ sUDC.N]| = UDC.(2N + 1),

3.2 A Binary Implementation 37

or equivalently,

(C1.0 ‖ sUDC.N) |̀a(UDC.(2N + 1)) = UDC.(2N + 1).

Again we can apply Lemma 1.4.3 to conclude that the completeness condition of the decomposition

is fulfilled.

In order to verify that there is no computation interference in the network consisting of UDC.(2N + 1),

C1.0, and sUDC.N , we look at the communication between C1.0 and sUDC.N .

From Definition 2.2.0 it follows that after each up, the next communication with the environment

is one of full and ack. So in sUDC.N an sup may be followed by either an sfull or an sack. These

two are exactly the events that become enabled in C1.0 after the occurrence of an sup. Also, if an

sdown input occurs in sUDC.N , then an sempty or an sack will be sent, and both are enabled in

C1.0 after an sdown.

Similar arguments show that C1.0 does not cause computation interference in sUDC.N and that

there is no computation interference between UDC.(2N + 1) and C1.0. Hence the network is free

of computation interference.

3.2.2 Implementations for General N

In summary, we have proved the following results:

UDC.(N + 1) → (C0.0, sUDC.N)

UDC.(2N + 1) → (C1.0, sUDC.N).

This means that with cells C0.0 and C1.0, and a UDC.1 cell, we can implement N -counters for any

N larger than zero. If N is odd, then we use a C1 cell as head cell and find an implementation

for an (N div 2)-counter. If N is even then we use a C0 as head cell and find an implementation

for an (N − 1)-counter. Note that in any counter implementation obtained using this strategy, the

number of C0 cells is at most the number of C1 cells. Moreover, in such a counter implementation,

only one of any two neighboring cells is of type C0.0.

There is another way to implement an N -counter for general N , using a binary representation. It

requires a cell that sends a full to its environment upon receiving an sfull from its subcomponent

when its internal count is zero. A specification for such a cell is easily obtained from the specification

38 Chapter 3. Some Simple Designs

for the C1.0 cell. It can be specified using seven defining equations:

S.0 = pref (up?; ack !;S.1)

S.1 = pref (up?; sup !;S.1′ | down?; empty !;S.0)

S.1′ = pref (sack?; ack !;S.2 | sfull?; full !;S.4)

S.2 = pref (up?; ack !;S.3 | down?; sdown !;S.2′)

S.2′ = pref (sack?; ack !;S.3 | sempty?; ack !;S.1)

S.3 = pref (up?; sup !;S.1′ | down?; ack !;S.2)

S.4 = pref (down?; sdown !;S.2′).

Denoting this cell by C, we have

UDC.(2N)→ (C, sUDC.N).

The growth rates for the area complexity, response time, and power consumption of an implemen-

tation using cells of this type and C1.0 cells are the same as for an implementation using C0.0 and

C1.0 cells.

3.2.3 Performance Analysis

A (2k−1)-counter implemented with C1 cells and a UDC.1 consists of k cells. The implementation

of a general N -counter using as many C1.0 cells as possible (and as few C0.0 cells as possible) also

has a number of cells that grows logarithmically with N . Therefore we have achieved the optimal

growth rate for the area complexity of up-down counter implementations.

For the response time, we notice that the implementations do not have any parallel behavior. As

was the case in the unary implementation described in Section 3.1, an input may be propagated

from the first cell to the last cell and an output of the last cell is propagated back to the first cell

before an output to the environment occurs. Since the number of cells grows logarithmically with

N , the response time does so as well.

If the implementation consists of C1 cells and a UDC.1 cell only, the response time depends on

the current count as follows. It is determined by the length of the suffix of ones in the binary

representation of the current count (in case the next input is an up), or by the length of the suffix

of zeroes in the binary representation of the count (in case the next input is a down).

The power consumption of this implementation grows logarithmically with N too. If all C1 cells in

the implementation are in state C1.3, all C0 cells are in state C0.2, and the last cell has internal

3.2 A Binary Implementation 39

count zero, then an up input is propagated all the way to the last cell in the array. This corresponds

to incrementing the count when all cells except the last have internal count one. If the up input is

followed by a down, this down input is also propagated all the way to the end of the array. Thus,

there are behaviors where, after a bounded prefix, all inputs cause logarithmically many internal

communications. Since the number of these inputs is unbounded, the power consumption grows

logarithmically with N , assuming that the assumptions made in the section on power consumption

of the unary implementation hold for this binary implementation as well.

Chapter 4

An Implementation with Parallelism

4.0 Introduction

The implementations presented in Chapter 3 have a response time that grows linearly with the

number of cells of the implementation. In this chapter we present an implementation that has a

better response time. Under certain assumptions one can conclude that the response time of this

implementation does not depend on the number of cells. If the assumptions are weakened, however,

the response time still depends on the number of cells.

Better response times can be obtained by designing implementations with parallelism. The unary

and binary counters from Chapter 3 do not have any parallelism; their behaviors are strictly

sequential.

Designing implementations with parallelism is more difficult than designing sequential implementa-

tions. A good way to specify parallel behaviors for linear arrays of cells is specifying the behaviors

of a cell with respect to its left and right environments separately. The two partial behaviors of

the cell are then weaved together. The proper synchronization between the partial behaviors is

obtained by introducing internal symbols.

In specifications with parallelism, the commands language results in smaller specifications than,

for example, state graphs. The reason is that, due to the weave operator, we do not have to

represent parallelism by giving all interleavings of the events that may occur in parallel. Another

advantage of the commands language will become evident in the correctness proof of the proposed

implementation.

In this chapter we analyze the response time of the designed implementations by first abstracting

40

4.1 Specification of the Cells 41

away from the different inputs and from the different outputs. This idea is based on the response

time analysis of the stack design in [JU91]. The abstract implementation is analyzed using sequence

functions and so-called timing functions. The underlying assumption for sequence functions is that

delays are constant. The assumption for our timing functions is weaker. We assume that delays

may vary between fixed lower and upper bounds. This seems to correspond more naturally to

asynchronous implementations.

4.1 Specification of the Cells

As before, the end cell of an array of counter cells is a UDC.1 cell. The other cells are specified by a

weave of two sequential behaviors, the behavior with respect to the environment and the behavior

with respect to the subcomponent. We start with an explanation of the former.

For the behavior with respect to the environment only the emptiness or fullness of the cell is encoded

in the named states. This is the only information needed to determine whether communication

with the subcomponent must be initiated. If the cell is full and an up input is received, then there

is a carry propagation to the next cell. If the cell is empty, an up input does not cause a carry

propagation. Upon receiving a down input, there is a borrow propagation if and only if the cell is

empty.

Initiation of communication with the subcomponent is done by introducing two internal symbols,

su and sd. They should be interpreted as ‘send an sup to the subcomponent’ and ‘send an sdown

to the subcomponent’.

For determining which output must be sent to the environment after an input has been received,

we introduce three additional internal symbols, viz., se, sn, and sf. The occurrence of an se

event is to be interpreted as ‘the subcomponent is empty’. Similarly, sf can be interpreted as ‘the

subcomponent is full’ and sn as ‘the subcomponent is neither full nor empty’.

We must make sure that our definition for the communication with the subcomponent justifies the

interpretation of the internal symbols.

Definition 4.1.0. We use two named states for the description of the external behavior. A state

0 which indicates that the cell is empty, and state 1 which indicates that the cell is full. We get

42 Chapter 4. An Implementation with Parallelism

the following equations in S = (S.0, S.1):

S.0 = pref ((up?; ((se | sn); ack ! | sf; full !)

|down?; sd; ack !

);S.1)

S.1 = pref ((up?; su; ack !

|down?; ((sf | sn); ack ! | se; empty !)

);S.0).

We denote the least fixpoint of these equations by D2.

The behavior with respect to the subcomponent is specified using three states, encoding whether

the subcomponent is empty, neither full nor empty, or full. The internal behavior is described by

E2.0, where E2 is the least fixpoint of

S.0 = pref (se;S.0

|su; sup !; (sack?;S.1 | sfull?;S.2)

)

S.1 = pref (sd; sdown !; (sack?;S.1 | sempty?;S.0)

|sn;S.1
|su; sup !; (sack?;S.1 | sfull?;S.2)

)

S.2 = pref (sf;S.2

|sd; sdown !; (sack?;S.1 | sempty?;S.0)

).

The behavior of the counter cell is specified by the command

C2 = |[se, sn, sf, sd, su :: D2.0 ‖ E2.0]| .

2

The state graph for this cell has 29 states. Conceptually the specification is related to the binary

counter of [GL81].

Before we turn to the correctness proof for the counter implementation consisting of an array of

C2 cells and a UDC.1, we try to specify a cell without using internal symbols.

4.2 Correctness of the Implementation 43

Suppose that both the cell and its subcounter are empty, so the current count is zero. When an

up input is received, the cell immediately sends an ack to its environment. This is captured by the

following equation:

S.0 = pref (up?; ack !;S.1).

Next the cell waits for another input, which may be an up or a down. If a down arrives, an empty

output is produced and the cell returns to its initial state. If the input is an up, then an sup is

sent to the subcomponent. Since the cell itself becomes empty again, an ack can be sent to the

environment at the same time. This behavior is formalized as follows:

S.1 = pref (down?; empty !;S.1

|up?; sup !‖ack !;S.2).

In state 2 inputs from the environment and the subcomponent may arrive in either order. There

are several possibilities:

S.2 = pref (up?‖sack?; ack !;S.3
|up?‖sfull?; full !;S.4

|down?‖sack?; sdown !‖ack !;S.5
|down?‖sfull?; sdown !‖ack !;S.5)

Even though the above three equations describe only a part of the behavior of the proposed cell,

we already have six named states.

Moreover, the (partial) specification of this cell is incorrect. Note that after trace up ack up ack

the environment has no way of knowing that it has to wait for an internal action (sup) to occur

before sending the next input to the counter. A counter implemented by cells like this suffers from

computation interference. This shows that one has to be careful in specifying behaviors in which

things can happen in parallel.

4.2 Correctness of the Implementation

We prove that for 1 ≤ k a network of k − 1 components of type C2 and one UDC.1 implements a

2k − 1-counter. For k = 1 we only have to prove

UDC.1→ (UDC.1).

44 Chapter 4. An Implementation with Parallelism

As mentioned before, this is a property of decomposition, so there is nothing left to prove. We use

this case as the basic step for an inductive proof.

As before, the proof obligation for the inductive step can be reduced to

UDC.(2N + 1)→ (C2, sUDC.N)

by applying the Substitution Theorem. Before we prove that this last decomposition is valid, we

introduce abbreviations for some alphabets:

A0 = a(sUDC.N)

A1 = { sd, su, se, sn, sf }.

The structural conditions for this decomposition can be verified easily. For the behavioral conditions

we consider the case N > 1 only; the case N = 1 is similar, but easier. For the completeness of the

network behaviors we derive:

|[A0 :: C2 ‖ sUDC.N]|
= { Definition of C2 }
|[A0 :: |[A1 :: D2.0 ‖ E2.0]| ‖ sUDC.N]|

= { Property 1.1.0 with |[.]| instead of |̀ (a(sUDC.N) ∩A1 = ∅) }
|[A0 ∪A1 :: D2.0 ‖ E2.0 ‖ sUDC.N]|

= { Define F = E2.0 ‖ sUDC.N , see Property 4.2.0 }
|[A0 ∪A1 :: D2.0 ‖ F]|

= { Property 1.1.0 with |[.]| instead of |̀ a(D2.0) ∩A0 = ∅ }
|[A1 :: D2.0 ‖ |[A0 :: F]|]|

= { Define G = |[A0 :: F]|, see Property 4.2.1 }
|[A1 :: D2.0 ‖G]|

= { Define H = D2.0 ‖G, see Property 4.2.2 }
|[A1 :: H]| .

This derivation is made possible by the structure of the specification for C2 as a weave of two

sequential behaviors, one with respect to its left environment and one with respect to its right

environment.

The second step of the derivation allows us to circumvent the construction of D2.0 ‖E2.0, the state

graph of which has 29 states. The fourth step allows us to hide the symbols of the alphabet of

sUDC.N , which in turn allows for an easy specification of G.

4.2 Correctness of the Implementation 45

Property 4.2.0. For N > 1 the weave of E2.0 and sUDC.N can be specified as the least fixpoint

of

S.0.0 =
pref (se;S.0.0

|su; sup; sack;S.1.1) for 1 < N

S.1.i =















































































































pref (su; sup; sack;S.1.(i+ 1)

|sn;S.1.i
|sd; sdown; sempty;S.0.(i− 1))

pref (su; sup; sack;S.1.(i+ 1)

|sn;S.1.i
|sd; sdown; sack;S.1.(i− 1))

pref (su; sup; sfull;S.2.(i+ 1)

|sn;S.1.i
|sd; sdown; sack;S.1.(i− 1))

pref (su; sup; sfull;S.2.(i+ 1)

|sn;S.1.i
|sd; sdown; sempty;S.0.(i− 1))

for i = 1 and 2 < N

for 1 < i < N − 1

for i = N − 1 and 2 < N

for i = 1 and N = 2

S.2.N =
pref (sf;S.2.N

|sd; sdown; sack;S.1.(N − 1)) for 1 < N .

So the weave of E2.0 and sUDC.N is the first component of the least fixpoint of these equations.

Thus, F is the first component of the least fixpoint of these equations. 2

With G defined as

|[A0 :: F]|

we can obtain defining equations for G by omitting symbols from A0 from the defining equations

for F . We omit the first index in the named states of F in writing down the defining equations for

G.

Property 4.2.1. G is the first component of the least fixpoint of

S.0 = pref (se;S.0 | su;S.1)
S.i = pref (su;S.(i+ 1) | sn;S.i | sd;S.(i− 1)) for 0 < i < N

S.N = pref (sf;S.N | sd;S.(N − 1)).

2

46 Chapter 4. An Implementation with Parallelism

Property 4.2.2. The first component of the least fixpoint of

S.0.0 = pref (up?; se; ack !;S.1.0 | down?)

S.1.0 = pref (up?; su; ack !;S.0.1 | down?; se; empty !;S.0.0)

S.0.i = pref (up?; sn; ack !;S.1.i | down?; sd; ack !;S.1.(i− 1)) for 0 < i < N

S.1.i = pref (up?; su; ack !;S.0.(i+ 1) | down?; sn; ack !;S.0.i) for 0 < i < N

S.0.N = pref (up?; sf; full !;S.1.N | down?; sd; ack !;S.1.(N − 1))

S.1.N = pref (up? | down?; sf; ack !;S.0.N)

is H. 2

Property 4.2.3. The defining equations for |[A1 :: H]| are

S.0.0 = pref (up?; ack !;S.1.0 | down?)

S.1.0 = pref (up?; ack !;S.0.1 | down?; empty !;S.0.0)

S.0.i = pref (up?; ack !;S.1.i | down?; ack !;S.1.(i− 1)) for 0 < i < N

S.1.i = pref (up?; ack !;S.0.(i+ 1) | down?; ack !;S.0.i) for 0 < i < N

S.0.N = pref (up?; full !;S.1.N | down?; ack !;S.1.(N − 1))

S.1.N = pref (up? | down?; ack !;S.0.N).

2

The defining equations for |[A1 :: H]| are almost the same as those for UDC.(2N + 1): S.i.j

corresponds to defining equation no. i + 2j of UDC.(2N + 1). The only difference is that more

inputs are accepted: in the initial state a down input is accepted, and when the counter is full an

up input is accepted. This means that

t(UDC.(2N + 1)) ⊆ t(C2 ‖ sUDC.N) |̀a(UDC.(2N + 1)).

Lemma 1.4.3 gives the required result: the network behaviors are complete.

For absence of computation interference it is sufficient to look at computation interference between

UDC.(2N + 1) and D2.0, and between E2.0 and sUDC.N . The reason is that in D2.0 after each

4.3 Implementations for General N 47

output action, both inputs are enabled; there is no synchronization with E2.0 after output actions.

For E2.0 this holds as well: after an output has been sent, E2.0 is ready to receive input without

having to synchronize with D2.0 first.

Verifying that there is no computation interference betweenD2.0 and the environment, and between

E2.0 and the subcounter is analogous to the verification of absence of computation interference for

the designs in Chapter 3. Therefore we omit it here.

4.3 Implementations for General N

Using C2 cells and a UDC.1 cell we can only implement N -counters for N equal to 2k−1, for certain
k larger than zero. As in the previous chapter, we can use C0.0 cells to overcome this deficiency.

Another possibility would be to specify a cell that has internal count zero when the counter is full.

The problem in specifying such a cell is that it does not exhibit parallel behavior. If the cell has

internal count one and receives an up input, it can initiate communication with its subcomponent,

but it cannot send an acknowledgement back to its left environment before receiving an input from

its subcomponent. If the subcomponent sends an sack, then the cell should send an ack, and if the

subcomponent sends an sfull, then the cell should send a full. For a number N that has only one 1

in its binary representation this would result in an implementation without any parallel behavior.

This has consequences for the response time.

4.4 Performance Analysis

4.4.0 Area Complexity

In the correctness proof for the proposed implementation we saw that k cells implement a (2k− 1)-

counter. Thus the implementation’s area complexity grows logarithmically with the maximum

count. In general, any N -counter can be implemented using C2 cells, C0 cells and a UDC.1 cell

using Θ.(logN) cells.

4.4.1 Response Time Analysis

For our response time analysis we use sequence functions, see [Zwa89] and Chapter 1. For simplic-

ity’s sake we only consider implementations using C2 cells and a UDC.1 cell.

48 Chapter 4. An Implementation with Parallelism

The specification of a C2 cell is not cubic. To obtain a cubic trace structure we transform the

specification in a number of steps. We make sure that the transformations do not influence the

outcome of the response time analysis. There are several transformations we can apply to the

specification without influencing (the growth rate of) the response time.

The first step is abstracting away from different channels for which there is input non-determinism.

In our counter, for example, the environment controls whether an up or down input will arrive at

the counter. In a cubic specification this non-determinism is not allowed. Renaming terminals does

not change (the growth rate of) the response time.

So the first transformation comprises replacing the two inputs from the left environment by one

input (r) and replace the three outputs to the left environment by one output (a). We do the same

for the terminals for communication with a subcomponent. Furthermore we replace the internal

symbols se, sn, and sf by a new internal symbol p and replace sd and su by an internal symbol q.

We get the following defining equations:

S.0 = pref ((r?; p; a! | r?; q; a!);S.1)
S.1 = pref ((r?; p; a! | r?; q; a!);S.0)

for the behavior with respect to the left environment, and

S.0 = pref (p;S.0

|q; sr!; (sa?;S.1 | sa?;S.2))
S.1 = pref (q; sr!; (sa?;S.0 | sa?;S.1)

|p;S.1
|q; sr!; (sa?;S.1 | sa?;S.2))

S.2 = pref (q; sr!; (sa?;S.0 | sa?;S.1)
|p;S.2)

for the behavior with respect to the right environment.

In the next step we rewrite the equations for the behavior with the left environment and we identify p

and q. This does not influence the response time. For the communication with the left environment

we now have

S.0 = pref ∗[r?; q; a!]

4.4 Performance Analysis 49

and for the communication with the right environment

S.0 = pref (q;S.0

|q; sr!; sa?; (S.1 | S.2))
S.1 = pref (q;S.1

|q; sr!; sa?; (S.0 | S.1 | S.2))
S.2 = pref (q;S.2

|q; sr!; sa?; (S.0 | S.1)).

We are interested in the worst-case delay between an input r and the succeeding output a. The

worst-case delay occurs when there is much communication between a cell and its subcomponent.

Therefore we remove the non-determinism by omitting the alternatives in which no communication

with the subcomponent occurs. For the defining equations we obtain

S.0 = pref ∗[r?; q; a!]

and

S.0 = pref (q; sr!; sa?; (S.1 | S.2))
S.1 = pref (q; sr!; sa?; (S.0 | S.1 | S.2))
S.2 = pref (q; sr!; sa?; (S.0 | S.1)).

The result of this step is that after every input from the left environment, there is communication

with the subcomponent. Such behavior is indeed possible in the up-down counter as can be seen

in the following example.i Representing the current count by a binary number with the most

significant bit on the left, the receipt of an up when the current count is 01n, for some n larger

than zero, causes all cells (except the end cell) to communicate with their subcomponents. The

new count is 10n, and now the receipt of a down input causes all cells to communicate with their

subcomponent. Alternating up’s and down’s results in a behavior where every cell communicates

with its subcomponent upon receiving an input.

With some trace calculus the equations for the behavior with respect to the subcomponent can be

simplified further. The abstract behavior of the counter cell C2 is described by

C2
abs = |[q ::

pref ∗ [r?; q; a!]
‖ pref ∗ [q; sr!; sa?]
]| .

50 Chapter 4. An Implementation with Parallelism

This is the specification for the control structure of a micropipeline.

The abstract behavior of the end cell is described by

pref ∗ [r?; a!],

i.e., a simple wire.

Now consider a network consisting of k − 1 components of type C2
abs and a wire. Define

W.k = (‖ j : 0 ≤ j < k − 1 : sjC2
abs) ‖ pref ∗ [sk−1r?; sk−1a!].

Then σ ∈ occ.(W.k)→ IN, defined by

σ.(sjr).i = j + 2i

σ.(sja).i = j + 2i+ 1,

for 0 ≤ j < k and 0 ≤ i, is a sequence function for W.k showing that W.k has constant response

time:

σ.(sja).i− σ.(sjr).i

= { Definition of σ }
j + 2i+ 1− j − 2i

= { }
1.

From the above it follows that, using the formalism of sequence functions, the response time of W.k

is independent of k.

In a decomposition of a C2 cell there may be some internal events that have to occur between

an input to the cell and the next output. The cell has a finite number of states. So, assuming

that there is no livelock, the number of internal events that occur between any input and the next

output, is bounded. Thus an up-down N -counter implementation made of C2 cells has a response

time that is independent of N as well, provided the implementations of the cells do not suffer from

livelock. By the response time of an up-down counter implementation we mean the delay between

an up or down and the succeeding empty, ack, or full.

For implementations of general N -counters using C2 and C0.0 cells we can also prove constant

response time. The reason is that in an N -counter implementation at most half of the cells are of

4.4 Performance Analysis 51

type C0.0 and that there are no neighboring cells of type C0.0. An implementation of an N counter

using a strictly binary representation as suggested in Section 4.3 may not have constant response

time. This is a result of the lack of parallelism for certain values of N .

The existence of a sequence function showing constant response time corresponds to a synchronous

implementation with constant response time. We want to know whether asynchronous implemen-

tations have bounded response time. Here the term ‘bounded response time’ is used instead of

‘constant response time.’ One of the reasons is that in asynchronous implementations the response

time may vary due to variations in the delays of basic components, although there is an upper

bound for the response time. Another reason is that we want to avoid confusion: in this report the

term ‘constant response time’ is used according to the definition in [Zwa89] and the term ‘bounded

response time’ is reserved for response time analysis on networks in which the response time of

basic components may vary.

Under certain assumptions about the delays between events of C2
abs we can prove that the response

time of an array of k of these cells increases linearly with k. We assume that the delay between

certain events may vary between a lower and an upper bound. This seems to correspond to an

asynchronous implementation in a more natural way than the assumptions made for response time

analysis with sequence functions. We show that under our variable-delay assumptions the response

time of an array of k cells of type C2
abs may grow linearly with k.

For C2
abs we cannot assume upper bounds for the delays between outputs and succeeding inputs.

The only delays we can assume to be bounded from above are the delays between (r, 0) and (a, 0),

between (r, 0) and (sr, 0), between (r, i + 1) or (sa, i) (whichever occurs last) and (a, i + 1), and

between (r, i+1) or (sa, i) (whichever occurs last) and (sr, i+1). For simplicity’s sake, we assume

one lower bound δ and one upper bound ∆ for all of these delays.

With the assumed lower and upper bounds for the delays between events, we can write down timing

functions for the cells of an array of k components of type C2
abs and one wire component. The

functions are just sequence functions if δ and ∆ are integer-valued. Timing functions can be viewed

as functions that generate timed traces. They correspond to possible asynchronous behaviors of

the components they describe, rather than synchronous behaviors.

A pictorial representation of the array of C2
abs components is helpful in writing down timing func-

tions. A C2
abs component can be implemented by an initialized 1-by-1 join. This is a 1-by-1 join

that behaves as a normal join in which a transition has already occurred at one of the two input

terminals. This implementation is due to Sutherland [Sut89]. Sutherland calls the 1-by-1 join a

C-element or rendez-vous element. An initialized 1-by-1 join can be decomposed into a normal

join and an iwire. For the initialized join element we assume that a delay of at least δ and at

52 Chapter 4. An Implementation with Parallelism

s

½¼
¾»

½¼
¾»

s

s

s

½¼
¾»

½¼
¾» @

@R

¡
¡µ

@@
I
c

¾

¡
¡µ

-¾

@
@R

-

-

¾
¡
¡ªc

@
@I
c

¡
¡ªc

a.3

r.3a.2

r.2a.1

r.1a.0

r.0

a.(k − 1)

r.(k − 1)

r.(k − 2)

a.(k − 2)

Figure 4.0: Implementation of abstract counter cells: a micropipeline.

most ∆ time units occurs between the time that the output becomes enabled and the time that the

output has taken place. Furthermore we assume that the delays in connection wires are zero; this

poses no restriction on the validity of the results: with non-zero wire delays the same result can be

obtained. With these assumptions, the implementation of a C2
abs component with a join satisfies

exactly the delay assumptions made earlier for the C2
abs cell. In Figure 4.0 the implementation is

depicted. The initialized input to the joins is indicated with a bubble.

The idea for obtaining a timing function for which all initialized joins have bounded response time,

but the network does not, is the following. We let the first input to the array propagate to cell

k − 2 as fast as possible, we let the second input propagate to cell k − 3 as fast as possible, and so

on. Then we let the acknowledgements propagate back as slowly as possible. The result is a timing

function for which the delay between (r.0, k − 2) and (a.0, k − 2) depends on k. Although it is not

very likely that this distribution of delays will occur in practice, it is possible in theory.

For cell j, with j at least zero and smaller than k − 2, we have the following timing function:

Tj.(r.j).i = (j + 2i) ∗ δ for 0 ≤ i < k − 1− j

Tj.(r.j).i = (k − 2) ∗ δ + (k − j + 2 ∗ (i− k + 1 + j)) ∗∆ for k − 1− j ≤ i

Tj .(a.j).i = (j + 2i+ 1) ∗ δ for 0 ≤ i < k − 2− j

Tj .(a.j).i = (k − 2) ∗ δ + (k − j − 1 + 2 ∗ (i− k + 2 + j)) ∗∆ for k − 2− j ≤ i

Tj.(r.(j + 1)).i = (j + 2i+ 1) ∗ δ for 0 ≤ i < k − 2− j

Tj.(r.(j + 1)).i = (k − 2) ∗ δ + (k − j − 1 + 2 ∗ (i− k + 2 + j)) ∗∆ for k − 2− j ≤ i

Tj .(a.(j + 1)).i = (j + 2i+ 2) ∗ δ for 0 ≤ i < k − 3− j

Tj .(a.(j + 1)).i = (k − 2) ∗ δ + (k − j − 2 + 2 ∗ (i− k + 3 + j)) ∗∆ for k − 3− j ≤ i.

4.4 Performance Analysis 53

For the last micropipeline cell, i.e. cell k − 2, the timing function Tk−2 can be used:

Tk−2.(r.(k − 2)).i = (k − 2) ∗ δ + 2i ∗∆ for 0 ≤ i

Tk−2.(a.(k − 2)).i = (k − 2) ∗ δ + (2i+ 1) ∗∆ for 0 ≤ i

Tk−2.(r.(k − 1)).i = (k − 2) ∗ δ + (2i+ 1) ∗∆ for 0 ≤ i

Tk−2.(a.(k − 1)).i = (k − 2) ∗ δ + (2i+ 1) ∗∆ for 0 ≤ i.

Finally, for cell k − 1, which is just a wire, we have:

Tk−1.(r.(k − 1)).i = (k − 2) ∗ δ + (2i+ 1) ∗∆ for 0 ≤ i

Tk−1.(a.(k − 1)).i = (k − 2) ∗ δ + (2i+ 1) ∗∆ for 0 ≤ i.

Now we have to show that these timing functions for the separate cells form a timing function for

the whole array of connected cells. According to [Zwa89, Theorem 2.5.13] it is sufficient to show

that for all a such that a occurs in the alphabet of two cells, say j and j ′, the values for Tj .a.i and

Tj′ .a.i are the same for all i for which (a, i) occurs in a network behavior. It is easily verified that

this property holds for our network of cells.

The values T0.(r.0).i and T0.(a.0).i can be seen as the moments in time at which external communi-

cations may occur in an asynchronous behavior of the network. Due to our particular choice of the

timing functions, an output of a join occurs at least δ and at most ∆ time units after it becomes

enabled. So the basic components in the network have a bounded response time. However, if we

consider the delay between r.0 and a.0 events, we see that this depends on k, the number of cells:

T0.(a.0).(k − 2)− T0.(r.0).(k − 2)

= { Definition of T0 }
(k − 2) ∗ δ + (k − 2) ∗∆− 2 ∗ (k − 2) ∗ δ

= { Algebra }
(k − 2) ∗ (∆− δ)

If δ < ∆ and the response time of basic components may vary arbitrarily between these two

bounds, then the delay depends linearly on the number of cells in the array. Therefore we do not

consider this implementation to have bounded response time. We consider an implementation of

the micropipeline to have bounded response time if and only if for all timing functions T for that

implementation where the delays of the basic components are bounded by a constant, the delay

between inputs from the environment and corresponding outputs to the environment is bounded

by a constant independent of the length of the pipeline.

54 Chapter 4. An Implementation with Parallelism

The choice of the bounds for the delays of the basic components may influence the results of

the analysis. There are several possibilities. They range from assuming the same bounds for all

components, or introducing parameters for all components, so even delays of components of the

same type may have different bounds. Introducing more parameters introduces more freedom for

choosing delays, and therefore it will be harder to prove bounded response time. It is unclear

what assumptions should be made, especially if the circuit in question is an abstraction of some

other circuit. Here the micropipeline was obtained as an abstraction of an up-down counter. A

questionable assumption we made is that wires have no delays. Introducing wire delays between the

output of a join element and the input to the next join gives us the same result, but the analysis

becomes more tedious. The result stays the same because adding delays in each cell amounts to

adding the same delays in all the directed cycles that can be seen in Figure 4.0.

Something else that is not clear is how to define bounded response time for delay-insensitive circuits

in general. Our counters and the micropipeline have the nice property that inputs and outputs

alternate. Our definition of bounded response time is valid for this type of circuit only. In general

inputs and outputs do not alternate and then a different formulation of bounded response time is

required.

Proving bounded response time as defined here is harder than proving constant response time using

sequence functions. In the definition of bounded response time there is a universal quantification

over timing functions, while the definition of constant response time contains an existential quan-

tification over sequence functions. Methods for proving bounded response time still have to be

investigated.

We still have to show that the result we proved for the response time of a micropipeline is also

valid for up-down counter implementations based on C2 cells.

In a decomposition of a C2 cell the delays of the basic components on distinct paths from input

terminals to output terminals may have different bounds. In C2
abs cells there is only one terminal for

receiving input from the left environment and one for receiving input from the right environment.

Similarly, there is only one output terminal to each of the environments. In our analysis the same

bounds for delays were assumed for the four paths in the C2
abs cell implementation.

Given an implementation of a C2 cell, we can set δ to the maximum of the lower bounds for the

delays of the different paths from inputs to outputs. We can set ∆ to the minimum of the upper

bounds for the delays of the different paths from inputs to outputs. With these values for δ and

∆, and a timing function T for the micropipeline, we can make a timing function for the counter

implementation made of C2 cells. If T is a timing function showing that the micropipeline does not

have bounded response time, then T can be used to show that the counter implementation built

4.5 The ack-nak Protocol 55

from C2 cells does not have bounded response time either, provided that the value found for δ is

smaller than that for ∆. The timed trace generated by T corresponds to a trace of the counter

starting with internal count 2k−1 − 1 and alternating up’s and down’s instead of r’s.

4.4.2 Power Consumption

Let 1 ≤ k and assume that we have an array of k cells of type C2 and one UDC.1 cell. The current

count of the counter is the sequence of internal counts of the cells, interpreted as a binary number

with the most significant bit on the right.

For an implementation of an (2k − 1)-counter using C1.0 cells, the representation of the current

count is exactly the same. This means that if the current counts of these two implementations,

one with C2 cells and one with C1.0 cells, are the same, they have the same number of carry

propagations if they receive the same input. So, if both counters are fed the same sequence of

inputs, the numbers of internal transitions as a result of those inputs are the same.

In Chapter 3 we showed that the binary N -counter implementation using C1.0 cells has a power

consumption that grows logarithmically with N . By the argument above and the definition of

power consumption, we conclude that the power consumption of the N -counter implementation

using C2 cells grows logarithmically with N as well.

4.5 The ack-nak Protocol

In Chapter 2 we gave two specifications for up-down counters. In the one we used so far, up-down

counters have three outputs. In the other one, there are two outputs, viz., ack and nak.

Designing a counter that consists of a linear array of cells that have outputs ack and nak instead

of empty, ack, and full is harder, because input from the subcomponent of a cell does not give

information about the subcomponent’s state. We illustrate this by attempting to specify the cells

of a binary implementation with internal parallelism based on the ack-nak protocol.

As before, we try to specify a cell’s behaviors with respect to environment and subcomponent

separately, starting with the behavior w.r.t the environment. This behavior is very similar to that

of the C2 cells. The only difference is in the synchronization after a down has been received in state

56 Chapter 4. An Implementation with Parallelism

zero or an up has been received in state one: F is defined as the least fixpoint of

S.0 = pref (up?; ack !;S.1

|down?; (se;nak !;S.0 | sd; ack !;S.1))
S.1 = pref (up?; (sf;nak !;S.1 | su; ack !;S.0)

|down?; ack !;S.0).

If a down is received when in state F.0, decrementing the subcounter regardless of its state does

not work. The output to the environment depends on the state of the subcounter. So the state of

the subcounter has to be known in order to achieve the parallelism.

The specification of the behavior w.r.t. the subcounter becomes different. Consider the following

equations.

S.0 = pref (se;S.0

|su; sup !; sack?;S.3)

S.1 = pref (su; sup !; sack?;S.3

|sd; sdown !; sack?;S.4)

S.2 = pref (sf;S.2

|sd; sdown !; sack?;S.4).

States zero, one, and two encode the state of the subcounter, as before. But now the new state of

the subcounter cannot be determined from the last input received from the subcounter. In state

three the subcounter is not empty, but it may be either full or non-full. Similarly, in state four

the subcounter is not full, but it may be either empty or non-empty. We need extra equations to

determine the new state. The easiest way of doing this is sending an extra sup or sdown. This gives

S.3 = pref (sup !; (sack?; sdown !; sack?;S.1|snak?;S.0))

S.4 = pref (sdown !; (sack?; sup !; sack?;S.1|snak?;S.0))

for states three and four. If the cell is in state three, then the subcounter is not empty. We have to

determine whether it is full or not. If an sack is received from the subcounter after an sup has been

sent to the subcounter, the subcounter was not full. An sdown is sent to return the subcounter to

its original state. If an snak is received, then the subcounter is full. Since the counter’s value does

not change when it is full and receives an up, no sdown has to be sent to cancel the effect of the

extra sup.

We see that by using the ack-nak protocol, we get a more difficult specification for the cells. In our

solution there is extra communication between cells. We have not investigated whether there are

4.5 The ack-nak Protocol 57

other implementations for counters with the ack-nak protocol, without the extra communication

overhead.

From this exercise we learn that it might be wise to keep some information of the state of neighboring

cells when specifying the behavior of a cell. Of course those neighboring cells should provide enough

information to make this possible. Without this information it is harder to obtain parallel behavior.

Chapter 5

An Implementation with Constant

Power Consumption

5.0 Introduction

In this chapter we design an N -counter with constant response time and constant power consump-

tion for any N larger than zero. To achieve this we use redundant number systems with radix 2.

In the implementation some cells use digit set { 0, 1, 2 } and other cells use digit set { 0, 1, 2, 3 }.
Which digit set is used for a cell in the implementation of an N -counter depends on the value of

N .

In a number system with radix 2 and digit set { 0, 1, . . . ,m }, the string dl−1 . . . d0 represents the

number

(Σ i : 0 ≤ i < l : di2
i),

as in the normal binary system. For m larger than one most numbers have more than one represen-

tation. The possible representations of four for m equal to two are 12, 20, and 100 (most significant

digit on the left).

The advantage of using redundant number systems is that there will be fewer carry and borrow

propagations per input in our implementation. It is the reduction in the number of carry and

borrow propagations per input that allows an implementation with constant power consumption.

The number system with radix 2 and digit set { 0, 1, 2 } is known as the binary stored-carry (or

BSC) number system [Par90]. There does not seem to be an accepted name for the binary number

58

5.0 Introduction 59

system with digits 0, 1, 2, and 3. In the conclusions of [Par90] the name binary stored-double-carry

(or BSDC) number system is proposed. This name is used in the rest of this report.

We want to be able to make an implementation for an N -counter, for N larger than zero, with the

property that the counter is full if and only if all cells in the implementation are full. As pointed

out in Section 4.3, this is necessary to obtain parallel behavior in the implementation for any N .

Thus, using cells with maximum internal counts of two and three, and possibly one for the end cell

of an implementation, we have to be able to represent all positive numbers with digits 2, 3, and

possibly 1 for the most significant digit.

We need cells with maximum internal counts of two and three to reduce the average number of carry

and borrow propagations per input of a behavior. If we use cells with maximum internal counts of

one and two, then there is no redundancy in the representation for some numbers. For example,

for N = 2k − 1, the N ’s only representation using digits 1 and 2, and radix 2, is a sequence of

1’s, a normal binary number. An implementation of such a counter uses only cells with maximum

internal count 1. So the current count of the implementation is represented in the same way as for

the implementation of Chapter 4. The number of carry and borrow propagations per input is the

same as well, and so is the power consumption.

The next lemma shows that all positive numbers can be represented as a radix-2 number using

digits 2 and 3, and possibly 1 for the most significant digit.

Lemma 5.0.0. Any natural number larger than 0 can be represented (uniquely) by radix-2 number

dl−1 . . . d0 for some l larger than zero, where di ∈ { 2, 3 } for i < l − 1 and dl−1 ∈ { 1, 2, 3 }. 2

Proof. The proof is an easy induction. For the base case of the induction we observe that the

lemma is true for 1, 2, and 3.

Now let 3 < N . If N is even, then N = 2(N − 2) div 2 + 2. Since (N − 2) div 2 is smaller than N ,

we have by induction hypothesis that there is an l larger than zero and there are d0, . . . , dl−1 such

that the radix-2 number dl−1 . . . d0 represents (N − 2) div 2, all but the most significant digit are

elements of { 2, 3 }, and the most significant digit dl−1 is in { 1, 2, 3 }. Then N can be represented

by the radix-2 number dl−1 . . . d02.

If N is odd, we can just add a 3 to the radix-2 representation of (N − 3)div 2, which exists by the

induction hypothesis. 2

Thus, we need three types of end cells and two types of other (non-end) cells to be able to implement

any N -counter. The three end cells are UDC.1, UDC.2, and UDC.3. The two other types of cells

are a BSC cell and a BSDC cell.

60 Chapter 5. An Implementation with Constant Power Consumption

5.1 Specification of the Cells

The specifications of the BSC and BSDC cells are very similar, and both are similar to the specifi-

cation of cell C2.

Definition 5.1.0. Let D3 be the least fixpoint of the following equations in S:

S.0 = pref (up?; ack !;S.1

|down?; sd; ack !;S.1)

S.1 = pref (up?; ((se |sn); ack ! | sf; full !);S.2

|down?; ((sf |sn); ack ! | se; empty !);S.0)

S.2 = pref (up?; su; ack !;S.1

|down?; ack !;S.1).

Then the BSC counter cell is specified by

C3 = |[se, sn, sf, sd, su :: D3.0 ‖ E2.0]| .

2

The state graph of the specification of C3 has 35 states.

Definition 5.1.1. Let D4 be the least fixpoint of

S.0 = pref (up?; ack !;S.1

|down?; sd; ack !;S.1)

S.1 = pref (up?; ack !;S.2

|down?; ((sf |sn); ack ! | se; empty !);S.0)

S.2 = pref (up?; ((se |sn); ack ! | sf; full !);S.3

|down?; ack !;S.1)

S.3 = pref (up?; su; ack !;S.2

|down?; ack !;S.2).

The component

C4 = |[se, sn, sf, sd, su :: D4.0 ‖ E2.0]|

specifies the BSDC counter cell. 2

5.2 Correctness of the Implementation 61

The state graph of the BSDC cell has 49 states.

An implementation of a (2k−1)-counter using these cells behaves different from an implementation

using C2 cells when given the same input. However, for both types of cells the communication with

respect to the subcomponent is described by the same command that specifies the communication

with respect to the subcomponent for the C2 cell. This is yet another advantage of specifying be-

haviors of cells as a weave of sequential commands that describe the behavior at different boundaries

of those cells.

5.2 Correctness of the Implementation

Since we have several types of cells, we have several proof obligations. Again, the proof is inductive.

For the basic step we have three proof obligations, viz.

UDC.N → (UDC.N)

for 1 ≤ N ≤ 3. For the inductive step we apply the Substitution Theorem. It is sufficient to prove

that for N larger than one

0. UDC.(2N + 2)→ (C3, sUDC.N), and

1. UDC.(2N + 3)→ (C4, sUDC.N).

The first parts of the proofs of 0 and 1 are identical to the first part of the correctness proof of the

implementation in Chapter 4. For i = 3, 4 and any 1 ≤ N we have:

|[A0 :: Ci ‖ sUDC.N]|
= { See page 44 }
|[A1 :: Di ‖G]| .

From this point on we treat the two cases separately.

0. The defining equations for |[A1 :: D3 ‖G]| are

S.0.0 = pref (up?; ack !;S.1.0 | down?)

S.1.0 = pref (up?; ack !;S.2.0 | down?; empty !;S.0.0)

S.2.0 = pref (up?; ack !;S.1.1 | down?; ack !;S.1.0)

62 Chapter 5. An Implementation with Constant Power Consumption

S.0.i = pref (up?; ack !;S.1.i | down?; ack !;S.1.(i− 1))

S.1.i = pref (up?; ack !;S.2.i | down?; ack !;S.0.i)

S.2.i = pref (up?; ack !;S.1.(i+ 1) | down?; ack !;S.1.i)















for 0 < i < N

S.0.N = pref (up?; ack !;S.1.N | down?; ack !;S.1.(N − 1))

S.1.N = pref (up?; full !;S.2.N | down?; ack !;S.0.N)

S.2.N = pref (up? | down?; ack !;S.1.N).

We see that S.2.i = S.0.(i+ 1) for 0 ≤ i < N . So |[A1 :: D3 ‖G]| is also the first component

of the least fixpoint of

S.0.0 = pref (up?; ack !;S.1.0 | down?)

S.1.0 = pref (up?; ack !;S.0.1 | down?; empty !;S.0.0)

S.0.i = pref (up?; ack !;S.1.i | down?; ack !;S.1.(i− 1))

S.1.i = pref (up?; ack !;S.0.(i+ 1) | down?; ack !;S.0.i)

}

for 0 < i < N

S.0.N = pref (up?; ack !;S.1.N | down?; ack !;S.1.(N − 1))

S.1.N = pref (up?; full !;S.2.N | down?; ack !;S.0.N)

S.2.N = pref (up? | down?; ack !;S.1.N).

In these equations S.i.j corresponds to S.(i+2j) in the defining equations for UDC.(2N +2).

The only difference is that in S.0.0 a down input is allowed and in S.2.N an up input is

allowed. From this we conclude

t(UDC.(2N + 2)) ⊆ t(C3 ‖ sUDC.N) |̀a(UDC.(2N + 2)),

and hence Lemma 1.4.3 gives us that the network behaviors are complete.

1. The defining equations for |[A1 :: D4 ‖G]| are

S.0.0 = pref (up?; ack !;S.1.0 | down?)

S.1.0 = pref (up?; ack !;S.2.0 | down?; empty !;S.0.0)

S.2.0 = pref (up?; ack !;S.3.0 | down?; ack !;S.1.0)

S.3.0 = pref (up?; ack !;S.2.1 | down?; ack !;S.2.0)

5.2 Correctness of the Implementation 63

S.0.i = pref (up?; ack !;S.1.i | down?; ack !;S.1.(i− 1))

S.1.i = pref (up?; ack !;S.2.i | down?; ack !;S.0.i)

S.2.i = pref (up?; ack !;S.3.i | down?; ack !;S.1.i)

S.3.i = pref (up?; ack !;S.2.(i+ 1) | down?; ack !;S.2.i)



























for 0 < i < N

S.0.N = pref (up?; ack !;S.1.N | down?; ack !;S.1.(N − 1))

S.1.N = pref (up?; ack !;S.2.N | down?; ack !;S.0.N)

S.2.N = pref (up?; full !;S.3.N | down?; ack !;S.1.N)

S.3.N = pref (up? | down?; ack !;S.2.N).

There are 4N + 4 defining equations, while a UDC.(2N + 3) is specified with only 2N + 4

equations. As in the proof under 0, we want to show that some of the equations specify the

same trace structure. In particular, states S.2.i = S.0.(i + 1) and S.3.i = S.1.(i + 1) for

0 ≤ i < N − 1. But here it is harder to see which states are redundant than it was in the

previous proof. We use fixpoint induction to prove that states S.2.i and S.3.i are redundant

for 0 ≤ i < N .

As explained in Chapter 1, the defining equations for |[A1 :: D4 ‖G]| define a tail function f

with least fixpoint µ.f . In terms of the fixpoint we have to show that µ.f.2.i = µ.f.0.(i+ 1)

and µ.f.3.i = µ.f.1.(i+1) for 0 ≤ i < N . Using fixpoint induction this requires showing that

predicate P , defined by

P.S ≡ (∀i : 0 ≤ i < N : S.2.i = S.0.(i+ 1) ∧ S.3.i = S.1.(i+ 1)),

for vector of trace structures S ∈ T 4(N+1).(a(UDC.N)), is inductive, P.(⊥4(N+1).(a(UDC.N)))

holds, and that f maintains P . As pointed out in Chapter 1, any assertion of this form is

inductive. Therefore we do not give the proof.

Since ⊥4(N+1).(a(UDC.N)).i = ⊥.(a(UDC.N)) for all i ∈ [0..4N + 5), it is obvious that

P.(⊥4(n+1).(a(UDC.N))) holds.

For proving the last condition, let S ∈ T 4(N+1).(a(UDC.N)) and assume that P.S holds. We

have to prove that P.(f.S) holds as well. Let 0 ≤ i < N . Then

f.S.2.i = pref (up?; ack !;S.3.i | down?; ack !;S.1.i)

f.S.3.i = pref (up?; ack !;S.2.(i+ 1) | down?; ack !;S.2.i)

f.S.0.(i+ 1) = pref (up?; ack !;S.1.(i+ 1) | down?; ack !;S.1.i)

f.S.1.(i+ 1) = pref (up?; ack !;S.2.(i+ 1) | down?; ack !;S.0.(i+ 1)).

64 Chapter 5. An Implementation with Constant Power Consumption

Using the fact that P.S holds we see that f.S.2.i = f.S.0.(i + 1) and f.S.3.i = f.S.1.(i + 1)

for 0 ≤ i < N . This shows that P.(f.R) holds. By fixpoint induction and the definition of f

we now have

µ.f.0.0 = pref (up?; ack !;µ.f.1.0 | down?)

µ.f.1.0 = pref (up?; ack !;µ.f.0.1

|down?; empty !;µ.f.0.0)

µ.f.0.i = pref (up?; ack !;µ.f.1.i

|down?; ack !;µ.f.1.(i− 1))

µ.f.1.i = pref (up?; ack !;µ.f.0.(i+ 1)

|down?; ack !;µ.f.0.i)



























for 0 < i < N

µ.f.0.N = pref (up?; ack !;µ.f.1.N

|down?; ack !;µ.f.1.(N − 1))

µ.f.1.N = pref (up?; ack !;µ.f.2.N

|down?; ack !;µ.f.0.N)

µ.f.2.N = pref (up?; full !;µ.f.3.N

|down?; ack !;µ.f.1.N)

µ.f.3.N = pref (up?|down?; ack !;µ.f.2.N).

From this and from the definition of UDC.(2N + 3) we conclude that t(µ.f.0) contains

t(UDC.(2N + 3)). Denoting the least fixpoint of the defining equations for UDC.(2N +3) by

A, we see that µ.f.0.i corresponds to A.(2i), µ.f.1.i corresponds to A.(2i + 1), and µ.f.j.N

corresponds to A.(2N + j) for 0 ≤ i < N and 0 ≤ j < 4. Applying Lemma 1.4.3 once more,

we find that the network behaviors are complete.

Proving that there is no computation interference in the two decompositions is analogous to proofs

given before; we omit the proofs here.

5.3 Performance Analysis

There are three criteria by which we judge the efficiency of the implementation: its area complexity,

its response time, and its power consumption. In this section we analyze all three.

Calculating the area complexity is easy. Implementing an N -counter requires Θ.(logN) of the

specified cells.

5.3 Performance Analysis 65

5.3.0 Response Time

For the response time analysis we transform the behaviors of the cells into cubic ones in a similar

way as in Chapter 4. Again, we must make sure that the transformations do not change the order

of growth of the response time.

The behavior of the BSC cell is transformed in three steps. In the first step inputs up and down

are replaced by r, outputs empty, ack, and full are replaced by a, internal symbols se, sn, and sf

are replaced by p, and sd and su are replaced by q. We get the following defining equations:

S.0 = pref ((r?; a! | r?; q; a!);S.1)
S.1 = pref (r?; p; a!; (S.0 | S.2))
S.2 = pref ((r?; a! | r?; q; a!);S.1)

and

S.0 = pref (p;S.0

|q; sr!; sa?(S.1 | S.2))
S.1 = pref (q; sr!; sa?(S.0 | S.1)

|p;S.1
|q; sr!; sa?(S.1 | S.2))

S.2 = pref (q; sr!; sa?(S.0 | S.1)
|p;S.2)

for the behaviors with respect to the left and right environment respectively. These equations can

be simplified to

S.0 = pref ((r?; a! | r?; q; a!);S.1)
S.1 = pref (r?; p; a!;S.0)

and

S.0 = pref ∗[p | q; sr!; sa?].

The next transformation consists of omitting the first alternative of the choice in the behavior with

respect to the left environment. This does not influence the worst-case response time: the other

66 Chapter 5. An Implementation with Constant Power Consumption

alternative gives rise to the worst-case behavior because of the synchronization on q. After doing

this we can reduce the number of internal symbols to one to obtain

C3
abs = |[q ::

pref ∗ [r?; q; a!; r?; q; a!]
‖ pref ∗ [q; sr!; sa?; q]
]|

as the abstract behavior for the BSC cell. Note that this is a possible specification for a 4-phase to

2-phase protocol.

For the BSDC cell we can do something similar. Some more steps are involved (all of the same

kind as for the BSC cell), but the result is the same. The abstract behavior for the BSDC cell can

be defined by C4
abs where

C4
abs = |[q ::

pref ∗ [r?; q; a!; r?; q; a!]
‖ pref ∗ [q; sr!; sa?; q]
]| .

The possible end cells, UDC.1, UDC.2, and UDC.3 are all transformed into wire(r; a) components.

To estimate the response time, we first define sequence functions for

W.k = (‖ j : 0 ≤ j < k − 1 : sjC3
abs) ‖ pref ∗ [sk−1r?; sk−1a!],

for 1 ≤ k.

Define σ by

σ.(sjr).i = j + 2j+1 ∗ i
σ.(sja).i = j + 2j+1 ∗ i+ 1

for 0 ≤ i and 0 ≤ j. Then σ restricted to occ.(W.k) is a sequence function for W.k. According to

σ all N -counters implemented by BSC and BSDC cells have the same, constant, response time.

The next question we may ask ourselves is whether we have bounded response time if we allow delays

of basic components to vary between a lower bound δ and an upper bound ∆. We are interested

in finding out whether an implementation with bounded response time exists. So, contrary to our

approach in Chapter 4, we do not try to prove anything about the specifications of the abstract cells,

5.3 Performance Analysis 67

but we look at an implementation. In Figure 5.0 a network of k−1 abstract cell implementations is

depicted. We prove that the response time of this network is independent of k under the assumption

that the response times of the basic components are bounded from below by δ and from above by ∆.

For the same reasons as in Chapter 4 we can then conclude that the C3 and C4 cells can be used to

implement up-down counters with bounded response time. Informally the argument is as follows.

q

q

q ¹¸
º·¹¸

º·
¹¸
º·

¾I

-¾
¾

¡¡µ©©
HH
q

- -©©
HH q @@R

¾
¾ -¾

ª ª

¾ ¾
¾

@@R
©©
HH q--

b.(k − 2)

r.(k − 1)

a.(k − 1)

a.(k − 2)

r.(k − 2)

a.2

r.2

b.1a.0 r.1

b.0 a.1r.0

c.0

c.1

c.(k − 2)
M

M

M

Figure 5.0: An array of C3
abs/C

4
abs cell implementations.

If we look only at the structure of the network (see Figure 5.0), the delay between corresponding

r.j’s and a.j’s increases at most linearly in k− j. Consider cell j − 1, for some j greater than zero.

Under certain assumptions for the minimum delay between an a.(j−1) event and the next r.(j−1)

event, we can even prove that the maximum delay between an r.(j−1) event and the corresponding

a.(j − 1) event is no larger than the maximum delay between an r.j event and the corresponding

a.j event.

The delay between an a.j event and the next r.j event increases with j. As a result, for large

enough k there is a cell for which the assumptions for the minimum delay between its outputs to its

left environment and the following inputs from its left environment are satisfied. The cell number

of this cell determines the response time of the counter, and that cell number does not depend on

the number of cells. Hence the counter has bounded response time.

We now give a formal proof. Let T be a timing function for the array depicted in Figure 5.0 such

that according to T the response time of the join, merge, and toggle elements is bounded from

below by δ and from above by ∆, and the response time of wires is zero. This assumption about

the response time of wires is not crucial to the argument given below. We prove two properties of

T :

0. (∀ i, j : 0 ≤ i ∧ 0 ≤ j < k − 1 ∧ T .(r.j).(i+ 1)− T .(a.j).i ≥ 3 ∗∆− 2 ∗ δ
: T .(a.j).i− T .(r.j).i ≤ 3 ∗∆),

68 Chapter 5. An Implementation with Constant Power Consumption

and

1. (∀ i, j : 0 ≤ i ∧ 0 ≤ j < k : T .(r.j).(i+ 1)− T .(a.j).i ≥ 3j ∗ δ).

Proof of 0. The proof is by induction.

• Basic step (j = k − 2). By the assumptions that the delays of the basic components used in

Figure 5.0 are at most ∆ and that wire delays are zero, we see that

T .(a.(k − 2)).i− T .(r.(k − 2)).i ≤ 3 ∗∆

for any i.

• Inductive step. Let 0 < j < k − 1 and let 0 ≤ i. Assume that the delay between a.(j − 1)

and consecutive r.(j − 1) is at least 3 ∗∆− 2 ∗ δ. The delay between occurrence no. 2i of

r.(j−1) and occurrence no. 2i of a.(j−1) is the delay of a toggle plus the delay of a merge

component. Thus

T .(a.(j − 1)).(2i)− T .(r.(j − 1)).(2i) ≤ 2 ∗∆.

For the other occurrences of r.(j − 1) and a.(j − 1) we derive:

T .(a.(j − 1)).(2i+ 1)− T .(r.(j − 1)).(2i+ 1)

≤ { T .(a.(j − 1)).(2i+ 1) ≤ T .(c.(j − 1)).i+∆ and

T .(r.(j − 1)).(2i+ 1) ≥ T .(b.(j − 1)).i−∆ }
T .(c.(j − 1)).i− T .(b.(j − 1)).i+ 2 ∗∆

≤ { Delay of join is at most ∆ }
(T .(b.(j − 1)).imax T .(a.j).i)− T .(b.(j − 1)).i+ 3 ∗∆

= { Distribution of + over max }
0max (T .(a.j).i− T .(b.(j − 1)).i) + 3 ∗∆

≤ { Induction hypothesis }
0max (T .(r.j).i+ 3 ∗∆− T .(b.(j − 1)).i) + 3 ∗∆

≤ { T .(r.j).i ≤ T .(a.(j − 1)).(2i)− δ and T .(b.(j − 1)).i ≥ T .(r.(j − 1)).(2i+ 1) + δ }
0max (T .(a.(j − 1)).(2i)− T .(r.(j − 1)).(2i+ 1) + 3 ∗∆− 2 ∗ δ) + 3 ∗∆

= { T .(r.(j − 1)).(2i+ 1)− T .(a.(j − 1)).(2i) ≥ 3 ∗∆− 2 ∗ δ }
3 ∗∆.

Proof of 1. This proof is also by induction.

5.3 Performance Analysis 69

• Basic step (j = 0). After having sent an r.0, the environment does not send a next r.0 before

receiving the a.0 corresponding to the former r.0 (on valid behaviors). Thus

T .(r.0).(i+ 1)− T .(a.0).i ≥ 0

for any i ≥ 0.

• Inductive step. Let 0 ≤ j < k − 1 and let 0 ≤ i. We derive:

T .(r.(j + 1)).(i+ 1)− T .(a.(j + 1)).i

≥ { T .(r.(j + 1)).(i+ 1) ≥ T .(r.j).(2i+ 2) + δ }
T .(r.j).(2i+ 2) + δ − T .(a.(j + 1)).i

≥ { T .(a.(j + 1)).i ≤ T .(a.j).(2i+ 1)− 2 ∗ δ }
T .(r.j).(2i+ 2)− T .(a.j).(2i+ 1) + 3 ∗ δ

≥ { Induction hypothesis }
3j ∗ δ + 3 ∗ δ

= { Algebra }
3 ∗ (j + 1) ∗ δ.

Let h be the smallest integer solution for j of the equation

3j ∗ δ ≥ 3 ∗∆− 2 ∗ δ.

Then the response time of cell h is bounded from above by 3 ∗∆. Moreover, the response time of

the network is bounded as well. The upper bound for the response time depends on h only. Since h

is determined by δ and ∆, the upper bound for the response time does not depend on the number

of cells in the network.

Incorporating nonzero wire delays into the model results in a bounded response time as well,

although the value found for h might be different.

Given implementations of C3 and C4 cells, we can choose the values for the delays of the merge,

toggle, and join elements such that the timed behaviors of the network of Figure 5.0 correspond

to timed behaviors of the counter implementation. Therefore we conclude that an N -counter can

be implemented with C3 and C4 cells, with a response time that does not depend on N .

5.3.1 Power Consumption

The specifications of the BSC and BSDC cells have one property that is important for proving

constant power consumption, viz., that the number of communications with their subcomponent is

70 Chapter 5. An Implementation with Constant Power Consumption

at most half the number of communications with their environment. We do not prove this formally.

It is already indicated by the commands C3
abs and C4

abs.

Let N > 0. Consider the weave W of the components of the implementation of the N -counter:

W = (‖ j : 0 ≤ j < f.N − 1 : sjC1+g.N.j) ‖UDC.(g.N.(f.N − 1))).

Here f is a function that maps a number to the number of digits of the representation described

in Lemma 5.0.0; function g maps the pair (N, i) to digit number i in N ’s representation.

With V as an abbreviation for { up, down }, we derive:

t ∈ tW
⇒ { t |̀a(siC1+g.N.i) ∈ t(siC1+g.N.i) for 0 ≤ i < f.N }

(∀ i : 0 ≤ i < f.N − 1 : 2 ∗ `.(t |̀ si+1V) ≤ `.(t |̀ siV))

⇒ { Algebra }
(∀ i : 0 ≤ i < f.N : 2i ∗ `.(t |̀ siV) ≤ `.(t |̀V))

≡ { Algebra }
(∀ i : 0 ≤ i < f.N : `.(t |̀ siV) ≤ (1/2i) ∗ `.(t |̀V))

⇒ { + is monotonous w.r.t ≤ }
(Σ i : 0 ≤ i < f.N : `.(t |̀ siV)) ≤ (Σ i : 0 ≤ i < f.N : (1/2i) ∗ `.(t |̀V))

≡ { aW = (
⋃

i : 0 ≤ i < f.N : siV); Algebra }
`.t ≤ (Σ i : 0 ≤ i < f.N : 2−i ∗ `.(t |̀V))

⇒ { 2−i ∗ `.(t |̀V) ≥ 0 }
`.t ≤ (Σ i : 0 ≤ i : 2−i ∗ `.(t |̀V))

≡ { Algebra; definition of V }
`.t ≤ 2 ∗ `.(t |̀{ up, down })

This proves that this implementation has constant power consumption.

Chapter 6

Conclusions and Further Research

6.0 Introduction

In this chapter we discuss the obtained results and present some conclusions. Furthermore we give

some suggestions for further research.

6.1 Conclusions

A number of delay-insensitive implementations for up-down counters have been specified and ana-

lyzed with respect to their area complexity, response time, and power consumption.

All counter implementations consist of a linear array of cells. The current count of the counter can

be derived from the states of these cells. For the simplest of the counters, the current count is just

the sum of the internal counts of the cells. This corresponds to unary or radix-1 counting. For the

other implementations we used binary or radix-2 counting.

For specifying the behaviors of the cells we used the commands language described in Chapter 1.

The weave operator allowed for relatively short specifications, compared to state graphs, for exam-

ple. Specifying parallel behavior is made easy by specifying the behaviors at the different boundaries

separately and then weaving these partial behaviors. Internal symbols can be used to obtain the

necessary synchronization. Having the partial behaviors was advantageous in proving the correct-

ness of the proposed implementations. Specifying cells as a weave of partial behaviors also makes

it easier to avoid computation interference.

Unary up-down counter implementations turn out to be closely linked to the control parts of stack

71

72 Chapter 6. Conclusions and Further Research

implementations. We proved that the power consumption of unary up-down N -counters grows at

least logarithmically with N . Since every stack implementation can be seen as an up-down counter,

the power consumption of stack implementations grows at least logarithmically with the size of the

stack.

The binary counter implementation presented in Chapter 4 shows that counters described earlier,

for example in [GL81], can be implemented in a delay-insensitive way. In [GL81] counters with

maximum count 2k − 1, for some k greater than zero, are designed. We can implement N -counters

for any N greater than zero.

Furthermore, in the analysis of the proposed implementation in Chapter 4 we argued that un-

der certain assumptions using sequence functions and the definition of constant response time for

sequence functions may not be suitable to analyze the worst-case response time of asynchronous

circuits. These assumptions are that the delays of basic components may vary between a lower and

an upper bound. A suggestion was made for a definition of bounded response time for a particular

class of specifications, namely cubic specifications with alternating inputs and outputs. Subse-

quently we showed that using this definition, the response time of the implementation depends on

the number of cells. For this proof we used an abstraction of the counter cells. The advantage

of analyzing the response time of the abstract cells is that each cell has only one input from its

left environment and one output to its left environment. As a result, only the delays between that

input and that output have to be considered. If there are more inputs and outputs, case analysis

might be required.

The counter implementation of Chapter 5 is a new one and is an improvement on all previous imple-

mentations. It shows that up-down counters can be implemented with constant power consumption.

Constant power consumption was achieved by introducing redundancy in the representation of the

current count. Moreover, the implementation’s response time is independent of the number of cells,

even with respect to our stronger definition. Its area complexity grows logarithmically with its size.

Thus, this counter has optimal growth rates with respect to all three performance criteria.

6.2 Further Research

First of all, in this report only high-level implementations of up-down counters are presented. A next

step is the decomposition of the cells into smaller (basic) components or directly into transistors.

Second, there are some possible extensions to the up-down counter specified in Chapter 2. A

possibility is having the counter count modulo N + 1 if the current count is N and another up is

6.2 Further Research 73

received. This is considered useful by some authors [Par87].

Third, in this report we only considered counter implementations consisting of linear arrays of cells.

Unary counters can also be implemented by cells configured in a binary tree. Then a logarithmic

response time may be obtained without any parallelism in the implementation.

Fourth, counters based on other number systems than radix-1 and radix-2 number systems can

be designed. For example, in an implementation with a linear structure, one plus the cell number

can be chosen as the weight for its internal count. With digit set { 0, 1 }, six can be represented

by 100000, 10001, and 1010 (most significant digit on the left). In this way all natural numbers

can be represented. Specifying cells for an implementation using this number system requires the

introduction of an extra output channel since in each cell the internal count of the subcell is needed

in order to determine the next state upon receiving an input. We give a specification for the general

cells of such a counter. We have not verified its correctness for all N , but verified a small number

of cases using verdect.

Definition 6.2.0. Define D5 as the least fixpoint of

S.0 = pref (up?; ((se | sn); ack1! | sf; empty !);S.1

|down1; (sd0; ack0!;S.0 | sd1; ack1!;S.1)

)

S.1 = pref (up?; (su0; ack0!;S.0 | su1; ack1!;S.1)

|down?; ((sf | sn); ack0! | se; ack0!);S.0

)

74 Chapter 6. Conclusions and Further Research

and define E5 as the least fixpoint of

S.0 = pref (se;S.0

|su0; sup !; (sack1?;S.2 | sfull?;S.3)

)

S.1 = pref (sd0; sdown !; (sack0?;S.1 | sack1?;S.2 | sempty?;S.0)

|sn;S.1
|su0; sup !; (sack1?;S.2 | sfull?;S.3)

)

S.2 = pref (sd1; sdown !; (sack0?;S.1 | sempty?;S.0)

|sn;S.2
|su0; sup !; (sack0?;S.1 | sack1?;S.2 | sfull?;S.3)

)

S.3 = pref (sf;S.3

|sd1; sdown !; (sack0?;S.1 | sempty?;S.0)

).

Then the counter cell is defined as

C5 = |[se, sn, sf, sd0, sd1, su0, su1 :: D5.0 ‖ E5.0]| .

2

To obtain an implementation of an up-down counter as specified in Chapter 2, the outputs ack0

and ack1 of the head cell of this proposed implementation can be merged into one signal ack. The

current count of a counter implementation consisting of k − 1 of these cells, a 1-counter, and a

merge(ack0, ack1; ack) is

(σ i : 0 ≤ i < k : ci ∗ i),

where ci is the internal count of cell i. The implementation of an N -counter requires Θ.(
√
N) cells

of type C5.

Counters based on other (redundant) number systems may have better average response time than

the binary implementations presented in this report.

Fifth, it is not clear how accurate the proposed response time analysis is. Abstracting away from

the identity of inputs and outputs of cells as we did in Chapters 4 and 5 may not influence the

6.2 Further Research 75

growth rate of the response time, but it does influence the constant factors, and we do not know

to which extent.

Sixth, we only analyzed the worst-case response time of the proposed designs. One could also

analyze the average-case response time. For counters with the same worst-case response time, the

average response times might still be different. This seems to be the case for the unary counter

implementation of Section 3.1 and a counter based on Martin’s lazy stack protocol. For both

implementations the worst-case response time is linear in the maximum count, but we suspect

the average response time of the latter to be much better. For synchronous implementations this

would not be of much interest, since they reflect the worst-case behavior anyway. For asynchronous

implementations the difference influences the performance.

Bibliography

[BBB+92] Roy W. Badeau, R. Iris Bahar, Debra Bernstein, Larry L. Biro, William J. Bowhill,

John F. Brown, Michael A. Case, Ruben W. Castelino, Elizabeth M. Cooper, Mau-

reen A. Delaney, David R. Deverell, John H. Edmondson, John J. Ellis, Timothy C.

Fischer, Thomas F. Fox, Mary K. Gowan, Paul E. Gronowski, William V. Her-

rick, Anil K. Jain, Jeanne E. Meyer, Daniel G. Miner, Hamid Partovi, Victor Peng,

Ronald P. Preston, Chandrasekhara Somanathan, Rebecca L. Stamm, Stephen C.

Thierauf, G. Michael Uhler, Nicholas D. Wade, and William R. Wheeler. A 100

MHz macropipelined VAX microprocessor. IEEE journal of Solid-State Circuits,

27(11):1585–1598, November 1992.

[Bir67] G. Birkhoff. Lattice Theory, volume 25 of AMS Colloquium Publications. American

Mathematical Society, 1967.

[Bru91] Erik Brunvand. Translating Concurrent Communicating Programs into Asynchronous

Circuits. PhD thesis, Carnegie Mellon University, 1991.

[Chu87] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifi-

cations. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[CSS89] Somsak Choomchuay, Somkiat Supadech, and Manus Sangworasilp. An 8 bit preset-

table/programmable synchronous counter/divider. In IEEE Sixth International Elec-

tronic Manufacturing Technology Symposium, pages 230–233. IEEE, 1989.

[DCS93] Al Davis, Bill Coates, and Ken Stevens. Automatic synthesis of fast compact asyn-

chronous control circuits. In Proceedings of the IFIP WG10.5 Working Conference on

Asynchronous Design Methodologies, March 1993.

[Dil89] David L. Dill. Trace Theory for Automatic Hierachical Verification of Speed-

Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

76

Bibliography 77

[DNS92] David L. Dill, Steven M. Nowick, and Robert F. Sproull. Specification and automatic

verification of self-timed queues. Formal Methods in System Design, 1(1):29–60, July

1992.

[Ebe89] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, volume 56 of

CWI Tracts. Centre for Mathemathics and Computer Science, 1989.

[Ebe91] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed

Computing, 5(3):107–119, 1991.

[EG93a] Jo C. Ebergen and Sylvain Gingras. An asynchronous stack with constant response

time. Technical report, University of Waterloo, 1993.

[EG93b] Jo C. Ebergen and Sylvain Gingras. A verifier for network decompositions of command-

based specifications. In Trevor N. Mudge, Veljko Milutinovic, and Lawrence Hunter,

editors, Proceedings of the Twenty-Sixth Annual Hawaii International Conference on

System Sciences, volume I, pages 310–318. IEEE Computer Society Press, 1993.

[EP92] Jo C. Ebergen and Ad M. G. Peeters. Modulo-N counters: Design and analysis of delay-

insensitive circuits. In Jørgen Staunstrup and Robin Sharp, editors, 2nd Workshop on

Designing Correct Circuits, Lyngby, pages 27–46. Elsevier Science Publishers, 1992.

[Gar93] J.D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In S. Furber

and M. Edwards, editors, IFIP WG 10.5 Working Conference on Asynchronous Design

Methodologies. Elsevier Science Publishers, 1993.

[GL81] Leo J. Guibas and Frank M. Liang. Systolic stacks, queues, and counters. In P. Penfield,

Jr., editor, 1982 Conference on Advanced Research in VLSI, pages 155–164. Artech

House, 1981.

[JB88] Edwin V. Jones and Guoan Bi. Fast up/down counters using identical cascaded mod-

ules. IEEE journal of Solid-State Circuits, 23(1):283–285, February 1988.

[JU90] Mark B. Josephs and Jan Tijmen Udding. Delay-insensitive circuits: An algebraic

approach to their design. In J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90,

Theories of Concurrency: Unification and Extension, volume 458 of Lecture Notes in

Computer Science, pages 342–366. Springer-Verlag, August 1990.

[JU91] Mark B. Josephs and Jan Tijmen Udding. The design of a delay-insensitive stack. In

G. Jones and M. Sheeran, editors, Designing Correct Circuits, pages 132–152. Springer-

Verlag, 1991.

78 Bibliography

[Kal86] Anne Kaldewaij. A Formalism for Concurrent Processes. PhD thesis, Dept. of Math.

and C.S., Eindhoven Univ. of Technology, 1986.

[LKSV91] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Synthesis of

verifiably hazard-free asynchronous control circuits. In Carlo H. Séquin, editor, Ad-

vanced Research in VLSI: Proceedings of the 1991 UC Santa Cruz Conference, pages

87–102. MIT Press, 1991.

[LT82] X. D. Lu and Philip C. Treleaven. A special-purpose VLSI chip: A dynamic pipeline

up-down counter. Microprocessing and Microprogramming, 10(1):1–10, 1982.

[Man91] M. Morris Mano. Digital Design. Prentice Hall, 2nd edition, 1991.

[Mar90] Alain J. Martin. Programming in VLSI: From communicating processes to delay-

insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and

Communication. Addison-Wesley, 1990. UT Year of Programming Institute on Con-

current Programming.

[MSB91] Cho W. Moon, Paul R. Stephan, and Robert K. Brayton. Synthesis of hazard-free

asynchronous circuits from graphical specifications. In Proceedings of ICCAD-91, pages

322–325. IEEE Computer Society Press, November 1991.

[ND91] Steven M. Nowick and David L. Dill. Automatic synthesis of locally-clocked asyn-

chronous state machines. In Proceedings of ICCAD-91, pages 318–321. IEEE Computer

Society Press, November 1991.

[Obe81] Roelof M. M. Oberman. Counting and Counters. MacMillan Press, 1981.

[Par87] Behrooz Parhami. Systolic up/down counters with zero and sign detection. In

Mary Jane Irwin and Renato Stefanelli, editors, IEEE Symposium on Computer Arith-

metic, pages 174–178. IEEE Computer Society Press, 1987.

[Par90] Behrooz Parhami. Generalized signed-digit number systems: A unifying framework

for redundant number representations. IEEE Transactions on Computers, 39(1):89–

98, 1990.

[Rem87] Martin Rem. Trace theory and systolic computations. In J. W. de Bakker, A. J. Nijman,

and P. C. Treleaven, editors, PARLE: Parallel Architectures and Languages Europe,

Vol. I, volume 258 of Lecture Notes in Computer Science, pages 14–33. Springer-Verlag,

1987.

Bibliography 79

[RMCF88] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pien Fang.

Q-modules: Internally clocked delay-insensitive modules. IEEE Transactions on Com-

puters, 37(9):1005–1018, September 1988.

[Sut89] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,

January 1989.

[Udd86] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive

circuits. Distributed Computing, 1(4):197–204, 1986.

[vB92] C. H. (Kees) van Berkel. Handshake Circuits: An Intermediary between Communi-

cating Processes and VLSI. PhD thesis, Dept. of Math. and C.S., Eindhoven Univ. of

Technology, 1992.

[vB93] C. H. (Kees) van Berkel. VLSI programming of a modulo-N counter with constant

response time and constant power. In S. Furber and M. Edwards, editors, IFIP WG

10.5 Working Conference on Asynchronous Design Methodologies. Elsevier Science

Publishers, 1993.

[vBKR+91] C.H. (Kees) van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij.

The VLSI-programming language Tangram and its translation into handshake circuits.

In Proceedings of the European Design Automation Conference, pages 384–389, 1991.

[vdS85] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of Lecture

Notes in Computer Science. Springer-Verlag, 1985.

[WE85] Neil H. E. Weste and Kamran Eshraghian. CMOS VLSI Design. Addison-Wesley VLSI

Systems Series. Addison-Wesley, 1985.

[Zwa89] Gerard Zwaan. Parallel Computations. PhD thesis, Dept. of Math. and C.S., Eindhoven

Univ. of Technology, 1989.

