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�� Introduction� We consider a partitioning problem on chordal graphs that can

be informally described as follows� Given a chordal graph G with its vertices numbered
in a perfect elimination ordering 
PEO�� we obtain a directed acyclic graph 
DAG� by
directing every edge from its lower�numbered to its higher�numbered endpoint� 
De�ni�
tions of chordal graph terms are included in the next section�� Roughly the problem is

to partition the chordal graph G into the fewest transitively closed subgraphs� subject to
a certain precedence relationship on the vertices� over all DAGs that may be obtained
from PEOs of G in this manner� In earlier work ���� we designed a greedy algorithm
for solving this problem that uses an adjacency list representation of the graph� Here

we describe another� more e�cient� greedy algorithm obtained by viewing the chordal
graph as a collection of maximal cliques�

We will need to introduce some notation before we can state the problem more

precisely�
Let Gd � 
V� F � be a DAG� If there exists a directed path from a vertex j to

another vertex i in Gd� then j is a predecessor of i� and i is a successor of j� Given a
set X � V � let FX � F be the set comprising every edge directed from a vertex in X to

any vertex in the graph� The edge subgraph induced by FX is the subgraph of Gd with
edge set FX and vertex set consisting of all vertices which are endpoints of these edges�

We will call this the edge subgraph induced by X�� A directed graph is transitively
closed or transitive if the existence of edges 
u� v� and 
v�w� implies the existence of

edge 
u�w��
The chordal graph partitioning problem is the following�
Problem �� Given a chordal graph G � 
V�E�� compute a PEO� the associated

DAG Gd� and an ordered partition R�� R�� � � � � Rt of its vertices such that

�� for every v � V � if v � Ri then all predecessors of v belong to R�� � � � � Ri�
�� the edge subgraph induced by each Ri is transitively closed� and
�� t is minimum over partitions of all DAGs obtained from PEOs of G�

Problem � and a simpler DAG partitioning problem arose in the design of algorithms
for solving sparse triangular systems of equations on highly parallel computers� The
papers �
� �
� ��� ��� discuss various aspects of this problem� and a survey is provided
in ����

An algorithm for solving this partitioning problem in time and space O
jV j� jEj�
has been described in ����� This greedy algorithm eliminates all vertices that are �eli�
gible� for elimination at each step� hence the set of vertices eliminated at the i�th step�
Ri� has the largest cardinality possible� Let Gi � G n �i��j��Rj denote the reduced graph

at the beginning of the i�th step� The set Ri includes all the simplicial vertices of Gi�
in addition� it includes the neosimplicial vertices of Gi� a subset of the vertices that
become newly simplicial when vertices in Ri are eliminated from Gi�

Here we present a more e�cient greedy algorithm that can be implemented using

a clique tree representation of G in O
jV j� q� time� where q ��
P

K�KG
jKj� and KG

is the set of maximal cliques of G� The number q is the size of the clique tree� and
typically q � jEj� Since the algorithm is conceptually quite simple� we now provide a

high�level description of the algorithm 
assuming some knowledge of the clique graph
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representation of the chordal graph described in Section 	��

Let Gi denote the reduced graph at the beginning of the i�th step� The algorithm
considers only the leaf cliques in the clique graph representation of Gi for elimination
at this step� These cliques are processed by decreasing size of the unique maximal
separator contained in each leaf� When a leaf clique K is considered for elimination� all

the currently simplicial vertices in K are eliminated in the order in which they became
simplicial� It then becomes a nonmaximal clique and is deleted from the clique graph�
The deletion of K could in�uence a clique P that contains the maximal separator of
K in three ways� If P is a current leaf� and continues to be a leaf after the deletion of

K� then the maximal separator size of P is updated as necessary� If P changes from
a leaf to a nonleaf� then it is removed from the set of �persistent leaves�� and will not
be considered for elimination at this step� If P becomes a new leaf� then it will be a

candidate for elimination only at the next step� This process of eliminating persistent
leaves from the current graph is repeated until the graph is empty�

This �persistent leaf elimination scheme� is a natural greedy algorithm from the
clique graph viewpoint in that it deletes all eligible cliques from the current graph at

each step� The hard part of the paper is proving that this simple leaf elimination
algorithm solves Problem �� We do this by making a careful study of minimal vertex
separators in terms of the clique graph� by introducing the concept of a critical separator�
and by partitioning leaves into cohorts using their critical separators�

The rest of this paper is organized into three major parts� The �rst part� consisting
of Sections 
� 	� and �� develops the fundamental results necessary to characterize the
unique �rst member of maximum cardinality in a vertex partition� R�� This character�
ization is obtained in terms of the cliques of G and the minimal vertex separators in G�

The second part� which includes Sections �� �� and �� progressively develops a persis�
tent leaf clique elimination scheme that eliminates a subset of vertices that belong to
R�� ordering them in an appropriate ordering� The third part� consisting of Sections �

and �� describes a greedy leaf clique elimination scheme that solves Problem � and an
e�cient algorithm implementing this scheme� The �nal section contains a discussion of
graphs for which Problem � has the solution R� � V �

We now describe the individual sections in more detail�

In Section 
 we describe the concepts and results from ���� that we require� Section 	
introduces properties of clique intersection graphs� clique trees� and minimal vertex
separators of chordal graphs� A vertex v eligible to belong to R� was characterized in
���� in terms of the length of a longest chordless path in G in which v is an interior

vertex� Section 	 characterizes such a vertex v in terms of the minimal vertex separators
of G� The important concept of a critical separator is introduced in Section �� and a
nonsimplicial vertex belonging to R� is characterized in terms of critical separators�

Section � introduces a simple leaf clique elimination scheme and considers how the

set of separators� the set of simplicial vertices� and the set of leaf cliques change upon
the elimination of a single clique� In Section � this simple elimination scheme is re�ned
by carefully ordering the elimination process� and the cliques and vertices eliminated

by the scheme are characterized� It is shown in Section � that the re�ned elimination
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scheme removes a transitively closed edge subgraph�

In Section � we describe a greedy leaf clique elimination scheme that employs the
persistent leaf elimination scheme recursively to obtain a solution to Problem �� An
implementation of this greedy scheme that makes uses of a rooted clique tree and runs
in O
jV j� q� time is then brie�y described in Section ��

�� Background� This section begins the �rst part of this paper� which includes
the next two sections as well� In order to characterize the �rst member of a partition

R�� we de�ne the concept of a neosimplicial vertex in this section� Then we develop
results that characterize such vertices in terms of the separators in the chordal graph
in the latter sections�

We begin by brie�y reviewing the concepts and results from ���� that we will require

in this paper� We will assume throughout that the graphs we consider are connected�
A chord in a cycle 
path� in a graph G is an edge of G joining two vertices that

are not consecutive on the cycle 
path�� A graph G is chordal if every cycle containing
more than three edges has a chord� A cycle or path is chordless if it has no chord�

An important concept in the solution of Problem � is the length of a vertex de�ned
in terms of chordless paths� A vertex v is an interior vertex of a path if it lies on the
path but is not an endpoint of the path� Any vertex v is either an interior vertex of
some chordless path in the graph� or else it is an endpoint of every chordless path on

which it lies� In the former case� let �
v� denote the length of a longest chordless path
in G which includes v in its interior� note that �
v� � 
 for all such vertices� In the
latter case� de�ne �
v� � �� We will refer to �
v� as the length of a vertex v� and write

�G
v� when we want to make clear that the underlying graph is G�
We will use the chordal graph shown in Figure 
�� to illustrate various concepts

throughout the paper� The reader can easily verify that �
ki� � � for i � �� � � �� ��
�
s�� � �
s�� � 
� and �
s�� � �
s�� � 	�

The vertices v � V for which �
v� � 
 have certain properties that will play a
crucial role in our solution to Problem �� The �rst of these is that for such vertices in
a chordal graph� there is an interesting partition of adj
v�� the adjacency set of v�

The neighborhood of a vertex v is nbd
v� � fvg�adj
v�� A vertex u � adj
v� is said

to be indistinguishable from v if nbd
u� � nbd
v�� the set of neighbors indistinguishable
from v will be denoted by adj�
v�� A vertex u � adj
v� is said to strictly outmatch v if
nbd
u� � nbd
v�� The set of vertices that strictly outmatch v will be written adj�
v��
the set of vertices strictly outmatched by v will be written adj�
v�� Finally� let adj�
v�

consist of the vertices u � adj
v� for which nbd
u� and nbd
v� are incomparable� It
should be clear that the subsets adj�
v�� adj�
v�� adj�
v�� and adj�
v� partition adj
v��
where v is a vertex in any graph G�

Lemma ���� If v is a vertex of a chordal graph G� then the subsets adj�
v�� adj�
v��
and adj�
v� partition adj
v� if and only if �
v� � 
� �

The second result concerns vertices with length one or two� A vertex v is a simplicial
vertex in any graph G if nbd
v� is a clique�
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Fig� ���� A chordal graph with maximal cliques K� � fk�� s�� s�� s�� s�g� K� � fk�� s�� s�� s�� s�g�
K� � fk�� s�� s�g� and K� � fk�� s�� s�g�

Lemma ���� Let v be a vertex of a chordal graph�

�� �
v� � � if and only if v is simplicial� in which case adj�
v� � 	�
�� If �
v� � 
 then jadj�
v�j � 
� and for every vertex u � adj�
v� there exists a

vertex u� � adj�
v� for which 
u� u�� 
� E� �

The �rst� but not the second� of these properties is true for a vertex in any graph�

We now turn to a characterization of the largest set of vertices whose edge subgraph
is transitively closed in the graph G� We need two additional concepts to state the
results� transitive perfect elimination orderings and T�sets�

An incomplete ordering of G relative to a vertex set X � V is a mapping

� � V � f�� 
� � � � � jXj � �� jXj� n� �g

such that � restricted to X is a bijection from X to f�� 
� � � � � jXjg and �
v� � n � �
for each vertex v � V � X 
here jV j 
 n�� For convenience we shall refer to such
an incomplete ordering of G as an ordering of G
X�� 
If X � V � then we obtain an

ordering of the vertices of G�� Given an ordering of the vertices of a graph� we denote
by madj
v� the set of higher�numbered neighbors of v� A perfect elimination ordering
of G
X� is an ordering of G
X� such that madj
v� is complete in G for every vertex

v � X� 
The reader should not confuse G
X� with the subgraph induced by the vertex
set X��






A transitive ordering of G
X� is a vertex ordering for which the following property

holds� If �
u� � �
v� � �
w� and 
u� v�� 
v�w� � E� then 
u�w� � E� Note that the
vertices u and v are necessarily taken from X 
because �
u� � �
v� � n���� while the
vertex w may be taken from either X or V �X�

A transitive perfect elimination ordering 
TEO� of G
X� is an ordering of G
X�

that is both a PEO and a transitive ordering of G
X�� Any vertex set X � V for which
there exists a TEO of G
X� shall henceforth be called a T�set of G� An example of a
T�set is X � SimG 
� 	� where SimG is the set of simplicial vertices of G� It is easy to
verify for this example that any ordering of G
X� is a TEO of G
X��

If X is a T�set of G� order the vertices of G
X� in a TEO� and direct each edge
that has at least one endpoint in X from the lower to the higher�numbered endpoint�
Let EX denote the subset of edges of G with at least one endpoint in X� Then the

edge subgraph of G
X� induced by EX is a transitively closed subgraph� The following
theorem characterizes the largest possible transitively closed subgraph of G that can be
obtained in this manner�

Theorem ���� The unique T�set of maximum cardinality in the graph G is

R � fv � V j �
v� � 
� and �
u� � 
 for every u � adj�
v�g� �

���

In the example in Figure 
��� R � fk�� � � � � k�� s�g� The T�set R includes simplicial

vertices� which are vertices of length one� and neosimplicial vertices� vertices v with
length two such that vertices that strictly outmatch v have length less than or equal to
two as well�

The next result characterizes a greedy solution to Problem �� Consider reducing
the graph G by choosing a T�set �R of G and removing the vertices in �R from G in the
order speci�ed by a TEO of G
 �R�� we can then complete the reduction of G to the null
graph by applying this process recursively to the reduced graph G n �R�

Suppose the graph G is reduced to the null graph after the removal of t distinct
T�sets� each ordered by a TEO� De�ne G� �� G� and let G�� G�� � � � � Gt�� � 	 be the
sequence of reduced graphs obtained at the end of each �block� elimination step� Let
�R�� �R�� � � � � �Rt be the corresponding sequence of T�sets� so that �Ri is removed from Gi

by a TEO of Gi
 �Ri� to obtain the reduced graph Gi�� � Gi n �Ri� We shall refer to any
partition �R�� �R�� � � � � �Rt obtained by this process as a T�partition of V � A PEO � of V
can be obtained through this process by ordering for each � � i � t� �� the vertices in
�Ri�� in a TEO after �Ri has been ordered in a TEO� The resulting PEO is a compound

TEO of G with respect to the T�partition �R�� �R�� � � � � �Rt�
Denote by the greedy vertex elimination scheme a scheme that eliminates the max�

imum cardinality T�set Ri from each graph Gi in this sequence�

Theorem ���� The greedy vertex elimination scheme generates a minimum�
cardinality T�partition of V � �

�� Clique graphs and vertex lengths� We begin this section with a description

of clique graph and clique tree representations of a chordal graph� and then describe the
relationships between vertex separators and clique trees� These will enable us to obtain
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a result relating vertices with speci�ed �
�� values to the structure of the separators

they belong to�

���� Clique trees and separators� Let the set of maximal cliques of the chordal
graph G � 
V�E� be denoted by KG� We de�ne a clique intersection graph with

vertex set KG by joining two cliques K and K � by an edge 
K�K �� if the intersection
K �K � is not empty� The weight of the edge is the size of the intersection� A clique
tree T � 
KG�E� is a maximum weight spanning tree 
mst� of the clique intersection

graph 
Bernstein and Goodman ����� Every clique tree T of G satis�es the intersection
property� For every pair of cliques K�� K�� the intersection K� � K� is contained in
every clique on the path joining K� and K� in T � We denote the set of all clique trees
of G by TG�

References for background on chordal graphs and clique trees include Berge �	��
Duchet ���� Golumbic ����� and Lundquist ����� Blair and Peyton ��� provide a recent
primer and discuss applications to sparse matrix computations�

The maximal cliques of the graph G in Figure 
�� are listed in the �gure caption�

The clique intersection graph ofG is a complete graph with weight four on edge 
K��K���
one on edge 
K��K��� and two on all other edges� The clique trees of G are obtained
by choosing the edge 
K��K��� one edge from the set f
K��K��� 
K��K��g and another
edge from f
K��K��� 
K��K��g� Note that the edge 
K��K�� belongs to none of the

clique trees of G�
Let K
u� denote the set of maximal cliques of G that contain the vertex u� The

following lemma characterizes the adjacency set partition in Lemma 
�� in terms of the

maximal cliques of G�
Lemma ���� For any pair of vertices u� v of a chordal graph G�
�� K
u� � K
v� if and only if u � adj�
v��
�� K
u� � K
v� if and only if u � adj�
v��

We omit the simple proof� �

If a and b are nonadjacent vertices in a connected graph G� an a� b�separator is
a set of vertices S such that a and b belong to two distinct connected components in
G n S� The set S is a minimal a� b�separator if no proper subset of S has this property�

We will call S a minimal vertex separator or separator if it is a minimal a� b�separator
for some pair of nonadjacent vertices a� b � V � S�

Ho and Lee 
��	�� Lemma 
��� proved the following result�
Proposition ���� The set S � V is a minimal vertex separator in the chordal

graph G if and only if in every clique tree T � TG there exists some edge 
K�K �� such
that S � K �K �� �

The edge 
K�K �� in the proposition may depend on T � Let K� and K� denote the

sets of cliques in the two subtrees obtained when the edge 
K�K �� is removed from T �
De�ne V� � V 
V� � V � to be the set of vertices belonging to the cliques in K� 
K��
but excluding vertices in S� Then S � K �K � is a minimal a� b�separator for any pair
a � V�� b � V� 
Ho and Lee ��	�� Lundquist ������

The separators in the example are K� � K� � fs�� s�� s�� s�g 
 S�� K� � K� �
K� � K� � fs�� s�g 
 S�� and K� � K� � K� � K� � fs�� s�g 
 S�� Note that

	



K� �K� � fs�g is not a separator since the corresponding edge does not belong to any

clique tree of G�
For any clique tree T � 
KG�E�� consider the multiset

MT � fK �K � j 
K�K �� � Eg�

From the previous proposition we have that MT is a multiset of minimal vertex sep�
arators of G� If T�U � TG are two clique trees of G� Ho and Lee further showed that

the multisets MT and MU are identical� Hence we let MG denote the multiset of
separators associated with every clique tree in TG�

Let the set of cliques containing a set S � V be K
S� � fK � KG � S � Kg

usually S will be a separator�� and let the set of separators belonging to a clique K

be S
K� � fS � MG � S � Kg� The set S
K� contains one copy of each distinct
separator in MG contained in K�

In the example in Figure 
��� each clique K� and K� contains the separators S� �
fs�� � � � � s�g� S� � fs�� s�g� and S� � fs�� s�g� The set of cliques containing the separator
S� is fK��K��K�g�

We will require the following lemma in proving subsequent results�
Lemma ���� If S � S
K�� then there exists a clique K � � KG such that S � K�K ��

furthermore� S is a minimal u� v�separator for every pair of vertices u � K n K � and

v � K � nK�
Proof� Let T be a clique tree of the chordal graph G� By Proposition 	�
� since

S �MG there exists an edge 
K��K�� in the clique tree T such that S � K� �K�� If

either one of these cliques is identical to K� then we are done� Hence assume that K is
distinct from these two cliques�

Let K� and K� denote the sets of cliques in the two subtrees obtained by removing
the edge 
K��K�� from T � and without loss of generality� let K� and K belong to K��

Since vertices in S belong to both K and K�� we have that K � K� � S� From the
clique intersection property of clique trees� K �K� is contained in every clique on the
path in T from K to K�� and hence K �K� belongs to K�� But K� �K� � S implies
that K �K� � S� Now the tree T � obtained by replacing the edge 
K��K�� by the edge


K�K�� in T is also a maximum weight spanning tree of the clique intersection graph�
and hence is a clique tree� It follows that if we let K� � K �� then 
K�K �� is an edge
of a clique tree� and thus S is a separator for every pair of vertices u � K � K � and
v � K � �K� �

A clique K is a leaf clique of G if there exists a clique tree T � TG in which K is
a leaf� Note that K may not be a leaf in some other clique tree T �� We let LG denote
the set of leaf cliques of the chordal graph G� and LT denote the set of leaves of a

speci�ed clique tree T � Blair and Peyton ��� obtained the following characterization of
a leaf clique�

Proposition ���� A clique K is a leaf clique of G if and only if it contains a
unique separator S that is maximal among the separators in S
K�� �

We will refer to the unique maximal separator contained in a leaf K as the leaf sep�
arator of K� and denote it by SepG
K�� The vertices in a leaf K can be partitioned into
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two subsets� the set of simplicial vertices which belongs to no other clique� SimG
K��

and the set of vertices which belongs to other cliques� all contained in the leaf separator
SepG
K�� and therefore contained in some clique K � such that K �K � � SepG
K�� If
K is not a leaf of G� then we will call it a nonleaf � From Proposition 	��� a nonleaf
clique contains at least two maximal separators that are pairwise incomparable�

In Figure 
��� LG � fK�� � � � �K�g� SimG
Ki� � fkig� for i � �� � � �� �� SepG
K�� �
SepG
K�� � S� � fs�� � � � � s�g� SepG
K�� � S� � fs�� s�g� and SepG
K�� � S� �
fs�� s�g�

���� Vertex lengths and separators� In this subsection� we characterize vertices
with speci�ed values of the length parameter� �
��� in terms of the separators in the
clique graph� This is one of the central results in this paper� We use S��S�� to denote

the symmetric di�erence of the sets S� and S���
Theorem ����

�� �G
v� � � if and only if v belongs to no separator of G� in this case v is
simplicial�

�� �G
v� � 
 if and only if v belongs to some separator of G� and �K � KG
v��
every separator S� � S
K� that includes v contains every separator S�� � S
K�
that does not�

�� �G
v� � 	 if and only if there exist two incomparable separators S�� S�� � S
K�

in some clique K � KG
v� such that v � S��S���
Proof� Note that the conditions at the left�hand�side of the three items de�ne a

tri�partition of V � and likewise� the conditions at the right�hand�side of the three items

partition V � The �rst item is easily proved as follows� From Lemma 
�
� �
v� � � if
and only if v is a simplicial vertex� it is well�known that v is simplicial if and only if
it belongs to exactly one maximal clique ����� Then from Proposition 	�
� v does not
belong to any separator� Hence it su�ces to prove the third item�

We begin by proving that the right�hand�side implies the left�hand�side in the third
item� Suppose that there exists a clique K � KG
v� satisfying the given conditions�
Without loss of generality let v belong to S�� and choose w � S�� � S�� By Lemma 	�	
we can �nd a clique K � such that S� � K �K � separates vertices in K�S� from vertices

in K � � S�� Similarly we can choose a clique K �� such that S�� � K �K �� is a separator
separating vertices in K�S�� from K ���S��� By the maximality of these cliques� choose
k� � K ��S� and k�� � K ���S��� In the path k�� v� w� k��� by the choice of the separators
S � and S��� no edge joins w and k� or v and k��� No edge joins k� and k�� since it would

create a chordless cycle of length four� Hence the path k�� v� w� k�� is chordless� and
�
v� � 	�

We prove the other direction of the third item by contraposition� Negating the

condition at the right�hand�side in the third item� either v belongs to no separator in any
clique in KG
v�� or v belongs to at least one separator and in every clique K � KG
v��
every separator that includes v contains every separator that does not� The former case
has already been considered in the �rst paragraph of the proof� Suppose now that for

every clique K � KG
v�� v � S� � S�� implies that S� � S�� for S�� S�� � S
K�� We will
prove that then �
v� � 
� thus completing the proof of the theorem�
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To obtain a contradiction� suppose �
v� � 	� and hence that there exists a chordless

path u� v� w� x in G� Then u� v belong to some clique K �� v� w to another clique K� and
w� x to a third clique K ��� Further v belongs to every minimal u�w�separator� and w

to every minimal v� x�separator in G� Since every separator corresponds to an edge in
any clique tree T of G� by Lemma 	�	 we can choose the cliques K� K �� and a separator

S � such that S� � K � K �� v � S�� and S� separates u � K � � S� from w � K � S��
Similarly we choose a clique K �� and a separator S�� such that S�� � K �K ��� w � S���
and S�� separates v � K � S�� from x � K �� � S���

Together� v � S� and v � K �S�� imply that v � S��S��� similarly w � K �S� and

w � S�� imply that w � S���S �� But this is a contradiction since we have assumed that
v � S� � S�� implies S� � S��� Since the chordless path of length three containing v as
an interior vertex was chosen arbitrarily� this contradiction shows that �
v� � 
� Since

v belongs to some separator� �
v� � 
� �

In Figure 
��� �
ki� � �� for i � �� � � �� �� since these vertices belong to none of the
separators� �
s�� � 
� since in both K� and K�� the separator fs�� � � � � s�g contains the
separators fs�� s�g and fs�� s�g which do not include s�� �
s�� � 
� since s� belongs to

every separator in G� and hence it satis�es the second statement in Theorem 	��� the
other vertices have length three�

We can now employ Theorem 
�	 to identify the neosimplicial vertices of G� The
set adj�
s�� � fk�� k�g� since �
s�� � 
 and �
k�� � �
k�� � �� s� is a neosimplicial

vertex� On the other hand� adj�
s�� includes s� and s�� vertices of length three� and
hence s� is not a neosimplicial vertex�

An easy consequence of the above theorem is the following result�
Lemma ���� If a nonsimplicial vertex v of a chordal graph G is neosimplicial� then

it belongs only to the leaf cliques of G�
Proof� We prove that if v belongs to a nonleaf clique K of G� then it is not

neosimplicial� Since v is not a simplicial vertex� by 

��� it can belong to R only if

�
v� � 
� in this case we show that there exists w � adj�G
v� with �
w� � 	�
The nonleaf cliqueK contains two maximal incomparable separators S�� S��� Choose

two vertices w � S� � S ��� and x � S�� � S�� Applying Theorem 	�� to w and x� we �nd
that �
w�� �
x� � 	�

By Theorem 	��� �
v� � 
 implies that every separator belonging to S
K� that
includes v contains every separator that does not� Thus a separator in S
K� that does
not include v is not a maximal separator in S
K�� Hence v belongs to S� and S��� but
by the choice of these vertices� w 
� S�� and x 
� S�� Because �
v� � 
� by Lemma 
��

the sets adj�G
v�� adj
�

G
v�� and adj�G
v� partition adjG
v�� and hence w� x � adj�G
v��
completing the proof� �

�� Critical separators� In this section we characterize neosimplicial vertices in
terms of the clique graph� More precisely� based on the separators in a leaf we partition
nonsimplicial vertices in the leaf into those vertices that are neosimplicial and those
that are not� Towards this end� we introduce the concept of a critical separator � and

partition the leaf cliques into groups called cohorts based on their critical separators�
Recall that a leaf clique K contains a unique maximal separator� say S�� that prop�
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erly contains every other separator belonging to S
K�� We now order the separators of

a leaf clique K as shown�

S
K� � fS� � S� � � � � � S� � S���� S���� � � � � Smg�
����

with the index � chosen as large as possible� 
This notation means that S� � Sj for
every j such that � � � � j � m�� By the choice of �� for � � � � j � m� no separator

Sj contains every other separator in this set� Choose the largest index � � r � � such
that K
Si� � LG for i � �� � � �� r� �� we de�ne Sr to be the critical separator C
K� of
the leaf clique K�

If � � � then r � �� and the leaf separator S� vacuously satis�es the condition that

all lower numbered separators are contained in leaf cliques� Furthermore� if r � � � m�
Sm also satis�es the de�nition of the critical separator� Thus a leaf clique always has a
critical separator� but this notion is unde�ned for a nonleaf clique�

The importance of critical separators is that they aid in distinguishing between

neosimplicial vertices� the nonsimplicial vertices that belong to R� and those that do
not� Let a subcritical separator of K denote any separator properly contained in the
critical separator C
K� � Sr� i�e�� a separator Sj� where r � � � j � m� Further let a

supercritical separator of K denote the critical separator of K or a separator of K that
properly contains the critical separator�

In Figure 
��� since the separators in K� can be ordered as

S� � fs�� � � � � s�g � S� � fs�� s�g� S� � fs�� s�g�

S� is its critical separator� Similarly� S� is the critical separator of K�� S� is the critical

separator of K�� and S� is the critical separator of K��
The next theorem characterizes neosimplicial vertices� and is another central result

in this paper�

Theorem ���� A nonsimplicial vertex v of the graph G is neosimplicial if and only
if 	i
� KG
v� � LG� and 	ii
� �K � KG
v�� v belongs only to supercritical separators
of K�

Proof� First we prove that the left�hand�side implies the right�hand�side by con�

traposition� If v belongs to a nonleaf� then it cannot be neosimplicial by Lemma 	���
Hence assume that v belongs only to leaf cliques of G� We proceed to show that if v
belongs to a subcritical separator S in a leaf clique K� then it cannot be neosimplicial�
The existence of a subcritical separator implies either that the critical separator C
K�

is contained in a nonleaf clique� or that C
K� properly contains two incomparable sep�
arators S� S� that are maximal among the subcritical separators in K� The former case
contradicts our assumption that v does not belong to a nonleaf clique�

Hence consider the latter case� Since v is neosimplicial� by 

��� we can assume

that �
v� � 
� Now if v � S � S�� then by Theorem 	��� �
v� � 	� hence we must
have v � S � S�� Choose vertices s � S � S�� s� � S� � S� Applying Theorem 	�� to
s and s�� we �nd that �
s�� �
s�� � 	� Since �
v� � 
� we have by Lemma 
�� that

adj�
v�� adj�
v�� and adj�
v� partition adj
v�� Now v � S � S� and s � S � S� imply
that s � adj�
v�� Similarly s� � adj�
v�� It follows that v 
� R by Theorem 
�	�
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To prove the other direction� choose a clique K � KG
v� � LG� Order the separa�
tors in S
K� as in 
����� and let Sr � C
K� denote the critical separator of K� Then
v � S�� � � �� Sq where q � r� since v does not belong to a subcritical separator� The or�
dering of the separators in 
���� ensures that there do not exist incomparable separators
S �� S�� � S
K� such that v � S��S��� Since this is true for every clique K � KG
v�� by
Theorem 	�� it follows that �
v� � 
� Furthermore� since v is nonsimplicial� �
v� � 
�

If u � adj�
v�� then KG
u� � KG
v� by Lemma 	��� and thus u � S�� � � �� Sp where
p � q� Repeating the argument given for v in the previous paragraph for the vertex u�
we obtain �
u� � 
� By Theorem 
�	 it follows that v is neosimplicial� �

Thus in the example� s� is neosimplicial since it does not belong to the subcritical
separators S� and S� in the cliques K� and K�� while s� is not neosimplicial� since it
does�

Let C � fC�� � � � � Cpg denote the set of critical separators of a chordal graph G�
The leaf cliques LG can be partitioned into p cohorts such that L
C� includes all the
leaves whose critical separator is C� We say that a separator S 
a vertex v� belongs to
a cohort L
C� if S 
the vertex v� is contained in some clique in the cohort�

In our example� L
S�� � fK��K�g� L
S�� � fK�g� and L
S�� � fK�g�
Lemma ���� Let L
C�� and L
C�� be two distinct cohorts corresponding to critical

separators C� and C�� respectively� such that C� 
� C�� If S is a supercritical separator
contained in some clique in L
C��� then S cannot be a supercritical separator of any

clique in L
C���
Proof� First we show that C� cannot belong to any clique in L
C��� Assume� to

obtain a contradiction� that K � L
C�� contains C�� Then since C� is the critical
separator of K� either C� is a supercritical separator in K� in which case C��C�� or C�

is a subcritical separator in K� and we would have C� � C�� By assumption the latter
relationship cannot be true� If C� � C�� then we claim that C� and not C�� would be
the critical separator of K�

Since C� � C�� every K � � L
C�� contains C� as a subcritical separator� Now
C� is the critical separator of K � either because there is a nonleaf clique containing
C�� or because there exist two or more maximal separators contained in C� that are
incomparable� However� then since C� belongs to K� the same situation would apply

to K� and C� would be the critical separator of K�
Now suppose K � � L
C�� contains a supercritical separator S �C�� If S were also

contained in a clique K � L
C��� then K and K � would have C� in common� which we
have just proved cannot happen� This completes the proof� �

Lemma ���� A neosimplicial vertex v belongs to a subset of the cliques in exactly
one cohort�

Proof� Suppose the cliques containing the vertex v� KG
v�� belong to q � 
 distinct
cohorts L
C��� � � �� L
Cq�� Choose any clique tree T of G� and let Tv denote the subtree

induced by the cliques in KG
v�� where v is a neosimplicial vertex� The edges of this
tree correspond to minimal vertex separators in G� Since Tv is a tree whose vertices are
cliques belonging to q di�erent cohorts� there must be an edge in Tv joining a clique

in some cohort to a clique in some other cohort� But two cliques in distinct cohorts
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cannot have a separator that is supercritical in both of them by the previous lemma�

and hence any tree edge joining a clique K in one cohort to a clique K � in a second
cohort must correspond to a subcritical separator in one of them� Then v belongs to
this subcritical separator� and by Theorem ��� cannot be neosimplicial� �

The example in Figure 
�� again provides an illustration� The neosimplicial vertex

s� belongs only to L
S��� while s� belongs to three cohorts L
Si� for i � �� 
 and 	�
and hence is not neosimplicial�

	� A leaf elimination scheme� The following three sections constitute the sec�
ond part of the paper where we develop a persistent leaf elimination scheme that removes
a subset of the maximum cardinality T�set R from the graph G� To aid in understanding�

we begin in this section with a description of the simple clique elimination framework
used for this purpose� and then re�ne it in the next section�

P �leaves� LG�

H � G�
while P �leaves 
� 	 do

Choose a clique K � P �leaves�
Choose a clique P such that P �K � SepH
K��

H � H n SimH
K��
P �leaves� P �leaves� fKg�
if P 
� LH then P �leaves� P �leaves� fPg�

end while

Fig� ���� A leaf elimination scheme�

This elimination scheme is shown in Figure ���� It considers only the leaf cliques

of G as candidates for deletion� and eliminates the simplicial vertices from each leaf
clique chosen for removal� The rest of this section considers how various sets of cliques�
separators� and vertices change when a leaf clique is eliminated�

Let K�� � � �� Kp be the set of leaves eliminated by this scheme� listed in the order

of elimination� Let G 
 H�� and for j � �� � � �� p� let Hj be the reduced graph obtained
by eliminating the simplicial vertices in the leaf Kj from the graph Hj��� We denote
the �nal reduced graph Hp 
 G�� In the results that follow� we let H denote a graph
Hj and H� denote Hj��� the next reduced graph in the sequence�

Results similar to the next two lemmas may be found in Blair and Peyton ���

Section ��
� Lemma �� and Section ���� Lemma �	�� and hence we omit their proofs�

The �rst result shows how the multiset of separators and the set of cliques change
after elimination of any clique�

Lemma ���� Let K � KH be any maximal clique in a chordal graph H� and let
H� � H n SimH
K� be the reduced graph obtained by the elimination of simplicial
vertices in K� Then

�� MH� �MH � fSg� and KH� � KH � fKg� where S � K � SimH
K�� if
and only if K � LH � in this case� S � SepH
K�� the leaf separator of K�
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�� MH� �MH� and K
H
� � KH � fKg � fK�g� where K� � K � SimH
K��

if and only if K 
� LH � �

The next result characterizes changes in the set of simplicial vertices and the set of
separators in a clique when a leaf clique is eliminated�

Lemma ���� Let S be the leaf separator of a leaf clique K in a chordal graph H�

and let P be a clique with S � SH
P �� Let H� � H n SimH
K� be the reduced graph
obtained by eliminating the simplicial vertices in K from H�

�� If jKH
S�j � 	� then �K � � K
H
�� we have SimH�
K �� � SimH
K ��� Further�

if S is a maximal separator in MH� then �K � � K
H
�� we have SH�
K �� �

SH
K ���
�� If jKH
S�j � 
� then

	a
 �K � � K
H
� � fPg� we have SH�
K �� � SH
K ��� and SimH�
K �� �

SimH
K
��� and

	b
 SH�
P � � SH
P � � S� SimH�
P � � SimH
P � � �S� where �S is the
subset of vertices in S that belong only to K and P � �

As cliques are deleted in the elimination scheme� a nonleaf clique K � may become a

leaf clique in the reduced graph� Such cliques do not contain any neosimplicial vertices
by Lemma 	��� and we will show later that the simplicial vertices in these cliques need
not be eliminated at the current step to solve Problem �� The next result describes
when a leaf clique in the current graph can become a nonleaf in the reduced graph�

Lemma ���� Let S � SepH
K� be the leaf separator of a leaf clique K in a
chordal graph H� and let P be another leaf clique of H such that S � SH
P �� Then
P is a nonleaf clique in the reduced graph H� � H n SimH
K� if and only if 
i�
KH
S� � fK�Pg� 
ii� S is the critical separator of P � and 
iii� P contains subcritical

separators�
Proof� When SimH
K� is eliminated K is deleted as a maximal clique� and since

KH
S� � fK�Pg� S ceases to be a separator in the reduced graph H�� Since S is the

critical separator of P in the graph H� and P contains subcritical separators� P has
more than one maximal separator in the reduced graph H�� Hence it is a nonleaf clique
of H��

Conversely� since P is a leaf in H but not in H�� the unique maximal separator of

P in H ceases to be a separator when K is deleted from H� By Lemma ���� S is the
only separator removed fromMH when K is deleted� and it follows that S � SepH
P ��
We also have P � SimH
P �� SepH
P � by the remarks following Proposition 	��� Now
we claim that S cannot belong to any clique other than K and P � For� if it did belong

to some other clique K � in the graph H� then we have P � K � � S� and S � P �K �

would continue to be the unique maximal separator of P in the reduced graph H��
This implies that P is a leaf of H�� contrary to supposition� Thus KH 
S� � fK�Pg�
If we order the separators in SH
P � as in 
����� then we must have S� � S and � � ��

since P has more than one maximal separator in the reduced graph H�� It follows that
S is the critical separator of P in H� and that P contains subcritical separators� �

The clique elimination scheme described in Figure ��� considers cliques from the set

LG one by one� When a leaf clique Kj is eliminated� and S � SepHj��

Kj� ceases to be
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a separator in the reduced graph Hj� three phenomena may occur� First� nonsimplicial

vertices in a clique P that contains S may become newly simplicial� as described in the
second part of Lemma ��
� Second� if S happens to be one of exactly two incomparable
maximal separators contained in a nonleaf clique P � then P now has a unique maximal
separator and hence becomes a leaf in the reduced graph� Note that our elimination

scheme does not include such a new leaf clique P in P �leaves� and hence P will not
be a candidate for elimination� Third� if S is also the critical separator of a leaf clique
P and the other conditions in Lemma ��	 are satis�ed� then P becomes a nonleaf in
the reduced graph� In this case� P is removed from the set P �leaves and will not be

considered for elimination�
We use the example in Figure 
�� to illustrate some of these phenomena� If

Sim
K�� � fk�g is eliminated from G� then K� is no longer a maximal clique� and

gets deleted from G� Now in the clique K� the vertex s� becomes simplicial� further S�
ceases to be a separator and K� becomes a nonleaf in the reduced graph since it con�
tains two maximal incomparable separators S� and S�� If we eliminate Sim
K�� � fk�g
from this reduced graph� then one of these separators� S�� ceases to be a separator� s�
becomes a simplicial vertex in K�� and K� becomes a leaf of the succeeding reduced
graph�

Each eliminated clique Kj belongs to LG and continues to be a leaf of the succes�
sive reduced graphs H�� � � �� Hj�� until it is eliminated� Hence we call these cliques

persistent leaf cliques and the elimination scheme that we have described is a persistent
leaf elimination scheme� A clique P � LG that becomes a nonleaf when some clique
Kj is eliminated from a reduced graph Hj�� will be called a transilient leaf � 
We pre�
fer transilient � denoting a sudden change in state� to transient � which means passing

quickly into and out of existence� In this situation� a leaf changes state to a nonleaf
clique� but continues to exist as a clique in the reduced graph�� The partition of the
leaf cliques in LG into persistent and transilient leaves is not unique� but depends on

the order in which leaves are chosen for elimination�

�� A re�ned persistent leaf elimination scheme� We now incorporate two
re�nements into the persistent leaf elimination scheme of the previous section�

Re�nement ��
Eliminate the persistent leaves in nonincreasing order of leaf separator sizes in the
current graph H�
We organize the cliques in LG into lists such that all leaves with the same leaf separator

size are included in a list� if a leaf should become a transilient leaf during the scheme�
then it is removed from this list� also� if the size of the leaf separator changes during
the scheme� then the leaf is deleted from the list it belongs to� and then reinserted into

the correct list� To maintain e�cient insertion and deletion during the scheme� each
list is doubly linked�
Re�nement 
�
Order the simplicial vertices in each maximal clique in queue order �

Thus if a vertex v becomes simplicial before another vertex w in a clique K� then v

is eliminated before w when the clique K is chosen for elimination� This ordering of
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finitializationsg
P �leaves� LG�
for K � P �leaves do Elim
K�� SimG
K�� end for

H � G� �R� 	�
feliminate simplicial and neosimplicial vertices from persistent leaves
by nonincreasing leaf separator sizeg
while P �leaves 
� 	 do

Select K � P �leaves with maximum jSepH
K�j for elimination�
�R � �R � Elim
K��
Choose P � KH for which P �K � SepH
K��
H� � H n Elim
K� 
in queue order��
P �leaves� P �leaves� fKg�
if P � P �leaves then

Append to Elim
P � the vertices in SimH�
P �� SimH
P ��
if P 
� L

H
� then

fP is a transilient leafg
P �leaves� P �leaves� fPg�

end if

end if

H � H��
end while

Fig� ���� A scheme for eliminating the persistent leaf cliques of G� We show later that the vertices

eliminated form a T�set �R of G and are ordered in a TEO of G
 �R��

simplicial vertices is maintained for leaf as well as nonleaf cliques in G�

This scheme is shown in Figure ���� We will prove in the next section that this
scheme computes a T�set of the graph G� and that these vertices are ordered in a
TEO� In this section we characterize the set of persistent leaves and the set of vertices

eliminated by the scheme�
Consider the persistent leaf scheme applied to the chordal graph G in Figure 
���

The scheme would �rst eliminate K� or K� since these leaves have the maximum leaf
separator size� If it eliminates K�� then K� becomes a nonleaf in the reduced graph

and is removed from the set P �leaves� Then the scheme would eliminate the persistent
leaves K� and K�� in any order� since both have the same leaf separator size� Suppose
that K� is eliminated before K�� Then the vertices are eliminated in the order k�� k��
k�� and the simplicial vertices in K� are ordered as either Elim
K�� � fk�� s�� s�� s�� s�g
or Elim
K�� � fk�� s�� s�� s�� s�g�

We will �nd it useful to employ the concept of critical separators introduced earlier�
Recall that C
K� denotes the critical separator of a leaf clique K in the chordal graph
G� and C � fC�� � � � � Cpg denotes the set of critical separators in G� The cliques in

LG are partitioned into p cohorts such that all leaves with critical separator Ci form a
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cohort L
Ci��

Lemma ���� If C contains only one critical separator� then the persistent�leaf elimi�
nation scheme eliminates all cliques in L
C� � LG� Otherwise� this scheme eliminates
all but one clique from every cohort such that L
C� � KG
C�� and all cliques from
every cohort such that L
C� � KG
C��

Proof� From Lemma ��	� a clique P � LG becomes a nonleaf when a leaf K is
eliminated from a reduced graph H only if 
i� KH 
C� � fK�Pg� 
ii� C is the critical
separator of P � and 
iii� P contains subcritical separators� It follows that K and P are
the only two uneliminated leaves in the cohort L
C��

If C contains only one critical separator C� then all leaves contain the separator C�
We consider two cases� depending on whether G contains a nonleaf clique or not�

If G has a nonleaf clique� then we claim that every nonleaf clique of G contains C

as well� For� consider a clique tree T of G� Then each nonleaf clique lies on a path
between some pair of leavesK and K � of T � The leaves have the separator C in common�
hence from the clique intersection property� every clique on the path from K to K �� and
in particular the nonleaf clique being considered� contains C as well� This proves the

claim� When the penultimate leaf containing C is eliminated� the remaining leaf and
the nonleaf clique
s� contain C� and condition 
i� in Lemma ��	 is violated� Hence the
remaining leaf persists as a leaf in the reduced graph� and is eliminated by the scheme�

Now consider the case when all the cliques of G are leaves� Then since all leaves

contain C� K � K � � C for any pair of cliques K and K �� By the characterization of
separators in Proposition 	�
� since the vertices in any separator form the intersection
of a pair of cliques� there are no subcritical separators in any leaf� Then condition 
iii�
in Lemma ��	 cannot be satis�ed� and none of the leaves can become nonleaves in any

of the successive reduced graphs� This completes the proof of the �rst statement�
If C � fC�� � � � � Cpg contains more than one separator� renumber the separators

such that if Ci�Cj then i � j� for every distinct pair � � i� j � p� We prove the second

statement by induction on k� the index of the critical separator� Consider the base case
k � ��

We consider �rst the subcase when L
C�� � KG
C��� and hence no nonleaf clique
of G contains C�� Now it is easily veri�ed that the clique intersection graph of the con�

nected chordal graph G is connected� Since C contains more than one critical separator�
there is a clique K � outside L
C�� that is adjacent to some clique K in the cohort such
that 
K�K �� is an edge in some clique tree of G� Then by Proposition 	�
� S � K �K �

is a separator contained in K and K �� Now if S � C� then K � contains C�� and this

contradicts the condition that L
C�� � KG
C��� thus S � C�� It follows that S is a
subcritical separator in every clique in L
C���

From the de�nition� C� could be the critical separator of a clique K in L
C��
because of three possibilities� either a nonleaf clique contains C�� or C� is properly

contained in all other separators in K� or no separator properly contained in C� contains
all other separators contained in C�� We have ruled out the �rst two possibilities in the
previous paragraph� and hence in the graph G every clique in L
C�� contains subcritical

separators�
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Now any leaf belonging to L
C�� is either eliminated or becomes a transilient leaf

when it is considered for elimination by the persistent leaf elimination scheme� By
conditions 
i� and 
ii� in Lemma ��	� a leaf in L
C�� can become a transilient leaf only
when the critical separator C� ceases to be a separator in the reduced graph� Thus all
except the last leaf P to be considered for elimination in L
C�� must be eliminated

by the scheme� When K� the penultimate clique containing C�� is eliminated by the
scheme� since L
C�� � KG
C��� conditions 
i� and 
ii� in Lemma ��	 are satis�ed� We
now show that condition 
iii� is also satis�ed� and hence that P becomes a transilient
leaf� In the graph G the clique P contains subcritical separators from the argument in

the preceding paragraph� By Lemma ��� the only way a separator can disappear during
the elimination process is when it is the leaf separator of a leaf� Since the persistent
leaf elimination scheme eliminates the leaves in nonincreasing order of leaf separator

sizes� any leaves whose leaf separators are properly contained in C� are not eliminated
until all cliques in L
C�� have been processed� Hence P continues to contain subcritical
separators in the reduced graph obtained when K is eliminated� Thus we conclude that
P � the sole remaining clique in the cohort L
C��� becomes a transilient leaf�

If L
C�� � KG
C��� then by the renumbering of the critical separators there does
not exist a leaf clique containing C� outside L
C�� by Lemma ��
� Hence there is a
nonleaf clique containing C�� Thus when the penultimate leaf in L
C�� is eliminated�
condition 
i� in Lemma ��	 is not satis�ed� We conclude that the last clique in L
C��

persists as a leaf in the reduced graph� Hence all cliques in L
C�� are eliminated by
the persistent leaf elimination scheme�

Now we consider the inductive step for L
Ck��
If L
Ck� � KG
Ck�� then no other clique outside this cohort contains Ck� Now� an

argument similar to the corresponding situation in the base case proves the result� It
remains to consider the situation when L
Ck� � KG
Ck�� If KG
Ck� includes a nonleaf
clique of G� the result follows from a similar argument as in the base case� If it does

not� but includes a cohort L
Cj� such that Cj� Ck 
then j � k by the ordering of
the critical separators�� consider the least index j satisfying the containment relation�
We must have L
Cj� � KG
Cj�� else there would exist a nonleaf clique containing Ck�
By the order in which the leaves are considered for elimination� cliques in L
Cj� have

been processed by the elimination scheme� By the inductive hypothesis� the last clique
considered for elimination in L
Cj� has become a transilient leaf when Cj ceased to be
a separator� Since this clique contains Ck� all of the cliques in L
Ck� are eliminated by
the persistent leaf elimination scheme� �

The example graph G has three critical separators� L
S�� � KG
S�� � fK��K�g�
L
S�� � fK�g� L
S�� � fK�g� and the latter two cohorts are properly contained in the
set of cliques containing their critical separators� Hence we conclude from the lemma
that a persistent leaf set could be either fK��K��K�g or fK��K��K�g�

It is instructive to compare the set of persistent leaves with the largest set of leaves
eliminated by a shortest clique tree algorithm designed by Blair and Peyton ���� They
organize the leaves into cohorts such that all leaves with the same leaf separator belong

to one cohort� They showed that their algorithm chooses all but one of the leaves from a
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cohort where L
S� � KG
S�� and all the leaves from a cohort satisfying L
S� � KG
S��
We now characterize the vertices eliminated by the persistent leaf elimination

scheme� We consider three subsets of the maximum cardinality T�set R� RN � the
subset of R belonging to some nonleaf clique of G� RT � the subset belonging to the
transilient leaves of G� and RP � the subset eliminated from the persistent leaves of G�

We will show that these subsets partition R�
By Lemma 	�� the subset RN consists of simplicial vertices of G belonging to the

nonleaf cliques� The other two subsets could include simplicial as well as neosimplicial
vertices of G� The next result states that all vertices of R that belong only to persistent

leaf cliques are eliminated by the persistent leaf elimination scheme�
Lemma ���� The three subsets RN � RT � and RP partition the maximum cardinality

T�set R� Furthermore� RN�RT is a set of simplicial vertices in the graph G� � GnRP �

Proof� If v is a simplicial vertex belonging to a persistent leaf clique of G� then
it belongs to no other clique� and hence is eliminated by the elimination scheme� It is
also clear that simplicial vertices belonging to nonleaves and transilient leaves are not
eliminated by the scheme� Hence consider what happens to a neosimplicial vertex v�

By the characterization in Theorem ���� KG
v� � LG� and in every clique K �
KG
v�� v belongs only to the supercritical separators of K� By Lemma ��	� v belongs
to a subset of the cliques in some unique cohort L
Cj��

If all cliques of G belong to the cohort L
Cj�� then by Lemma ��� all cliques are

eliminated by the persistent leaf elimination scheme� and v � RP � If the cliques of G
belong to more than one cohort� then again by Lemma ���� either all cliques in L
Cj�
are eliminated� or all but one are eliminated� Since v belongs only to supercritical
separators in the cliques in L
Cj�� when the penultimate clique containing the last

supercritical separator that includes v is eliminated� v becomes simplicial in the only
uneliminated clique that contains it� This last clique could be either a persistent leaf or
a transilient leaf� but not a nonleaf of G� since KG
v� � LG� If it is the former� then

v � RP � and if it is the latter� then v � RT � �

In the example� if we assume that the cliques K�� K�� and K� are eliminated� then
R � fk�� � � � � k�� s�g� RP � fk�� k�� k�g� RT � fk�� s�g� and RN � 	�


� T
sets� In this section we prove that the vertices eliminated by the persistent
leaf elimination scheme form a T�set �R of the graph G� and that the vertices are
eliminated in a TEO of G
 �R�� 
These concepts are de�ned in Section 
��

Theorem ���� The set of vertices RP eliminated by the persistent leaf elimination

scheme is a T�set of G� furthermore� the scheme eliminates these vertices in a TEO of
G
RP ��

Before we can prove this theorem we need two auxiliary results� We omit the proof

of the following lemma since it is similar to the proof of Theorem 	�
 in �����
Lemma ���� Let �R be a T�set of G� An ordering � of G
 �R� is a TEO of G
 �R� if

and only if for every u� v � �R such that u � adj�
v�� �
u� � �
v�� �

Lemma ���� A vertex set �R � R is a T�set of G if and only if adj�
v� � �R for

every vertex v � �R�

��



Proof� We �rst prove the �only if� part by contraposition� Assume that there exists

a vertex v � �R such that u 
� �R for some vertex u � adj�
v�� We need to prove
that there exists no TEO of G
 �R�� It su�ces to show that any PEO of G
 �R� cannot
be a TEO of G
 �R�� Let � be a PEO of G
 �R�� Since v � �R� but u 
� �R� we have
�
v� � �
u� � n � �� By Lemma 
�
 there exists a vertex w � adj�
v� that is not

adjacent to u� For � to be a PEO of G
 �R�� we must have �
w� � �
v� � �
u� � n���
Now 
w� v�� 
v� u� � E and 
w� u� 
� E� and thus it follows that � is not a TEO of G
 �R��

To prove the �if� part� choose a vertex set �R � R such that adj�
v� � �R for every
vertex v � �R� We observe that because every set adj�
v� 
v � �R� is contained in �R�

there exists an ordering � of G
 �R� satisfying the following property� for every u� v � �R
such that u � adj�
v�� we have �
u� � �
v�� If � is any such ordering of G
 �R�� then
by Lemma ��
� � is a TEO of G
 �R�� Consequently �R is a T�set of G� �

Proof of Theorem ����
We make use of the characterization of a T�set in Lemma ��	� showing that if v � RP

then for every u � adj�G
v�� u � RP � If v � RP is simplicial in G� then adj�
v� is the
empty set� and there is nothing to prove� Hence consider a neosimplicial vertex v � RP �

We have �G
v� � 
� and for all u � adj�G
v�� �G
u� � 
�
Let fK�� � � � �Kpg be the set of persistent leaves eliminated by the scheme� listed

in the order in which they are eliminated� Denote G 
 H�� and for j � �� � � �� p� let
Hj � Hj�� n SimHj��


Kj� be the reduced graph obtained from Hj�� by eliminating

current simplicial vertices in the clique Kj� We denote G� 
 Hp� the �nal reduced
graph when all the persistent leaf cliques in G have been eliminated� Recall that the
simplicial vertices in each cliqueK are maintained in a queue Elim
K� to which vertices
are added in the order in which they become simplicial�

Since v is a neosimplicial vertex that belongs to RP � v is a simplicial vertex in
some reduced graph Hj � At this juncture in the elimination process all but one of
the cliques in KG
v� have been eliminated� Now by Lemma 	�� u � adj�G
v� implies

that KG
u� � KG
v�� Hence when v becomes simplicial in Hj � either all the cliques
in KG
u� have been eliminated� or u and v belong to the sole remaining clique from
KG
v�� In the former case� u has been eliminated when v becomes simplicial� and hence
is ordered before v� We now consider the latter case�

In this situation� the vertices u and v are both simplicial vertices belonging to
the same clique K in Hj � Hence we need to show that u appears before v in the queue
Elim
K�� If �G
u� � �� then u is simplicial� and since v is not simplicial in G� the result
holds� Now consider �G
u� � 
� Let S��S� � � ��Sr � C
K� denote the supercritical

separators in K� Since KG
u� � KG
v�� the vertex u belongs to the separators S��
� � �� Si� and v to S�� � � �� Sj� where i � j � r� The consequence of eliminating cliques
in nondecreasing order of leaf separator sizes is that Sj ceases to be a separator in a
reduced graph before Si does� Hence u becomes simplicial in the clique K before v

does� This completes the proof� �

�� A greedy leaf elimination scheme and its optimality� The following two

sections constitute the third part of the paper� where we develop a greedy leaf clique
elimination scheme based on the results in the previous two parts� prove that it solves
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Problem �� and then describe an e�cient implementation�

Let Gi�� denote the reduced graph obtained from a chordal graph Gi by using the
scheme in Fig� ��� to eliminate a set of persistent leaf cliques� Let G 
 G�� � � �� Gt�
Gt�� � 	 be the sequence of chordal graphs obtained by repeatedly applying this scheme
to the original chordal graph G� We call this a greedy leaf clique elimination scheme

since it eliminates a largest set of cliques it can delete from the graph at each step� In
this section we prove that this scheme solves Problem � by comparing it with the greedy
vertex elimination scheme described in ����� At each step both schemes are shown to
identify the same set of newly simplicial and neosimplicial vertices since the lengths of

relevant vertices are the same in the reduced graphs obtained in the two schemes�
Lemma 	��� Let K be a nonleaf clique in a chordal graph G� and let G� � G nRP

denote the reduced graph obtained by the elimination of a set of persistent leaf cliques

of G� If v is a vertex of the graph G� � G� n SimG
K�� then �G�
v� � �G�
v��
Proof� We make use of the following observations about chordless paths in the

proof of this lemma and the next one� A chordless path cannot have more than two
vertices from a clique� since a third vertex creates a chord� Further� there is a clique

which contains any two consecutive vertices on the path� A simplicial vertex must be
an endpoint of a chordless path� Finally� a longest chordless path cannot increase in
length as simplicial vertices are eliminated�

The clique K could be a nonleaf or a leaf clique of G�� Consider �rst the case

when K is a nonleaf� The elimination of SimG
K� does not change the separators or
the set of maximal cliques in G�� by Lemma ���� Hence a simplicial vertex in G� is
also a simplicial vertex in G�� and consequently the lemma holds for all vertices with
length one� We now consider vertices with length greater than one�

A chordless path in G� which includes none of the vertices in SimG
K� continues
to be a chordless path in G�� A vertex in SimG
K� is a simplicial vertex in G�� and
hence is an endpoint of every chordless path to which it belongs to in G�� If both

endpoints of a chordless path in G� belong to SimG
K�� then the path cannot include
any other vertices� since the only vertices adjacent to simplicial vertices in K belong
to K� Hence consider a chordless path �u� v� w� � � �� in G� with u � SimG
K�� Then v

belongs to some separator S� in K� and w to some clique K � such that K �K � � S��

Since the path is chordless� indeed w � K � � S�� The clique K is a nonleaf in G�� and
thus K contains another separator S�� such that S��� S� is not empty� We replace u on
the path by a vertex t 
� v belonging to S���S�� No edge joins t to a vertex on this path
other than v since the separator S� separates vertices in K �S� from K ��S�� Thus we

have replaced a chordless path in G� containing a vertex from SimG
K� by a chordless
path in G� without changing its length�

We now consider the second case� K is a leaf of G�� The facts that K is a nonleaf
in G and a leaf in G� imply that K becomes a leaf when some persistent leaf Kj is

eliminated from a reduced graph Hj�� resulting in another reduced graph Hj � Since
K is a nonleaf in Hj��� K contains two incomparable maximal separators S� S� in this
graph� When Kj is eliminated� one of these separators� say S�� ceases to be a separator

in Hj � and S remains as the leaf separator of K in Hj � Now there exists a vertex
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s� � S� � S since the two separators are incomparable� This vertex s� cannot belong to

any other clique in the reduced graph Hj because vertices in a leaf clique are partitioned
into the subset of simplicial vertices� which belong to no separator� and the subset of
vertices belonging to the leaf separator� It follows that s� belongs only to K in Hj� and
is simplicial in this graph� Further� s� continues to be simplicial in G� since vertices

of K are not eliminated by the persistent leaf elimination scheme� K being a nonleaf
clique of G� Note also that s� is a nonsimplicial vertex of G� and hence does not belong
to SimG
K��

The consequence of this latter observation is that K continues to be a maximal

clique in the graph G� when vertices in SimG
K� are eliminated from G�� Thus a
simplicial vertex of G� is also simplicial in G�� and the lemma holds for all vertices
with �
�� � �� Hence we consider vertices with �
�� � ��

As in the previous subcase� if both endpoints of a chordless path in G� belong to
SimG
K�� then this path contains no other vertices� Hence consider the case when only
one endpoint belongs to SimG
K�� Let u � SimG
K�� and let v 
� SimG
K� � fs�g
be a vertex belonging to K with �
v� � �� Then any chordless path �u� v� � � � � � in the

graph G� cannot include the simplicial vertex s�� Furthermore� we can replace u by s�

in the above path without changing its length in the graph G�� The latter is a path in
the reduced graph G�� and the result follows� �

Lemma 	��� Let G� � G n RP denote the reduced graph obtained when a set of

persistent leaf cliques are eliminated from G� and let K be a transilient leaf� Further�
let G� � G� n Elim
K�� where Elim
K� contains the set of simplicial vertices in K

when it becomes a nonleaf� If v is a vertex in G�� then �G� 
v� � �G�
v��
Proof� The case when K is a nonleaf in G� can be treated exactly as in the previous

lemma� Hence assume that K is a leaf in G�� In our notation� the persistent leaves
eliminated 
in order� from G are K�� � � �� Kp� and Hj is the reduced graph obtained
when simplicial vertices in Kj are eliminated from a graph Hj��� where H� 
 G� and

Hp 
 G��
The clique K is a leaf in the initial graph H�� becomes a nonleaf in some reduced

graph Hi� and is again a leaf in the �nal reduced graph Hp� 
It is possible that K cycles
between being a nonleaf and a leaf a few times�� Denote by Hj the highest�numbered

reduced graph in which K became a nonleaf when a persistent leaf Kj was eliminated
from the reduced graph Hj��� It later became a leaf again when some other persistent
leaf K� 
where j � � � p� was eliminated from a reduced graph H���� ThusK contained
two or more maximal incomparable separators in Hj and in every successive reduced

graph until H�� Again� as in Lemma ���� K contains a vertex s�� which belonged to one
of the maximal separators of K in Hj but which does not belong to the leaf separator
of K in H�� This vertex is simplicial in H�� but was a nonsimplicial vertex in Hj� and
hence it does not belong to Elim
K�� Now we can repeat the rest of the argument in

the previous lemma for the case when K is a leaf to show that the length of a vertex v
belonging to G� is the same in the graphs G� and G�� �

Theorem 	��� Let R � RP �RN �RT be a partition of the maximum cardinality

T�set of the graph G� If G� � G nRP � G� � G nR� and v is a vertex belonging to G��
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then �G� 
v� � �G�
v��

Proof� We can conclude from the previous two lemmas that the elimination of
RT � RN does not create any new simplicial vertices in G�� Hence the theorem is true
for all vertices with length one� and we proceed to consider vertices of length greater
than or equal to two�

By Lemma ��
� RN �RT is a set of simplicial vertices in G�� Hence any chordless
path in G� containing these vertices must include them as endpoints of the path� If
an endpoint of a chordless path in G� belongs to RN � RT � then from the proofs
of Lemmas ��� and ��
� we can replace it by a vertex from the same clique but not

belonging to RN � RT � without changing its length in the graph G�� We can do this
independently for each of the two endpoints� 
For� if both endpoints belong to the same
clique� then the path must have length one� Then both vertices belong to RN �RT � and

do not belong to G��� The resulting path belongs to G�� and thus the result follows�
�

Theorem 	��� The greedy leaf clique elimination scheme obtains a minimum
cardinality T�partition of the chordal graph G�

Proof� We will prove that the greedy leaf elimination scheme obtains a T�partition
of G with the same number of T�sets in it as the greedy vertex elimination scheme in
���� that is known to be optimal� As above� let G� 
G�� denote the reduced graph
obtained from G by eliminating the vertices in RP 
R�� From the characterization of R

in terms of lengths in Theorem 
�	� and from Theorem ��	� we have

RG� � RG� �RN � RT �

Thus the T�set of G� identi�ed by the greedy leaf elimination scheme includes the
maximum cardinality T�set of the reduced graph G�� and a few additional simplicial
vertices that do not belong to G�� Furthermore� the above observation can be made

inductively with respect to each successive nonempty graph G�� � � �� Gt in the sequence
of chordal graphs generated by the greedy vertex elimination scheme�

In the greedy vertex elimination scheme Gt�� is the empty graph� We need to
show that the greedy leaf elimination scheme eliminates all the vertices in the reduced

graph G� it considers at the t�th step� 
From the preceding two paragraphs� this is Gt

augmented by some simplicial vertices�� Since Gt�� is the empty graph� all vertices in
G� are simplicial or neosimplicial� Hence by Lemma 	��� all cliques of G� are leaves�
and by Theorem ���� there are no subcritical separators in any of the leaves� Then by

Lemma ��	� the greedy leaf elimination scheme eliminates all the cliques of G�� This
completes the proof� �

The greedy vertex elimination scheme applied to the graph in Figure 
�� yields R� �

fk�� k�� s�� k�� k�g� R� � fs�� s�� s�g� Assuming that K�� K�� and K� are eliminated� the
greedy leaf elimination scheme results in �R� � fk�� k�� k�g� �R� � fk�� s�� s�� s�� s�g� In
both cases� the vertices are listed in a compound TEO of G�

�� An implementation of the persistent leaf elimination scheme� We de�
scribe brie�y an implementation of the persistent leaf elimination scheme� We discuss
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the clique tree data structure and a simple test used to identify leaf cliques in the

reduced graphs before describing the algorithm�
The only representation of the chordal graph G needed is a rooted clique tree of G�

de�ned in ����� and computed from a PEO of G� The rooted clique tree T from ����
has the following important property� If C is a child of a clique K in the clique tree T �

then there exists a vertex v � K �C such that v 
� A� where A is any clique that is not
a descendant of K in T �

In this section we will need to distinguish between a leaf of the clique tree T and
a leaf of the chordal graph G� Recall that the leaves of T form a subset of the leaves

of G� A clique that is not a leaf of T will be called an interior clique� whereas we have
already denoted a clique that is not a leaf of G by a nonleaf clique� In the rooted clique
tree T � the children C of each interior clique K are initially sorted by nondecreasing

order of the intersection jK � Cj�
When a leaf clique K of G is eliminated� the rooted clique tree T is updated as

described in ���� to represent the resulting reduced graph� If K is also a leaf of T � then
the only update necessary is to delete K from T � If K is an interior clique of T � then

the update is more involved� The �rst child C� of K is �promoted� to the place of K�
and C� becomes the parent of the other children of K� The latter cliques are listed in
their current order after the existing children of C��

���� Identifying a leaf clique� Let 	
K� 
 jSimH
K�j be the number of sim�

plicial vertices in a clique K� and let 

K� be the size of a largest separator contained
in K� The following result 
Blair and Peyton ���� is immediate from Proposition 	���

Proposition 
��� A clique K is a leaf of a chordal graph H if and only if 	
K��


K� � jKj� it is a nonleaf if and only if 	
K� � 

K� � jKj�

Updating the number of simplicial vertices in a clique during elimination is an easy
matter� Updating the size of a largest separator during elimination is more involved�
However� we claim that it su�ces to maintain and update the size of any maximal

separator in a clique K instead of 

K� to identify it as leaf or a nonleaf in a reduced
graph� If K is a nonleaf� since the size of any maximal separator is no greater than


K�� when the former size is used instead of the latter� the test in Proposition ��� will
identify it as a nonleaf� If K is a leaf� then it has a unique maximal separator� and

hence the test again su�ces�
We choose the size of a particular maximal separator with respect to the rooted

clique tree� Let

�
K� �

�
jK � C�j if K is an interior clique of T �
jK � P j if K is a leaf of T �

where C� is the �rst child of an interior clique K� and P is the parent of a leaf K�

The quantity �
K� is easily updated when a leaf or an interior clique of T is eliminated
during the algorithm�

We need to prove that �
K� is the size of a maximal separator of K in each reduced

graph� This is trivial if K is a leaf of the clique tree T � and hence we establish it when
K is an interior clique� The separator K �C� is a maximal separator of K in the initial
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clique tree because 
i� for every child C� the intersection K � C contains a vertex that

does not belong to K �P � and 
ii� by the initial ordering of the children of K� jK �C�j
is at least as large as any other separator size jK � Cj� If K acquires a new child D

after an interior clique elimination� and C is a child of K before the update� then K �C
contains a vertex that does not belong to K � D 
����� proof of Theorem �
�� Hence

K �C� continues to be a maximal separator of K in the reduced graph� We have thus
proved the following result�

Proposition 
��� Let H denote a chordal graph at any stage in the persistent
leaf elimination algorithm� and let �
K� be de�ned as described above with respect to a

rooted clique tree T of H� Then 	
K�� �
K� � jKj if and only if K is a leaf of H� and
	
K� � �
K� � jKj if and only if K is a nonleaf of H� �

Input� A clique tree T representing a chordal graph G� the simplicial vertices of each
K � KG organized in a queue Elim
K��

Output� Upon termination� �R�� �R�� � � � � �Rt is a minimum�cardinality T�partition� where

each partition member �Ri is the T�set RP belonging only to a set of persistent leaves
in the reduced graph Gi � G n f �R� � � � � � �Ri��g�

G� � G� H � G� �R� � 	� i� �� P �leaves� LG�
while Gi 
� 	 do

while P �leaves 
� 	 do
Let K be a clique with the largest leaf separator size in P �leaves�
Delete K from P �leaves�
�Ri � �Ri � Elim
K� 
in queue order�� H� � H n Elim
K��
Choose P � KH such that P �K � SepH
K��

Insert newly simplicial vertices in SepH
K� into the tail of Elim
P ��
Update the clique tree to re�ect the elimination of K�
if P � P �leaves then

if P is a nonleaf in H� then

delete P from P �leaves�
else fP is a leaf in H�g

update the leaf separator size of P �
end if

end if

H � H��
end while

Gi�� � Gi n �Ri� �Ri�� � 	� P �leaves� LGi��
� i� i� ��

end while

Fig� ���� Algorithm to compute a minimum cardinality T�partition�
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���� Algorithm� A clique tree algorithm for computing a minimum cardinality

T�partition is shown in Figure ���� The algorithm eliminates a set of persistent leaf
cliques of the chordal graph Gi 
maintained in the set P �leaves� during the i�th iteration

major step� of the outermost while loop�

We proceed to analyze the complexity of the algorithm� Recall that jV j � n� m is

the number of maximal cliques of G� and q �
P

K�KG
jKj is the size of the clique tree�

To facilitate processing the leaf cliques by nonincreasing order of separator sizes� the
leaf cliques in P �leaves can be organized into lists such that list
�� includes all leaves
K with �
K� � �� Similarly� new leaves eligible for consideration at the next major step

are included in lists newlist
���
It is shown in ���� that the elimination of a clique K and the update of the clique

tree can be performed in jElim
K�j � jSepH
K�j � jKj time� We consider the work

done in maintaining and examining list and newlist separately� All other work within
the second while loop in Figure ��� requires O
jKj� time� and hence over the course
of the algorithm is bounded by O
m� q��

Now we consider the work necessary to manipulate list� We observe that a leaf

clique whose leaf separator size is maximum is eliminated from the reduced graph Gi

by the algorithm� since the �rst leaf processed for elimination cannot become a nonleaf�
For convenience denote this leaf by Ki� The work done to process the leaves of Gi in
P �leaves is O
pi � �max�� where pi 
 jP �leavesj� and �max 
 jSepGi


Ki�j� The second

part of this cost� summed over the algorithm� is
Pt

i�� jSepGi

Ki�j� which is clearly

bounded by O
q��
To establish a bound on the �rst part of the above cost� we need to bound the

number of times a leaf clique P in P �leaves becomes a nonleaf or changes its leaf

separator size� The key observation is that any of these phenomena occurs when a leaf
clique K from P �leaves is eliminated� causing the leaf separator in P to cease being
a separator in the reduced graph� Thus the total number of such transitions over the

entire algorithm is bounded by m��� Hence the �rst part of the cost� summed over the
algorithm� is bounded by the number of cliques eliminated� m� and the total number of
transitions considered above� m� �� Thus this cost is also O
m��

It only remains to consider the cost of creating and updating newlist when persis�

tent leaves in Gi are being eliminated� If we charge the cost of identifying P as a leaf in
Gi�� and inserting into the correct newlist
�� to the persistent leaf K being eliminated�
this cost is O
m� over the algorithm�

We conclude that the time complexity of the algorithm is O
n� q�� The space

complexity is easily seen to satisfy the same bound as well�

��� Concluding remarks� We now discuss the class of chordal graphs that have

transitive perfect elimination orderings� i�e�� graphs for which Problem � has the solution
R� � V � From 

��� such graphs have �
v� � 
 for all v � V � Hence this is the class of
�P��free� chordal graphs� i�e�� chordal graphs that do not contain an induced P� 
the path
on four vertices�� This class has been studied in earlier work by Wolk 
arborescence

comparability graphs ����� and Golumbic 
trivially perfect graphs ������
The class of P��free chordal graphs is related to other interesting subclasses of

��



chordal graphs�

An s�trampoline Ts is graph on 
s vertices X � Y such that X � fx�� � � � � xsg is
a clique� Y � fy�� � � � � ysg is an independent set� and x�� y�� x�� y�� � � �� xs� ys� x� is a
Hamiltonian cycle� A graph G is strongly chordal if it is chordal and� for any s � 	�
does not contain an s�trampoline as an induced subgraph ���� P��free chordal graphs

form a proper subset of strongly chordal graphs� This can be seen from the fact that
when s � 	� every Ts contains an induced P��

A threshold graph is a chordal graph that does not contain an induced P� or 
K�


a pair of independent edges� ����� It follows that the class of P��free chordal graphs

properly contains threshold graphs�
P��free chordal graphs are interesting from the perspective of sparse matrix com�

putations as well� An important issue here is the relation between �ll and parallelism

in Cholesky factorization� The height of the elimination tree can be used as a simple
measure of the number of steps needed to factor the matrix in parallel� It is well�known
that for the path on n vertices� if no �ll is permitted� the shortest elimination tree
has height dn�
e� while there exists an elimination tree of height log� n if O
n� �ll is
permitted� Hence the question� For what class of graphs does increasing �ll not lead to
increased parallelism in sparse Cholesky factorization�

The problem of computing a vertex ordering that leads to a shortest elimination
tree is NP�complete for an arbitrary graph ����� If G is chordal� then Liu ���� has shown

that a scheme due to Jess and Kees that recursively eliminates a maximum independent
subset of the simplicial vertices computes a shortest elimination tree of G over all PEOs
of G� If G is a P��free chordal graph� then it has the property that in every induced
subgraph of G� the size of a maximum independent set of vertices 
MIS� is equal to

the number of maximal cliques in the subgraph� Further� every clique in the induced
subgraph is a leaf� and hence contains a simplicial vertex� thus a maximum independent
set consisting of simplicial vertices is also a MIS in every induced subgraph of G� Hence

it turns out that for a P��free chordal graph G� the Jess and Kees scheme computes a
shortest elimination tree over all vertex orderings of G� Thus permitting additional �ll
cannot lead to increased parallelism for these graphs�
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