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Abstract

This thesis is concerned with various forms of skip lists, and with probabilistic

analyses of algorithms. We investigate three topics; one topic from each of these

two areas, and another topic common to both of them.

First, we consider Pugh’s skip list. We derive exact and asymptotic expressions

for the average search cost of a fixed key and of an average key. Our results improve

previously known upper bounds of these two average search costs. We also derive

exact and asymptotic expressions for the variance of the search cost for the largest

key.

Next, we propose several versions of deterministic skip lists. They all have

guaranteed logarithmic search and update costs per operation, they lead to an

interesting “bridge” structure between the original skip list and standard search

trees, they are simpler to implement than standard balanced search trees, and our

experimental results suggest that they are also competitive in terms of space and

time.

Finally, we consider the elastic-bucket trie, a variant of the standard trie, in

which each external node (bucket) has precisely as many key slots as the number

of keys stored in it. We examine the number of buckets of each size, and we derive

exact and asymptotic expressions for their average values, as well as asymptotic

expressions for their variances and covariances under the closely related “Poisson

model” of randomness. Our experimental results suggest that maintaining only two

bucket sizes may be a very reasonable practical choice.
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Chapter 1

Introduction

The orderly maintenance of a collection (set) of items is a fundamental prerequisite

of almost any computational task. While airlines have to keep track of available

space and fares, governments have to store identification numbers and names of

their citizens, and compilers have to maintain a list of the types and values for all

encountered variables.

For some computational tasks (such as the above), the ability to insert a new

item in a set, to delete an existing item from a set, and to search for an item in

a set is probably all that is required. A set of items, together with these three

operations, is called a dictionary.

A common assumption about dictionaries is that, although each item may con-

sist of several fields, there exists an identifying key field. When we search for an

item, we actually search for its key, and if we find it, we retrieve its associated fields

in one additional operation. Similarly, when we insert (delete) an item, we search

for its key, and if the insertion (deletion) is to be successful, we add (remove) the

key, along with its associated fields. For our purposes, in this thesis, we are going

1



2 CHAPTER 1. INTRODUCTION

to consider only the key fields of the items stored in the dictionary. The number of

key fields will be denoted by n, throughout our thesis.

To evaluate a dictionary implementation, one may look at its

• time complexity (in the average and in the worst case)

• space complexity (in the average and in the worst case)

• simplicity

The time complexity — at least among theoretical computer scientists — is mea-

sured as the number of times a basic operation (e.g. a key comparison) is executed,

and it is expressed in terms of a parameter (e.g. number of keys in the dictionary).

Similarly, the space complexity is measured as the number of additional “cells” (e.g.

memory addresses) required. Since no model for the simplicity of a solution exist,

only ad-hoc arguments are possible here.

In this thesis, we derive new results on the time and space complexity of two

known dictionary implementations, and we propose a new and simpler implemen-

tation.

1.1 History

The oldest and most straightforward dictionary implementation is the sequential

search algorithm on an unsorted file. It is very simple and it uses only Θ(1) extra

space, but its disadvantage is that a search requires n
2
key comparisons on the

average, and n key comparisons in the worst case.

The binary search on sorted files was the next method to be proposed. Knuth

gives [26, pp. 417–419] a very interesting account on how tough the notion of a
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“sorted” file was a few centuries ago. The first large sorted file of numbers can be

traced back to 200 B.C., but the first alphabetized dictionary didn’t appear before

1286 (or before the beginning of the 12th century, according to [20, p. 380]), and the

first purely English dictionary, in 1604, came with lengthy explanations on what

“alphabetical order” meant! In any case, Knuth reports that the first binary search

algorithm was discussed in a 1946 paper, but the first correct general version of

it was only published in 1962. The binary search method takes Θ(1) extra space,

Θ(lg n) key comparisons for a search in the worst and in the average case, but Θ(n)

time for an update (i.e. an insertion or a deletion) in both the worst and the average

case.

Another dictionary implementation is the binary search tree. According to

Knuth [26, pp. 446–447], this structure was first discussed in 1952, but it wasn’t

fully described before 1960. Unlike its predecessors, the binary search tree requires

2 extra memory addresses (pointers) per key. In return, it offers Θ(lg n) search and

update costs in the average case, although its worst case costs are Θ(n).

In 1962, the two Russians Adel’son-Vel’skii and Landis proposed [1] a method

of balancing the binary search tree, achieving thus, for the first time, Θ(lg n) search

and update costs in the worst (and in the average) case. Their scheme was subse-

quently called the AVL tree, after their names. A straightforward implementation

of this scheme requires 2 extra pointers plus 2 extra bits per key.

Additional balanced search trees were proposed in the 1970’s. The most well-

known of the dozens of such schemes are the 2-3 tree proposed in 1970 by Hopcroft

[26, p. 468], the B-tree proposed in 1972 by Bayer and McCreight [6] and the red-

black tree proposed in 1978 by Guibas and Sedgewick [24]. All these schemes use

Θ(n) extra space and achieve a Θ(lg n) search and update cost in the worst case.



4 CHAPTER 1. INTRODUCTION

Sleator and Tarjan [44] in 1985 proposed the splay tree, a self-balancing binary

search tree. Although a single operation in such a tree may take Θ(n) time in the

worst case, any sequence of m operations is guaranteed to take Θ(m lg n) time in

the worst case.

A common underlying characteristic of all solutions mentioned so far, is that

the only permissible key operations are comparisons between entire keys. The trie,

first proposed in late 1950’s by de la Briandais [8] and Fredkin [19], is a tree-like

data structure, in which, in order to search for a key, one compares one bit (or

character) at a time. The keys themselves are stored in the external nodes of the

tree. Although the worst case behaviour of tries is equal to the length of the longest

key in the structure, on the average they require Θ(n) extra space and they have

Θ(lg n) search and update costs. In practice, they do very well when the keys are

character strings of variable length or very long; in either case, key-comparison

based algorithms perform poorly.

Finally, a totally different solution to the dictionary problem is hashing. Knuth

reports [26, p. 541] that this idea was first discussed in 1953 and it was first pub-

lished in 1956. Hashing is based on arithmetic transformations of the keys (into

table addresses). Its efficiency depends on the amount of space one is willing to

waste, but in practice it performs extremely well. Unlike all previous methods,

hashing cannot perform operations based on the relative order of keys, if usual

hashing functions are used. For example, it cannot (efficiently) find the minimum

or maximum key in the dictionary, it cannot handle range queries, print the keys

in order, etc. Hashing is not considered at all in this thesis.
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1.2 Thesis Preview

The main topic of this thesis is the skip list, in various forms; we propose a (new)

deterministic version of the skip list as a simple alternative to balanced search trees,

and we analyze the time complexity of the original randomized version of the skip

list. The techniques used in the latter analysis are also used to analyze the space

complexity of bucket tries.

In Chapter 2, we describe the probabilistic models that we will consider in this

thesis, and we summarize all mathematical machinery that we are going to use.

The latter includes probability and moment generating functions of random vari-

ables, basic binomial coefficient identities, well-known Gamma and Psi function

properties, exponential generating functions, elementary complex variable theory,

together with binomial, Poisson and Mellin transforms, and Rice’s method for de-

riving asymptotics for alternating sums. All of the above are introduced from first

principles, and nothing beyond what is discussed in Chapter 2 is needed for the

complete understanding of our dissertation. Care has been taken to present sep-

arately (Section 2.1) all facts necessary for the understanding of our bare results,

independently of the techniques used to derive them.

In Chapter 3, we consider the average search time of the probabilistic skip

list (PSL), a data structure recently proposed by Pugh [40]. The main advan-

tage of the PSL is its simplicity; it is not coincidental that only three years af-

ter its original publication, it has gained its place in introductory Data Structure

and Algorithms textbooks [28, 46, 51]. On the average, the PSL is very compet-

itive with other data structures. In terms of space, it requires 1
1−p

extra point-

ers per key, where p is a user-specified parameter with 0 < p < 1. In terms of

time, Pugh showed that a search for the mth key in the structure requires at most
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log 1
p
n+ 1−p

p
log 1

p
(m−1) + “constant” key comparisons, and he gave an expression

for the constant term. In Chapter 3, we show that the required number of key com-

parisons is exactly log 1
p
n+ 1−p

p
log 1

p
(m−1) + “constant” +O

(
1
m

)
, and we provide

a precise expression for the constant term. This expression involves some well-

known constants, and some oscillations expressed as a series of terms of rotations

of the complex Gamma function. Although this result may sound complicated, its

derivation is not, because the search cost in a PSL is related to the depth of a leaf

in a trie, a problem well-studied before [26].

Despite the fact that on the average the PSL performs reasonably well, in the

worst case its Θ(n lg n) space and Θ(n) time complexity are unacceptably high. In

Chapter 4, we present several simple versions of a deterministic skip list (DSL),

all of which require Θ(lg n) time for a search or an update in the worst case and

an additional Θ(n) number of pointers. The main advantage of our DSL, when

compared with other balanced tree schemes also having Θ(lg n) worst case costs,

is its simplicity. Although one cannot rigorously “measure” the simplicity of a

solution, we believe that this issue has unjustifiably been neglected (see also [2]).

Even seemingly simple algorithms require sometimes considerable coding efforts,

becoming thus costly solutions. For example, for the very simple binary search

algorithm (on a sorted array), Bentley reported [7] in 1983:

I ’ve given this problem as an in-class assignment in courses at Bell

Labs and IBM. The professional programmers had one hour (sometimes

more) to convert the above description [of the binary search] into a

program in the language of their choice; a high-level pseudocode was

fine. At the end of the specified time, almost all the programmers

reported that they had correct code for the task . . . In many different

classes and with over a hundred programmers, the results varied little:
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90 percent of the programmers found [later] bugs in their code (and I

wasn’t always convinced of the correctness of the code in which no bugs

were found).

Next, we shift our attention back into the PSL. Although the expected value of

the search cost has been derived (Chapter 3), and additional results on its asymp-

totic convergence are known [12, 13], its variance seemed to be a hard nut to crack

up to now. In Chapter 5, we derive the variance of the search cost for the largest

key in the PSL. The entire mathematical machinery stated in Chapter 2 will be

used for the derivation of our results, but the results themselves are fairly simple

to understand.

In Chapter 6, we follow the same approach as in Chapter 5, and we analyze an

aspect of the space complexity in tries. As discussed towards the end of Section 1.1,

the keys of a trie are stored in external nodes (buckets). If we now allow more than

one key per bucket, we have a bucket trie. If we furthermore allow the buckets to

be of variable size, so that no empty key slots exist, then we have an elastic-bucket

trie. Despite the plethora of results (46 papers listed in [21, Section 3.4.4]) on the

path length, the height, the depth of a leaf and the number of nodes in a trie,

nobody had studied the number of buckets of each size up to now. In Chapter 6,

we derive the expected value and the variance of an arbitrary linear combination

of all bucket sizes. As a consequence of our expression for the variance, we obtain

the complete variance-covariance matrix of all bucket sizes.

We conclude this thesis in Chapter 7 with a summary of our results and a

discussion of directions for possible future research.



Chapter 2

Mathematical Prerequisites

In this chapter, we give the mathematical machinery that we will use in this thesis;

we have assumed the reader’s knowledge of the basics, such as big-Oh notation, etc.

In the first two sections, we state everything that is required for the understanding

of our results. In the last section, we present the mathematical tools necessary for

the derivation of our results. The non-mathematically inclined reader may skip

Section 2.3, as well as everything under “proof” in the rest of the thesis.

2.1 Mathematical Notation

The probability that event A occurs will be denoted by Pr[A]. If X is a ran-

dom variable, then E(X) and Var(X) will denote its expected value and variance

respectively. For two random variables X and Y , Cov(X,Y ) will denote their

covariance.

As we said earlier, n has been reserved for the number of keys in the dictionary.

The logarithms of x to the base e and to the base 2 will be denoted by ln x and

8
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lg x respectively. Euler’s constant, 0.5772. . . , will be denoted by γ, and i will be

reserved for
√
−1. If 〈ak〉 and 〈bk〉 are two sequences of real numbers, we will write

ak ∼ bk when limk→∞
ak
bk

= 1. Finally, as suggested in [23, p. 24], if a true/false

statement P is enclosed in brackets such as [P ], the result will be 1 if P is true,

and 0 if P is false; for example, Kronecker’s delta δj,k may be written as [j=k].

If s=a+ib=r(cos θ+i sin θ) is a complex number, then s will be its conjugate

a−ib, |s| will be its absolute value r=
√
a2+b2, arg(s) will be its argument θ,

and <(s) will be its real part a. The standard complex Gamma function

Γ(s)
def
=

∫ ∞

0
e−zzs−1dz, for <(s) > 0 (2.1)

and its log-derivative Psi (or Digamma) function

Ψ(s) =
d

ds
ln Γ(s) =

Γ′(s)

Γ(s)
(2.2)

show up in the oscillating functions

fr,x(l)
def
=

2

lnx

∑

k≥1

<
(
Γ

(
r−i

2kπ

lnx

)
ei 2kπ logx l

)
, integer r, real x, real l>0 (2.3)

(first introduced in Knuth’s analysis of radix exchange sort [26, ex. 5.2.2.50]), and

gr,x(l)
def
=

2

lnx

∑

k≥1

<
(
Ψ

(
r−i

2kπ

lnx

)
Γ

(
r−i

2kπ

lnx

)
ei 2kπ logx l

)
, integer r, real x, real l>0,

(2.4)

both of which will appear repeatedly in our results.

2.2 Probabilistic Models

We are going to consider two different probabilistic models. In the fixed population

model, the number of keys in the dictionary is a fixed number n. In the Poisson
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model (first considered — in computer science — by Fagin et al. [14] in 1979)

the number of keys is not fixed; rather, it is a random variable N , following the

well-known Poisson distribution

Pr[N=k] = e−z
zk

k!
, for k = 0, 1, . . . (2.5)

with mean z. In this thesis, the time or space complexity of a particular dictionary

implementation will be a random variable, denoted by, say, Yn under the fixed

population model, and by Y (z) under the Poisson model. Sometimes, Y (z) will be

referred to as the Poissonized version of Yn. Typically, we will be interested in the

derivation of moments of Yn and Y (z).

Although one may argue that the fixed population model is more realistic than

the Poisson model, we are going to see shortly (Section 2.3.6) that the Poisson

model may be viewed merely as a mathematical transformation which may facilitate

derivation of results under the fixed population model.

2.3 Mathematical Foundations

2.3.1 Moments of Random Variables

Let X be a random variable taking the values 0, 1, 2, . . .. The probability generating

function (pgf) of X is

G(z)
def
= E(zX) =

∑

k≥0

Pr[X=k] zk. (2.6)

For our purposes, the pgf is useful, because it gives us factorial moments of X:

E(X) = G′(1) (2.7)
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and

E
(
X(X−1)

)
= G′′(1). (2.8)

The moment generating function (mgf) of a random variable Y is

M(z)
def
= E(ezY ) =

∑

k≥0

E(Y k)
zk

k!
. (2.9)

The mgf gives us moments of Y :

E(Y ) = M ′(0) (2.10)

and

E(Y 2) = M ′′(0). (2.11)

2.3.2 Binomial Coefficients

The formal definition of the binomial coefficient is

(
r

k

)
def
=





rk

k!
, integer k≥0

0, integer k < 0
, real r, (2.12)

where

rk
def
= r(r−1) · · · (r−k+1), real r, integer k≥0

is the kth falling factorial power of r. From this definition, we immediately get
(
n
k

)
= n!

k!(n−k)!
for integer n ≥ k ≥ 0,

(
−1
k

)
= (−1)k for k ≥ 0, and

(
k
k

)
=[k≥0].

The reader is also assumed to be familiar with elementary properties of binomial

coefficients, such as symmetry
(
m
k

)
=
(

m
m−k

)
, absorption

(
r
k

)
= r

k

(
r−1
k−1

)
, upper negation

(
r
k

)
= (−1)k

(
k−r−1
k

)
, trinomial revision

(
r
m

)(
m
k

)
=
(
r
k

)(
r−k
m−k

)
, the addition formula

(
r
k

)
=
(
r−1
k

)
+
(
r−1
k−1

)
, and the binomial theorem

r∑

k=0

(
r

k

)
xkyr−k = (x+ y)r, integer r. (2.13)
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The parallel summation

m∑

k=0

(
r + k

k

)
=

(
r + 1 +m

r + 1

)
, integer m, real r (2.14)

and the identity [23, eq. (5.24)]

∑

all l

(
r

m+l

)(
s+l

n

)
(−1)l = (−1)r+m

(
s−m

n−r

)
, integers m,n, integer r≥0, real s

(2.15)

will also be used in our proofs.

2.3.3 Properties of Gamma and Psi Functions

The most well-known property of the Gamma function is

Γ(s+ 1) = sΓ(s), complex s 6= 0,−1,−2, . . . . (2.16)

Since

Γ(1) = 1, (2.17)

the Gamma function becomes the factorial function for integer arguments:

Γ(k) = (k−1)!, integer k ≥ 1. (2.18)

The absolute value of the Gamma function on the imaginary axis is given by

|Γ(±iy)|2 = π

y sinh(πy)
, real y, (2.19)

where sinh t= et−e−t

2
is the hyperbolic sine of t; the “±” in the argument of the

Gamma function above follows from

Γ(s) = Γ(s), complex s. (2.20)



2.3. MATHEMATICAL FOUNDATIONS 13

From (2.16) and (2.19), we can immediately get

|Γ(1± iy)|2 = yπ

sinh(πy)
, real y (2.21)

and

|Γ(−1± iy)|2 = π

y(1 + y2) sinh(πy)
, real y, (2.22)

and, working similarly, we can derive |Γ(±r±iy)| for any integer r. The asymptotic

approximations

Γ(x+ a)

Γ(x+ b)
= xa−b +O

(
xa−b−1

)
as x→∞, complex a, b (2.23)

and

|Γ(x± iy)| = O
(
yx−

1
2 e−

πy
2

)
as y →∞, real x (2.24)

of the Gamma function will also be used repeatedly in our derivations.

For the Psi function, we have the recurrence

Ψ(s+1) = Ψ(s) +
1

s
, complex s. (2.25)

Since

Ψ(1) = −γ, (2.26)

the last recurrence gives the integer values

Ψ(k) = −γ +Hk−1, integer k ≥ 1, (2.27)

where

Hl
def
=

l∑

j=1

1

j
= ln l + γ +O

(
1

l

)
as l →∞ (2.28)

is the first order lth harmonic number. Finally, the asymptotic approximations

Ψ(x) = ln(x−1) +O
(
1

x

)
as x→∞ (2.29)

and
dk

dxk
Ψ(x) = O

(
1

xk

)
as x→∞ (2.30)

will also be used in our derivations.
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2.3.4 Oscillating Functions

We are now in a position to verify that the functions fr,x(l) and gr,x(l), defined in

(2.3) and (2.4), are indeed oscillatory. We have

fr,x(xl) =
2

ln x

∑

k≥1

<
(
Γ

(
r − i

2kπ

lnx

)
ei 2kπ logx(xl)

)

=
2

ln x

∑

k≥1

<
(
Γ

(
r − i

2kπ

lnx

)
ei 2kπ(1+logx l)

)
,

and since ei2kπ=1 for all integers k, we get

fr,x(xl) = fr,x(l), integer r, reals x, l > 1. (2.31)

Similarly, we can show that gr,x(xl)=gr,x(l).

We can also see that these functions are bounded by a quantity independent of

l. Consider, for example, the f0,x function. Since |<(s)| ≤ |s| for all complex

numbers s, and |eix|=1 for all real x, we get

∣∣∣∣∣<
(
Γ

(
−i2kπ

lnx

)
ei 2kπ logx l

)∣∣∣∣∣ ≤
√
lnx

2


 1

k sinh
(
2kπ2

lnx

)



1/2

, reals x, l > 1

by using property (2.19). It is now easy to see that the series

∑

k≥1


 1

k sinh
(
2kπ2

lnx

)



1/2

(2.32)

converges, since


 1

k sinh
(
2kπ2

lnx

)



1/2

=

√
2

k


 e

2kπ2

ln x

e
4kπ2

ln x − 1



1/2

∼
√
2

k

1

e
kπ2

ln x

<
√
2 k

(
1

e
π2

ln x

)k
,

and the series of the last term converges because e
π2

ln x > 1. Therefore, f0,x(l) is

absolutely convergent, and thus

|f0,x(l)| ≤
2

lnx

∑

k≥1

∣∣∣∣∣<
(
Γ

(
−i2kπ

lnx

)
ei 2kπ logx l

)∣∣∣∣∣ , reals x, l > 1,



2.3. MATHEMATICAL FOUNDATIONS 15

1/x F0,x lim
l→∞

sup{f0,x(l)} lim
l→∞

inf{f0,x(l)}
1−10−4=.9999 .1981×10−42,858 .1981×10−42,858 −.1981×10−42,858

1−10−3=.9990 .4263×10−4,282 .4263×10−4,282 −.4263×10−4,282

1−10−2=.9900 .6535×10−425 .6535×10−425 −.6535×10−425

9/10=.9000 .1280×10−39 .1280×10−39 −.1280×10−39

4/5=.8000 .2618×10−18 .2618×10−18 −.2618×10−18

3/4=.7500 .4700×10−14 .4700×10−14 −.4700×10−14

7/10=.7000 .3217×10−11 .3217×10−11 −.3217×10−11

2/3=.6667 .8428×10−10 .8428×10−10 −.8428×10−10

1−1/e=.6321 .1334×10−8 .1334×10−8 −.1334×10−8

3/5=.6000 .1137×10−7 .1137×10−7 −.1137×10−7

1/2=.5000 .1573×10−5 .1573×10−5 −.1573×10−5

2/5=.4000 .00004387 .00004387 −.00004387
1/e=.3679 .0001035 .0001035 −.0001035
1/3=.3333 .0002394 .0002394 −.0002394
3/10=.3000 .0005020 .0005018 −.0005019
1/4=.2500 .001375 .001375 −.001374
1/5=.2000 .003429 .003429 −.003418
1/10=.1000 .01831 .01812 −.01815
10−2=.0100 .1193 .1019 −.1188
10−3=.0010 .2212 .1705 −.2107
10−4=.0001 .3038 .2194 −.2715

Table 2.1: Range of f0,x(l) and its bound

which implies

|f0,x(l)| ≤ F0,x
def
=

√
2

lnx

∑

k≥1


 1

k sinh
(
2kπ2

lnx

)



1/2

, reals x, l>1 (2.33)

from the above. From Table 2.1, we may now observe that the derived bound of

the range of f0,x(l) is tight for small values of x. The graph of the function, along

with our bound of its range, is given in Figure 2.1.

Working as in the proof of (2.33), we can also show

|f1,x(l)| ≤ F1,x
def
= π

(
2

lnx

)3/2∑

k≥1


 k

sinh
(
2kπ2

lnx

)



1/2

, reals x, l>1

by using (2.21), and

|f−1,x(l)| ≤ F−1,x
def
=
√
2 ln x

∑

k≥1


 1

k(ln2x+4k2π2) sinh
(
2kπ2

lnx

)



1/2

, reals x, l>1

(2.34)
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1 2 3 4 5 6 7 8 9 10

−.1573×10−5

−.08×10−5

0

.08×10−5

.1573×10−5

l

f0,2(l)

F0,2

−F0,2

Figure 2.1: Oscillating function f0,2 and its bounds

by using (2.22). In general, we can derive similar bounds for fr,x(l) and gr,x(l) for

arbitrary r, since from (2.16) we have Γ(r+it)=(r−1+it)r Γ(it) for all integers

r>0 , and Γ(r+it)= Γ(it)

(−1+it)−r
for all integers r<0 .

The last remark, together with the periodicity of fr,x(l) and gr,x(l) from (2.31),

justify the use of the term “periodic functions of logx l, with small magnitude”

for expressions involving arbitrary constants and the functions fr,x(l) and gr,x(l).

Contrary to what most authors do, we will always give explicit expressions for the

“periodic functions” appearing in our results.

2.3.5 Exponential Generating Functions

The exponential generating function (egf) of a sequence 〈ak〉 is

A(z)
def
=

∑

k≥0

ak
zk

k!
.
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Clearly,

A′(z) =
∑

k≥0

ak+1
zk

k!
(2.35)

is the egf of 〈ak+1〉, and ∫ z

0
A(t)dt =

∑

k≥1

ak−1
zk

k!
(2.36)

is the egf of 〈ak−1〉.

If A(z) and B(z) are the egf’s of 〈ak〉 and 〈bk〉 respectively, then

A(z)B(z) =
∑

k≥0




k∑

j=0

(
k

j

)
ajbk−j


 zk

k!
(2.37)

is the egf for the binomial convolution of 〈ak〉 and 〈bk〉.

2.3.6 Poisson Transform

The Poisson transform (also called [16, 25] Poisson generating function) of a se-

quence 〈ak〉 is a real-to-real function, denoted by P(ak; z) and defined as

P(ak; z) = A(z)
def
= e−z

∑

k≥0

ak
zk

k!
. (2.38)

If A(z) has a Taylor series expansion around z=0, then the original sequence can

be recovered by using the inversion formula

ak =
k∑

j=0

(
k

j

)
A(j)(0), for k = 0, 1, . . . ,

where A(j)(0) denotes the jth derivative of A(z) at z = 0. This formula may be

derived by multiplying both sides of (2.38) by ez, and by subsequently extracting

the coefficients of zn

n!
in both sides. The approximation theorem (first used in [22],

but proven in detail in [37])

ak = A(k) +
∑

s≥1

1

ks




2s∑

r=s+1

{cr,s A(r)(k) kr}

 , for k = 0, 1, . . . , (2.39)
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where cr,s are constants given by

cr,s =
1

r!

r∑

l=s

{
(−1)r−l+s

(
r

l

)[
l

l − s

]}
for r, s = 0, 1, . . . ,

with
[
k
j

]
being the Stirling number of the first kind, is useful when the double sum

in (2.39) is an asymptotic expansion. Is such a case, this sum gives the error made

when ak is approximated by its Poisson transform A(k).

We are now in a position to verify our earlier claim (end of Section 2.2) that

the Poisson model of randomness may be viewed as a transformation of the fixed

population model. The next result will be sufficient for our purposes.

Lemma 2.1 Let Xn be a random variable under the fixed population model with n

keys, and let X(z) be its Poissonized version. Then, the Poisson transforms of all

moments and factorial moments of Xn are equal to the corresponding moments of

the Poissonized version of Xn, that is,

P
(
E(Xr

n); z
)
= E

(
Xr(z)

)
, integer r ≥ 1

and

P
(
E(Xr

n); z
)
= E

(
Xr(z)

)
, integer r≥1.

Proof: Suppose that Xn is discrete, and let N be the (discrete) random variable,

denoting the number of keys under the Poisson model. We have

E
(
Xr(z)

)
=

∑

k≥0

kr Pr[X(z)=k] dfn. of expected value

=
∑

k≥0

kr
∑

n≥0

Pr[X(z)=k |N=n] Pr[N=n] condition on # of keys

=
∑

k≥0

kr
∑

n≥0

Pr[Xn=k] e−z
zn

n!
by (2.5)
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= e−z
∑

n≥0


∑

k≥0

kr Pr[Xn=k]


 zn

n!

= e−z
∑

n≥0

E(Xr
n)

zn

n!
dfn. of expected value

= P
(
E(Xr

n); z
)

by (2.38).

The proof for continuous Xn, as well as the proof of the second indentity of the

lemma are similar.

We will use this lemma in Chapters 5 and 6, in order to derive expected val-

ues and variances under the Poisson model of randomness. We will first obtain

recurrences for (factorial) moments under the fixed population model, and we will

subsequently consider the Poisson transforms of these recurrences. The solution of

the latter recurrences will give us the corresponding moments under the Poisson

model.

It is also worth noting at this point that P
(
Var(Xn); z

)
6= Var

(
X(z)

)
in

general, that is, the Poisson transform of the variance of a random variable is

not equal to the variance of the Poissonized version of the same random vari-

able. For example, for the random variable Xn = n, one can easily verify that

0=P
(
Var(Xn); z

)
6=Var

(
X(z)

)
=z.

2.3.7 Binomial Transform

The binomial transform of a sequence 〈ak〉 (first appeared in [26, ex. 5.2.2.36]) is a

new sequence, denoted by 〈âk〉, and defined as

âk
def
=

k∑

j=0

(
k

j

)
(−1)jaj, for k = 0, 1, . . . . (2.40)

It can be shown (see [26, ex. 5.2.2.36], or [23, eq. (5.48)]) that

〈̂̂ak〉 = 〈ak〉, (2.41)
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or, equivalently,

k∑

j=0

(
k

j

)
(−1)jaj = bk ⇐⇒ ak =

k∑

j=0

(
k

j

)
(−1)jbj, for k = 0, 1, . . . . (2.42)

The next result relates the Poisson transform of a sequence and the egf of its

binomial transform.

Lemma 2.2 Let 〈âk〉 be the binomial transform of an arbitrary sequence 〈ak〉, and
let Â(z) be the egf of 〈âk〉. Then

P(ak; z) = Â(−z).

Proof: We have

P(ak; z) =


∑

k≥0

(−1)k z
k

k!




∑

k≥0

ak
zk

k!


 by (2.38)

=
∑

k≥0




k∑

j=0

(
k

j

)
aj(−1)k−j


 zk

k!
by (2.37)

=
∑

k≥0




k∑

j=0

(
k

j

)
(−1)jaj


 (−z)k

k!

=
∑

k≥0

âk
(−z)k
k!

by (2.40)

= Â(−z), dfn. of egf

and the proof is complete.

The above mathematical machinery will be used in Chapters 5 and 6 to derive

exact solutions of recurrences, in the following manner: we will consider the Pois-

son transform of a recurrence, we will use the last lemma to derive the binomial

transform, and we will finally apply (2.42) to obtain the desired solution.
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2.3.8 Mellin Transform

The Mellin transform (introduced by H. Mellin [32] in 1902, used by probabilists

[9, 34] extensively since then, and by computer scientists [16] since early 1980’s)

of a real-to-real function f with respect to a complex variable s, is a complex-to-

complex function, denoted by M
(
f(z); s

)
(or f ∗(s) for short), and defined in a

region of the complex plane as

M
(
f(z); s

)
= f ∗(s)

def
=

∫ ∞

0
f(z)zs−1dz. (2.43)

For example, the definition (2.1) of the Gamma function implies that M(e−z; s)=

Γ(s), for <(s)>0. The related Cauchy-Saalschütz identities

M

e−z −

k∑

j=0

{
(−1)j z

j

j!

}
; s


 = Γ(s), for −(k+1)<<(s)<−k (2.44)

give a representation of the Gamma function in vertical strips where it is not defined

by (2.1). An immediate and very useful property of the Mellin transform is

M
(
f(az); s

)
= a−sM

(
f(z); s

)
, real a. (2.45)

Given the Mellin transform f ∗ of a function f , the original function f can be

recovered by using the inverse Mellin transform

f(z) =
1

2πi

∫ c+i∞

c−i∞
f ∗(s)z−sds, (2.46)

where c is a real number, such that f ∗(s) exists on the vertical line <(s)= c. One

may prove without much effort that if f(z)=O(za) as z→0, and if f(z)=O(zb) as

z→∞, then f ∗(s) exists for −a<<(s)<−b.

In practice, if we know the Mellin transform f ∗ of a function f and we want to

recover f by computing the line integral (2.46), we consider the last integral along
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Figure 2.2: Line integration for inversion of Mellin’s transform

a closed rectangle C, as shown in Figure 2.2. We then use the residue theorem from

complex variable theory, which gives the integral of a function h (if h is single-valued

and analytic inside and on C, except at its poles) along a closed curve as

∮

C
h(s)ds = 2πi

∑

α=pole inside C

Res
s=α
{h(s)}, (2.47)

where Res
s=α
{h(s)} is the residue of h at the pole s = α. As we may recall from

elementary complex variable theory, a function h(s) has a pole of order k, for some

k>0, at s=α (or a simple, double, triple, . . . pole), if h(s)= w(s)
(s−α)k

, where w(a) 6=0

and w(s) is analytic everywhere in a region including s=α. For our purposes, we

will use repeatedly the fact that Γ(s) has simple poles at s=0,−1,−2, . . ..

Having determined the poles of a function h(s), the residues of h(s) at each pole

s=α of order k are given by

Res
s=α

order=k

{h(s)} = lim
s→α

{
1

(k − 1)!

dk−1

dsk−1

(
(s− α)kh(k)

)}
. (2.48)

In this thesis, we will write explicitly the order of the pole under “Res” only if it is

not 1.
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To make all the above more clear, we will now work out in detail the computation

of a particular line integral. This integral will be the first one that we will encounter

in this thesis (Chapter 5), and, at that point, we will quote the result derived

here. Having showed such a computation once in detail, the presentation of the

computations of subsequent line integrals will be sketchier.

Example 2.1 Given the Mellin transform f ∗ of a function f as

f ∗(s) =
1 + qp−s−1

1− p−s
Γ(s) , for − 1<<(s)<0,

for arbitrary p=1−q with 0<p, q<1, find the original function f .

Solution: According to the inverse Mellin transform (2.46), f will be given by

f(z) =
1

2πi

∫ c+i∞

c−i∞
h(s)ds, for − 1 < c < 0, (2.49)

where

h(s)
def
= f ∗(s)z−s.

Since the integral of h along any rectangle equals the sum of the line integrals along

each side of the rectangle, we get

∫ c+i∞

c−i∞
h(s)ds = −

∮

C
h(s)ds+

∫ d−i∞

c−i∞
h(s)ds+

∫ d+i∞

d−i∞
h(s)ds+

∫ c+i∞

d+i∞
h(s)ds, for any d>0

(2.50)

if we let a→∞ in the rectangle of Figure 2.2. The integrals along the top and

bottom lines are 0, that is,

∫ d−i∞

c−i∞
h(s)ds =

∫ c+i∞

d+i∞
h(s)ds = 0,

since
∣∣∣∣∣

∫ d±ia

c±ia
h(s)ds

∣∣∣∣∣
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≤
∫ d

c

|1+qp−t−1∓ia|
|1−p−t∓ia| |Γ(t±ia)|

∣∣∣z−t∓ia
∣∣∣ dt by s← t±ia

≤
∫ d

c

1+qp−t−1

|1−p−t| |Γ(t±ia)| z−t dt by
∣∣∣|x|−|y|

∣∣∣≤|x±y|≤|x|+|y|

≤ O

(
1

e
πa
2

√
a

∫ d

c

pt+ q
p

|pt−1|
(
a

z

)t
dt

)
as a→∞. by (2.24)

We can also show that the integral along the right vertical line is superpolynomially

small, or, more precisely,

∫ d+i∞

d−i∞
h(s)ds = O

(
1

zd

)
as z →∞, for any d > 0.

Indeed,

∣∣∣∣∣

∫ d+i∞

d−i∞
h(s)ds

∣∣∣∣∣

≤
∫ +∞

−∞

∣∣∣1+qp−d−1−it
∣∣∣

|1−p−d−it| |Γ(d+it)|
∣∣∣z−d−it

∣∣∣ dt by s← d+it

≤ 2
1+qp−d−1

|1−p−d| z−d
∫ +∞

0
|Γ(d+it)| dt by

∣∣∣|x|−|y|
∣∣∣≤|x±y|≤|x|+|y|

= 2
1+qp−d−1

|1−p−d| z−d
√
π
∫ +∞

0

(d−1+it)!

(t sinh(πt))1/2
dt, by (2.16) and (2.21)

and the improper integral appearing in the last expression exists and it depends

only on d (since, by working as with the series (2.32), we can show that the se-

ries
∑

k≥0

(
k2d−1

sinh(πk)

)1/2
converges to a quantity depending on d). Therefore, (2.50)

becomes

∫ c+i∞

c−i∞
h(s)ds = −

∮

C
h(s)ds+O

(
1

zd

)
as z →∞, for any d>0,

and application of the residue theorem (2.47) yields

∫ c+i∞

c−i∞
h(s)ds = −2πi

∑

α=pole inside C

Res
s=α
{h(s)}+O

(
1

zd

)
as z →∞, for any d > 0,
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or

f(z) = −
∑

α=pole inside C

Res
s=α
{h(s)}+O

(
1

zd

)
as z →∞, for any d > 0,

according to (2.49). We now determine the poles of h(s) inside the infinitely tall

rectangle C. The presence of Γ(s) in the numerator of h(s), introduces a simple pole

at s=0, inside C. The presence of 1−p−s in the denominator of h(s), introduces

additional simple poles at the points for which 1=p−s, or ei2kπ=e−s ln p, that is, at

s=sk
def
= i 2kπ

ln 1
p

for k=0,±1,±2, . . .. Hence, the last relation becomes

f(z) = − Res
s=0

order=2

{h(s)} −
∑

k∈ZZ−{0}

Res
s=sk
{h(s)}+O

(
1

zd

)
as z →∞, for any d>0,

(2.51)

and the appearing residues can be computed from (2.48). Indeed, for the double

pole at s=0, (2.48) gives

Res
s=0

order=2

{h(s)} = lim
s→0

{
d

ds

(
1+qp−s−1

1−p−s
Γ(s) z−ss2

)}
,

and after some algebra, we arrive at

Res
s=0

order=2

{h(s)} = 1

p
log 1

p
z − 1

p

(
γ

ln p
+
1

2

)
+ 1 (2.52)

by using (2.16), (2.17) and (2.26). For the simple poles at s=sk, we have

Res
s=sk
{h(s)} = lim

s→sk

{(
1 + qp−s−1

)
Γ(s)z−s

s− sk
1− p−s

}
by (2.48)

=
(
1 + qp−sk−1

)
Γ(sk)z

−sk
1

ln p
by L’Hôpital’s rule

= −
(
1 +

q

p

)
Γ


i

2kπ

ln 1
p


 z

−i 2kπ

ln 1
p

1

ln 1
p

by p−sk=1

= −1

p

1

ln 1
p

Γ


i

2kπ

ln 1
p


 e

−i 2kπ log 1
p
z
, by p+q=1 and zy=ey ln z



26 CHAPTER 2. MATHEMATICAL PREREQUISITES

and therefore the sum of all residues at s=sk becomes

∑

k∈ZZ−{0}

Res
s=sk
{h(s)} = − 1

p ln 1
p

∑

k≥1



Γ


i

2kπ

ln 1
p


e

−i 2kπ log 1
p
z
+ Γ


−i 2kπ

ln 1
p


e

i 2kπ log 1
p
z



 .

We may now use property (2.20) of the Gamma function, and if we recall that

e−ix=eix for any real x, and s+s=2<(s) for any complex s, we can simplify the

last sum as

∑

k∈ZZ−{0}

Res
s=sk
{h(s)} = − 2

p ln 1
p

∑

k≥1



<


Γ


−i2kπ

ln 1
p


 e

i 2kπ log 1
p
z





 ,

or as
∑

k∈ZZ−{0}

Res
s=sk
{h(s)} = −1

p
f0, 1

p
(z), (2.53)

by the definition (2.3) of fr,x. Therefore, we finally get

f(z) = −1

p
log 1

p
z+

1

p

(
γ

ln p
+

1

2

)
−1+1

p
f0, 1

p
(z)+O

(
1

zd

)
as z →∞, for any d>0

from (2.51), (2.52) and (2.53).

2.3.9 Alternating Sums

Alternating sums of the form
∑m

k=r

(
m
k

)
(−1)kh(k), for arbitrary h(k), will appear

repeatedly in the analyses of our algorithms. Such sums not only give us no in-

formation on their asymptotic behaviour, but they are also expensive to compute

numerically, due to the alternating signs of their terms.

In Chapter 3, we will be able to get away with the derivation of asymptotic

expressions for such sums; we will express our formulae in terms of alternating sums

that have been studied before in detail. However, in Chapters 5 and 6, we will be

faced with new alternating sums. For the asymptotic evaluation of these sums, we

will use a method introduced by Knuth in [26, Exercise 5.2.2.53], and attributed
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to S. O. Rice. (A similar, more “Mellin-like” approach, has been proposed by

Szpankowski in [48].) Rice’s method is based on the following well-known result

(for a proof, see, for example, [30, pp. 275–276]).

Lemma 2.3 If C is a closed curve encompassing the points r, r+ 1, . . . ,m and no

other integer points, and h(s) is a function analytic within C, then

m∑

k=r

(
m

k

)
(−1)kh(k) = − 1

2πi

∮

C
B(m+1,−s)h(s) ds,

where

B(x, y)
def
=

Γ(x)Γ(y)

Γ(x+y)
(2.54)

is the classical Beta function.

To evaluate an alternating sum, we change the rectangle C into an arbitrarily large

rectangle C ′ surrounding C, around which the integral of B(m+1,−s)h(s) is very

small. This allows us to approximate the original integral along C by the sum of

the residues of B(m+1,−s)h(s) that lie in the area between C and C ′.

To make the above more clear, we will now derive an asymptotic expression for

an alternating sum. This sum will be encountered in Chapter 6, and, at that point,

we will quote the result derived here. The alternating sums that we will encounter

in Chapter 5 will be more complicated, and, for the reader’s benefit, we treat them

later, when they occur.

Example 2.2 Derive an asymptotic expression (as n→∞) for the alternating sum

Sn =
n∑

k=2

(
n

k

)
(−1)k 1

1−21−k
b∑

r=2

(
k

r

)
(−1)rr!σr ,

for arbitrary integer b≥1, and arbitrary reals σ2, σ3, . . . , σb.
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Figure 2.3: Rice’s method for computation of alternating sums

Solution: According to Lemma 2.3, the given sum is

Sn = − 1

2πi

∮

C
B(n+1,−s)h(s) ds, (2.55)

where

h(s)
def
=

1

1− 21−s

b∑

k=2

(
s

k

)
(−1)kk!σk , (2.56)

and C is a rectangle encompassing only the integer points 2, 3, . . . , n, as shown in

Figure 2.3. Consider now a larger rectangle D, with corners the four points d±iN

and M±iN , where d<1 and M >n. The residue theorem (2.47) gives

∮

D
B(n+1,−s)h(s)ds−

∮

C
B(n+1,−s)h(s)ds = 2πi

∑

α=pole inside D
but outside C

Res
s=α

{
B(n+1,−s)h(s)

}
.

(2.57)

By using the asymptotic approximation (2.23) for the ratio of two Gamma func-

tions, one may verify that the integral of B(n+1,−s)h(s) is 0 along the top and

bottom lines of D as N→∞, and also 0 along the right line of D as M→∞. Along

the left line of D, this integral is O(nd). Therefore, (2.55) and (2.57) imply

Sn =
∑

α=pole inside C′

but outside C

Res
s=α

{
B(n+1,−s)h(s)

}
+O(nd) as n→∞, for any d<1,
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where C ′ is the rectangle resulting from D when we let N→∞ and M→∞. We

now determine the poles of B(n+1,−s)h(s) in the area between C and C ′. The

term h(s) from (2.56) may be rewritten as

h(s) =
s(s− 1)

1− 21−s

b∑

k=2

(
s− 2

k − 2

)
(−1)k(k − 2)!σk, (2.58)

since
(
s
k

)
= s

k

(
s−1
k−1

)
for non-zero k. The presence of 1−21−s in the denominator,

introduces simple poles at s= sm
def
= 1−i 2mπ

ln 2
for m=0,±1,±2, . . ., all inside C ′

but outside C, of which the pole s = s0 = 1 is removed by the term s−1 in the

numerator. By the definition (2.54) of the Beta function, the term B(n+1,−s) has
simple poles at s = 0, 1, 2, . . . , n, of which only s = 0 and s = 1 are inside C ′ but

outside C, and of which the pole s=0 is removed by the term s in the numerator

of h(s). Thus, finally, inside C ′ but outside C, the expression B(n+1,−s)h(s) has
simple poles at s=1 and at s=sm for m=±1,±2, . . ., and therefore

Sn = Res
s=1

{
B(n+1,−s)h(s)

}
+

∑

m∈ZZ−{0}

Res
s=sm

{
B(n+1,−s)h(s)

}

+O(nd) as n→∞, for any d<1. (2.59)

The main contribution to Sn comes from the pole at s=1. If we use the expression

(2.58) for h(s), (2.48) gives

Res
s=1

{
B(n+1,−s)h(s)

}

= lim
s→1

{
s−1

1− 21−s
Γ(n+1)Γ(−s)
Γ(n+1−s)

s (s−1)
b∑

k=2

(
s− 2

k − 2

)
(−1)k(k − 2)!σk

}
.

But lims→1

{
s−1

1−21−s

}
= 1
ln 2

by L’Hôpital’s rule, Γ(n+1)
Γ(n)

=n by the factorial represen-

tation (2.18) of the Gamma function, lims→1 {Γ(−s)s(s−1)}=1 by properties

(2.16) and (2.17), and
(
−1
k−2

)
=(−1)k−2, as discussed after the definition (2.12) of

the binomial coefficients. Therefore,

Res
s=1

{
B(n+1,−s)h(s)

}
=

n

ln 2

b∑

k=2

(k−2)!σk. (2.60)
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The poles at s=sm contribute only oscillations (times n), since at each pole

Res
s=sm

{
B(n+1,−s)h(s)

}

= lim
s→sm

{
s−sm
1−21−s

Γ(n+1)

Γ(n+1−s)
Γ(−s)

b∑

k=2

(
s

k

)
(−1)kk!σk

}
by (2.48) & (2.56)

=
1

ln 2

Γ(n+1)

Γ(n+1−sm)
Γ(−sm)

b∑

k=2

(−sm)k σk by L’Hôpital’s rule

=
1

ln 2
n1−i

2mπ
ln 2

(
1 +O

(
1

n

)) b∑

k=2

{Γ(−sm+k)σk} by (2.23) & (2.16)

=
n

ln 2

(
1+O

(
1

n

))
e−i 2mπ log2 n

b∑

k=2

{
σk Γ

(
k−1+i

2mπ

ln 2

)}
,

and hence, the sum of all residues at s=sm is

∑

m∈ZZ−{0}

Res
s=sm

{
B(n+1,−s)h(s)

}
= n

b∑

k=2

{
σk fk−1, 2(n)

}
+O(1) as n→∞, (2.61)

by working as in the derivation of (2.53). Therefore, we finally get

Sn =
n

ln 2

b∑

k=2

σk(k−2)! + n
b∑

k=2

σkfk−1, 2(n) +O(1) as n→∞ (2.62)

from (2.59), (2.60) and (2.61).



Chapter 3

Probabilistic Skip Lists

The Probabilistic Skip List (PSL) was recently introduced by W. Pugh [40] as an

alternative to search trees. Although Pugh established its good average behaviour

by means of an upper bound, the precise analysis of its search cost had been elusive.

In this chapter, we derive the exact average cost for the search of the mth key in a

PSL of n keys, a result which confirms that Pugh’s upper bound is fairly tight for

the interesting cases. Assuming a uniform query distribution, we then derive the

average cost for the search of the average key in a PSL of n keys. Finally, we also

derive all insert and delete costs. Earlier versions of these results have appeared in

[35, 36].

3.1 Review of the Structure

The main idea in the PSL is that each of its keys is stored in one or more of a set of

sorted linear linked lists. All keys are stored in sorted order in a linked list denoted

as level 1, and each key in the linked list at level k (k = 1, 2, . . .) is included with

31
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Figure 3.1: A PSL of 8 keys, and the search path for the 6th key

(independent) probability p (0 < p < 1) in the linked list at level k + 1. A header

contains the references to the first key in each linked list. The height of the data

structure, that is, the number of linked lists, is also stored.

As will become apparent, the number of linear linked lists in which a key belongs,

remains fixed as long as the key stays in the PSL. It therefore makes sense to store

each key in the PSL once, together with an array of horizontal pointers, as shown

in Figure 3.1. Each such “vertical” structure in a PSL will be called an element of

the PSL.

A search for a key begins at the header of the highest numbered linked list. This

linked list is scanned, until it is observed that its next key is greater than or equal

to the one sought (or the reference is null). At that point, the search continues

one level below until it terminates at level 1 (see the search for the 6th key in

Figure 3.1). We have adopted the convention that an equality test is done only at

level 1 as the last comparison. This is the usual choice in a standard binary search

and avoids two tests (or a three-way branch) at each step.

Insertions and deletions (as defined by Pugh) are very straightforward. A new

key is inserted where a search for it terminated at level 1. As it is put in linked list k
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(k = 1, 2, . . .), it is inserted, with probability p, where its search terminated at level

k + 1. This continues until, with probability q = 1− p, the choice is not to insert.

The counter for the height of the data structure is increased, if necessary. Deletions

are completely analogous to insertions. A key to be deleted is removed from the

linked lists in which it is found. The height of the data structure is updated by

scanning the header’s pointers by decreasing level until a non-null pointer is found.

At this point we can make an observation on the adopted “scan the list until the

next key is greater than or equal to the one sought” criterion to drop down a level

during the search. Had it been simply “. . . greater than the one sought . . . ”, then

the search path for the mth key in this case would have been identical to the search

path for the (m + 1)st key in our case. This implies that the average search cost

in this case would have been higher. Moreover, our approach makes the deletion a

simple extension of the search.

An immediate property of the PSL is that the deletion of a key produces the

structure that would have existed had it never been inserted. This implies that

PSLs maintain the (average logarithmic) search and update cost, even after a long

sequence of updates. This is in sharp contrast with the results such as those of

Culberson and Munro [10, 11], indicating that the usual update algorithms in binary

search trees lead to degeneration in behaviour, although the notions of Aragon and

Seidel [3] show how to maintain the “history independent” property in (nearly)

standard binary search trees.

Before we proceed with the formal definitions of the search costs, it should

be “fairly obvious” at this early stage that the PSL should exhibit logarithmic

behaviour. Consider the search cost for +∞. Clearly, all elements will be at level

1, about pn elements will make it to level 2, about p2n elements will make it to
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level 3, etc. Therefore, the height of the PSL is expected to be about log 1
p
n. Since,

among all elements that made it to a certain level, about every 1
p
th element will

make it to the next higher level, one should expect to make 1
p
key comparisons per

level. Therefore, one should expect about 1
p
log 1

p
n key comparisons in total, when

searching for +∞. As it will turn out (Theorem 3.3), this is exactly the leading

term in the search cost for +∞ in a PSL of n keys.

3.2 Notation and Previous Results

The search cost, for a particular key in a particular PSL, is the number of pointer

inspections, excluding the last one for the equality test. Under the fixed population

model, we define

C(m)n
def
= cost for successful search of mth key in a PSL of n keys, for 1≤m≤n

def
= cost for unsuccessful search of a key between the (m−1)st and the mth

in a PSL of n keys, for 1≤m≤n+1,

assuming of course that the 0th key is −∞ and the (n+1)st key is +∞. For example,

for the PSL of Figure 3.1 we have C
(1)
8 = 7, C

(6)
8 = C

(7)
8 = C

(9)
8 = 9 and C

(8)
8 = 8.

Clearly, C(m)n is a random variable; for fixed n and m, its value depends on the

outcomes of the random number generator used to create the PSL, or equivalently,

on the shape of the PSL. We emphasize here again that C (m)n is independent of the

insertion sequence.

Two particular values of m yield random variables of special interest, and we

have reserved special names for them. When m = 1,

Tn
def
= C(1)n = height of a PSL with n keys
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and when m = n+ 1,

Fn
def
= C(n+1)n = cost for (unsuccessful) search of +∞ in a PSL of n keys .

Although it is not true that in every PSL the search for +∞ is the most expensive

one (consider, for example, a PSL with the last element of height 2 and all other

elements of height 1), it is true that on the average the search for +∞ is the most

expensive. Hence the significance of Fn: its expected value, in addition of being

mathematically more tractable, is also an upper bound of the average search cost

for any key in the structure.

Two more random variables are of interest. The cost for a successful search for

the “average key”

Sn
def
=

1

n

n∑

m=1

C(m)n

and the cost for an unsuccessful search for the “average key”

Un
def
=

1

n+ 1

n+1∑

m=1

C(m)n .

For example, for the PSL of Figure 3.1, these two random variables have the values

S8 =
7+8+8+9+8+9+9+8

8
= 8.25 and U8 =

7+8+8+9+8+9+9+8+9
9

' 8.33. Unlike this par-

ticular PSL, it’s not hard to see that there exist PSLs for which Un < Sn. Consider,

for example, a PSL with six elements, the first five of which are of height 1 and

the last one of height 2. However, on an average PSL, unsuccessful searches for the

average key must be more expensive than successful searches for the average key,

that is, E(Un) > E(Sn) must hold.

As discussed near the end of the previous section, a PSL is expected to have

about log 1
p
n levels. Difficulties related to the difference between this expected

height and the actual height of the structure, caused Pugh to propose [40, initial

version] cutting the structure off at level dlog 1
p
ne. This enabled him to give an
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upper bound of 1
p
log 1

p
n+1 for the average cost for the search of +∞ in a PSL cut

off at level dlog 1
p
ne. He was later [40, 39] able to prove that the expected height

of an unboundly high PSL (like the one we are considering) is at most log 1
p
n+ 1

q
, a

fact which allowed him to establish [40] the bound

E(Fn) ≤
1

p
log 1

p
n+

1

q
+ 1 (3.1)

for the average cost for the search of +∞. Finally, in [39] he proved the bound1

E(C(m)n ) ≤





log 1
p
n+

q

p
log 1

p
(m− 1) +

1

q
+ 1 for m = 2, 3, . . ., n+1

log 1
p
n+

1

q
for m = 1

. (3.2)

for the average cost for the search of the mth key.

In this chapter, we consider the exact population model (see Section 2.2), and

we derive exact and asymptotic expressions for E(C (m)n ) (and therefore, for E(Fn)

as well), for E(Sn) and for E(Un). Second moments of the above random vari-

ables will be considered in Chapter 5. Notice here that the random variables

C(1)n , C(2)n , . . . , C(n+1)n are not independent, since if, for example, C (1)n = 1, then

we must have C(j)n = j for all 2 ≤ j ≤ n + 1. However, in this chapter we

are concerned only with expected values, and therefore, the dependencies between

C(1)n , C(2)n , . . . , C(n+1)n will not complicate our computation of E(Sn) and E(Un).

1Pugh’s results (as well as Devroye’s [12, 13] — to be stated in Chapter 5) are derived for the

length of the search path from the top of the header to the bottom of the mth element, which,

according to our definitions, is the search cost for the (m+1)st element. Our references to their

results have been translated into our terms.
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3.3 Search Costs: Exact Values

In order to compute E(C(m)n ), we divide the steps on the search path into vertical

steps (that is, one less than Tn) and horizontal steps. To this end, define the random

variable

Lm−1
def
= number of full horizontal steps on the search path for the (m−1)st key,

which obviously takes non-negative integer values. We use the term full horizontal

steps to emphasize actually moving to the next element in the list, rather than

simply inspecting it and dropping down a level. For example, for the search in the

PSL of Figure 3.1 we have L5 = 2, while for any PSL we have L0 = 0 and L1 = 1.

Clearly, C(m)n =Tn+Lm−1, and thus

E(C(m)n ) = E(Tn) + E(Lm−1). (3.3)

In the next two lemmata we give exact expressions for E(Tn) and E(Lm−1).

Lemma 3.1 Under the fixed population model, the expected height of a PSL of n

keys is

E(Tn) =
∑

k≥1

{
k
(
(1− pk)n − (1− pk−1)n

)}
=
∑

k≥1

{
1−

(
1− pk−1

)n}
.

Proof: Follows from

E(Tn) =
∑

k≥1

k Pr[Tn=k] =
∑

k≥1

Pr[Tn≥k],

if we recall that the heights of the elements in a PSL are i.i.d. random variables

following the geometric distribution.
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Lemma 3.2 Under the fixed population model, the expected number of full hori-

zontal steps on the search path for the (m−1)st key is

E(Lm−1) =





1 +
q

p

m−2∑

j=1

∑

k≥1

pk(1− pk)j if m = 2, 3, . . . , n+ 1

0 if m = 1

Proof: Consider the m−2 indicator random variables

Ij =

{
1 if jth element is on path from header to (m−1)st key
0 otherwise

j = 1, . . . ,m−2.

(For example, for the search path of Figure 3.1, we have I1 = I2 = I3 = 0 and

I4 = 1.) Clearly,

Lm−1 =





1 +
m−2∑

j=1

Ij if m = 2, 3, . . . , n+ 1

0 if m = 1

. (3.4)

If Ej is a random variable denoting the height of the jth element for j=1, 2, . . . m−2,

Pr[Ij=1] = Pr[Ej≥Ej+1, . . . , Em−1],

or, since Ej, Ej+1, . . . , Em−1 are independent random variables,

Pr[Ij=1] =
∑

k≥1

{Pr[Ej=k] Pr[Ej+1≤k] · · ·Pr[Em−1≤k]}

= q
∑

k≥1

{
pk−1(1− pk)m−j−1

}
, for j = 1, 2, . . . ,m− 2.

The last, together with (3.4) and the fact that E(Ij) = Pr[Ij =1], completes the

proof.

We may now observe that our random variable Tn is identical to the random

variable Dn+1, denoting the depth of a key in a 1
p
-ary trie (i.e. a trie with keys over

an alphabet of size 1
p
) with n+1 keys drawn from the uniform [0,1] distribution.2

2A binary trie with 7 keys in shown in Figure 6.1. For this trie, D8 takes the values 1, 1, 2, 2,

3, 4, and 4.
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Indeed, both Tn and Dn+1 take the values 1, 2, 3, . . . for n ≥ 1, and moreover

Pr[Dn+1≥k] = 1−Pr[Dn+1≤k−1]

= 1−Pr[key matches no other key’s (k−1) char prefix]

= 1− (1−Pr[the (k−1) char prefixes of two keys match])n

= 1− (1− pk−1)n

= 1−Pr[Tn<k]

= Pr[Tn≥k].

For arbitrary p in (0,1), Tn is equal to the depth of the leftmost key in a biased

(with probability p of having a “0” in a key) binary trie with n+1 keys.

The above observations lead us to try to express E(Tn) of Lemma 3.1 in terms

of

Wp(l)
def
=

l∑

k=2

(
l

k

)
(−1)k pk−1

1− pk−1
, for p ∈ (0, 1), integer l ≥ 0 (3.5)

and/or

Vp(l)
def
=

1

l

l∑

k=2

(
l

k

)
(−1)k kpk−1

1− pk−1
, for p ∈ (0, 1), integer l ≥ 0 (3.6)

(where, by convention, Wp(0) = Wp(1) = Vp(0) = Vp(1) = 0), which are slight mod-

ifications and/or extensions of functions first reported by Knuth [26, Ex. 5.2.2.38

and Ex. 5.2.2.50] in the context of analyses of generalizations of exchange sorts and

of trie searching. The Wp and Vp look similar, and they are indeed related as

Wp(l)−Wp(l−1) = Vp(l), (3.7)

since

Wp(l)−Wp(l−1) =
l∑

k=2

(
l

k

)
(−1)k pk−1

1− pk−1
−

l∑

k=2

(
l−1
k

)
(−1)k pk−1

1− pk−1
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=
l∑

k=2

(
l−1
k−1

)
(−1)k pk−1

1− pk−1

=
l∑

k=2

k

l

(
l

k

)
(−1)k pk−1

1− pk−1

= Vp(l) for l = 1, 2, . . . .

We now express E(Tn) in terms of Vp.

Lemma 3.3 Under the fixed population model, the expected height of a PSL of n

keys is

E(Tn) = 1 + Vp(n+ 1),

where Vp(n+1) is the sum defined in (3.6).

Proof: We have:

E(Tn)

=
∑

k≥1

{
k(1−pk)n − (1− pk−1)n

}
by Lemma 3.1

=
∑

k≥1



k




n∑

j=0

{(
n

j

)
(−1)jpkj

}
−

n∑

j=0

{(
n

j

)
(−1)jp(k−1)j

}



 by binomial theorem

=
n∑

j=1





(
n

j

)
(−1)j

∑

k≥1

k(pj)k



−

n∑

j=1





(
n

j

)
(−1)j

∑

k≥1

k(pj)k−1



 “j=0” terms cancel out

=
n∑

j=1

{(
n

j

)
(−1)j pj − 1

(1− pj)2

}
by geometric series

=
n∑

j=1

{(
n

j

)
(−1)j

(
−1 + pj

pj − 1

)}

= 1 +
n∑

j=1

{(
n

j

)
(−1)j pj

pj − 1

}
. by binomial theorem

If we now rewrite
(
n
j

)
as j+1

n+1

(
n+1
j+1

)
, the sum in the last expression becomes Vp(n+1),

and this completes the proof.
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Our final lemma is the key result (although not the most technically difficult to

prove) towards the expression of E(C (m)n ) in terms of Vp and Wp.

Lemma 3.4 Under the fixed population model, the expected height of a PSL of l

keys, and the expected number of horizontal steps on the search path for the lth key

in any PSL, are related as

E(Tl)−
p

q
(E(Ll)− 1) =

1

q
, integer l ≥ 1.

Proof: Starting with the expression for E(Ll) in Lemma 3.2, we can interchange

the two summations and compute the sum
∑l−1

j=1

(
1− pk

)j
, to get

E(Ll) = 1 +
q

p

∑

k≥1

{
1− pk − (1− pk)l

}
, integer l ≥ 1.

Using now the second expression for E(Tl) in Lemma 3.1, we can verify that in

order to prove the lemma, it suffices to prove

∑

k≥1

{(
1− pk

)l −
(
1− pk−1

)l}
+
∑

k≥1

pk =
1

1− p
. integer l ≥ 1,

But this follows immediately, by applying the telescopic property on the first sum,

and by rewriting
∑

k≥1 p
k as p

1−p
.

We can now easily derive exact expressions, in terms of Vp and Wp, for the

various expected search costs.

Theorem 3.1 Under the fixed population model, in a PSL of n keys, the expected

cost for a successful search of the mth key, or for an unsuccessful search for a key

between the (m−1)st and the mth, is

E(C(m)n ) = Vp(n+ 1) +
q

p
Vp(m) + 1,

where Vp(n+1) and Vp(m) are the sums defined in (3.6).
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Proof: The theorem follows from relation (3.3), from the value of E(Tn) in Lemma

3.3, and from

E(Lm−1) =
q

p
Vp(m), m = 1, 2, . . . , n+ 1,

which is a consequence of Lemmata 3.3 and 3.4.

Theorem 3.2 Under the fixed population model, in a PSL of n keys, the expected

cost for a successful search for the average key is

E(Sn) = Vp(n+ 1) +
q

p

Wp(n)

n
+ 1,

and the expected cost for an unsuccessful search for the average key is

E(Un) = Vp(n+ 1) +
q

p

Wp(n+ 1)

n+ 1
+ 1,

where Wp(n), Wp(n+1) and Vp(n+1) are the sums defined in (3.5) and (3.6).

Proof: Both results follow immediately from Theorem 3.1, if we use the relationship

(3.7) between Wp and Vp and we recall Wp(0) = 0.

3.4 Search Costs: Asymptotic Values

Theorems 3.1 and 3.2 give the search costs in terms of functions that “someone”

has studied. In this section, we provide an approximation to the search costs in

terms of constants (e.g. γ) and functions (e.g. Gamma function) that “everyone”

has studied.

Naturally, our starting point will be the asymptotic expressions

Wp(l) = l log 1
p
l + l

(
1− γ

ln p
− 1

2
+ f−1, 1

p
(l)

)
+O(1) as l→∞ (3.8)



3.4. SEARCH COSTS: ASYMPTOTIC VALUES 43

and

Vp(l) = log 1
p
l − γ

ln p
− 1

2
− f0, 1

p
(l−1) +O

(
1

l

)
as l →∞, (3.9)

that Knuth derived in [26, Ex. 5.2.2.50 and Ex. 6.3.19] (when 1
p
is an integer, but his

results hold for arbitrary p as well), where f0, 1
p
(l) and f−1, 1

p
(l−1) are the oscillating

functions defined in (2.3) and discussed in Section 2.3.4. Knuth’s proofs, based on

an approach suggested by N. G. de Bruijn [26, p. 131], are essentially the same as

those using Mellin transforms. Flajolet [15, p. 293] and Vitter and Flajolet [50,

p. 489] derive the asymptotic expression for V 1
2
(l) by using Mellin transforms, and

Mahmoud [30, Theorem 5.5] derives the asymptotic expression for V 1
m
(l), where

m is an arbitrary integer, also by using Mellin transforms. Alternatively, one may

use Rice’s method, discussed in Section 2.3.9, to derive the asymptotics (3.8) and

(3.9). Finally, since Wp and Vp are related as in (3.7), one may derive an asymptotic

expression for Vp(l) by using [26, Ex.5.2.2.50]

Wp(l) = l log 1
p
l+l

(
1−γ

ln p
− 1

2
+f−1, 1

p
(l)

)
+

1

1−p
+

1

2 ln p
−1

2
f1, 1

p
(l)+O

(
1

l

)
as l→∞.

We note though, that the last approach [35] results in tedious manipulations of the

periodic functions f1, 1
p
(l) and f−1, 1

p
(l) appearing in Wp(l) above, and the end result

is not as elegant as the asymptotic expression for Vp(l) in (3.9).

To express our results in a nicer form, we will use repeatedly the formulae

ln(l + 1)− ln l = O
(
1

l

)
as l→∞ (3.10)

and

f0,x(l)− f0,x(l−1) = O
(
1

l

)
as l→∞. (3.11)

The first formula is true, as it follows immediately from (2.28). To see why the

second formula is true, we recall (from the proof of (2.33)) that the series f0,x(l)
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converges absolutely, and we therefore have

|f0,x(l)− f0,x(l−1)| ≤
2

lnx

∑

k≥1

(∣∣∣∣∣Γ
(
−i2kπ

lnx

)∣∣∣∣∣
∣∣∣ei 2kπ logx l − ei 2kπ logx(l−1)

∣∣∣
)
.

Since now |s1−s2| ≤ | arg(s1)−arg(s2)| for all s1, s2 on the unit circle, the last

inequality implies

|f0,x(l)− f0,x(l−1)| ≤
2

ln x

∑

k≥1

(
2kπ

∣∣∣∣∣Γ
(
−i2kπ

ln x

)∣∣∣∣∣
∣∣∣logx l − logx(l−1)

∣∣∣
)

,

and (3.11) follows from (2.19) and (3.10).

We can now derive asymptotic expressions for the various expected search costs.

Theorem 3.3 Under the fixed population model, in a PSL of n keys, the expected

cost for a successful search of the mth key, or for an unsuccessful search of a key

between the (m−1)st and the mth, is

E(C(m)n )=log 1
p
n+

q

p
Vp(m)− γ

ln p
+

1

2
− f0, 1

p
(n) +O

(
1

n

)
as n→∞,

=log 1
p
n+

q

p
log 1

p
m− 1

p

(
γ

ln p
+
1

2

)
+1−f0, 1

p
(n)− q

p
f0, 1

p
(m)+O

(
1

m

)
as m,n→∞,

where f0, 1
p
(l) is the periodic function of log 1

p
l defined in (2.3), with its range

bounded as in (2.33).

Proof: When n → ∞, the exact expression for E(C (m)n ) from Theorem 3.1 and

the asymptotic value of Vp in (3.9), together with identity (3.10), establish the

first asymptotic expression for E(C (m)n ). When n → ∞ and m → ∞, Theorem

3.1 and (3.9) again, together with identities (3.10) and (3.11), establish the second

asymptotic expression for E(C (m)n ).

The oscillating terms f0, 1
p
(n) and f0, 1

p
(m) in the above asymptotic search costs,

although not very nice, can be computed to an arbitrary accuracy for any value of
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p, m and n. From Table 2.1, we see that for all interesting values of p, the range

of f0, 1
p
(l) is small, and its bound F0, 1

p
is very tight. Moreover, the computation of

F0, 1
p
is very fast, since this series converges very rapidly. These suggest that one

may substitute the straightforward and exact computation of the oscillations in the

search costs by a faster computation of the bound of the range of the oscillations

(the bounds are tight), or even drop the oscillations altogether (for p = .5, for

example, one will be off my at most .3164×10−5 from the average search cost).

Theorem 3.4 Under the fixed population model, in a PSL of n keys, the expected

cost for a successful or an unsuccessful search for the average key is

E(Sn) = E(Un) =
1

p
log 1

p
n− 1

p

(
γ

ln p
+

1

2

)
+

q

p ln p
+ 1

+
q

p
f−1, 1

p
(n)− f0, 1

p
(n) +O

(
1

n

)
as n→∞,

where f0, 1
p
(n) and f−1, 1

p
(n) are the periodic functions of log 1

p
n defined in (2.3),

and the range of the entire periodic term is bounded as

∣∣∣∣∣
q

p
f−1, 1

p
(n)− f0, 1

p
(n)

∣∣∣∣∣ ≤
1

p

√
− 2

ln p

∑

k≥1


 ln2 p+ 4k2π2p2

k(ln2 p+4k2π2) sinh
(
−2kπ2

ln p

)



1/2

.

Proof: The asymptotic expression for E(Sn) follows immediately from the exact

value of E(Sn) in Theorem 3.2, from the asymptotic values of Wp(l) and Vp(l) in

(3.8) and (3.9), and from identity (3.10). Also from Theorem 3.2 and asymptotics

(3.8), (3.9) and (3.10), follows that the asymptotic value of E(Un) is the same, but

with f−1, 1
p
(n) replaced by f−1, 1

p
(n+1). Therefore, it suffices to show

f−1, 1
p
(n+1)− f−1, 1

p
(n) = O

(
1

n

)
as n→∞.

The proof of this is similar to the proof of identity (3.11) if we use property (2.22) of

the Gamma function. Finally, the bound on the oscillating term follows similarly,

if we use property (2.16).
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The remarks about f0, 1
p
(l), that we made after Theorem 3.3, hold for f−1, 1

p
(l)

as well. Notice also, that although we could have simply said “ q
p
f−1, 1

p
(n)− f0, 1

p
(n)

is an oscillating term of small magnitude”, we chose not only to actually state a

bound of the range of this term, but also to derive a bound tighter than the obvious

q
p
F−1, 1

p
+ F0, 1

p
, where F−1, 1

p
is the bound of f−1, 1

p
(l) defined in (2.34).

3.5 Update Costs

Our results on the search costs allow us to derive costs for insertions and deletions;

these two operations were described in Section 3.1.

The insertion of a key between the (m−1)st and the mth requires on the average

E(C(m)n ) key comparisons to search for it, plus 2
q
pointer updates, since the average

height of an element is 1
q
.

The deletion of the mth key requires on the average E(C (m)n ) key comparisons to

search for it, plus 1
q
pointer updates to “remove” it, plus 1+E(Tn)−E(Tn−1) pointer

inspections to discover a possible update in the height of the PSL. But, according

to Lemma 3.3, E(Tn)−E(Tn−1) = Vp(n+1)−Vp(n), and the asymptotic value of Vp

in (3.9), together with identities (3.10) and (3.11), imply Vp(n+1)−Vp(n) = O
(
1
n

)
.

Therefore, to discover a possible decrease in the height of a PSL after a deletion,

1+O
(
1
n

)
pointer inspections are required on the average.

The expected value for the cost to insert or delete the average key, follow easily

from our previous results.
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n optimal p n optimal p n optimal p n optimal p n optimal p
≤ 8 0 40 .2600 90 .2827 500 .3101 1,000 .3164
9 .0861 50 .2684 100 .2851 600 .3117 2,000 .3214
10 .1386 60 .2736 200 .2982 700 .3130 3,000 .3243
20 .2289 70 .2772 300 .3036 800 .3142 4,000 .3260
30 .2472 80 .2801 400 .3076 900 .3154 ∞ 1

e
= .3679

Table 3.1: Optimal p, minimizing exact successful search cost for the average key

3.6 Choosing p

In our discussions so far, p was an unspecified “design parameter”. Having derived

now all exact and asymptotic search and update costs, we may turn to the issue of

picking the optimal p.

If we assume that our target is the minimization of the average cost for the

average key, and if we also assume that all searches (updates) are equally likely,

then Theorem 3.4 implies that asymptotically the optimal choice for p is 1
e
. This

value of p was also proposed by Pugh [40], based on the fact that asymptotically it

minimizes his upper bound (3.1) of the search cost for +∞.

Clearly, the above “asymptotically” optimal p, is the optimal p “for large values

of lnn”. This makes the choice of the exact value p = 1
e
disputable. Indeed, the

values of p minimizing the exact (rather than the asymptotic) values of E(Sn) (as

given in Theorem 3.2) that are shown in Table 3.1, imply that making p a bit smaller

than 1
e
(say, .3125=5/16 that requires only 4 random bits, or .34375=11/32 that

requires only 5 random bits) is a better choice for moderate n.

Having observed that, the next issue that may be worth investigating is how

much E(Sn) is affected if we do not choose the exact optimal p from Table 3.1,

but we choose p= 1
e
instead. The answer is “not very much”. For example, from

Table 3.1 we see that for a PSL of n=1000 keys the optimal p minimizing E(S1000)

is p = .3164; in this case, we can compute E(S1000) = 18.1029. If we use p = 1
e
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Figure 3.2: Coefficient of lg n in asymptotic search cost for the average key

instead, we get E(S1000) = 18.2711, a mere 1% slower average search time for the

average key. There are basically two reasons for which this is happening. First, the

asymptotic expression for E(Sn) is an excellent approximation of the exact value

of E(Sn), even for moderate values of n. And second, the coefficient 1
p lg p

of lg n

in the asymptotic expression of E(Sn) is very flat around p= 1
e
, as we may see from

Figure 3.2.

To summarize, a value of p slightly smaller than 1
e
may be a better choice for

moderate n, but not by much. Notice here that the values of p minimizing the

exact value of E(Un) are different (although very close) from the values of p shown

in Table 3.1. The values of p shown in Table 3.1 also suggest the idea of having p

depend on the level; p would be relatively small at the bottom and tend to rise to

1
e
in higher levels. We note however, that such ideas will impact only a constant in

search costs.
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3.7 Comparison with Previous Results

It is appropriate to ask how close our asymptotic expressions, or indeed Pugh’s

upper bounds, are to the exact values of the expected costs, in the range of n for

which calculating the exact values is feasible.

We first consider E(Fn), a bound on the average cost for the search of any key,

as discussed in Section 3.2. Exact values

E(Fn) =
1

p
Vn(n+ 1) + 1 (3.12)

of the average search cost for +∞ (from Theorem 3.1), our approximation

E(Fn) '
1

p
log 1

p
n− 1

p

(
γ

ln p
+

1

2

)
+ 1− 1

p
f0, 1

p
(n) (3.13)

of this cost (from Theorem 3.3 and asymptotics (3.10) and (3.11)), and Pugh’s

upper bound
1

p
log 1

p
n+

1

q
+ 1

of it (stated in (3.1)), are shown in Table 3.2, for a PSL of n= 50, 500, 1000 and 5000

keys. The computation of the exact E(Fn) from (3.12) was very time consuming;

these values, computed to an accuracy of 10−10, took approximately 40 hours on

a MIPS M2000 machine, with the computation of E(F5000) alone taking almost 39

hours. The computation of our approximation (3.13) on the other hand, was quite

fast; had we been willing to slightly give up the accuracy of our approximation

by computing F0, 1
p
, the bound of f0, 1

p
(n) from (2.33), instead of the actual f0, 1

p
(n)

appearing in (3.13), the computation of our approximation to E(Fn) would have

been even faster. Finally the computation of Pugh’s upper bound was extremely

fast.

If we look carefully at the values in Table 3.2, we may observe that across the

lines (that is, for fixed p) the differences between the exact value of the expected
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p our (our) Pugh’s our (our) Pugh’s
approximate exact bound of approximate exact bound of

E(F50) E(F50) E(F50) E(F500) E(F500) E(F500)
1−10−4=.9999 44, 895.1315 44, 994.8031 49, 123.1862 67, 922.1338 67, 932.1309 72, 150.1885
1−10−3=.9990 4, 491.9847 4, 501.9563 4, 914.9806 6, 795.7220 6, 796.7222 7, 218.7180
1−10−2=.9900 451.6823 452.6840 494.1748 683.1018 683.2023 725.5942

9/10=.9000 47.7871 47.8922 52.2554 72.0697 72.0802 76.5380
4/5=.8000 25.5227 25.5785 27.9143 38.4213 38.4269 40.8129
3/4=.7500 21.1398 21.1860 23.1312 31.8117 31.8163 33.8031
7/10=.7000 18.2662 18.3061 20.0020 27.4886 27.4927 29.2244
2/3=.6667 16.8577 16.8946 18.4724 25.3760 25.3797 26.9907

1−1/e=.6321 15.6925 15.7268 17.2109 23.6341 23.6376 25.1525
3/5=.6000 14.8137 14.8462 16.2637 22.3263 22.3296 23.7764
1/2=.5000 12.9532 12.9820 14.2877 19.5971 19.5999 20.9316
2/5=.4000 11.9985 12.0257 13.3402 18.2807 18.2834 19.6226
1/e=.3679 11.8438 11.8709 13.2160 18.1032 18.1060 19.4750
1/3=.3333 11.7581 11.7851 13.1826 18.0460 18.0487 19.4703
3/10=.3000 11.7614 11.7887 13.2594 18.1373 18.1400 19.6344
1/4=.2500 11.9580 11.9877 13.6210 18.5968 18.5997 20.2649
1/5=.2000 12.4553 12.4884 14.4034 19.5984 19.6014 21.5568
1/10=.1000 15.4104 15.4418 19.1008 25.4104 25.4137 29.1008
10−2=.0100 40.8507 41.0032 86.9586 105.2538 105.2707 136.9586
10−3=.0010 49.8206 49.8444 568.3243 394.9697 395.1214 901.6577
10−4=.0001 50.8802 50.8827 4, 249.4251 488.7558 488.7795 6, 749.4251

E(F1000) E(F1000) E(F1000) E(F5000) E(F5000) E(F5000)
1−10−4=.9999 74, 853.9522 74, 858.9516 79, 082.006955 90, 949.1361 90, 950.1361 95, 177.1909
1−10−3=.9990 7, 489.2161 7, 489.7162 7, 912.2120 9, 099.4594 9, 099.5594 9, 522.4553
1−10−2=.9900 752.7660 752.8162 795.2584 914.5213 914.5313 957.0137

9/10=.9000 79.3795 79.3847 83.8478 96.3523 96.3533 100.8206
4/5=.8000 42.3041 42.3069 44.6957 51.3198 51.3204 53.7114
3/4=.7500 35.0243 35.0266 37.0157 42.4836 42.4841 44.4750
7/10=.7000 30.2649 30.2669 32.0006 36.7111 36.7115 38.4468
2/3=.6667 27.9403 27.9422 29.5549 33.8944 33.8947 35.5090

1−1/e=.6321 26.0248 26.0265 27.5432 31.5757 31.5761 33.0942
3/5=.6000 24.5878 24.5895 26.0379 29.8389 29.8392 31.2890
1/2=.5000 21.5971 21.5985 22.9316 26.2409 26.2412 27.5754
2/5=.4000 20.1720 20.1734 21.5137 24.5632 24.5635 25.9049
1/e=.3679 19.9870 19.9884 21.3592 24.3619 24.3622 25.7341
1/3=.3333 19.9394 19.9408 21.3631 24.3341 24.3343 25.7581
3/10=.3000 20.0571 20.0585 21.5535 24.5131 24.5134 26.0094
1/4=.2500 20.5973 20.5988 22.2649 25.2364 25.2367 26.9088
1/5=.2000 21.7476 21.7492 23.7101 26.7476 26.7480 28.7101
1/10=.1000 28.3830 28.3849 32.1111 35.4105 35.4108 39.1008
10−2=.0100 110.6127 110.6134 152.0101 140.8507 140.8523 186.9586
10−3=.0010 634.1211 634.3051 1, 002.0010 999.2546 999.2714 1, 234.9910
10−4=.0001 952.7258 952.7711 7, 502.0001 3, 936.1934 3, 936.3451 9, 249.4251

Table 3.2: Search costs for +∞
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search cost and the approximation of it do not seem to be O( 1
n
). In fact, these

differences are not even decreasing (the differences, for example, for p=10−4 form

an increasing sequence). This should not surprise us, if we recall that the approx-

imation of the expected search cost contains an oscillating function f0, 1
p
(l). This

oscillation causes our approximation to move close to the exact value, then to move

away, then to move close again, etc. It is the maximum difference between the exact

and the approximate value that is O( 1
n
); as we showed in (2.31), these maximum

differences occur at n, 1
p
n, 1

p2
n, 1

p3
n, . . . , not the values of n shown in Table 3.2.

We now turn to the comparison of the average costs for the successful search of

the average key in a PSL; the results for unsuccessful searches don’t differ by much.

Exact values

E(Sn) = Vp(n+1) +
q

p

Wp(n)

n
+ 1

(from Theorem 3.2), our approximation

E(Sn) '
1

p
log 1

p
n− 1

p

(
γ

ln p
+

1

2

)
+

q

p ln p
+ 1 +

q

p
f−1, 1

p
(n)− f0, 1

p
(n)

of it (from Theorem 3.4), and Pugh’s upper bound

log 1
p
n+

q

pn

n∑

m=2

log 1
p
(m−1) + 1

q
+

n−1
n

of it from (3.2), are shown in Table 3.3. The remarks made on the difficulty of the

computation of the numbers of Table 3.2 apply here as well.

A comparison now of the exact values and Pugh’s upper bound indicates that

Pugh’s upper bound is a reasonably good approximation for E(Sn), for the interest-

ing values of p. A comparison of our exact and approximate values indicates that

our approximate costs (are not only much faster than the exact costs to compute,

but also) approach the exact costs quite rapidly. The fact that the convergence

for E(Sn) is slower that the convergence for E(Fn), should not be surprising; for
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p our (our) Pugh’s our (our) Pugh’s
approximate exact bound of approximate exact bound of

E(S50) E(S50) E(S50) E(S500) E(S500) E(S500)
1−10−4=.9999 44, 894.1314 44, 993.8031 49, 122.1455 67, 921.1337 67, 931.1309 72, 149.1821
1−10−3=.9990 4, 490.9842 4, 500.9558 4, 913.9394 6, 794.7215 6, 795.7217 7, 217.7111
1−10−2=.9900 450.6773 451.6791 493.1289 682.0968 682.1972 724.5828

9/10=.9000 46.7325 46.8387 51.1590 71.0151 71.0257 75.4768
4/5=.8000 24.4024 24.4608 26.7507 37.3009 37.3068 39.6856
3/4=.7500 19.9811 20.0308 21.9286 30.6530 30.6580 32.6374
7/10=.7000 17.0647 17.1091 18.7555 26.2871 26.2915 28.0155
2/3=.6667 15.6246 15.6668 17.1937 24.1429 24.1471 25.7501

1−1/e=.6321 14.4236 14.4643 15.8958 22.3653 22.3694 23.8762
3/5=.6000 13.5086 13.5483 14.9116 21.0212 21.0252 22.4636
1/2=.5000 11.5105 11.5504 12.7951 18.1544 18.1584 19.4806
2/5=.4000 10.3614 10.4059 11.6493 16.6437 16.6481 17.9764
1/e=.3679 10.1255 10.1726 11.4421 16.3848 16.3895 17.7472
1/3=.3333 9.9381 9.9888 11.3045 16.2258 16.2309 17.6399
3/10=.3000 9.8242 9.8796 11.2613 16.1995 16.2050 17.6859
1/4=.2500 9.7910 9.8568 11.3922 16.4321 16.4386 18.0894
1/5=.2000 9.9606 10.0418 11.8466 17.1175 17.1257 19.0585
1/10=.1000 11.6170 11.7850 15.0912 21.6170 21.6338 25.1731
10−2=.0100 20.7412 22.4358 64.9959 83.6352 83.8273 115.3649
10−3=.0010 5.6377 25.1618 420.6895 212.4922 214.1887 756.4027
10−4=.0001 −174.0366 25.4658 3, 141.2962 226.9341 246.4584 5, 659.0443

E(S1000) E(S1000) E(S1000) E(S5000) E(S5000) E(S5000)
1−10−4=.9999 74, 852.9521 74, 857.9516 79, 081.0034 90, 948.1360 90, 949.1360 95, 176.1899
1−10−3=.9990 7, 488.2156 7, 488.7157 7, 911.2080 9, 098.4589 9, 098.5589 9, 521.4540
1−10−2=.9900 751.7610 751.8112 794.2499 913.5162 913.5263 956.0078

9/10=.9000 78.3249 78.3302 82.7896 95.2977 95.2988 99.7651
4/5=.8000 41.1838 41.1867 43.5715 50.1995 50.2001 52.5901
3/4=.7500 33.8656 33.8681 35.8531 41.3249 41.3254 43.3157
7/10=.7000 29.0633 29.0655 30.7950 35.5095 35.5099 37.2442
2/3=.6667 26.7072 26.7093 28.3177 32.6612 32.6616 34.2748

1−1/e=.6321 24.7560 24.7580 26.2702 30.3069 30.3073 31.8243
3/5=.6000 23.2827 23.2847 24.7285 28.5338 28.5342 29.9828
1/2=.5000 20.1544 20.1564 21.4842 24.7982 24.7986 26.1316
2/5=.4000 18.5349 18.5372 19.8715 22.9261 22.9266 24.2666
1/e=.3679 18.2688 18.2711 19.6356 22.6437 22.6442 24.0145
1/3=.3333 18.1190 18.1215 19.5370 22.5136 22.5141 23.9362
3/10=.3000 18.1183 18.1211 19.6095 22.5747 22.5752 24.0699
1/4=.2500 18.4340 18.4372 20.0944 23.0761 23.0767 24.7431
1/5=.2000 19.2635 19.2675 21.2175 24.2635 24.2643 26.2229
1/10=.1000 24.5345 24.5425 28.1916 31.6170 31.6187 35.1894
10−2=.0100 95.9356 96.0311 130.4570 120.7412 120.7581 165.4464
10−3=.0010 368.6445 369.4604 857.0133 804.8403 805.0365 1, 090.2741
10−4=.0001 474.8386 484.3861 6, 431.6196 2, 130.0436 2, 131.7404 8, 163.0722

Table 3.3: Successful search costs for the average key
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“small” n, “many” m — over which E(Sn) is taken — are “small”, resulting in

“bad” approximations for E(Sn). The negative values of the approximate E(Sn)

should not be surprising either; what is important is that the differences between

the exact and the approximate values of E(Sn) are O( 1
n
).

3.8 Summary

In this chapter, we derived expected values for various costs in the PSL, under

the fixed population model. We gave exact (Theorem 3.1) and asymptotic (Theo-

rem 3.3) expressions for the cost of the search of the mth key in an average PSL of

n keys, as well as exact (Theorem 3.2) and asymptotic (Theorem 3.4) expressions

for the cost of the search of an average key in an average PSL of n keys. We also

observed (Tables 3.2 and 3.3) that the derived asymptotic expressions are excellent

approximations to the corresponding exact values, and that Pugh’s bounds of the

various costs are fairly good for all interesting values of p. Although our asymptotic

expressions contain some oscillating terms, these terms can be computed fast to an

arbitrary accuracy, and, for all interesting values of p, they take small values, and

their ranges are tightly bound by an easily computable function of p alone (i.e. the

bound of their ranges is independent of m and n). This leads to the observation

that the expected search costs can be expressed as falling within a small constant

of a very simple form.

To derive the above results, we split the search cost into two (non-independent)

parts, and we made two key observations. The first observation was that one

of these parts is related to some well-studied parameters of tries (discussed after

Lemma 3.2). The second observation was that the expected values of these two

parts are related (Lemma 3.4).
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As a consequence of the computation of the search costs, we derived the insert

and delete costs (Section 3.5). We also discussed the choice of the parameter p,

used to build a PSL; although the value of p = 1
e
was known to be asymptotically

the optimal choice, we observed (Table 3.1) that for PSLs of reasonable sizes, a

somewhat lower value of p is a slightly better choice.

Finally, we remind the reader that the number of comparisons performed in a

PSL is heavily dependent on coding details; e.g. when we test for equality, if we note

that a comparison has already been made, if we count tests for null pointers (that

is, if we count comparisons with the +∞ key), etc. We have chosen one particular

coding scheme for our analysis, but other variants easily follow.



Chapter 4

Deterministic Skip Lists

The good average case performance of the PSL discussed in the previous chapter,

although independent of the input, does depend on the random number generator

behaving “as expected”. Should this not be the case at a particular instance (if,

for example, the random number generator creates elements of equal heights, or

of decreasing heights left-to-right), the PSL may degenerate into a structure worse

than a linear linked list. It is therefore natural to try to explore techniques based

on the skip list notion, that will lead to good worst case performance.

As discussed in Section 1.1, there exist several balanced search tree schemes

(AVL, 2-3, red-black) which have guaranteed logarithmic worst case search and

update costs. A general problem though with these schemes is that they are above

the threshold of difficulty for most programmers to implement in virtually any case,

except of course in B-tree packages. The solutions that we propose in this chapter

are competitive in terms of space and time with balanced search trees, and, we feel,

inherently simpler when taken from first principles. They also give rise to a hybrid

data structure, halfway between the standard search tree and the original skip list.

55
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Figure 4.1: A 1-2 DSL and its corresponding 2-3 tree

An earlier version of our results appeared in [33].

4.1 The Starting Point

A natural starting point is the perfectly balanced skip list, a skip list in which every

kth element of height at least h is also of height at least h+1 (for some fixed k).

Although the search cost in balanced skip lists is logarithmic, the insert and delete

costs are prohibitive. We should therefore examine the consequences of relaxing a

bit the strict requirement “every kth element”.

Assuming that a skip list of n keys has a 0th and a (n+1)st element of height

equal to the height of the skip list, we will say that two elements are linked when

there exists (at least) one pointer going from one to the other. Given two linked

elements, one of height exactly h (h> 1) and another of height h or higher, their
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gap size will be the number of elements of height h−1 that exist between them.

For example, in the skip list of Figure 3.1 the gap size between 19 and 30 is 0, and

in the skip list of Figure 4.1(a) the gap size between 10 and 25 is 2, whereas the

gap size between −∞ and 3 is 1. A skip list with the property that every gap is

of size either 1 or 2 will be called a 1-2 Deterministic Skip List (DSL). As we see

from Figure 4.1, there exists a one-to-one correspondence between 1-2 DSLs and

2-3 trees.

A search for a key in a 1-2 DSL is performed in the same manner as in Pugh’s

PSL. One may of course observe that after 2 key comparisons at the same level,

the only next legal step is to drop down a level. Therefore, it is possible to throw

in an extra line of code and save up to 1 key comparison per level.

An insertion of a key in a 1-2 DSL is made by initially searching for the key

to be inserted, and by subsequently inserting the key as an element of height 1 in

the appropriate spot. This may, of course, trigger the invalid configuration of 3

elements of height 1 “in a row”. This is easily rectified by letting the middle of

these 3 elements grow to height 2. If this now results in 3 elements of height 2 in a

row, we let the middle of these 3 elements grow to height 3, etc. For example, the

insertion of 15 in the skip list of Figure 4.1(a) will cause 13 to grow from height 1

to height 2, that will cause 17 to grow from 2 to 3, and that will cause 17 again to

grow from 3 to 4.

A deletion of a key from a 1-2 DSL is done in a way completely analogous to

the way it is done in the corresponding 2-3 tree. The deletion of 5 for example from

the 1-2 DSL of Figure 4.1(a), will cause 3 to shrink, and this will cause 10 to shrink

and 17 to grow.

In general, one may verify that the above described insertion algorithm may
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cause up to blg(n+2)c−1 elements to grow in the worst case (except when n= 3

and n = 9, in which case this number is 1 less). In the 2-3 tree analogy, this is

not a great problem, since each increase of an element’s height takes constant time.

However, in our setting, if we insist on implementing the set of horizontal pointers

of each DSL element as an array of pointers, then, when an element grows, we have

to allocate space for a higher element, and we have to copy all pointers in and out

of the old element into the new one. Therefore, the growth of a single element from

height h to height h+1 requires the change of 2h+2 pointers. Since in the worst

case all elements of heights 1, 2, . . . , blg(n+2)c−1 will have to grow, an insertion

may take up to Θ(lg2 n) time. Similarly, a deletion may take up to Θ(lg2 n) time,

too.

Although the 1-2 DSL does not exhibit the desired logarithmic behaviour, it

is interesting to note that its worst case space complexity is not worse than that

of other balanced search tree schemes. The next lemma states this result more

precisely.

Lemma 4.1 In the worst case, the total number of pointers (including the header

and the null pointers) in a 1-2 DSL of n keys is exactly

2n− ν2(n+ 1) + 1, integer n ≥ 1,

where ν2(n+1) is the numbers of 1’s in the binary representation of n+1.

Proof: The number of pointers at level 1 is always n+1. The number of pointers at

level 2 is at most
⌊
n− 1

2

⌋
+ 1; this occurs when every second element is raised to

level 2. Similarly, the number of pointers at level 3 is at most



⌊
n−1
2

⌋
− 1

2

 + 1 =

⌊
n− (1 + 2)

4

⌋
+ 1, and in general, the number of pointers at level k (k = 1, 2, . . .)
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is at most

⌊
n− (1 + 2 + 4 + · · ·+ 2k−2)

2k−1

⌋
+ 1 =

⌊
n+ 1

2k−1

⌋
. When all of the above

occur, the height of the structure is exactly blg(n+1)c. Therefore, in such a case,

the number of pointers is
blg(n+1)c∑

k=1

⌊
n+ 1

2k−1

⌋
. But this is a well known sum (see, for

example, [23, pp. 113–114]), which evaluates to the expression of the lemma.

4.2 Achieving logarithmic worst case costs

One solution to the problem of the Θ(lg2 n) cost encountered in the preceding

section is to implement the set of horizontal pointers of each element as a linked

list of pointers. This way, raising or lowering an element takes Θ(1) time, resulting

thus in a Θ(lg n) worst case update cost. However, such a solution will double the

space requirement of our data structure; each horizontal pointer will be substituted

by a right pointer, a down pointer, and a pointer to the key (or the key itself).

Therefore, according to Lemma 4.1, this version of the 1-2 DSL will require in the

worst case up to 6n pointers and n keys, or up to 4n pointers and 2n keys. We will

return to this notion in the following sections, because of its simplicity.

If the above space overhead is considered unacceptable, we may implement the

set of horizontal pointers of each element as an array of pointers, if we choose these

arrays to have exponentially increasing physical heights. For simplicity, let’s say that

all elements will have physical heights 2k, for k = 0, 1, 2, 3, . . .. The logical heights

of the elements will never exceed their physical heights, and they will be equal to

the heights of the elements in the 1-2 DSL considered in the last section. We reserve

the term array implementation of the 1-2 DSL for this variant of deterministic skip

list. For example, if we insert 15 into the skip list of Figure 4.1(a), the resulting

skip list under the just described scheme will be the one shown in Figure 4.2.
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Figure 4.2: Array implementation of 1-2 DSL

When, in performing an insertion, an element has to grow, we use the higher

level pointer field, if one exists. If not, a new higher element has to be created, and

all pointers in and out of the old element have to be copied into the new one. At

this point, we achieve the Θ(lg n) worst case insertion cost. Consider the 2k (k≥1)

elements of logical heights 2k+1, . . . , 2k+1. All of them are of physical height 2k+1.

When the heights of all of them have to be increased by 1, only the element of

logical height 2k+1 has to be copied into a new element; the remaining elements will

merely increase their logical heights, and their physical heights allow them to do so

in constant time. Hence, the time required for an insertion, is proportional to the

sum of the heights of the elements that will be copied, that is,
Θ(lg lgn)∑

k=0

2k = Θ(lg n).

To delete a key, we apply the same technique, achieving thus a worst case Θ(lg n)

cost as well.

As it turns out, our new skip list variant does not increase the storage require-

ment by very much.

Lemma 4.2 In the worst case, the total number of pointers (including the header

and the null pointers) in the array implementation of a 1-2 DSL of n keys is exactly





n+ 1 for n = 1, 2

n+ 1 +
blg(lg(n+1)−1)c∑

k=0

2k
⌊
n+ 1

22k

⌋
for n ≥ 3

, (4.1)



4.2. ACHIEVING LOGARITHMIC WORST CASE COSTS 61

which never exceeds

(αn + 1)n+ αn + 1 ∼ 2.2814941 . . . n, (4.2)

where

αn
def
=





0 for n = 1, 2
blg(lg(n+1)−1)c∑

k=0

2k−2
k

for n ≥ 3
.

Proof: The number of pointers at level 1 is always n+1. The number of pointers

at level 2 is at most
⌊
n− 1

2

⌋
+ 1; this occurs when every second element is raised

to level 2. The number of pointers at levels 3 and 4 is at most 2

⌊
n− (1 + 2)

22

⌋
+2;

this occurs when every second element at level 2 is raised to level 3. Similarly, the

number of pointers at levels 5, 6, 7 and 8 is at most 4

⌊
n− (1 + 2 + 22 + 23)

24

⌋
+ 4,

and in general, the number of pointers at levels 2k+1, . . . , 2k+1 (k = 0, 1, 2, . . .)

is at most 2k
⌊
n− (1 + 2 + 22 + · · ·+ 22

k−1)

22k

⌋
+ 2k = 2k

⌊
n+ 1

22k

⌋
. When all the

above occur, it is not hard to see that the physical height of the structure is exactly

blg(lg(n+1)− 1)c+ 1, and the result follows easily.

We note that αn can be computed quickly to a high accuracy, since its few terms

drop off doubly exponentially. We have α3 = α4 = α5 = α6 = .5, α7 = · · ·α30 = 1,

α31 = · · ·α510 = 1.25, and αn ' 1.281 for n ≥ 511. Furthermore, the bound (4.2)

is very tight, since from (4.1) we may compute that in the worst case the total

numbers of pointers in skip lists with 10, 102, 103, 104, 105 and 106 keys are exactly

20, 225, 2,273, 22,813, 228,121 and 2,281,489 respectively.

The linked list and the array implementation of the elements of the 1-2 DSL,

although both achieving logarithmic worst case costs, have different merits. The

second uses fewer extra pointers; up to 2.282n, versus 6n. The first is simpler to

code; for example, in order to to raise a skip list element we only have to change 3
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Figure 4.3: A 1-3 DSL and its corresponding 2-3-4 tree

pointers, whereas in the array implementation we have to initiate a search for the

key in the element to be raised, so that we can splice at the proper place and insert

the new element.

Finally, we observe that the correspondence between 2-3 trees and 1-2 DSLs

can be easily generalized. For any B-tree of order m, (m ≥ 3), we can define a

deterministic skip list with gaps of sizes dm
2
e−1, dm

2
e, . . . ,m−2, or m−1; an

example is shown in Figure 4.3. Clearly, any such 1-2, 1-3, 2-4, 2-5, 3-6, . . . DSL

achieves logarithmic worst case costs by having its elements implemented either as

linked lists or as arrays of exponential heights.

4.3 Top-down Deterministic Skip Lists

As noted in [24], insertions in a 2-3-4 tree can be performed top-down, eliminating

thus the need to maintain a stack with the search path. Adopting this approach,

we may chose to perform an insertion in a 1-3 DSL by splitting any gap of size 3 on

our way to the bottom level into two gaps of size 1. We ensure in this way that the
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Figure 4.4: Top-down 1-3 DSL insertion

structure retains the gap invariant with or without the inserted key. To be more

precise, we start our search at the header, and at level 1 higher than the height of

the skip list. If the gap that we are going to drop in is of size 1 or 2, we simply

drop. If the gap is of size 3, first we raise the middle element in this gap, creating

thus two gaps of size 1 each, and then we drop. When we reach the bottom level,

we simply insert a new element of height 1. Since our algorithm allowed only gaps

of sizes 1 and 2, the newly inserted element leaves us with a valid 1-3 DSL.

As an example, consider the case of inserting 20 in the skip list of Figure 4.3(a).

We start at level 3 of the header, we look at level 2 and we raise 48, then we drop

to level 2 of the header, we move to level 2 of 13, we look at level 1 and we raise

39, then we drop to level 1 of 13, and finally we insert 20 as a new node of height

1. The resulting skip list is shown in Figure 4.4.

To delete a key from a 1-3 DSL, we may work in a top-down manner as well. We

want the search preceding the actual removal of the element to have the side-effect

that each gap is of legal — but above minimum — size as we pass through it. This

is handled by either merging with a neighbour, or borrowing from a neighbour.

More precisely, we start our search at the header and at level equal to the height of

the skip list. If the gap G that we are going to drop in is of size 2 or 3, we simply

drop. If the gap G is of size 1, we proceed as follows. If G is not the last gap in

the current level, then if the following gap G′ is of size 1 we “merge” G and G′

(by lowering the element separating G and G′), whereas if G′ is of size 2 or 3 we
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Figure 4.5: Top-down 1-3 DSL deletion

“borrow” from it (by lowering the element separating G and G′ and raising the first

element in G′). If G is the last gap, we merge with, or borrow from, its preceding

gap. After we borrow/merge from the following/preceding gap, we then drop down

a level. We continue in this way, until we reach the bottom level, where we remove

the element of height 1 (if the key to be deleted is not in an element of height 1,

we swap it with its predecessor of height 1, and we remove its predecessor). Since

our algorithm did not allow any gaps to be of size 1, what we are left with after

the removal of the element of height 1, is a valid 1-3 DSL.

As an example, consider the case of deleting 51 from the structure of Figure 4.4.

We start at level 3 of the header, we move to level 3 of 48, we look at level 2 and we

lower 48 and raise 39, we drop to level 2 of 48, we look at level 1, we drop to level

1 of 48, and we finally remove 51. The resulting 1-3 DSL is shown in Figure 4.5.

Clearly, the top-down 1-3 DSL achieves logarithmic worst case search and up-

date costs if its elements are implemented either as linked lists, or as arrays of

exponential heights. Both of these implementations are simpler than their counter-

parts for the 1-2 DSL, because all of the work is done in one pass down through the

structure. Furthermore, the linked list version of the top-down 1-3 DSL is simpler

that the red-black implementation of the corresponding 2-3-4 tree and other bal-

anced search tree algorithms; such algorithms are notoriously complicated because

of the numerous cases that arise involving single and double rotations to the left

and to the right.



4.3. TOP-DOWN DETERMINISTIC SKIP LISTS 65

48 M

13 39 48 55 M

9 13 20 30 39 41 48 51 53 55 60 M

q q
q q q q q
q q q q q q q q q q q q

q q
q q q q q
q q q q q q q q q q q q

-

- - -◦ -

- - - - - - - - - - -

? ?

? ? ? ? ?

Figure 4.6: Linked list implementation of 1-3 DSL

If we chose to implement the skip list elements as linked lists, we may simplify

and speed up our code by “pulling the keys back”, as shown in Figure 4.6 for the

1-3 DSL of Figure 4.4 (M there stands for the maximum key). What we gain by

doing so is that, during a search, instead of going right to examine the key there

and to decide whether we are actually going to move there or we are going to drop

down a level, we pull that key back to the node we are currently in. We reserve the

term linked list implementation of a skip list for such a structure

Admittedly, this last twist of the skip list creates a structure between what one

might view as a “standard” skip list (i.e. a skip list each element of which has an

array of pointers) and as a binary search tree. Unlike skip lists and like binary

search trees, each node has one key and two pointers, and we are now branching

according to the key in the current node. On the other hand, unlike binary search

trees and like skip lists, we still have “extra” pointers, that is, pointers that we are

never going to follow (like the one marked with a “◦” in Figure 4.6). What these

extra pointers do, is that they “thread” the structure, making borrowing from a

gap and merging of two gaps easier. For example, if we were going to delete 53 from

the structure of Figure 4.6, the “◦” pointer which is redundant before the deletion,

is not redundant after the operation is complete.

Another way of looking at the linked list implementation of the skip list is the
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Figure 4.7: Horizontal array implementation of 1-3 DSL

following: a standard skip list is a binary search tree (having redundant pointers

and duplicate keys) whose left pointers have been collapsed into array indices. This

suggests that we may as well consider collapsing the right pointers of a binary search

tree into array indices. The structure that we get in this way will be called horizontal

array implementation of a skip list, and as an example, we give in Figure 4.7 the

structure resulting from the skip list of Figure 4.4 (or from the search tree of

Figure 4.6). This form of the skip list is very similar to the B+ tree1 , which is

most appropriately used when the number of disk accesses, rather than the number

of key comparisons, is of major concern.

Finally, we may observe that the top-down insertion and deletion are easily

generalizable to any k-(2k+1) skip list, for k = 1, 2, . . .. When inserting a key in a

2-5, 3-7, 4-9, . . . DSL, we split a gap of size 5, 7, 9, . . . into two gaps of (legal) sizes

2, 3, 4, . . . before we drop down a level. When deleting a key from such a DSL,

we merge/borrow if we are going to drop in a gap of size 2, 3, 4, . . . . Obviously,

searches and top-down updates have logarithmic worst case costs if we use either a

linked list, or an array (of exponential size), or a horizontal array implementation.

1A B+ tree is like a B tree, but with all keys placed in leaf nodes. The internal nodes contain

values (not necessarily appearing as keys) used to guide the search in the following way: each

value is greater than or equal to all keys contained in the subtree rooted immediately to its left.
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4.4 Implementation and Experimental Results

To illustrate the simplicity of our deterministic skip lists, we now give working C

code for the linked list implementation of the top-down 1-3 DSL.

To avoid having special cases in our code, we introduce a dummy head node,

and two sentinel nodes bottom and tail. Assuming the declarations of Figure 4.8,

the initialization of an empty 1-3 DSL is given in Figure 4.9. Two versions of the

search code for a key v are given in Figure 4.10. Both versions return a pointer

to the node containing v if the search is successful, or a pointer to bottom if the

search is unsuccessful. Observe that the first version of our search code uses 3-way

branches in each node and is identical to the search procedure in a binary search

#define maxkey 2147483647 /* maxkey = (2^31)-1 */
#define newnode (nodePtr)malloc(sizeof(struct node))

typedef struct node * nodePtr;

struct node{
int key;
nodePtr r, d;

};

nodePtr head, bottom, tail;

Figure 4.8: Declarations for linked list implementation of top-down 1-3 DSL

void EmptyList()
{

head = newnode;
bottom = newnode;
tail = newnode;
head->key = maxkey;
head->d = bottom;
head->r = tail;
bottom->r = bottom;
bottom->d = bottom;
tail->key = maxkey;
tail->r = tail;

}

Figure 4.9: Initialization in linked list implementation of top-down 1-3 DSL
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nodePtr Search(v) nodePtr Search(v)
int v; int v;
{ {
nodePtr x; nodePtr x;

x = head; x = head;
bottom->key = v; while (x != bottom) {
while (v != x->key) while (v > x->key)

x = (v < x->key) ? x->d : x->r; x = x->r;
return(x); if (x->d == bottom)

} return((v == x->key) ? x : bottom );
x = x->d;

}
}

Figure 4.10: Search in linked list implementation of top-down 1-3 DSL

tree, whereas the second version tests for equality only at the lowest level and it

is skip list in flavour. If we choose the second version for the search code, then

the insertion code shown in Figure 4.11 is just a matter of filling in a few gaps; we

simply have to add a node in a (horizontal) linked link whenever necessary. Finally,

the deletion code is given in Figure 4.12. Notice here that we have assumed that no

duplicate keys are allowed in our structures, and that a call to Insert (Delete) is

not necessarily preceded by a call to Search. Therefore our insertion (deletion) code

for a key v returns 1 if the insertion (deletion) is successful and 0 is the insertion

(deletion) is unsuccessful, that is, if v is (is not) in the structure.

As it is the case with almost every dictionary implementation (with Pugh’s

PSL being a noticeable exception), the Delete code is more complicated than the

Insert one. This shouldn’t be surprising, since, for example, not all gaps can

be handled by the same piece of code; the first gap can only merge with (borrow

from) its successor, whereas the last gap can only merge with (borrow from) its

predecessor. This implies that we must detect at each level whether we drop at

the first (or last) gap. The fact also that we may merge with (borrow from) the

preceding gap has a couple of implications. First, in addition of keeping track of the
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int Insert(v)
int v;
{

nodePtr t, x;
int success;

x = head; /* x = current elm in search path */
bottom->key = v;
success = 1;
while (x != bottom) { /* do at each level */

while (v > x->key) /* find where you drop */
x = x->r;

/* if gap_size=3, or at bottom level & must insert ==> raise middle elm */
if (x->key > x->d->r->r->key) {

t = newnode;
t->r = x->r;
t->d = x->d->r->r;
x->r = t;
t->key = x->key;
x->key = x->d->r->key;

}
else if (x->d == bottom) /* if insert_Key already in DSL */

success = 0;
x = x->d;

}
if (head->r != tail) { /* raise height of DSL if necessary */

t = newnode;
t->d = head;
t->r = tail;
t->key = maxkey;
head = t;

}
return(success);

}

Figure 4.11: Insertion in linked list implementation of top-down 1-3 DSL

current gap, we also have to keep track of the preceding gap. Second, we cannot

simply “merge/borrow and then drop”, since we may lower the element we are

currently in (for example, when we are level 3 of 48, during the deletion of 51 from

the structure of Figure 4.4); we must instead “mark the gap to drop, merge/borrow

and then drop”. Of course, none of the above is conceptually hard, but putting all

these together, results in a deletion code quite longer than the insertion one.

The simplicity and performance of the given C code for the top-down 1-3 DSL

was compared with implementations of other versions of our deterministic skip lists

and with other competing data structures. More precisely, we considered:
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int Delete(v)
int v;
{

nodePtr x, px, nx, t;
int pred, lastAbove, success;

x = head->d; /* x = current elm in search path */
success = (x != bottom); bottom->key = v;
lastAbove = head->key; /* last key at level above */
while (x != bottom) { /* do at every level */

while (v > x->key) { /* find where you drop */
px = x; x = x->r; /* keeping track of the previous gap */

}
nx = x->d; /* mark where to drop at level below */
/* if {only 1 elm in gap to drop}, or {at bottom level & must delete} */
if (x->key == nx->r->key)

if (x->key != lastAbove) { /*** if does NOT drop in last gap ***/
t = x->r;
/* if 1 elm in next gap, or at bottom level */
if ((t->key==t->d->r->key) || (nx==bottom)) {

x->r = t->r; /* lower separator of current+next gap */
x->key = t->key; free(t);

}
else { /* if >=2 elms in next gap */

x->key = t->d->key; /* raise 1st elm in next gap & lower... */
t->d = t->d->r; /* ... separator of current+next gap */

}
}
else /*** if DOES drop in last gap ***/

if (px->key <= px->d->r->key) { /* if only 1 elm in previous gap */
if (nx == bottom) /* if del_Key is in elm of height>1 */

pred = px->key; /* predecessor of del_key at bottom level*/
px->r = x->r; /* lower separator of previous+current gap */
px->key = x->key; free(x); x = px;

}
else { /* if >=2 elms in previous gap */

/* t = last elm in previous gap */
t = (px->key == px->d->r->r->key ? px->d->r : px->d->r->r);
px->key = t->key; /* raise last elm in previous gap & lower... */
x->d = t->r; /* ... separator of previous+current gap */

}
else if (nx == bottom) /* if del_Key not in DSL */i

success = 0;
lastAbove = x->key; x = nx;

} /* while */
x = head->d; /* Do a 2nd pass; del_key might have been in elm of height>1 */
while (x != bottom) {

while (v > x->key) x = x->r;
if (v == x->key) x->key = pred;
x = x->d;

}
if (head->d->r == tail) { /* lower header of DSL, if necessary */

x = head; head = x->d; free(x);
}
return(success);

}

Figure 4.12: Deletion in linked list implementation of top-down 1-3 DSL
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1. Pugh’s implementation of the PSL. This is longer than the straightforward

PSL code, since it is optimized in a couple of ways. First, the parameter p

has the value .25; this reduces the number of calls to the random number

generator by a factor of 16 (assuming 32-bits words), since one may strip off

2 bits from the outcome of the random number generator every time a new

random number is required. Second, the PSL is never allowed to grow higher

than 1 plus its current height.

2. A naive, recursive implementation of the AVL tree, based on the code in [21].

3. A highly optimized, non-recursive implementation of the AVL tree, written

by J. Macropol of Contel (also used in the timings in [40]). In this code, each

tree node, in addition to its 2 balance bits, has also a pointer to its parent

node. Furthermore, the number of malloc calls is reduced by a factor of 100,

since each call to malloc returns space sufficient for 100 tree nodes.

4. A red-black tree implementation of the top-down 2-3-4 tree, based on the

code given in [42] and [24].

5. The linked list implementation of the top-down 1-3 DSL, given in Figures 4.8

to 4.12. Recall that this is another implementation of top-down 2-3-4 tree.

6. The linked list implementation of the top-down k-(2k+1) DSL, for k = 4.

This is an extension of the given 1-3 DSL code, based on storing in each node

the gap size to the right of the node. Although this extra field is clearly

redundant for the nodes at level 1, we chose, for simplicity, to have all nodes

of the same size.

7. The horizontal array implementation of the top-down k-(2k+1) DSL, for k=2

and for k=6. Each node in this structure is as shown in Figure 4.7, with the



72 CHAPTER 4. DETERMINISTIC SKIP LISTS

addition of a “counter” field per node for the number of keys stored in that

node.

To get a feeling about how (un)complicated the above algorithms are, we report

in Table 4.1 the number of lines of their C implementations. For each algorithm,

we give two numbers: the first number is referring to the various declarations,

the initializations, the search and the insertion procedure; the second number is

referring to all the above, plus the deletion procedure. For example, for the 1-3

DSL code given in Figures 4.8, 4.9, 4.10, 4.11 and 4.12, we need 8, 13, 10, 32 and

62 lines respectively, resulting in a total of 125 lines. Notice here that we do not

count the empty or comment lines, but we do count lines containing a single “{”
or “}”. In all of our implementations we used the same coding style and layout;

we adjusted other people’s implementations to match our layout, but we did not

modify their coding style to match ours.

As an indication of how well these algorithms may perform in practice, we

considered the space and time requirements for n random insertions in an initially

empty structure. The experiments were run on a MIPS M2000 machine, running

UMIPS 4.51 Unix, during a period of very low work-load. The given CPU times

include both “user” and “system” times. As far as the space requirements are

concerned, UMIPS 4.51 is identical to 4.3BSD Unix, an environment many of us

may find ourselves into. This version of Unix is a (binary) buddy memory allocation

system, in which requests for memory of size up to 508 bytes result in the allocation

of a number of bytes equal to the smallest power of 2 adequate for 4 bytes (used for

administrative purposes) more than the requested space. For example, a call for 5,

12, 13, or 29 bytes will return 16, 16, 32 and 64 bytes respectively. In our system, the

pointers and our integer keys were 4 bytes each. We can now see why, for example,

an AVL tree of 1,000,000 keys took 32M of space. Each node, containing 1 key, 2
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n PSL AVL AVL red-black l.l. 1-3 l.l. 4-9 h.a. 2-5 h.a. 6-13
(naive) (opt.)

100 .0015 .0025 .0016 .0025 .0018 .0018 .0015 .0014
250 .0041 .0068 .0042 .0068 .0049 .0048 .0038 .0039
500 .0088 .014 .0088 .014 .010 .011 .0082 .0080
750 .014 .023 .014 .023 .016 .016 .013 .013

1,000 .019 .032 .019 .029 .022 .021 .017 .017
2,500 .052 .091 .049 .087 .061 .061 .047 .047
5,000 .12 .20 .11 .19 .14 .14 .098 .096
7,500 .20 .32 .17 .30 .24 .22 .16 .15
10,000 .28 .46 .23 .43 .35 .32 .22 .21
25,000 .98 1.3 .73 1.3 1.2 1.1 .65 .60
50,000 2.3 2.9 1.7 3.2 3.0 2.4 1.4 1.3
75,000 3.8 4.7 2.7 5.1 5.1 4.1 2.3 2.1
100,000 5.5 6.6 4.0 7.4 7.4 5.6 3.2 3.0
250,000 16.0 18.1 11.6 19.8 22.4 17.3 9.4 8.3
500,000 38.7 42.7 25.4 47.5 53.3 48.5 20.6 18.2
750,000 73.3 79.7 45.1 94.8 119.7 103.5 35.7 29.1

1,000,000 124.2 117.2 67.0 135.6 176.4 163.7 51.0 41.8

C lines 95/120 108/166 248/316 96/171 63/125 82/153 84/167
malloc’s n n .01n n 1.570n 1.167n .313n .113n
bytes 20n 32n 32n 32n 25n 37n 20n 14n

Table 4.1: Timings for n random insertions

pointers and (normally) 2 balance bits, requires more than 12 bytes, and it will thus

be allocated 32 bytes; the addition of an extra “parent” pointer will not alter the

space requirements at all. Similarly, each node in the linked list implementation of a

DSL with and without counters will be allocated 32 and 16 bytes respectively. The

reader should now be able to verify that, given the number of performed malloc’s

in Table 4.1, the space requirements for all considered structures (except for the

PSL) are indeed as stated.

We would like to emphasize at this point that Table 4.1 does not tell us which

algorithm takes less space, or runs faster, or even is simpler; it just gives us a very

rough idea. The figures of Table 4.1 should be only interpreted as an indication

that our new proposed algorithms are indeed competitive with existing schemes;

whether or not they are the best choice for a particular application will depend on
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the specific needs of the application (average/worst space/time minimization), on

the particular system they will run on, and on coding details.

To illustrate the significance of coding details, consider the change of the

if (x->key > x->d->r->r->key)

line in our insertion code of Figure 4.11 into the equivalent

if (x->key == x->d->r->r->r->key)

line. Our timings revealed that such a change results in an average slow-down of

about 20%, due to the extra pointer that we have to follow in the second case.

Other coding optimizations may be pertinent to the particular system the DSL

programs are running on. For example, the array implementation of any DSL is

especially suited for (binary) buddy systems, like 4.3BSD Unix. We can tune our

structure by choosing the physical heights of its elements to be such that the entire

element will fit exactly into the space allocated by the memory manager. For

example, if our keys and pointers are 4 bytes each, and if we also store the logical

height of each DSL element in the element itself, then we should choose elements

of physical heights 2k−3, for k = 2, 3, . . .. By doing so, the array implementation

of any DSL does not require more space than its naive counterpart described in

Section 4.1, and it improves the Θ(lg2 n) worst case update cost of the latter to

the desired Θ(lg n). It’s also important to observe here that such a fine tuning of

our structure will not affect more than a handful of lines in our code; all we need

is a function “int PH(k)”, computing the physical height of an element of logical

height k, since, for example, we can then write

if (PH(elm->h) == elm->h)

newNodeOfHeight(PH(elm->h+1)}
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to raise an element if necessary.

It is also worth noting that the array implementation of our bottom-up DSLs

described in Section 4.2, can be streamlined somewhat. If the Θ(lg lg n) (malloc)

calls to the storage manager are of major concern, we can sidestep most of them by

simply keeping, along with the structure, Θ(lg lg n) free element nodes, one of each

physical size. When an insertion takes place, we initially request a free element of

the smallest physical size from our set of free nodes, and if some elements have to

grow, we repeatedly request a new element one size larger and we release the old

one. This leaves our set of free nodes with one node of each size except for the final

node requested. A single call now to the memory manager rectifies the situation.

The Θ(lg lg n) calls to the storage manager can also be avoided if we choose

to raise the elements’ heights top-down, rather than bottom-up. We can do so, if,

during our search, we record the gap we are dropping into. We can then determine

which element has to grow to which height. Suppose that we find out that the

highest element that has to grow is of height k and that it has to grow to height

k+j. Then, the next lowest element that will grow, will grow to height exactly k.

Thus, we can make only one call to the memory manager for an element of height

k+j, since we may subsequently reuse the freed element of height k for the new

element to grow to height k, etc.

All the above optimizations are by no means must’s or even necessarily worth

doing. We simply wanted to highlight certain points in our algorithms, which, if

fine-tuned properly and according to the system used, they may lead to significant

improvements, both in space and in running time.
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4.5 Summary

In this chapter, we introduced several versions of deterministic skip lists, simple data

structures, based on the notion of Pugh’s skip list, but with guaranteed logarithmic

search and update costs.

We defined k-2k and k-(2k+1) DSLs, for k=1, 2, 3, . . ., and we presented bottom-

up algorithms for both of them. In particular for the k-(2k+1) DSLs, top-down

update algorithms also exist, and they are simpler and faster than their bottom-

up counterparts. The logarithmic worst case costs are achieved by using either

an array, or a linked list, or a horizontal array implementation. The linked list

implementation is a binary search tree with special properties, combining features

of both the standard binary search tree and Pugh’s original skip list. The linked

list implementation may also be viewed as the starting point for deriving the array

implementation (or Pugh’s PSL) on one hand, and the horizontal array implemen-

tation (or the B+ tree) on the other hand. Finally, our experimental results showed

that our algorithms compare favorably in terms of simplicity, space requirements

and running time with other balanced search tree schemes.



Chapter 5

Probabilistic Skip Lists Revisited

The derivation of the PSL average search cost in Chapter 3 was based on three

key remarks. First, the search cost can be split into the height of the PSL and the

number of horizontal steps; second, the average height and the average number of

horizontal steps are related; and third, the height is related to some well-studied

quantities of tries. Unfortunately, this method cannot be extended (easily) to the

computation of the variance of the search cost, for a couple of reasons. First, there

is no (obvious) relationship between the variance of the height and the variance of

the number of horizontal steps; and second, the height and the number of horizontal

steps are not independent random variables, and therefore, their covariance should

be computed as well.

In this chapter, we consider the variance of the search cost for +∞ in a PSL, and

we follow a totally different approach towards its derivation. By using probability

generating functions, exponential generating functions, as well as binomial, Poisson

and Mellin transforms, and by applying Rice’s method, we obtain exact and asymp-

totic expressions for this variance under the fixed population model (that is, when

77
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the PSL has n keys), and an asymptotic expression for the same variance under the

Poisson model (that is, when the PSL has a variable number of keys following the

Poisson distribution). In the course of our work, we also derive an asymptotic ex-

pression for the expected value of the search cost for +∞ under the Poisson model.

This chapter is after Poblete’s preliminary results [38] for the non-oscillatory part

of the asymptotic costs under the Poisson model.

5.1 Notation and Related Results

The notation used in this chapter is that of Chapter 3, stated in Section 3.2; the

reader is thus advised to review it, before proceeding further.

Several attempts have been made to show that the search cost “usually” stays

close to its expected value. Pugh showed [39] that

C(m)n ¹ Y (m)n , (5.1)

where “¹” means stochastically smaller,1 and Y (m)n is a random variable he defined

precisely. As an immediate consequence of his expression for Y (m)
n , Pugh derived

E(Y (m)n ) =


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log 1

p
(m−1) + 1

q
+ 1 for m = 2, 3, . . ., n+1

log 1
p
n+

1

q
for m = 1

(5.2)

and

Var(Y (m)n ) =
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1

m−1
)

for m=2, 3, . . . , n+1

p

q2
for m=1

(5.3)

1Given two random variables X and Y , we have X ¹ Y if and only if Pr[X≥ t] ≤ Pr[Y ≥ t]

for all t.
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Although stochastical ordering of two random variables implies ordering of their

expected values (and this is precisely how Pugh derived, from (5.1) and (5.2), his

bound (3.2) of E(C(m)n )), it does not imply ordering of their variances.2 Therefore,

(5.1) does not imply that the expression in (5.3) is an upper bound of Var(C (m)
n ).

However, we may use (5.3) to bound the probability that the search cost will exceed

a certain value, since for any ε>0 we have

Pr[C(m)n ≥ E(Y (m)n )+ε] ≤ Pr[Y (m)n ≥ E(Y (m)n )+ε] by (5.1)

≤ Pr[ |Y (m)n −E(Y (m)n )| ≥ ε]

≤ Var(Y (m)n )

ε2
by Chebyshev’s inequality

So, for example, for the search cost for +∞ we get (for n≥2)

Pr

[
Fn ≥

1

p
log 1

p
n+

1

q
+1+ε

]
≤ 1

ε2

(
q

p2
log 1

p
n+

p

q2
+
1

p
− 1

p2

(
q+

1

n

))
, for any ε>0.

Sen also showed [43] that

Pr[C(m)n ≥c log 1
p
n] = O

(
1

n2

)
, for some constant c.

Finally, Devroye proved [12, 13] the more refined results

C(m)n − log 1
p
n+ log 1

p
(m−1)

log 1
p
(m−1)

P−→ 1

p

and
C(m)n − log 1

p
n− q

p
log 1

p
(m−1)

√
q
p2
log 1

p
(m−1)

D−→ N (0, 1),

where
P−→ and

D−→ denote convergence in probability and in distribution respec-

tively, and N (0, 1) is the standard normal distribution. These results suggest that

Var(C(m)n )∼ q
p2
log 1

p
m.

2If Pr[X=1] = Pr[X=5] = .5 and Pr[Y =4] = Pr[Y =6] = .5 , then we have X¹Y , but

4 = Var(X) > Var(Y ) = 1.
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In this chapter, we derive an exact expression for Var(C (n+1)n ) = Var(Fn), and

asymptotic expressions for Var(Fn) and Var
(
F (z)

)
, where F (z) is the Poissonized

version of Fn with mean z. On our way there, we also derive an asymptotic expres-

sion for E
(
F (z)

)
.

As stated in the beginning of Chapter 2, the understanding of our results requires

only the knowledge of Sections 2.1 and 2.2, but the understanding of the derivations

of our results presumes the knowledge of the entire Section 2.3. For brevity, in our

proofs we will use the notation

an
def
= E(Fn) and bn

def
= E

(
Fn(Fn−1)

)

and

A(z)
def
= E

(
F (z)

)
= P(an; z) and B(z)

def
= E

(
F (z)(F (z)−1)

)
= P(bn; z);

notice that the last two equalities follow from Lemma 2.1.

5.2 The Set-up

To derive moments of Fn, we will use a fairly standard — in principle — method:

we will consider the pgf of Fn

Pn(z)
def
=

∑

k≥0

Pr[Fn=k]zk, integer n ≥ 0,

we will obtain a recurrence for it, and will differentiate the latter at z=1.

Lemma 5.1 Under the fixed population model, the pgf of Fn satisfies the recurrence

Pn(z) = (1− z)δn,0 +
∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+kzk+1Pl(z)

}
, for n≥0.
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Proof: Clearly, for any PSL with at least 1 element, the search cost for +∞ is ≥ 2,

that is, {
Pr[F0=0] = 1
Pr[Fn=0] = Pr[Fn=1] = 0 for n ≥ 1

. (5.4)

Fn takes a value r (r ≥ 2) in the following two cases. First, if the PSL has exactly

r−1 elements, all of height 1. Second, if the PSL has at least one element of height

≥ 2, and some additional conditions hold. Let R be the rightmost element of height

≥ 2 in this case. R splits the elements of the PSL into a group of k (≥ 0) elements

of height 1 to its right, and a group of n−k−1 elements of various heights to its

left. Suppose that l (≥ 0) of these n−k−1 elements are of height ≥ 2, and consider

furthermore the PSL S ′ resulting from the given PSL S by removing level 1 from

all n elements of S. Clearly, S ′ has l+1 elements, and the search cost for +∞ in it

will be r−k−1 if and only if Fn = r. (For example, for the PSL of Figure 3.1, we

have F9=9, k=0 and l=5.) Putting now all these together, we get

Pr[Fn=r] = qnδn,r−1+
∑

l+j+k=n−1
l,j,k≥0

{(
l+j

j

)
plqjpqkPr[Fl+1=r−k−1]

}
, for n≥1, r≥2,

and if we multiply both sides of this by zr, and add the resulting equalities for all

r ≥ 2, we get

Pn(z) = qnzn+1 +
∑

l+j+k=n−1
l,j,k≥0

{(
l+j

j

)
pl+1qj+kzk+1Pl+1(z)

}
, for n≥1

by using the initial conditions (5.4), or

Pn(z) = qnzn+1 + (1−z)δn,0 +
∑

l+j+k=n−1
l,j,k≥0

{(
l+j

j

)
pl+1qj+kzk+1Pl+1(z)

}
, for n≥0

since P0(z)=1 from (5.4). The result now follows, if we observe that for l=−1 the

sum in the last expression reduces to qnzn+1, since its only non-zero term occurs

when j=0.
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5.3 Expected Values

Before we plunge into the derivation of the variance of the search cost, it is instruc-

tive to look at the derivation of the expected value of it. In both cases, we are

going to perform the same steps and use the same techniques, but — as expected

— the derivation of the expected value will be simpler and easier to understand.

Lemma 5.2 Under the fixed population model, the expected cost for the search of

+∞ in a PSL of n keys satisfies the recurrence




a0 = 0

an =
1− qn+1

p
− δn,0 +

n∑

k=0

{(
n

k

)
pkqn−kak

}
, for n≥0

. (5.5)

Proof: If we differentiate the recurrence of Lemma 5.1 with respect to z, and we

evaluate the resulting expression at z=1, we get

an = −δn,0 +
∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+k(al+k+1)

}
, for n ≥ 0,

if we recall that Pr(1)= 1 from (2.6), and ar=P ′r(1) from (2.7). We now simplify

the sum in the last expression, by splitting it into two sums. The first sum is

∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+kal

}
=

n∑

l=0

plqn−lal
n−l∑

j=0

(
l−1+j

j

)
,

which gives
∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+kal

}
=

n∑

l=0

(
n

l

)
plqn−lal (5.6)

by applying (2.14) in the inner sum. The second sum is

∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+k(k+1)

}
=

n∑

l=0

plqn−l
n−l∑

j=0

(
l+j−1

j

)
(n+1−l−j),
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and since the inner sum in this case is

n−l∑

j=0

(
l−1+j

j

)
(n+1−l−j) = (n+1)

n−l∑

j=0

(
l−1+j

j

)
−

n−l∑

j=0

(
l+j−1
l−1

)
(l+j)

= (n+1)

(
n

l

)
− l

n−l∑

j=0

(
l+j

l

)
by (2.14)

= (l+1)

(
n+1

l+1

)
− l

(
n+1

l+1

)
, by (2.14)

=

(
n+ 1

l + 1

)
, (5.7)

the second sum becomes

∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+k(k+1)

}
=

1− qn+1

p

by applying the binomial theorem. The result now follows.

Recurrences similar to the one of the last lemma have appeared repeatedly in the

analyses of trie-related algorithms. Knuth, for example, considers the recurrence





x0 = x1 = 0

xn = cn +
n∑

k=0

(
n

k

)
pkqn−k(xk+xn−k), for n≥2

in the context of radix exchange sort, and the recurrence





x0 = x1 = 0

xn = cn +m1−n
n∑

k=0

(
n

k

)
(m−1)n−kxk, for n≥2

in the context of m-ary tries. He solves both of them exactly for arbitrary 〈cn〉
[26, Ex. 5.2.2.53 and Ex. 6.3.17] by using binomial transforms, and he derives

asymptotic expressions for the first recurrence when, for example, cn = (n−1)pq

[26, Ex. 5.2.2.53] (xn is the average number of key exchanges), and for the second

recurrence [26, Ex. 6.3.18, Ex. 6.3.19 and Ex. 6.3.31] when cn=1 (xn is the average
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number of nodes in an m-ary trie), when cn = n (xn is the average external path

length in an m-ary trie), and when cn = n(1−21−n) and m= 2 (xn is the average

external path length in a Patricia trie). Szpankowski considers [47, Theorem 1] a

generalization of the recurrence




x0, x1 = arbitrary

xn = cn +
n∑

k=0

(
n

k

)
pkqn−kxk, for n≥2

,

which appears in a variety of algorithms; he solves this recurrence exactly for arbi-

trary 〈cn〉, and asymptotically when cn is a linear combination of
(
n
r

)
vn.

Our recurrence (5.5) is precisely in the form of the last recurrence. This should

come as no surprise, since, as discussed in Chapter 3, an is a well-studied quantity

appearing in the analyses of tries. Although we already have an exact expression

for an (from Theorem 3.1), and/or we could simply quote an equivalent expression

for it from Szpankowski’s solution, we choose to re-solve (5.5) exactly, since half

of the work required for it has to be done anyhow towards the derivation of the

average Poissonized cost.

Consider the generalization of (5.5)




a0 = 0

an = cn +
n∑

k=0

{(
n

k

)
pkqn−kak

}
, for n≥0

, (5.8)

where 〈cn〉 is an arbitrary sequence. Let A(z)=P(an; z) be the Poisson transform

of 〈an〉. By definition, we have

P
(

n∑

k=0

{(
n

k

)
pkqn−kak

}
; z

)
= e−z

∑

n≥0

(
n∑

k=0

(
n

k

)
(pkak)q

n−k

)
zn

n!
,

and since
∑

j≥0

ajp
j z

j

j!
=epzA(pz) and

∑

j≥0

qj
zj

j!
=eqz , the last equality implies

P
(

n∑

k=0

{(
n

k

)
pkqn−kak

}
; z

)
= A(pz), (5.9)



5.3. EXPECTED VALUES 85

according to the definition of the binomial convolution in (2.37). Therefore, if we

take the Poisson transform of both sides of (5.8), we get

A(z)− A(pz) = P(cn; z). (5.10)

This equation will be the starting point for the derivation of an exact expression

for an=E(Fn) and an asymptotic expression for A(z)=E
(
F (z)

)
. We first work

towards that derivation of an.

Lemma 5.3 The exact solution of recurrence (5.8) is

an =
n∑

k=1

(
n

k

)
(−1)k ĉk

1− pk
, integer n≥0,

where ĉk is the binomial transform of ck.

Proof: Let Ê(z)
def
=
∑

k≥0

ĉn
zn

n!
be the egf of 〈ĉn〉. We rewrite (5.10) as

A(z)− A(pz) = Ê(−z) (5.11)

by using Lemma 2.2. Since

A(z) = e−z
∑

n≥0

an
zn

n!

=
∑

k≥0

(−1)k z
k

k!

∑

n≥0

an
zn

n!

=
∑

n≥0

n∑

k=0

(
n

k

)
(−1)n−kak

zn

n!
, by (2.37)

if we extract the coefficients of zn

n!
from both sides of (5.11), we get

n∑

k=0

(
n

k

)
(−1)n−kak − pn

n∑

k=0

(
n

k

)
(−1)n−kak = ĉn(−1)n, integer n≥0.

We now rearrange the terms of the last as

n∑

k=0

(
n

k

)
(−1)kak =

ĉn
1− pn

, integer n≥1,
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and the result follows from property (2.42).

As an application of the last lemma, we may re-derive the exact value of E(Fn).

Indeed, for

cn =
1− qn+1

p
− δn,0 (5.12)

we have

ĉk =
k∑

j=0

(
k

j

)
(−1)j

(
1

p
− q

p
qj − δj,0

)
by dfn. of binomial transform

= 0− q

p

k∑

j=0

{(
k

j

)
(−q)j

}
−
(
k

0

)
(−1)0 by binomial theorem

= −q

p
pk − 1, by binomial theorem & 1−q=p

and therefore, Lemmata 5.2 and 5.3 yield

E(Fn) = an =
n∑

k=1

{(
n

k

)
(−1)k−qp

k−1 − 1

1− pk

}
. (5.13)

It can of course be verified that this expression is equivalent to the 1
p
Vp(n+1)+1

of Theorem 3.1.

We now go back to equation (5.10) as promised; we will work towards the

derivation of E
(
F (x)

)
. Since, in our case, cn is given by (5.12), we can easily verify

that (5.10) becomes

A(z)− A(pz) = −
(
e−z − 1

)
− q

p

(
e−pz − 1

)
. (5.14)

Theorem 5.1 Under the Poisson model with mean z, the expected cost for the

search of +∞ in a PSL is

E
(
F (z)

)
=

1

p
log 1

p
z− 1

p

(
γ

ln p
+
1

2

)
+1−1

p
f0, 1

p
(z) +O

(
1

zd

)
as z→∞, for any d>0,

where the defined in (2.3) f0, 1
p
(z) is a periodic function of log 1

p
z, with small mag-

nitude.
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Proof: We are taking the Mellin transforms of both sides of (5.14). Property (2.45),

together with the special case

M(e−z−1; s) = Γ(s), for − 1<<(s)<0

of the Cauchy-Saalschütz identity (2.44), and

M(e−pz−1; s) =
1

ps
Γ(s), for − 1<<(s)<0, (5.15)

which follows from the previous and (2.45), give

A∗(s)− p−sA∗(s) = −Γ(s)− q

ps+1
Γ(s), for − 1<<(s)<0,

where A∗(s) is the Mellin transform of A(z). The last can be rearranged as

A∗(s) = −1 + qp−s−1

1− p−s
Γ(s), for − 1<<(s)<0, (5.16)

and the right-hand side of this is the Mellin transform that we inverted in Exam-

ple 2.1. This completes the proof.

A quick look at Theorems 3.3 and 5.1 reveals that the asymptotic expected

costs under the fixed population model and under the Poisson model are the same.

Although — to the best of our knowledge — this is indeed the case for all algorithms

studied so far under the two models, one should be cautious, since the above is not

always true. One may easily find algorithms for which the expected values under

the two models are not even of the same order; if, for example, Xn denotes the space

complexity for writing down a truth table, then E(Xn)=2n, but E
(
X(z)

)
=ez from

Lemma 2.1.

5.4 Variances

In order to derive the variance of the search cost, we first derive the second factorial

moment of it. The derivation of the latter is done in a manner completely analo-
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gous to the derivation of the expected value in the preceding section: we obtain a

recurrence for the second factorial moment, and we subsequently take its Poisson

transform, from which we get exact and asymptotic values.

Lemma 5.4 Under the fixed population model, the second factorial moment of the

search cost for +∞ in a PSL of n keys satisfies the recurrence





b0 = 0

bn=−
2qn+1

p
n+

2q(1−qn)

p2
+2

n∑

k=0

{(
n+1

k+1

)
pkqn−kak

}
+

n∑

k=0

{(
n

k

)
pkqn−kbk

}
, for n≥0

(5.17)

Proof: If we differentiate the recurrence of Lemma 5.1 twice with respect to z, and

we evaluate the resulting expression at z=1, we get

bn =
∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+k{k(k+1) + 2(k+1)al + bl}

}
, for n≥0,

if we recall that Pr(1) = 1 from (2.6), ar = P ′r(1) from (2.7), and br = P ′′r (1) from

(2.8). The result now follows by splitting the sum in the last expression into three

sums, and by simplifying each of them separately. The first sum becomes

∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+kk(k + 1)

}

= pqn−1
n∑

k=0

k(k+1)
n−k∑

l=0

(
n−k−1
n−k−l

)(
p

q

)l−1

= pqn−1n(n+1)

(
−1
0

)(
p

q

)−1
separate “k=n” term

+ pqn−1
n−1∑

k=0

k(k+1)
n−k∑

l=0

(
n−k−1

l−1

)(
p

q

)l−1
by

(
r
s

)
=
(

r
r−s

)
for r≥0

= n(n+1)qn + pqn−1
n−1∑

k=0

k(k+1)

(
1+

p

q

)n−k−1
by binomial theorem
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= n(n+1)qn + p
n−1∑

k=0

k(k+1)qk by p+q=1

= n(n+1)qn +

(
−qnn2 − 1+q

p
qnn+

2q(1−qn)

p2

)
by geometric series

= −2qn+1

p
n+

2q(1−qn)

p2
,

the second sum (divided by 2) becomes

∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+k(k+1)al

}

=
n∑

l=0

plqn−lal
n−l∑

j=0

(
l−1+j

j

)
(n+1−l−j)

=
n∑

l=0

(
n+ 1

l + 1

)
plqn−lal, by (5.7)

and the third sum is

∑

l+j+k=n
l,j,k≥0

{(
l+j−1

j

)
plqj+kbl

}
=

n∑

k=0

(
n

k

)
pkqn−kbk,

as we have already shown in (5.6).

We may now use Lemma 5.3 to derive an exact expression for bn=E
(
Fn(Fn−1)

)
;

Var(Fn) will follow immediately.

Theorem 5.2 Under the fixed population model, the second factorial moment of

the search cost for +∞ in a PSL of n keys is

E
(
Fn(Fn−1)

)
=

2q

p2

n∑

k=1

{(
n

k

)
(−1)k pk

1− pk
(k − 1)

}

− 2

p

n∑

k=1

{(
n

k

)
(−1)k pk

(1− pk)2
(1 + qpk−1)

}

+
2q

p2

n∑

k=1





(
n

k

)
(−1)k pk

1− pk

k∑

j=1

pj

1− pj



 .
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Proof: Lemma 5.3 gives us

bn =
n∑

k=1

(
n

k

)
(−1)k ĉk

1− pk
, integer n ≥ 0 (5.18)

as the solution of the recurrence of Lemma 5.4, where ĉk is the binomial transform

of ck, that is,

ĉk =
k∑

r=0

{(
k

r

)
(−1)r

(
−2qr+1

p
r +

2q(1−qr)

p2
+ 2

r∑

l=0

{(
r+1

l+1

)
plqr−lal

})}
, for k≥0.

We now proceed by splitting the last sum into three sums in the obvious way. The

first sum is
2q2

p

k∑

r=0

{(
k

r

)
r(−1)r−1qr−1

}
= 2q2kpk−2, (5.19)

since differentiation of the binomial theorem (2.13) with respect to x, when y=1,

gives
k∑

r=0

(
k

r

)
rxr−1 = k(1 + x)k−1, real x,

which for x=−q establishes (5.19). The second sum is

2q

p2

k∑

r=0

{(
k

r

)
(−1)r(1− qr)

}
= −2qpk−2

as it follows easily from the binomial theorem. We therefore have

ĉk = 2qpk−2(qk − 1)− sk, (5.20)

where, by using the exact expression for al in (5.13),

sk
def
= 2

k∑

r=1

(
k

r

)
(−1)r

r∑

l=0

(
r + 1

l + 1

)
plqr−l

l∑

j=1

(
l

j

)
(−1)j 1 + qpj−1

1− pj
,

and we now simplify the above triple sum. First, we rearrange the order of sum-

mation, to get

sk = 2
k∑

l=1

k∑

j=1

(
l

j

)
(−1)j

(
p

q

)l
1 + qpj−1

1− pj

k∑

r=l

(
k

r

)(
r + 1

l + 1

)
(−q)r, (5.21)
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and we proceed by computing the rightmost sum in the last expression. If we

differentiate the identity
∑

r≥0

(
k
r

)
xr+1 = x(1+x)k (following from the binomial

theorem) l+1 times with respect to x, we can verify that we get

∑

r≥0

(
k

r

)
(r+1)l+1 xr−l = kl (1+x)k−l−1(l+1+kx+x), integer l≥0, real x.

We now multiply both sides of the last by xl

(l+1)!
to get

∑

r≥0

(
k

r

)(
r+1

l+1

)
xr =

(
k

l

)
(1+x)k−1

l + 1

(
x

1+x

)l
(l+1+kx+x), integer l≥0, real x,

and by setting x=−q, we can rewrite (5.21) as

sk = 2
k∑

l=1

k∑

j=1

(
l

j

)
(−1)j

(
p

q

)l
1+qpj−1

1− pj

(
k

l

)
pk−1

l + 1

(
−q

p

)l (
(l + 1)− (k + 1)q

)

= 2pk−1




k∑

l=1

k∑

j=1

(
k

l

)(
l

j

)
(−1)l+j 1 + qpj−1

1− pj

− q(k + 1)
k∑

l=1

l∑

j=1

(
k

l

)(
l

j

)
(−1)l+j 1 + qpj−1

1− pj
1

l + 1


 .

Since now the first double sum above is

k∑

l=1

k∑

j=1

(
k

l

)(
l

j

)
(−1)l+j 1 + qpj−1

1− pj
=

1 + qpk−1

1− pk

by (2.41), and the second double sum is

k∑

l=1

l∑

j=1

(
k

l

)(
l

j

)
(−1)l+j 1+qpj−1

1− pj
1

l+1

=
1

k+1

k∑

j=1

(−1)j 1+qpj−1

1− pj

k∑

l=0

(
k+1

1+l

)(
l

j

)
(−1)l by

(
0
j

)
=0 for j ≥ 1

=
1

k+1

k∑

j=1

(−1)j 1+qpj−1

1− pj

(
(−1)k+2

(
−1

j−k−1

)
+ (−1)j

)
by (2.15)

=
1

k+1

k∑

j=1

1+(1−p)pj−1

1− pj
by

(
−1
m

)
=0 for m<0
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=
1

k+1

k∑

j=1

{
1 +

pj−1

1− pj

}

=
1

k+1


k +

k∑

j=1

pj−1

1−pj


 ,

we get

sk =
2

p
pk

1+qpk−1

1−pk
− 2q

p2
pkkp− 2q

p2
pk

k∑

j=1

pj

1−pj
. (5.22)

The result now follows from (5.18), (5.20) and (5.22).

Corollary 5.1 Under the fixed population model, the variance of the search cost

for +∞ in a PSL of n keys is

Var(Fn) =
2q

p2

n∑

k=1

{(
n

k

)
(−1)k pk

1− pk
(k − 1)

}

− 2

p

n∑

k=1

{(
n

k

)
(−1)k pk

(1− pk)2
(1 + qpk−1)

}

+
2q

p2

n∑

k=1





(
n

k

)
(−1)k pk

1− pk

k∑

j=1

{
pj

1− pj

}


−
n∑

k=1

{(
n

k

)
(−1)k 1 + qpk−1

1− pk

}

−
(

n∑

k=1

{(
n

k

)
(−1)k 1 + qpk−1

1− pk

})2
.

Proof: Immediate from (5.13) and Theorem 5.2, since Var(Fn) = E
(
Fn(Fn−1)

)
+

E(Fn)− {E(Fn)}2.

As promised in the beginning of this section, we continue with the derivation

of asymptotics for the second factorial moment of F (z). The variance of F (z) will

follow immediately.
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Theorem 5.3 Under the Poisson model with mean z, the second factorial moment

of the search cost for +∞ in a PSL is

E
(
F (z)(F (z)−1)

)
=

1

p2
log21

p
z −

(
2γ

p2 ln p
+

2

p2
f0, 1

p
(z)

)
log 1

p
z

+
2q

p2 ln p
+

γ2

p2 ln2 p
+

π2

6p2 ln2 p
− 1

6p2
− 2q

p2
∑

k≥1

kpk

1− pk

− 2q

p2
f1, 1

p
(z)− 2

p2 ln p
g0, 1

p
(z)

+O
(
1

zd

)
as z→∞, for any d>0,

where the defined in (2.3) and (2.4) f0, 1
p
(z), f1, 1

p
(z) and g0, 1

p
(z) are periodic func-

tions of log 1
p
z, with small magnitude.

Proof: We start by taking the Poisson transform of the recurrence of Lemma 5.4.

Recall that A(z)=P(an; z) and B(z)=P(bn; z)=E
(
F (z)(F (z)−1)

)
. We have

P
(

n∑

k=0

{(
n

k

)
pkqn−kbk

}
; z

)
= B(pz)

as in (5.9), and we can verify

P
(
−2qn+1

p
n+

2q(1−qn)

p2
; z

)
= −2q2

p
ze−pz − 2q

p2

(
e−pz − 1

)
.

To find the Poisson transform of the remaining term in (5.17), we observe that the

egf of 〈pnan〉 is epzA(pz), and thus the egf of 〈pn−1an−1〉 is
∫ z

0
eptA(pt)dt by

(2.36). Since also the egf of 〈qn〉 is eqz, it follows from (2.37) that the binomial convo-

lution

〈
n∑

j=0

(
n

j

)
pj−1aj−1q

n−j

〉
of the last two sequences has egf eqz

∫ z

0
eptA(pt)dt,

and (2.35) now implies that the egf of

〈
n+1∑

j=0

(
n+1

j

)
pj−1qn+1−jaj−1

〉
is eqzepzA(pz)+

qeqz
∫ z

0
eptA(pt)dt since A(0)=0. Therefore,

P
(

n∑

k=0

{(
n+ 1

k + 1

)
pkqn−kak

}
; z

)
= A(pz) + qe−pz

∫ z

0
eptA(pt)dt,
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and thus, the Poisson transform of (5.17) results in

B(z)−B(pz) = −2q2

p
ze−pz− 2q

p2
(e−pz−1)+2A(pz)+2qe−pz

∫ z

0
eptA(pt)dt. (5.23)

This is similar to (5.14) — which we solved by taking its Mellin transform — but

the presence of A(pt) in the integrand makes it more complicated; so we still have

some more work to do. The asymptotic expression for A(x) from Theorem 5.1 is

not appropriate for our purposes, because it contains a O(x−d) term. Instead, we

may solve (5.14) iteratively, to get

A(x) = lim
k→∞

{
A(pkx)

}
−
∑

k≥0

{
e−p

kx − 1
}
− q

p

∑

k≥1

{
e−p

kx − 1
}
,

or

A(x) = −

1

p

∑

k≥1

{
e−p

kx − 1
}
+ e−x − 1


 , (5.24)

since lim
k→∞

{
A(pkx)

}
=0. We may now use this expression for A(x) to compute the

integral in (5.23) term-by-term. Indeed,

∫ z

0
eptA(pt)dt = −1

p

∑

k≥1

∫ z

0
ept
(
e−p

k+1t − 1
)
dt −

∫ z

0
ept
(
e−pt − 1

)
dt,

and routine integration yields

∫ z

0
ept
(
e−p

k+1t − 1
)
dt =

−epz + epzpk + epz−p
k+1z − pk

p(1− pk)

and
∫ z

0
ept
(
e−pt − 1

)
dt = z − 1

p
(epz − 1) .

Therefore, after some algebra, we get

∫ z

0
eptA(pt)dt = − 1

p2
(epz − 1)

∑

k≥1

pk

1− pk
− 1

p2
epz

∑

k≥1

e−p
k+1z − 1

1− pk
− z +

1

p
(epz − 1) ,
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and substitution of the last into (5.23) yields

B(z)−B(pz) = −2q

p
ze−pz − 2q(p+ 1)

p2

(
e−pz − 1

)
+ 2A(pz)

+
2q

p2

(
e−pz − 1

)∑

k≥1

pk

1− pk
− 2q

p2
∑

k≥1

e−p
k+1z − 1

1− pk
. (5.25)

Now, we are in “known territory”; we continue, as in (5.14), by taking the Mellin

transform of the last. We have M (e−αz−1; s) = α−sΓ(s) for −1<<(s)< 0 as

in (5.15), M(ze−pz; s) = p−s−1Γ(s+1), and M(A(pz); s) = p−sA∗(s) by (2.45),

which implies M(A(pz); s) = − 1+qp−s−1

ps(1−p−s)
Γ(s) for −1<<(s)<0 by (5.16). So,

the Mellin transform of (5.25) yields

B∗(s)− 1

ps
B∗(s) = −2q

p2
Γ(s+ 1)

ps
− 2q(p+ 1)

p2
Γ(s)

ps
− 2(1 + qp−s−1)

ps(1− p−s)
Γ(s)

+
2q

p2
Γ(s)

ps
∑

k≥1

pk

1− pk
− 2q

p2
Γ(s)

ps
∑

k≥1

1

pks(1− pk)

for − 1<<(s)<0.

Observe now that the sum
∑

k≥1

1

pks(1−pk)
in the last expression may be rewritten

as
∑

k≥1

(
1

ps

)k
+
∑

k≥1

1

pk(s−1)(1−pk)
, and that the first of these two new sums converges

to
p−s

1−p−s
since <(s)<0. Therefore, the last equation may be rewritten as

B∗(s) = −2q

p2
Γ(s+ 1)

ps − 1
+

2

p2
Γ(s)

(ps−1)(p−s−1) +
2q

p2
Γ(s)

ps−1
∑

k≥1

pk

1−pk

= − 2q

p2
∑

k≥1

Γ(s)pk

pks(1−pk)(ps−1) for − 1<<(s)<0 (5.26)

by doing some elementary algebra. We now recover B(z) by using the inverse Mellin

transform

B(z) =
1

2πi

∫ c+i∞

c−i∞
B∗(s)z−sds, for − 1<c<0.
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To evaluate the above line integral, we work as in the example of Section 2.3.8: we

consider an infinitely tall rectangle C, we verify that the integral along the right

vertical line is O(z−d), and along the top and bottom lines are 0, and by using the

residue theorem we arrive at

B(z) = −
∑

α=pole inside C

Res
s=α

{
B∗(s)z−s

}
+ O

(
1

zd

)
as z→∞, for any d > 0.

(5.27)

We now use (2.48) to routinely compute the residues of each of the four terms of

B∗(s)z−s. The first term has simple poles at s=sk
def
= i2kπ

ln p
, for k=0,±1,±2, . . .,

and we may compute

∑

α=pole inside C

Res
s=α

{
Γ(s+ 1)

ps − 1
z−s

}
=

1

ln p
− f1, 1

p
(z). (5.28)

The second term is the most complicated to handle, since it has a triple pole at

s = 0, and double poles at s = sk , for k = ±1,±2, . . .. After some lengthy

calculations, we arrive at

∑

α=pole inside C

Res
s=α

{
Γ(s)

(ps − 1)(p−s − 1)
z−s

}

=−1

2
log21

p
z+

(
γ

ln p
+f0, 1

p
(z)

)
log 1

p
z+

1

12
− γ2

2 ln2p
− π2

12 ln2p
+

1

ln p
g0, 1

p
(z). (5.29)

The third and fourth terms have double poles at s=0, and simple poles at s=sk ,

for k=±1,±2, . . ., yielding

∑

α=pole inside C

Res
s=α

{
Γ(s)

ps − 1
z−s

}
= log 1

p
z − 1

2
− γ

ln p
− f0, 1

p
(z) (5.30)

and

∑

α=pole inside C

Res
s=α

{
Γ(s)

pks(ps−1) z
−s

}
= −k + log 1

p
z − 1

2
− γ

ln p
− f0, 1

p
(z),
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which implies

∑

α=pole inside C

Res
s=α




∑

k≥1

Γ(s)pk

pks(1−pk)(ps−1) z
−s





= −
∑

k≥1

kpk

1−pk
+

(
log 1

p
z − 1

2
− γ

ln p
− f0, 1

p
(z)

)∑

k≥1

pk

1−pk
. (5.31)

The result now follows from (5.26) through (5.31).

Corollary 5.2 Under the Poisson model with mean z, the variance of the search

cost for +∞ in a PSL is

Var
(
F (z)

)
=

q

p2
log 1

p
z

− 5

12p2
+

1

2p
+

q(2− γ)

p2 ln p
+

π

6p2 ln2 p
− 2q

p2
∑

k≥1

kpk

1−pk

− 2q

p2
f1, 1

p
(z)− 2

p2 ln p
g0, 1

p
(z)−

(
2γ

p2 ln p
+

q

p2

)
f0, 1

p
(z)− 1

p2
f 20, 1

p
(z)

+O

(
ln z

zd

)
as z→∞, for any d>0,

where the defined in (2.3) and (2.4) f1, 1
p
(z), f0, 1

p
(z) and g0, 1

p
(z) are periodic func-

tions of log 1
p
z, with small magnitude.

Proof: Follows from Theorems 5.1 and 5.3, after doing some algebra.

The derivation of an asymptotic expression for Var(Fn) is, clearly, of great

interest. Having already derived E
(
F (z)(F (z)−1)

)
=B(z), and having shown that

E
(
F (z)

)
and E(Fn) are “the same”, one might be tempted to use approximation

theorem (2.39) to show that bn=Var(Fn) is “the same” as Var
(
F (z)

)
. However,

such a claim is not well-justified, since the ∂r

∂zr
B(z) appearing in bn are — in theory

— unbounded, due to the presence of the O(z−d) term in B(z); for example, the

very small term cos(ez)
ez

has very large derivatives. In practice though, such “nasty”
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functions do not arise naturally in the analyses of algorithms. Hence, it is reasonable

to expect that Var(Fn)∼Var
(
F (n)

)
, although the above reasoning is not a rigorous

proof of that.

We diverge at this point, to remind the reader that there do exist data structures

for which the variances under the fixed population model and under the Poisson

model are different. For example [41], the variance of the number of internal nodes

in a binary symmetric trie is c(z) = (k+oscillations)z+O(1) under the Poisson

model (where k = 2.9272 . . .), but cn =
(
k− 1

ln2 2
+oscillations

)
n+O(1) under

the fixed population model. This result is not an example in which the error term

O(1) in the Poissonized variance c(z) is “nasty”; assuming that the O(1) term has

small derivatives, de-Poissonization of the second moment of the number of nodes,

by means of (2.39), will eventually yield the given expression for cn. The above

discrepancy of the two variances, is not counter-intuitive either; the “extra degree

of freedom” introduced in the Poisson model (variable number of keys) is reasonable

to increase the variability of the number of nodes in the trie. One should be careful

though, not to assume that the last reasoning leads to valid results in all cases; if,

for example, Xn=a(=constant), then Var(Xn)=Var
(
X(z)

)
=0.

Back to our problem now: derive asymptotics for Var(Fn), or for E
(
Fn(Fn−1)

)
.

We have repeatedly stated so far, that our work for the variance (in this section)

parallels our work for the expected value (in the preceding section). However,

the problem of deriving asymptotics for E(Fn) wasn’t even our concern in the

preceding section; we had already derived E(Fn) by other means in Chapter 3. So,

now, we have to resort to different techniques. A quick look at the exact value of

E
(
Fn(Fn−1)

)
, given in Theorem 5.2, reveals that it consists of three alternating

sums. We can therefore apply Rice’s method, as explained in Section 2.3.9, to

evaluate these sums. As one might expect, our calculations this time will be more
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complicated, and — for the case of the third alternating sum— less straightforward.

Theorem 5.4 Under the fixed population model, the second factorial moment of

the search cost for +∞ in a PSL of n keys is

E
(
Fn(Fn−1)

)
=

1

p2
log21

p
n−

(
2γ

p2 ln p
+

2

p2
f0, 1

p
(n)

)
log 1

p
n

+
2q

p2 ln p
+

γ2

p2 ln2 p
+

π2

6p2 ln2 p
− 1

6p2
− 2q

p2
∑

k≥1

kpk

1− pk

− 2q

p2
f1, 1

p
(n)− 2

p2 ln p
g0, 1

p
(n)

+O

(
lnn

n

)
as n→∞,

where the defined in (2.3) and (2.4) f0, 1
p
(n), f1, 1

p
(n) and g0, 1

p
(n) are periodic func-

tions of log 1
p
n, with small magnitude.

Proof: According to Lemma 2.3, the first alternating sum in the exact expression

for E
(
Fn(Fn−1)

)
is

S1
def
=

n∑

k=1

{(
n

k

)
(−1)k pk

1− pk
(k−1)

}
= − 1

2πi

∮

C
B(n+1,−s)h1(s) ds,

where

h1(s)
def
=

ps

1− ps
(s− 1),

and C is a rectangle encompassing only the integer points 1, 2, 3, . . . , n. Working

now as in Example 2.2, we consider an infinitely large rectangle C ′ surrounding C,

and we verify that the integral of B(n+1,−s)h1(s) along C ′ is O(n−d) for any

d>0. Inside C ′ but outside C, the term B(n+1,−s) has a simple pole at s=0, and

h1(s) has simple poles at s=sk
def
= i2kπ

ln p
, for k=0,±1,±2, . . .. Therefore, the last

expression for S1 gives

S1 = Res
s=0

order=2

{
B(n+1,−s)h1(s)

}
+

∑

k∈ZZ−{0}

Res
s=sk

{
B(n+1,−s)h1(s)

}
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+O
(
1

nd

)
as n→∞, for any d>0.

We now use (2.48) to compute these residues. For the residue at the double pole

we get

Res
s=0

order=2

{
B(n+1,−s)h1(s)

}
=

1

ln p
− 1

2
− γ

ln p
− Ψ(n+1)

ln p

after some algebra, or

Res
s=0

order=2

{
B(n+1,−s)h1(s)

}
=

1

ln p
− 1

2
− γ

ln p
+ log 1

p
n+O

(
1

n

)
as n→∞

by using property (2.29) of the Psi function. The residues at each of the simple

poles are

Res
s=sk

{
B(n+1,−s)h1(s)

}

= lim
s→sk

{
Γ(n+1)Γ(−s)
Γ(n+1−s)

ps

1−ps
(s−1)(s−sk)

}
by (2.48)

=− Γ(n+1)

Γ(n+1−sk)
Γ(−sk)(−sk+1)psklim

s→sk

{
s−sk
1−psk

}

=−ni 2kπ
ln p

(
1+O

(
1

n

))
Γ(−sk) (−sk + 1)

(
− 1

ln p

)
by (2.23), psk=1 & L’Hôpital’s

=
(
1+O

(
1

n

))
1

ln p
ni

2kπ
ln p

(
Γ(−sk+1) + Γ(−sk)

)
, by (2.16)

and therefore, the sum of these residues is

∑

k∈ZZ−{0}

Res
s=sk

{
B(n+1,−s)h1(s)

}
= −f1, 1

p
(n)− f0, 1

p
(n) +O

(
1

n

)
as n→∞.

Thus, the first sum becomes

S1 = log 1
p
n+

1

ln p
− 1

2
− γ

ln p
− f1, 1

p
(n)− f0, 1

p
(n) +O

(
1

n

)
as n→∞. (5.32)

The second sum in the exact expression for E
(
Fn(Fn−1)

)
is

S2
def
=

n∑

k=1

{(
n

k

)
(−1)k pk

(1− pk)2
(1 + qpk−1)

}
= − 1

2πi

∮

C
B(n+1,−s)h2(s) ds,
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where

h2(s)
def
=

ps

(1− ps)2
(1 + qps−1),

and C is a rectangle encompassing only the integer points 1, 2, 3, . . . , n. Working

as with S1, we get

S2 = Res
s=0

order=3

{
B(n+1,−s)h2(s)

}
+

∑

k∈ZZ−{0}

Res
s=sk
order=2

{
B(n+1,−s)h2(s)

}

+O
(
1

nd

)
as n→∞, for any d>0.

After some lengthy algebra, we compute the residue at the triple pole to be

Res
s=0

order=3

{
B(n+1,−s)h2(s)

}
=

Ψ′(n+1)

2p ln2 p
− Ψ2(n+1)

2p ln2 p
− ln p− p ln p+ γ

p ln2 p
Ψ(n+1)

− π2

12p ln2 p
− qγ

p ln p
− γ2

2p ln2 p
− 5

12p
+

1

2
,

and by using properties (2.29) and (2.30) of the Psi function, we can simplify it to

Res
s=0

order=3

{
B(n+1,−s)h2(s)

}
= − 1

2p
log21

p
n+

(
q

p
+

γ

p ln p

)
log 1

p
n

− π2

12p ln2 p
− qγ

p ln p
− γ2

2p ln2 p
− 5

12p
+

1

2

+O

(
lnn

n

)
as n→∞.

The residues at the double poles are

Res
s=sk
order=2

{
B(n+1,−s)h2(s)

}

= lim
s→sk

{
d

ds

(
Γ(n+1)Γ(−s)
Γ(n+1−s)

ps

(1−ps)2
(1+qps−1)(s−sk)

2

)}
by (2.48)

=− Γ(n+1)

Γ(n+1−sk)

1

p ln2p
Γ(−sk)

(
Ψ(−sk)−Ψ(n+1−sk)−q ln p

)
do algebra

=−ni 2kπ
ln p

(
1 +O

(
1

n

))
1

p ln2 p(
Γ(−sk)Ψ(−sk)− Γ(−sk)

(
lnn+O

(
1

n

))
− q ln pΓ(−sk)

)
by (2.23) & (2.29)
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and therefore, their sum becomes

∑

k∈ZZ−{0}

Res
s=sk
order=2

{
B(n+1,−s)h2(s)

}
=

1

p ln p
g0, 1

p
(n) +

1

p
f0, 1

p
(n) log 1

p
n− q

p
f0, 1

p
(n)

+O

(
lnn

n

)
as n→∞.

Thus, the second sum is

S2 = − 1

2p
log21

p
n+

(
q

p
+

γ

p ln p
+

1

p
f0, 1

p
(n)

)
log 1

p
n

− π2

12p ln2 p
− qγ

p ln p
− γ2

2p ln2 p
− 5

12p
+

1

2

+
1

p ln p
g0, 1

p
(n)− q

p
f0, 1

p
(n) +O

(
lnn

n

)
as n→∞. (5.33)

The third sum in the exact expression for E
(
Fn(Fn−1)

)
is

S3
def
=

n∑

k=1

(
n

k

)
(−1)kh3(k),

where

h3(k)
def
=

pk

1− pk

k∑

j=1

pj

1− pj
,

but its evaluation poses a problem, since h3(s) is not analytic on the complex plane,

and hence its integral along the rectangle C is not defined. A similar problem had

been encountered in [17], and we will follow an analogous approach for its solution

here. If

w(s)
def
=

∑

j≥1

pjs

1− pjs
,

then, h3(s)=
ps

1−ps
(w(1)−w(ps)), and hence

S3 = −
1

2πi

∮

C
B(n+1,−s) ps

1− ps

(
w(1)−w(ps)

)
ds,

where C is a rectangle encompassing the points 1, 2, 3, . . . , n. Working as with S1

and S2, the last gives

S3 = Res
s=0

{
B(n+1,−s) ps

1− ps

(
w(1)−w(ps)

)}
+O

(
1

nd

)
as n→∞, for any d>0;
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notice here that all poles of 1
1−ps

are removed by w(1)−w(ps). We now proceed

with the computation of the last residue. We have

Res
s=0

{
B(n+1,−s) ps

1− ps

(
w(1)−w(ps)

)}

= lim
s→0

{
Γ(n+1)Γ(−s)
Γ(n+1−s)

ps

1− ps

(
w(1)−w(ps)

)
s

}
by (2.48)

= − lim
s→0

{
w(1)−w(ps)

1− ps

}
by (2.18) & (2.16)

= − lim
s→0

{
d
ds
(w(1)−w(ps))
d
ds
(1− ps)

}
by L’Hôpital’s

= lim
s→0





∑
j≥1

d
ds

(
pj+s

1−pj+s

)

−ps ln p





= −
∑

j≥1

pj

(1− pj)2
by doing algebra

and since
∑

k≥1 kx
k= x

(1−x)2
, the last sum can be rewritten as

∑

j≥1

pj

(1− pj)2
=
∑

j≥1

∑

k≥1

kpjk =
∑

k≥1

k
∑

j≥1

(pk)j =
∑

k≥1

kpk

1− pk
,

and we therefore have

S3 = −
∑

k≥1

kpk

1− pk
+O

(
1

nd

)
as n→∞, for any d>0. (5.34)

The result now follows from Theorem 5.2, and expressions (5.32), (5.33) and (5.34)

for the three sums appearing in it.

Corollary 5.3 Under the fixed population model, the variance of the search cost

for +∞ in a PSL of n keys is

Var(Fn) =
q

p2
log 1

p
n

− 5

12p2
+

1

2p
+

q(2− γ)

p2 ln p
+

π

6p2 ln2 p
− 2q

p2
∑

k≥1

kpk

1−pk
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− 2q

p2
f1, 1

p
(n)− 2

p2 ln p
g0, 1

p
(n)−

(
2γ

p2 ln p
+

q

p2

)
f0, 1

p
(n)− 1

p2
f 20, 1

p
(n)

+O

(
lnn

n

)
as n→∞,

where the defined in (2.3) and (2.4) f1, 1
p
(n), f0, 1

p
(n) and g0, 1

p
(n) are periodic func-

tions of log 1
p
n, with small magnitude.

Proof: Follows from the expression for E
(
Fn(Fn−1)

)
given in Theorem 5.4, and

from

E(Fn) =
1

p
log 1

p
n− 1

p

(
γ

ln p
+

1

2

)
+ 1− 1

p
f0, 1

p
(n) +O

(
1

n

)
as n→∞,

which is an immediate consequence of Theorem 3.3 and of asymptotics (3.10) and

(3.11).

5.5 Summary

In this chapter, we re-examined the search cost for +∞ in a PSL, aiming pri-

marily at the derivation of its variance. First, we derived an exact expression for

the variance of this cost under the fixed population model (Corollary 5.1). Next,

we derived asymptotic expressions for the same variance under the Poisson model

(Corollary 5.2) and under the fixed population model (Corollary 5.3), and we ob-

served that these two variances are the same. On our way towards the derivation of

these variances, we also obtained an asymptotic expression for the expected value

of the same cost under the Poisson model (Theorem 5.1), and we observed that this

is also equal to its corresponding search cost under the fixed population model.

The techniques that we used in this chapter, were more general and powerful

than those of Chapter 3. We set up a recurrence for the probability generating
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function of the search cost, and we differentiated it once and twice to derive a re-

currence for the first and second factorial moment. We then considered the Poisson

transform of the last recurrence, and we used it to achieve two things. First, by us-

ing Mellin transforms, we obtained asymptotic expressions for the first and second

factorial moments under the Poisson model. Second, by using binomial transforms,

we obtained exact expressions for these moments under the fixed population model,

and we subsequently used Rice’s method to derive asymptotics of these expressions.



Chapter 6

Elastic-Bucket Tries

The methods used to derive moments of the PSL search cost may also be used

to derive moments of the trie space complexity, despite the fact that the trie is

a dictionary implementation very different in flavour from the skip lists. Each

operation performed on a trie, instead of being a comparison of two entire keys, is

a comparison of two bits (or characters), one from each key.

In this chapter, we consider the “elastic bucket” trie, a variant of the standard

trie, in which each external node holding j keys has exactly j key slots. We are

interested in the number of external nodes of each size, and we examine these

quantities under the fixed population model and under the Poisson model. To derive

our results, we work as in the previous chapter. We start by setting up a recurrence

for the (moment) generating function of the space complexity, we differentiate this

recurrence once and twice, and we solve the resulting new recurrences by using

binomial, Poisson and Mellin transforms, as well as Rice’s method. Working in

this way, we obtain asymptotics for the expected values under both models of

randomness, and for the variances and covariances under the Poisson model. We

106
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also derive exact expressions for the expected values under the fixed population

model. A preliminary version of these results has appeared in [31].

6.1 Review of the Structure

The trie, introduced in late 1950’s by de la Briandais [8] and Fredkin [19], is a

well-known data structure that allows efficient update and retrieval of information.

Unlike the skip lists and the search trees, the trie is based on the representation of

the keys stored in it, rather than on the order statistics of the keys. In its simplest

form (see Figure 6.1(a)), a trie is a binary tree having internal and external nodes.

The internal nodes are used to guide the search for a key; the external nodes are

used to store the keys. The keys are (encoded) strings over the alphabet {0, 1}.

To search for a key, we start at the root and we branch to the left or to the

right depending on whether the first character of the search key is 0 or 1. At the

new node, we branch in the same way to the left or to the right according to the

second character of the key, etc. When we reach an external node, we compare the

search key with the key (if any) stored in that external node.

To insert a new key, we first search for it. If our unsuccessful search terminates

in an empty external node, we simply insert the new key in that node. If our search

terminates in a non-empty external node, we extend the search path by adding an

appropriate number of internal nodes, and we finally store the new key in a new

external node. For example, insertion of key 110111 into the trie of Figure 6.1(a)

gives the trie of Figure 6.1(b). Observe here that tries are independent of the

insertion sequences of their keys.

A natural generalization of the trie is the (fixed-)bucket trie, first proposed by
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Figure 6.1: Insertion of 110111 into a trie

Sussenguth in [45], and studied by Knuth in [26, Ex. 6.3.20]. In this structure,

we store up to b keys in each external node (bucket), and each bucket has fixed

capacity b, for some b > 1. For example, if b= 2, the two tries of Figure 6.1 will

form the two bucket tries of Figure 6.2. Obviously, a bucket trie is shorter than a

non-bucket one, a fact which has a couple of implications. First, the search paths

are shorter, and this affects the search time; it will be cheaper to reach an external

node, but more expensive to search within it. Second, the number of internal nodes

will be smaller, and this will affect the space complexity; less space will be needed

for the internal nodes, although, on the other hand, more space will be needed for
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Figure 6.2: Insertion of 110111 into a fixed-bucket trie

the external nodes, since not all buckets will be full.

A remedy for the problem of the wasted space in the fixed-bucket trie, is the

elastic-bucket trie. If an external node in the fixed-bucket trie contains j keys

(1≤ j ≤ b), it will be allocated space for exactly j keys in the elastic-bucket trie,

and it will be called a type j bucket. In other words, we maintain b different types

of external nodes, reducing thus the space requirements, at the expense of a slight

complication in the update algorithms and in the storage management.

The notion of “elastic” (also called “exact-fit”) nodes just introduced is not

new. It has been studied before in the context of B-trees [18, 29], B+-trees [5], and

m-ary search trees [4, 27]. In this chapter, we present the first study on the effect

of “elastic” nodes (buckets) in tries.

Since there exists a one-to-one correspondence between fixed- and elastic-bucket

tries, all known results on the number of internal nodes, the height, and the search

cost in a fixed-bucket trie carry over to elastic-bucket tries. These results include not

only expected values of the above mentioned quantities, but also higher moments

and convergences of these random variables (see [21, Section 3.4.4] for an extensive

list of 46 papers, and [30, Chapter 5] for a textbook-like presentation of the basic
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results). The only new and interesting quantities introduced in the elastic-bucket

trie are the numbers of type j buckets, for 1≤j≤b.

6.2 Notation and Related Results

Given the number of keys stored in a bucket trie, the shape of the trie — which

uniquely determines the number of buckets of each size — will depend on the

(representation of the) keys themselves. Our assumption will be that the n keys

of the trie are infinite strings of i.i.d. 0/1 bits. This model can be shown to be

equivalent to drawing the n keys from the [0,1]-uniform distribution, and, in the

context of tries, it is also called the Bernoulli model of randomness. We will continue

using the term “fixed population” model for it.

Under the fixed population model, we define the random variable

X(j)
n

def
= number of type j buckets in a trie of n keys, for 0≤j≤b.

For example, for the trie of Figure 6.2(a), we have X
(0)
7 =1, X

(1)
7 =1, and X

(2)
7 =3.

As usual, X(j)(z) will denote the Poissonized version of X (j)
n .

To add flexibility to our results so that they cover more cases, we will study the

linear combination

Xn
def
= λ0X

(0)
n +λ1X

(1)
n +· · ·+λbX

(b)
n , for λ0=0, arbitrary reals λ1, λ2, . . . , λb

for the fixed population model,1 as well as its Poissonized counterpartX(z). Clearly,

if we compute E(Xn), we can then compute all E
(
X(j)

n

)
for 1≤j≤b, and if we also

compute Var(Xn), we can then compute all Cov
(
X(j)

n , X(l)
n

)
for 1≤j, l≤b.

1The reader should not confuse Xj
n and X

(j)
n ; the former is the product

j times︷ ︸︸ ︷
XnXn · · ·Xn, whereas

the latter is the number of type j buckets.



6.3. THE SET-UP 111

As mentioned earlier, the X (j)
n have not been studied before. A related quan-

tity though, the number of internal nodes in a fixed-bucket trie, has been studied

extensively. Knuth, for example, showed [26, Ex. 6.3.20] that the average number

of internal nodes is

n
(

1

b ln 2
+ oscillations

)
+O(1), (6.1)

and Jacquet and Régnier [25, 41] obtained additional results on the variance and

asymptotic distribution of the same quantity.

In this chapter, we derive exact and asymptotic expressions for E(Xn), and an

asymptotic expression for E
(
X(z)

)
; E

(
X(j)

n

)
and E

(
X(j)(z)

)
follow easily. From

our expression for E(Xn), we also obtain the expected total number of non-empty

buckets. Finally, we obtain an asymptotic expression for Var
(
X(z)

)
, which allows

us to compute the entire variance-covariance matrix of all X (j)(z) for 1≤j≤b.

For brevity, in our proofs, we will use the notation

an
def
= E(Xn) and bn

def
= E(X2

n)

and

A(z)
def
= E

(
F (z)

)
= P(an; z), and B(z)

def
= E

(
X2(z)

)
= P(bn; z),

analogous to the notation of Chapter 5, as well as

V (z)
def
= Var

(
X(z)

)
.

6.3 The Set-up

As mentioned in the beginning of this chapter, we are going to work in a manner

completely analogous to that of Chapter 5. Although in that chapter we started by
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considering the pgf of the random variable of interest, in this chapter, we are going

to consider the mgf

Mn(z)
def
= E

(
ezXn

)
, integer n ≥ 0

of Xn, since Xn does not take integer values, and hence, its pgf is not defined.

Lemma 6.1 Under the fixed population model, the mgf of Xn satisfies the recur-

rence

Mn(z) =





ezλn for 0≤n≤b
1

2n

n∑

k=0

(
n

k

)
Mk(z)Mn−k(z) for n>b

Proof: Clearly, when 1≤ n≤ b, the trie has only one bucket (at its root), which

contains n keys. Therefore,

Xn = λn, for 0 ≤ n ≤ b,

since also X0=λ0=0. This establishes the initial values of our recurrence.

When n> b, the trie has more than 1 bucket, and we may therefore condition on

Ln, the number of keys in the left subtree, to get

Mn(z) =
n∑

k=0

{
E
(
ezXn | Ln=k

)
Pr[Ln=k]

}
, for n > b.

According to our probabilistic assumptions (beginning of Section 6.2), the first bit

of each key may be either a 0 or a 1, each with probability 1/2. Therefore, Ln

follows the binomial distribution with parameter 1/2, and thus the last equation

may be rewritten as

Mn(z) =
n∑

k=0

{
E
(
ez(Xk+Xn−k)

)(n
k

)
1

2n

}
, for n > b,

which completes the proof, since E
(
ez(Xk+Xn−k)

)
= E

(
ezXk

)
E
(
ezXn−k

)
by inde-

pendence.



6.4. EXPECTED VALUES 113

We now continue by differentiating the recurrence of the above lemma once (in

Section 6.4) and twice (in Section 6.5) at z=0; according to (2.10) and (2.11), such

differentiations will yield recurrences for an=E(Xn) and bn=E(X2
n) respectively.

6.4 Expected Values

We start by deriving a recurrence for E(Xn).

Lemma 6.2 Under the fixed population model, the expected value of the linear

combination of the numbers of all bucket types, in a trie of n keys, satisfies the

recurrence 



an = λn for 0≤n≤b

an =
1

2n−1

n∑

k=0

(
n

k

)
ak for n>b

. (6.2)

Proof: If we differentiate the recurrence of Lemma 6.1 with respect to z, and we

evaluate the resulting expression at z=0, we get

an = λn, for 0≤n≤b

and

an =
1

2n

n∑

k=0

(
n

k

)
(ak+an−k), for n>b,

since Mr(0) = 1 from (2.9), and M ′
r(0) = ar from (2.10). The result now follows,

since
∑n

k=0

(
n
k

)
ak=

∑n
k=0

(
n
k

)
an−k.

Recurrence (6.2) is not in the form of any of the four recurrences discussed

after Lemma 5.2 (their initial values are different). Although we could appeal

to a solution of a generalization of (6.2), given by Szpankowski in [49] — as we

did in [31] — we choose instead to (re)solve (6.2), for a couple of reasons. First,

de-generalizing Szpankowski’s solution requires some effort, and second, half of
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the work done towards the solution of (6.2) has to be done anyway towards the

derivation of the solution’s asymptotic Poissonized value.

We work as with the recurrence of Lemma 5.2. If we recall that A(z)=P(an; z),
multiplication of both sides of (6.2) by e−z z

n

n!
, and addition of the resulting equalities

gives

A(z) = e−z
b∑

n=0

λn
zn

n!
+ 2A

(
z

2

)
− e−z

b∑

n=0

n∑

k=0

1

2n−1

(
n

k

)
λk

zn

n!

by using (5.9). But the “n=0” terms of both sums in the above expression are 0,

and the “n=1” terms are λ1. Therefore, the last equation may be rewritten as

A(z)− 2A
(
z

2

)
= e−zyb(z), (6.3)

where

yb(z)
def
=

b∑

k=2

σkz
k, (6.4)

with

σk
def
=

λk
k!
− 1

k! 2k−1

k∑

r=1

(
k

r

)
λr, for 2≤k≤b. (6.5)

Recurrence (6.3) is the analogous of (5.10), and it will thus be the starting point

for the derivation of an exact expression for an = E(Xn), and of an asymptotic

expression for A(z)=E
(
X(z)

)
. We now proceed with the derivation of an.

Theorem 6.1 Under the fixed population model, the expected value of the linear

combination of the numbers of all bucket types, in a trie of n keys, is

E(Xn) = λ1n+
n∑

k=2

{(
n

k

)
(−1)k 1

1− 21−k

(
b∑

r=2

(
k

r

)
(−1)rr!σr

)}
, for n≥1,

where the terms σr are defined in (6.5).

Proof: Working as in the proof of Lemma 5.3, we get

A(z) =
∑

n≥0

n∑

k=0

(
n

k

)
(−1)n−kak

zn

n!
.



6.4. EXPECTED VALUES 115

We also have

e−zyb(z) = e−z
∑

n≥2

(n!σn)
zn

n!
by (6.4)

=
∑

n≥2

(−1)nn̂!σn
zn

n!
by Lemma 2.2

=
∑

n≥2

b∑

k=2

(
n

k

)
(−1)n−kk!σk

zn

n!
, by (2.40)

and therefore, if we extract the coefficients of zn

n!
from both sides of (6.3), we get

n∑

k=0

(
n

k

)
(−1)n−kak −

1

2n−1

n∑

k=0

(
n

k

)
(−1)n−kak =

b∑

k=2

(
n

k

)
(−1)n−kk!σk, for n≥2,

which we may rearrange as

n∑

k=0

(
n

k

)
(−1)kak =

1

1− 21−n

b∑

k=2

(
n

k

)
(−1)kk!σk, for n≥2.

The result now follows from property (2.42), since
∑0

k=0

(
0
k

)
(−1)kak = 0 and

∑1
k=0

(
1
k

)
(−1)kak=−λ1.

To derive the (more interesting) E
(
X(j)

n

)
, we have to simplify the expressions

for σk, when only one of the λj’s is 1. To be precise, if σ
(j)
k denotes the value of σk

when λj=1 for some 1≤j≤b and λr=0 for all r 6=j, (6.5) gives

σ
(j)
k =

δj,k
j!
−

(
k
j

)

k! 2k−1
, for 2≤k≤b, 1≤j≤b. (6.6)

Corollary 6.1 Under the fixed population model, the expected number of type j

buckets in a trie on n keys is

E
(
X(j)

n

)
=





n−
n∑

k=2

(
n

k

)
(−1)kG(1)k if j = 1

(−1)j
n∑

k=2

(
n

k

)
(−1)kG(j)k if 2 ≤ j ≤ b
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where

G
(j)
k

def
=

(
k
j

)

1− 21−k


1− 1

2j−1

b−j∑

r=0

(
k − j

r

)
(−1)r 1

2r


 , for 1 ≤ j ≤ b.

Proof: Follows easily from Theorem 6.1, by using (6.6). For example, when

2≤j≤b, we have

E
(
X(j)

n

)

=
n∑

k=2

(
n

k

)
(−1)k 1

1−21−k




b∑

m=2

(
k

m

)
(−1)mm!

δm,j

j!
−

b∑

m=2

(
k

m

)
(−1)mm!

(
m
j

)

m! 2m−1




=
n∑

k=2

(
n

k

)
(−1)k 1

1− 21−k



(
k

j

)
(−1)j −

(
k

j

)
b∑

m=j

(
k−j

m−j

)
(−1)m 1

2m−1




=
n∑

k=2

(
n

k

)
(−1)k

(
k
j

)

1− 21−k


(−1)j −

b−j∑

r=0

(
k−j

r

)
(−1)r+j 1

2r+j−1




= (−1)j
n∑

k=2

(
n

k

)
(−1)k

(
k
j

)

1− 21−k


1− 1

2j−1

b−j∑

r=0

(
k−j

r

)
(−1)r 1

2r


 .

The proof for E
(
X(1)

n

)
is similar.

We now go back to recurrence (6.3), as promised; we will work towards the

derivation of A(z). Our method will be slightly different from the one followed in

Theorem 5.1. We will not take Mellin transforms of both sides of (6.3), because

the existence of a non-zero λ1 poses certain problems to the existence of the Mellin

transform of A(z). Instead, we will solve (6.3) iteratively, a solution that will

be useful anyhow in the derivation of Var
(
X(z)

)
(compare with (5.24), in the

derivation of the variance of the PSL search cost).

Theorem 6.2 Under the Poisson model with mean z, the expected value of the

linear combination of the numbers of all bucket types in a trie is

E
(
X(z)

)
= z

(
λ1 +

1

ln 2

b∑

k=2

σk (k−2)!
)
+ z

(
b∑

k=2

σk fk−1, 2(z)

)
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+O
(
1

zd

)
as z→∞, for any d>−1,

where the terms σk are defined in (6.5), and the periodic functions fm,2(z) are

defined in (2.3).

Proof: An iterative solution of recurrence (6.3) yields

A(z) = lim
k→∞

{
2kA

(
z

2k

)}
+
∑

k≥0

{
2ke−

z

2k yb

(
z

2k

)}
.

If we recall that A(z) is the Poisson transform of an=E(Xn), the limit appearing

above is

lim
k→∞

{
2kA

(
z

2k

)}
= lim

k→∞



2

ke−
z

2k

∑

r≥1

E(Xr)

(
z
2k

)r

r!





= lim
k→∞



E(X1)e

− z

2k z + e−
z

2k
∑

r≥2

E(Xr)
zr

2(r−1)k r!





= λ1z. (6.7)

Therefore, the iterative solution of (6.3) becomes

A(z) = λ1z +Qb(z), (6.8)

where

Qb(z)
def
=

∑

k≥0

{
2ke−

z

2k yb

(
z

2k

)}
, (6.9)

and we now have to find a closed form for Qb(z). But Qb(z) is a “harmonic sum”,

which can be handled by taking its Mellin transform

Q∗b(s) =
∑

k≥0

{
2kM

(
e−

z

2k yb

(
z

2k

)
; s
)}

,

or, according to (2.45),

Q∗b(s) =M
(
e−zyb(z); s

)∑

k≥0

(
2s+1

)k
.



118 CHAPTER 6. ELASTIC-BUCKET TRIES

The series
∑

k≥0 (2
s+1)

k
in the last expression converges when <(s)<−1, in which

case it is 1
1−2s+1 . The Mellin transform appearing in the above expression is

M
(
e−zyb(z); s

)
=

∫ ∞

0
e−z

(
b∑

k=2

σkz
k

)
zs−1 dz by (2.43) & (6.4)

=
b∑

k=2

{
σk

∫ ∞

0
e−zzk+s−1 dz

}

=
b∑

k=2

σk Γ(k+s), by (2.1)

which exists when <(s)>−k for all 2≤k≤b. Therefore,

Q∗b(s) =
1

1− 2s+1

b∑

k=2

σk Γ(k+s), for − 2 < <(s) < −1,

and hence the inverse Mellin transform (2.46) gives

Qb(z) =
1

2πi

∫ c+i∞

c−i∞
Q∗b(s) z

−s ds, for − 2 < c < −1.

We now use contour integration along an infinitely tall rectangle C, whose left

vertical line is <(s)=c, and we get

Qb(z) = −
∑

α=pole inside C

Res
s=α

{
Q∗b(s)z

−s
}

+ O
(
1

zd

)
as z→∞, for any d > −1,

as we have done already a couple of times before (Example 2.1 and Theorem 5.3).

Inside C, Q∗b(s)z
−s has simple poles at s=sm

def
= −1+i2mπ

ln 2
for m=0,±1,±2, . . .,

and thus

Qb(z) = − Res
s=−1

{
Q∗b(s)z

−s
}
−

∑

m∈ZZ−{0}

Res
s=sm

{
Q∗b(s)z

−s
}

+O
(
1

zd

)
as z→∞, for any d > −1. (6.10)

The appearing residues can be computed routinely by using (2.48). We get

Res
s=−1

{
Q∗b(s)z

−s
}
= − z

ln 2

b∑

k=2

σk Γ(k−1) (6.11)
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and

Res
s=sm

{
Q∗b(s)z

−s
}
= − z

ln 2

b∑

k=2

{
σk Γ

(
k−1+i

2mπ

ln 2

)
e−i 2mπ log2 z

}
, for m=±1,±2, . . . ,

which implies

∑

m∈ZZ−{0}

Res
s=sm

{
Q∗b(s)z

−s
}
= −z

b∑

k=2

σk fk−1, 2(z), (6.12)

by working as in the derivation of (2.53). The result now follows from (6.8), (6.10),

(6.11), and (6.12).

Corollary 6.2 Under the Poisson model with mean z, the expected number of

type 1 buckets in a trie is

E
(
X(1)(z)

)
= z

(
1− 1

ln 2

b∑

k=2

1

(k−1)2k−1
)
− z

(
b∑

k=2

fk−1, 2(z)

(k−1)! 2k−1
)

+O
(
1

zd

)
as z→∞, for all d>−1,

and the expected numbers of type j buckets, for all 2≤j≤b, are

E
(
X(j)(z)

)
=

z

ln 2


 1

j(j−1) −
b∑

k=2

(
k
j

)

k(k−1)2k−1


+ z


fj−1, 2(z)

j!
−

b∑

k=2

(
k
j

)
fk−1, 2(z)

k! 2k−1




+O
(
1

zd

)
as z→∞, for all d>−1,

where the periodic functions fm,2(z) are defined in (2.3).

Proof: Follows from Theorem 6.2, and the special expressions for σk in (6.6).

An asymptotic expression for E(Xn), the expected number of buckets under the

fixed population model, is clearly of great interest. As discussed after Corollary 5.2,

a “sloppy” application of the approximation theorem (2.39) on E
(
X(z)

)
could yield

the desired E(Xn), but such a derivation would not have been a rigorous proof.

Instead, we work as in the previous chapter: we go back to the exact expression for

E(Xn), and we evaluate its alternating sum by using Rice’s method.
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Theorem 6.3 Under the fixed population model, the expected value of the linear

combination of the numbers of all bucket types, in a trie of n keys, is

E(Xn) = n

(
λ1 +

1

ln 2

b∑

k=2

σk (k−2)!
)
+ n

(
b∑

k=2

σk fk−1, 2(n)

)
+O(1) as n→∞,

where the terms σk are defined in (6.5), and the periodic functions fm,2(z) are

defined in (2.3).

Proof: We start with the exact expression for E(Xn), given in Theorem 6.1. The re-

sult follows, if we recall that the alternating sum appearing in E(Xn) was evaluated

in Example 2.2, and its asymptotic value is given in (2.62).

As one may immediately see from Theorems 6.2 and 6.3, the expected value of

Xn and of its Poissonized version X(z) are the same. The counterpart of Corol-

lary 6.2 is thus the following.

Corollary 6.3 Under the fixed population model, the expected number of type 1

buckets in a trie of n keys is

E
(
X(1)(n)

)
= n

(
1− 1

ln 2

b∑

k=2

1

(k−1)2k−1
)
− n

(
b∑

k=2

fk−1, 2(n)

(k−1)! 2k−1
)

+O(1) as n→∞,

and the expected numbers of type j buckets, for all 2≤j≤b, are

E
(
X(j)(n)

)
=

n

ln 2


 1

j(j−1) −
b∑

k=2

(
k
j

)

k(k−1)2k−1


+n


fj−1, 2(n)

j!
−

b∑

k=2

(
k
j

)
fk−1, 2(n)

k! 2k−1




+O(1) as n→∞,

where the periodic functions fm,2(z) are defined in (2.3).
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b
j
b

bb 1 2 3 4 5 6 7 8 9 10

2 .2787 .361
3 .0983 .180 .180
4 .0382 .090 .120 .105
5 .0157 .045 .075 .083 .068
6 .0066 .023 .045 .060 .059 .047
7 .0029 .011 .026 .041 .047 .043 .034
8 .0013 .006 .015 .027 .036 .037 .032 .026
9 .0006 .003 .009 .017 .026 .031 .029 .025 .020
10 .0003 .001 .005 .011 .018 .024 .026 .023 .020 .016

Table 6.1: Asymptotic ratio of number of type j buckets, over number of keys

To get a feeling of the average number of different buckets, we give in Table 6.1

several values of the proportionality ratio (ignoring the oscillations)

E
(
X(j)

n

)

n
∼





1− 1

ln 2

b∑

k=2

1

(k−1)2k−1 if j=1

1

ln 2


 1

j(j−1) −
b∑

k=j

(
k
j

)

k(k−1)2k−1


 if 2≤j≤b

of the average number of type j buckets over the number of keys in a trie.

6.5 Variances

Continuing to work as in the PSL search cost case, first we derive a recurrence for

bn=E(X2
n).

Lemma 6.3 Under the fixed population model, the second moment of the linear

combination of the numbers of all bucket types, in a trie of n keys, satisfies the

recurrence





bn = λ2n for 0≤n≤b

bn =
1

2n−1

n∑

k=0

(
n

k

)
akan−k +

1

2n−1

n∑

k=0

(
n

k

)
bk for n>b

. (6.13)
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Proof: If we differentiate the recurrence of Lemma 6.1 twice with respect to z, and

we evaluate the resulting expression at z=0, we get

bn = λ2n, for 0≤n≤b

and

bn =
1

2n

n∑

k=0

(
n

k

)
(2akan−k + bk + bn−k), for n>b,

since M(0)=1 from (2.9), M ′
r(0)=ar from (2.10), and M ′′

r (0)=br from (2.11). The

result now follows, since
∑n

k=0

(
n
k

)
bk=

∑n
k=0

(
n
k

)
bn−k.

We may now derive a recurrence for B(z)=E
(
X2(z)

)
=P(bn; z). Multiplication

of both sides of (6.13) by e−z z
n

n!
, and addition of the resulting equalities gives

B(z) = e−z
b∑

n=0

{
λ2n

zn

n!

}
+ e−z

∑

n≥0

{
1

2n−1

n∑

k=0

(
n

k

)
akan−k

zn

n!

}

− e−z
b∑

n=0

{
1

2n−1

n∑

k=0

(
n

k

)
akan−k

zn

n!

}
+ 2B

(
z

2

)
− e−z

b∑

n=0

{
1

2n−1

n∑

k=0

(
n

k

)
bk

zn

n!

}

by using (5.9). We now simplify this recurrence. First, we observe that the “n=0”

and “n=1” terms of the three finite sums in the above recurrence cancel out, and

we recall that, for 0≤ n≤ b, we have an = λn and bn = λ2n from (6.2) and (6.13).

Second, since the egf of 〈an〉 is ezA(z), (2.37) implies that the egf of the binomial

convolution of 〈an〉 with itself is e2zA2(z), and thus

∑

n≥0

1

2n

n∑

k=0

(
n

k

)
akan−k

zn

n!
= ezA2

(
z

2

)
.

Therefore, the last recurrence may be simplified as

B(z)− 2B
(
z

2

)
= 2A2

(
z

2

)
+ e−z

b∑

k=2

τkz
k, (6.14)

where

τk
def
=

λ2k
k!
− 1

k! 2k−1

(
k∑

r=0

(
k

r

)
λrλk−r +

k∑

r=0

(
k

r

)
λ2r

)
, for 2 ≤ k ≤ b. (6.15)
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At this point, we could solve (6.14) to get E
(
X2(z)

)
, and we could then derive

Var
(
X(z)

)
by using the expression for E

(
X(z)

)
from Theorem 6.2. Instead, we

choose to change (6.14) into a recurrence for V (z)=Var
(
X(z)

)
, and to solve the

newly derived recurrence, obtaining thus Var
(
X(z)

)
directly.

If we rewrite (6.14) as

(
B(z)− A2(z)

)
− 2

(
B
(
z

2

)
− A2

(
z

2

))
= 4A2

(
z

2

)
− A2(z) + e−z

b∑

k=2

τkz
k,

we may use relations V (z)=B(z)−A2(z) and (6.3) to rewrite the above as

V (z)− 2V
(
z

2

)
= e−zwb(z), (6.16)

where

wb(z)
def
= e−zy2b (z)− 2yb(z)A(z) +

b∑

k=2

τkz
k. (6.17)

We will now solve recurrence (6.16). As we did in the derivation of the variance of

the PSL search cost in Theorem 5.3, we will start by deriving an iterative solution of

it. The calculations involved are lengthy, but since the techniques that we will use

have been used in our thesis a number of times already (Example 2.1, Example 2.2,

Theorem 5.3, and Theorem 6.2) we will merely give enough details for the reader

to check our steps.

Theorem 6.4 Under the Poisson model with mean z, the variance of the linear

combination of the numbers of all bucket types in a trie is

Var
(
X(z)

)
= z

(
λ21 +

1

ln 2

b∑

k=2

{τk(k−2)!− 2λ1σk(k−1)!}

+
2

ln 2

b∑

k=2

b∑

r=2



σkσr(k+r−2)!


 1

2k+r
−
∑

m≥0

2mk

(1+2m)k+r−1










+ z

(
b∑

k=2

{τkfk−1, 2(z)− 2λ1σkfk,2(z)}
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+2
b∑

k=2

b∑

r=2



σkσr


fk+r−1, 2(z)

2k+r
−
∑

m≥0

2mk fk+r−1, 2(z+2mz)

(1+2m)k+r−1










+O
(
1

zd

)
as z→∞, for any d>−1,

where the terms σm and τm are defined in (6.5) and (6.15) respectively, and the

periodic functions fm,2(z) are defined in (2.3).

Proof: One may easily verify that an iterative solution of recurrence (6.16) yields

V (z) = lim
k→∞

{
2kV

(
z

2k

)}
+
∑

k≥0

{
2ke−

z

2kwb

(
z

2k

)}
. (6.18)

To compute the appearing limit, we recall that B(z) =E
(
X2(z)

)
=P

(
E(X2

n); z
)
,

and we may thus rewrite V (z)=E
(
X2(z)

)
−
{
E
(
X(z)

)}2
as

V (z) = e−z
∑

n≥0

{
E(X2

n)
zn

n!

}
− A2(z).

Therefore, the limit in (6.18) may be expressed as

lim
k→∞

{
2kV

(
z

2k

)}
= lim

k→∞



2

ke−
z

2k


E(X2

1 )
z

2k
+
∑

n≥2

E(X2
n)

zn

2kn n!







− lim
k→∞

{
1

2k

(
2kA

(
z

2k

))2}
,

and the first of these two new limits is λ21z, whereas the second one is 0 by (6.7).

Hence, (6.18) gives

V (z) = λ21z +Rb(z), (6.19)

where

Rb(z)
def
=

∑

k≥0

{
2k e−

z

2k wb

(
z

2k

)}
,

and we now have to find a closed form for Rb(z). We do so, by working as with

Qb(z) of (6.9); we should expect though much more complicated computations,
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since the wb(z) of Rb(z) is more complicated than its counterpart yb(z) of Qb(z).

The Mellin transform of Rb(z) is

R∗b(s) =M
(
e−zwb(z); s

)∑

k≥0

(2s+1)k,

which, according to the definition (6.17) of wb, and the convergence of the series

above, gives

R∗b(s) =
1

1−2s+1
(
M
(
e−2z y2b (z); s

)
− 2M

(
e−z yb(z)A(z); s

)

+M
(
e−z

b∑

k=2

τkz
k; s

))
, for <(s)<−1. (6.20)

The first of the three Mellin transforms appearing above, may be computed as

M
(
e−2zy2b (z); s

)
=

∫ ∞

0
e−2z y2b (z) z

s−1 dz by (2.43)

=
∫ ∞

0
e−2z

(
b∑

k=2

σkz
k

)2
zs−1 dz by (6.4)

=
∫ ∞

0
e−2z

(
b∑

k=2

b∑

r=2

σkσrz
k+r

)
zs−1 dz

=
1

2

b∑

k=2

b∑

r=2

σkσr

∫ ∞

0
e−x

(
x

2

)k+r+s−1
dx, by x←2z

which, according to the definition (2.1) of the Gamma function gives

M
(
e−2zy2b (z); s

)
=

b∑

k=2

b∑

r=2

σkσr
2k+r+s

Γ(k+r+s), for <(s)>−4. (6.21)

The second Mellin transform in (6.20) is the toughest one to compute, since it

contains A(z). We will compute it term-by-term, as in (5.23). If we multiply yb(z)

and A(z), as given in (6.4) and (6.8) respectively, we get

M
(
e−zyb(z)A(z); s

)

= λ1

∫ ∞

0
e−z

b∑

k=2

σkz
k+s dz +

∫ ∞

0
e−z

b∑

k=2

2∑

r=2

∑

m≥0

σkσr2
m(1−r)e−

z
2m zr+k+s−1 dz.
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But the first integral in this expression is

∫ ∞

0
e−z

b∑

k=2

σkz
k+s dz =

b∑

k=2

σk

∫ ∞

0
e−zzk+s dz

=
b∑

k=2

σk Γ(k+s+1), for <(s)>−3,

and the second integral is

∫ ∞

0
e−z

b∑

k=2

b∑

r=2

∑

m≥0

σkσr2
m(1−r)e−

z
2m zr+k+s−1 dz

=
b∑

k=2

b∑

r=2

∑

m≥0

σkσr2
m(1−r)

∫ ∞

0
e−z(1+2

−m)zr+k+s−1 dz

=
b∑

k=2

b∑

r=2

∑

m≥0

σkσr
2m(1−r)

(1+2−m)k+r+s

∫ ∞

0
e−xxk+r+s−1 dx

=
b∑

k=2

b∑

r=2

∑

m≥0

σkσr
2m(k+s+1)

(1+2m)k+r+s
Γ(k+r+s), for <(s)>−4,

and thus

M
(
e−zyb(z)A(z); s

)
=

b∑

k=2

b∑

r=2

σkσrΓ(k+r+s)
∑

m≥0

2m(k+s+1)

(1+2m)k+r+s

+ λ1
b∑

k=2

σk Γ(k+s+1), for <(s)>−3. (6.22)

The third Mellin transform in (6.20) may be easily seen to be

M
(
e−z

b∑

k=2

τkz
k; s

)
=

b∑

k=2

τkΓ(k+s), for <(s)>−2. (6.23)

Putting now together (6.20), (6.21), (6.22), and (6.23), we get

R∗b(s) =
1

1−2s+1
(

b∑

k=2

τk Γ(k+s) − 2λ1
b∑

k=2

σk Γ(k+s+1)

− 2
b∑

k=2

b∑

r=2

σkσrΓ(k+r+s)
∑

m≥0

2m(k+s+1)

(1+2m)k+r+s

+
b∑

k=2

b∑

r=2

σkσr
2k+r+s

Γ(k+r+s)

)
, for − 2<<(s)<−1.(6.24)
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As we have done a number of times before, from the inverse Mellin transform (2.46)

we now get

Rb(z) = −
∑

α=pole inside C

Res
s=α

{
R∗b(s)z

−s
}

+ O
(
1

zd

)
as z →∞, for any d>−1,

where C is an infinitely tall rectangle to the right of the vertical line <(s)= c, for

some −2<c<−1. Inside C, the only poles of R∗b(s)z
−s are at s=sv

def
= −1+i 2vπ

ln 2
,

for v=0,±1,±2, . . ., and therefore, the last relation becomes

Rb(z) = − Res
s=−1

{
R∗b(s)z

−s
}
−

∑

v∈ZZ−{0}

Res
s=sv

{
R∗b(s)z

−s
}
+O

(
1

zd

)
as z→∞,

for any d>−1. (6.25)

We now use (2.48) to routinely compute the above residues. For the simple pole

s=−1, we immediately get

Res
s=−1

{
R∗b(s)z

−s
}

= − z

ln 2

(
b∑

k=2

{
τk(k−2)!− 2λ1σk(k−1)!

}

+ 2
b∑

k=2

b∑

r=2

{
σkσr(k+r−2)!

(
1

2k+r
−
∑

m≥0

2mk

(1+2m)k+r−1

)})
, (6.26)

by using (2.18). At the simple poles s = sv, for v = ±1,±2, . . ., we compute the

residues of each of the four summands of R∗b(s)z
−s separately. For the first summand

we have

∑

v∈ZZ−{0}

Res
s=sv

{
1

1−2s+1
b∑

k=2

τkΓ(k+s)z−s
}

= − z

ln 2

b∑

k=2

τk
∑

v∈ZZ−{0}

Γ
(
k−1+i

2vπ

ln 2

)
z−i

2vπ
ln 2

= −z
b∑

k=2

τkfk−1, 2(z),

for the second summand we have

∑

v∈ZZ−{0}

Res
s=sv

{
1

1−2s+1
b∑

k=2

σkΓ(k+s+1)z−s
}

= − z

ln 2

b∑

k=2

σk
∑

v∈ZZ−{0}

Γ
(
k+i

2vπ

ln 2

)
z−i

2vπ
ln 2
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= −z
b∑

k=2

σkfk,2(z),

for the third summand we have

∑

v∈ZZ−{0}

Res
s=sv





1

1−2s+1
b∑

k=2

b∑

r=2

σkσrΓ(k+r+s)
∑

m≥0

2m(k+s+1)

(1+2m)k+r+s
z−s





= − z

ln 2

b∑

k=2

b∑

r=2

σkσr
∑

m≥0

2mk

(1+2m)k+r−1
∑

v∈ZZ−{0}

Γ
(
k+r−1+i

2vπ

ln 2

) (
2i

2vπ
ln 2

)m

(1+2m)i
2vπ
ln 2

z−i
2vπ
ln 2

= −z
b∑

k=2

b∑

r=2

σkσr
∑

m≥0

2mk

(1+2m)k+r−1
fk+r−1, 2(z+2mz),

since 2i
2vπ
ln 2 =1 (by 1−2sv+1=0), and, finally, for the fourth summand we have

∑

v∈ZZ−{0}

Res
s=sv

{
1

1−2s+1
b∑

k=2

b∑

r=2

σkσr
2k+r+s

Γ(k+r+s)z−s
}

= − z

ln 2

b∑

k=2

b∑

r=2

σkσr
2k+r−1

∑

v∈ZZ−{0}

{
1

2i
2vπ
ln 2

Γ
(
k+r−1+i

2vπ

ln 2

)
z−i

2vπ
ln 2

}

= −z
b∑

k=2

b∑

r=2

{
σkσr
2k+r−1

fk+r−1, 2(z)
}
.

Hence, the total contribution of all poles at s=sv is

∑

v∈ZZ−{0}

Res
s=sv

{
R∗b(s)z

−s
}

= −z
(

b∑

k=2

{
τkfk−1, 2(z)− 2λ1σkfk,2(z)

}

+ 2
b∑

k=2

b∑

r=2

σkσr

(
fk+r−1, 2(z)

2k+r
−
∑

m≥0

2mk fk+r−1, 2(z+2mz)

(1+2m)k+r−1

))
. (6.27)

The result now follows from (6.19), (6.25), (6.26) and (6.27).

To derive the (more interesting) Var
(
X(j)(z)

)
, for all 1 ≤ j ≤ b, we have to

simplify the expressions for τk, when only one of the λj’s is 1. To be precise, let

τ
(j)
k be the value of τk when λj=1 for some 1≤j≤b and λr=0 for all r 6=j. Then,
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from the definition (6.15) of τk, we have

τ
(j)
k =

δj,k
k!
− 1 + δk,2j

k! 2k−1

(
k

j

)
for 2≤k≤b, 1≤j≤b, (6.28)

since the only non-zero term of the first sum in (6.15) occurs when j=r and k−j=r,

that is, when k=2j. To present our formulae for the variances (and covariances)

in a more compact way, we will use the terms

Λk,r
def
= (k+r−2)!


 1

2k+r
−
∑

m≥0

2mk

(1+2m)k+r−1


 , integers k, r≥1 (6.29)

and

Λ̃k,r
def
= Λk,r + Λr,k

= (k+r−2)!

 1

2k+r−1
−
∑

m≥0

2mk+2mr

(1+2m)k+r−1


, integers k, r≥1, (6.30)

and the oscillating functions

Φk,r(z)
def
=

fk+r−1, 2(z)

2k+r
−
∑

m≥0

2mk fk+r−1, 2(z+2mz)

(1+2m)k+r−1
, integers k, r≥1 (6.31)

and

Φ̃k,r(z)
def
=Φk,r(z) + Φr,k(z)

=
fk+r−1, 2(z)

2k+r−1
−
∑

m≥0

(2mk+2mr)fk+r−1,2(z+2
mz)

(1+2m)k+r−1
, integers k, r≥1 (6.32)

in them.

Corollary 6.4 Under the Poisson model with mean z, the variance of the number

of type 1 buckets in a trie is

Var
(
X(1)(z)

)

= z

(
1 +

1

ln 2

(
3

2
− 1

2b−2
−

b∑

k=2

1

(k−1)2k−1 +
b∑

k=2

b∑

r=2

Λk,r

(k−1)! (r−1)! 2k+r−3
))

+ z

(
− f1,2(z)

2
+

b∑

k=2

2fk,2(z)−fk−1, 2(z)

(k−1)! 2k−1 +
b∑

k=2

b∑

r=2

Φk,r(z)

(k−1)! (r−1)! 2k+r−3
)

+ O
(
1

zd

)
as z→∞, for any d>−1,
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and the variances of the numbers of type j buckets, for all 2≤j≤b, are

Var
(
X(j)(z)

)

=
z

ln 2

(
1

j(j−1) +
2Λj,j

j! j!
−

(
2j
j

)

j(2j−1)4j [ b ≥ 2j] −
b∑

k=2

(
k
j

)

k(k−1)2k−1

− 1

j!

b∑

k=2

(
k
j

)
Λ̃k,j

k! 2k−2
+

b∑

k=2

b∑

r=2

(
k
j

)(
r
j

)
Λk,r

k! r! 2k+r−3

)

+ z

(
fj−1, 2(z)

j!
+

2Φj,j(z)

j! j!
−

2
(
2j
j

)
f2j−1, 2(z)

(2j)! 4j
[ b ≥ 2j] −

b∑

k=2

(
k
j

)
fk−1, 2(z)

k! 2k−1

− 1

j!

b∑

k=2

(
k
j

)
Φ̃k,j(z)

k! 2k−2
+

b∑

k=2

b∑

r=2

(
k
j

)(
r
j

)
Φk,r(z)

k! r! 2k+r−3

)

+ O
(
1

zd

)
as z→∞, for any d>−1,

where the terms Λk,r and Λ̃k,r are defined in (6.29) and (6.30), and the oscillating

functions Φk,r(z), Φ̃k,r(z) and fm,2(z) are defined in (6.31), (6.32) and (2.3).

Proof: Both expressions are derived from Var
(
X(z)

)
, given in Theorem 6.4, by

setting τk←τ
(j)
k from (6.28), and σk←σ

(j)
k from (6.6). Recall that we must also set

λ1←1 and λ1←0 for the derivation of Var
(
X(1)(z)

)
and Var

(
X(j)(z)

)
respectively.

The results follow after some algebraic simplification.

Finally, we may derive the covariances between the numbers of any two bucket

types, from

Cov
(
X(j)(z), X(l)(z)

)
=
1

2

(
Var

(
X(j)(z)+X(l)(z)

)
−Var

(
X(j)(z)

)
−Var

(
X(l)(z)

))
.

(6.33)

To make use of that, we have to compute Var
(
X(j)(z)+X(l)(z)

)
, for all 1≤j 6= l≤b.

But this can be easily done, by setting λj = λl = 1, and λr = 0 for all r 6= j, l, in

Var
(
X(z)

)
. If σ

(j,l)
k and τ

(j,l)
k are the values of σk and τk for the just mentioned
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values of λ1, λ2, . . . , λb, we may derive without much effort

σ
(j,l)
k =

δk,j + δk,l
k!

−
(
k
j

)
+
(
k
l

)

k! 2k−1
, integers 2≤k≤b, 1≤j 6= l≤b (6.34)

from the definition (6.5) of σk, and

τ
(j,l)
k =

δk,j + δk,l
k!

−
(
k
j

)
+
(
k
l

)
+ 2

(
k
j

)
δk, j+l +

(
k
j

)
δk, 2j +

(
k
l

)
δk, 2l

k! 2k−1
,

integers 2≤k≤b, 1≤j 6= l≤b (6.35)

from the definition (6.15) of τk.

Corollary 6.5 Under the Poisson model with mean z, the covariances between the

numbers of buckets of types 1 and j, for all 2≤j≤b, in a trie are

Cov
(
X(1)(z), X(j)(z)

)

=
z

ln 2

(
− 1

j2j
[ b ≥ j+1] − 1

j
+

b∑

k=2

(
k
j

)

k2k−1

− 1

j!

b∑

k=2

Λ̃k,j

(k−1)! 2k−1 +
b∑

k=2

b∑

r=2

(
k
j

)
Λ̃k,r

k! (r−1)! 2k+r−2
)

+ z

(
− fj,2(z)

j! 2j
[ b ≥ j+1] − fj,2(z)

j!
+

b∑

k=2

(
k
j

)
fk,2(z)

k! 2k−1

− 1

j!

b∑

k=2

Φ̃k,j(z)

(k−1)! 2k−1 +
b∑

k=2

b∑

r=2

(
k
j

)
Φ̃k,r(z)

k! (r−1)! 2k+r−2
)

+ O
(
1

zd

)
as z→∞, for any d>−1,

and the covariances between the numbers of buckets of types j and l, for all 2≤j 6=
l≤b, are

Cov
(
X(j)(z), X(l)(z)

)

=
z

ln 2

(
−

(
l+j
j

)

(l+j)(l+j−1)2l+j−1 [ b ≥ j+l] +
Λ̃j,l

j! l!
− 1

j!

b∑

k=2

(
k
l

)
Λ̃k,j

k! 2k−1
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− 1

l!

b∑

k=2

(
k
j

)
Λ̃k,l

k! 2k−1
+

b∑

k=2

b∑

r=2

(
k
j

)(
r
l

)
Λ̃k,r

k! r! 2k+r−2

)

+ z

(
−
(
l+j
j

)
fl+j−1, 2(z)

(l+j)! 2l+j−1
[ b ≥ j+l] +

Φ̃j,l(z)

j! l!
− 1

j!

b∑

k=2

(
k
l

)
Φ̃k,j(z)

k! 2k−1

− 1

l!

b∑

k=2

(
k
j

)
Φ̃k,l(z)

k! 2k−1
+

b∑

k=2

b∑

r=2

(
k
j

)(
r
l

)
Φ̃k,r(z)

k! r! 2k+r−2

)

+ O
(
1

zd

)
as z→∞, for any d>−1,

where the terms Λ̃k,r are defined in (6.30), and the oscillating functions Φ̃k,r(z) and

fm,2(z) are defined in (6.32) and (2.3) respectively.

Proof: To derive Cov
(
X(1)(z), X(j)(z)

)
, we compute Var

(
X(1)(z)+X(j)(z)

)
from

Var
(
X(z)

)
given in Theorem 6.4, by setting λ1 ← 1, σk ← σ

(1,j)
k from (6.34),

and τk ← τ
(1,j)
k from (6.35). Next, we use identity (6.33), in which the appear-

ing Var
(
X(1)(z)

)
and Var

(
X(j)(z)

)
are given by Corollary 6.4. The involved

calculations are very lengthy, but nevertheless straightforward. The derivation of

Cov
(
X(j)(z), X(l)(z)

)
is done similarly.

6.6 Remarks on Fixed-Bucket Tries

Under the fixed population model, let

Yn
def
= X(1)

n +X(2)
n + · · ·+X (b)

n

be the total number of non-empty buckets in a trie of n keys. Since

E(Yn) =
b∑

j=1

E
(
X(j)

n

)
,

we may derive E(Yn), without much effort, from our results of Section 6.4. Notice

here that E(Yn) does not follow from the expected number of internal nodes (6.1)

in a trie, since Yn does not include the empty buckets.
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Theorem 6.5 Under the fixed population model, the expected number of non-empty

fixed-size buckets, in a trie of n keys, is

E(Yn) = n −
n∑

k=2

(
n

k

)
(−1)k 1

1− 21−k

b∑

r=2

(
k

r

)
(−1)r

(
1− 1

2r−1

)
, for n ≥ 1

or

E(Yn) = n

(
1− 1

ln 2

(
1− 1

b
−

b∑

k=2

1

k(k−1)2k−1
))
− n

b∑

k=2

(
1− 1

2k−1

)
fk−1, 2(n)

k!

+O(1) as n→∞,

where the periodic functions fm,2(z) are defined in (2.3).

Proof: The exact expression for E(Yn) follows immediately from Theorem 6.1,

since, when λ1=λ2= · · ·=λb=1, the σk’s become

σk =
1

k!
− 1

k! 2k−1

k∑

r=1

(
k

r

)
by (6.5)

=
1

k!

(
1− 1

2k−1
(2k − 1)

)
, by binomial theorem

that is,

σk = −
1

k!

(
1− 1

2k−1

)
, for λ1=λ2= · · ·=λb=1.

The asymptotic expression for E(Yn) follows similarly from Theorem 6.3, since the

σk’s above give

E(Yn) = n

(
1− 1

ln 2

b∑

k=2

1

k(k−1)
(
1− 1

2k−1

))
− n

b∑

k=2

1

k!

(
1− 1

2k−1

)
fk−1, 2(n)

+O(1) as n→∞,

and the first sum appearing above becomes

b∑

k=2

1

k(k−1)
(
1− 1

2k−1

)
=

b∑

k=2

1

k(k − 1)
−

b∑

k=2

1

k(k − 1)2k−1

=
b∑

k=2

{
1

k − 1
− 1

k

}
−

b∑

k=2

1

k(k − 1)2k−1

= 1− 1

b
−

b∑

k=2

1

k(k − 1)2k−1
,
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which proves the result.

At this point, we may note that although no closed formula exists for the sum

appearing in

xb
def
= 1− 1

ln 2

(
1− 1

b
−

b∑

k=2

1

k(k − 1)2k−1

)
,

the non-oscillatory part of the coefficient of n in the expected number of fixed

buckets, this sum converges very rapidly; for example, for all b ≥ 8, it is .3068

when computed to a 4-digit accuracy.

An interesting question that we are now in a position to answer is the following:

how much bucket space is unused in a fixed-bucket trie? We know that the used

space (number of filled key slots) is exactly n. Therefore, to get an approximate

answer, it suffices to compute nbxb. The next corollary shows that the bucket space

utilization is about 69%.

Corollary 6.6 Under the fixed population model, the expected space taken by all

non-empty fixed-size buckets in a trie of n keys, is proportional to n as n → ∞,
with an approximate proportionality factor of

bxb =
1

ln 2
+O

(
1

b2b

)
≈ 1.44269 +O

(
1

b2b

)
as b→∞.

Proof: If we rewrite the finite sum appearing in xb as the difference of two infinite

sums, we get

bxb =
1

ln 2
+ b


1− 1

ln 2
+

1

ln 2


∑

k≥2

1

k(k − 1)2k−1
−

∑

k≥b+1

1

k(k − 1)2k−1




 .

But the first sum in the last expression is 1−ln 2 by the geometric series, and the

second sum is O
(
1
b2b

)
as b→∞. The result now follows.
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6.7 Summary

In this chapter, we examined the number of buckets of sizes 1, 2, . . . , b in an elastic-

bucket trie, by using the mathematical techniques of the previous chapter. We fully

analyzed the expected values; we gave an exact (Corollary 6.1) and an asymptotic

(Theorem 6.3 and Corollary 6.2) expression for the expected number of buckets

of each size under the fixed population model, and we observed (Theorems 6.2

and 6.3) that the asymptotic expected values under the fixed population model

and under the Poisson model are the same. As a byproduct of these results, we

obtained (Theorem 6.5) the expected number of non-empty buckets in a (fixed- or

elastic-) bucket trie, and we noted that about 69% of the bucket space is occupied

by keys. Finally, we derived (Theorem 6.4) asymptotic expressions for the variances

and covariances of the number of buckets of all sizes under the Poisson model. All

expected values, variances and covariances are linear in the number of keys in the

trie.

In view of our results, we may conclude that, under the Poisson model, the

number of buckets of each size stays close to its expected value with high probability.

This is probably true under the fixed population model as well, since known results

on the number of internal nodes of tries (end of Section 5.4) suggest that the

variances and covariances under the fixed population model will most probably be

linear as well, but with a smaller constant in the leading term.

Finally, we may observe that our results hold for (fixed- and elastic-) bucket

Patricia tries as well. To see why this is true, it suffices to recall that the Patricia

trie is the same as a trie, but with all nodes of outdegree 1 eliminated. This implies

that the pattern of external nodes in both schemes is identical.



Chapter 7

Concluding Remarks

The main objective of this thesis was to investigate the PSL dictionary implementa-

tion in two ways. First, to obtain additional results on its average case logarithmic

time complexity, and second, to modify it into a structure with worst case loga-

rithmic time complexity. The techniques used to achieve the former, allowed us to

derive new results on another dictionary implementation, the elastic-bucket trie.

7.1 Summary of Results

All our probabilistic analyses were done under the (common) fixed population model

of randomness and/or the Poisson model of randomness. The main contributions

of our thesis are the following.

First, we showed (Theorem 3.3) that the expected value of the cost for the search

of the mth key in a PSL of n keys is exactly log 1
p
n+ q

p
log 1

p
m+constant + O( 1

m
),

and we gave a precise expression of the appearing “constant” term. This is an

improvement over Pugh’s [39] previously known upper bound of the same average
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Figure 7.1: Derivation of our probabilistic results

search cost. Our results were derived, initially (Chapter 3) by appealing to some

known results on tries, and subsequently (Chapter 5) by using more advanced

techniques. As a consequence of our results, we also derived (Theorem 3.4) the

expected value of the cost for the search of the average key in a PSL.

Second, we showed (Corollary 5.3) that the variance of the cost for the search

of +∞ in a PSL of n keys is q
p2
log 1

p
n+ constant + O

(
lnn
n

)
, and we gave a precise

expression for the appearing “constant” term.

Third, we presented (Chapter 4) several versions of DSLs, having guaranteed

worst case logarithmic search and update costs. These new structures lead to a

“bridge” between the original PSL and the standard search trees, and — from a
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practical point of view — they are simpler to implement than existing balanced

search trees, and very competitive in terms of time and space.

Fourth, we analyzed (Chapter 6) the space complexity in the elastic-bucket trie.

More precisely, we considered the number of buckets of each size in this structure,

and we showed that each such number has a linear expected value under the fixed

population model (Corollary 6.3), and a linear variance under the Poisson model

(Corollary 6.4). Our conjecture is that the variance under the fixed population

model will remain linear, but with a smaller proportionality factor.

The above probabilistic results, both for the PSL and for the bucket trie, were

obtained not only by using the same analytical techniques (exponential, probability

and moment generating functions; binomial, Poisson and Mellin transforms; Rice’s

method for evaluating alternating sums), but also by working in a completely anal-

ogous manner. The followed sequence of steps is summarized in Figure 7.1. The

derived results for the PSL and the trie are marked by S and T respectively; a (S)

denotes a PSL derived result by different means.

7.2 Open Problems

The DSLs of Chapter 4, open up a number of interesting research topics, stemming

from analogous questions posed for standard search trees. For example, how can

the skip list be extended to handle other dictionary operations, like deletion of

minimum key, or splitting, concatenation, intersection and difference of two skip

lists? How can the skip list be changed into a simpler structure with amortized

logarithmic costs? How can it be modified to handle multidimensional data? How

can it become a persistent data structure? How expensive may a search get, if

insertions are to be faster? The latter may translate into determining, for example,
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the height of the skip list if only O(1) (as opposed to O(lnn) in our proposed

solution) elements are allowed to be raised per insertion.

Other questions on DSLs are pertinent to our proposed versions. For example,

can the extra pointers (in our linked list implementation) be used more advanta-

geously than simply “threading” the structure, making it thus simpler to under-

stand and implement?

For the probabilistic analysis of the PSL, the derivation of the variance of the

search cost for the mth key, for all 1≤m≤n is another very interesting, but still

open, problem; the recurrences we derived for this variance, were too complicated

to allow us to proceed. Assuming that the last problem has been solved, one may

subsequently attempt to work as in Chapter 6, in order to derive the variance

of a linear combination of all search costs, obtaining thus the complete variance-

covariance matrix for all search costs. Such a result, if derived, would shed more

light into the performance characteristics of the PSL. The n+1 different search

costs do not assume values in isolation; they are related, yet, their relationship is

totally unknown.

For the probabilistic analysis of the elastic-bucket trie, one open problem is

evident from Figure 7.1: derive asymptotics for the variances and covariances of

all bucket sizes under the fixed population model. This problem is particularly

interesting in view of our earlier remark that we expect the variances under the fixed

population model to be different from the (derived) variances under the Poisson

model.

For the sake of completeness, in the study of the elastic-bucket trie, we would

also like to include the number of empty buckets (i.e. nil pointers) in our calcula-

tions. Although the expected number of empty buckets follows immediately from
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our results, their variance and covariances are not known. We note that our com-

putations of Chapter 6 cannot be immediately extended to handle this problem,

due to the non-existence of certain Mellin transforms.

Finally, another open problem for the elastic-bucket trie, completely different in

flavour from the previous ones, but very important from a practical point of view, is

the following. Suppose that only two different bucket sizes are allowed: b, and, say,

x. What should x be, so that the average bucket space utilization is maximized?

Our experimental results showed that the optimal choice for x is around .7b, but

we were unable to prove that. For the .7b choice of x, one may compute that about

84% of the bucket space is utilized; this is almost half way between the 69% space

utilization when only 1 bucket size is allowed, and the 100% space utilization when

all b different bucket sizes are allowed.
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