
University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

Technical Report Series

CS-93-26

ENHANCING SOFTWARE DESIGN REUSE� NESTING IN

OBJECT�ORIENTED DESIGN

by

D�D� Cowan C�J�P� Lucena

May, 1993



ENHANCING SOFTWARE DESIGN REUSE� NESTING IN

OBJECT�ORIENTED DESIGN

D�D� Cowan
Computer Science Department � Computer Systems Group

University of Waterloo
Waterloo� Ontario

Canada
N�L �G�

dcowan�csg�uwaterloo�ca

C�J�P� Lucena
Departamento de Inform�atica

Pontif�	cia Universidade Cat�olica
��
���
��� Rio de Janeiro�RJ�

Brazil
lucena�inf�puc�rio�br

May �� �

�

Abstract

It has been observed that design of complex objects such as software requires both decom�
position by form �atomic objects� and decomposition by function �nesting� in order to reduce
the design to a set of manageable components� However� the object�oriented design paradigm
mostly supports decomposition by form� This paper uses a simple example to motivate the need
for nesting �decomposition by function� and illustrates how nesting might be incorporated into
a design language� We conclude that the introduction of nesting into software speci�cation and
design signi�cantly increases reusability�

Key Words� programming languages� program speci�cation� software design and implementa�
tion� software engineering

� Introduction

Authors such as Maher �Mah��� have observed that designers in various engineering disciplines use
both decomposition by function and decomposition by form to reduce their projects to manageable
components� Similarly� software designers should use both design strategies since they also build
complex objects� Decomposition by form follows the object�oriented paradigm and object�oriented

�



programming languages �GR	
� BS	
� Str	�� CN��� and design methodologies �Boo��� R���� sup�
port decomposition by form through such techniques as creating subclasses �inheritance
 and en�
capsulation� Decomposition by function requires that an object be divided into smaller components
to which a small set of actions can be applied� The relationship among the larger component and its
constituents is expressed through nesting� a concept that some authors claim is not properly sup�
ported by object�oriented languages �BZ		� and is not supported at all by strictly object�oriented
design methodologies �Jal	���

Although there have been arguments made in favour of nesting in object�oriented speci�cation
and design� we came to the conclusion that most of the arguments used so far are not very satis�
factory� Some of the arguments sound like a nostalgic defense of structured design�programming
�Ala		� Jal	��� and some authors even show how to convert a structured design into an object�
oriented design �Ala		�� Other authors �BZ		� Ass��� Mad	�� have examined a related issue� namely�
the implementation of nesting in object�oriented programming languages� We believe a common
concern at both the design and programming language levels is nesting encapsulation� That is� the
semantics of nesting should allow reference to de�nitions from outside the containing block without
violating encapsulation �BZ		� Ass��� Mad	���

We feel there is a need for an appropriate illustration of the �form versus function dilemma�
that every designer needs to face� In other words� a discussion about when to use decomposition by
form �inheritance
 and when to use decomposition by function �nesting
 should be presented in the
context of a software design activity� Since problem solving at the design and implementation levels
can always take place using only one of the two kinds of decomposition� a �metric� is necessary to
justify decisions that combine both approaches to design� The metric we propose in this paper is
enhanced design reuse�

Our motivation for the combination of inheritance with nesting at the design level comes from
our work on Abstract Data Views �ADVs
 �CILS�
a� CILS�
b�� At �rst the concept of ADVs was
used only for the design of user interfaces� Later this concept was generalized to deal with module
interconnection in general and the design of concurrent and distributed systems �PLC�
�� The
justi�cation for the combined use of nesting and inheritance can be naturally explained in the case
of user interfaces� Nesting models the issue of �locus of association� in human interfaces� Nested
objects know �where they are� with respect to other objects on the screen� therefore minimizing
the so�called constraint problem �Lel		� Car���� Inheritance is normally used to specialize interface
objects�

A justi�cation for the combined use of the two kinds of decomposition is less obvious in other
application domains� We discuss this issue in this paper using a simple software design situation�
What we have done was to �simulate� the locus of association situation in our example to try to
convince the reader that at least in this situation �which occurs very often in software designs
� a
combined use of the two decomposition styles is justi�ed because design reuse is clearly improved�

It should be noted that we discuss speci�cation and design issues in this paper� not implemen�
tation issues� One contribution of this paper is to illustrate the importance of nesting to those
researchers who are extending formal design notations to encompass object�oriented design con�
cepts �S���� CDD���� CHB��� Fit���� We also use the design example to introduce the notions
of maximization of reuse as a design metric� and the properties of locus of association� object�set
browsing and nesting encapsulation� These are all properties which are introduced when nesting is

�



used as a design notion� In our work on ADVs we expressed nesting using the extensions of VDM
proposed by Ierusalimschy �Ier��� Rob�
�� although we use an informal notation in this paper�

� The Problem

Consider an electronic version of a library� An electronic library is a collection of documents in
machine�readable format ordered using some scheme such as the Dewey Decimal System� We wish
to specify and design a program which allows a user of the library to browse all the documents in
the library sequentially�

Browsing the librarymeans that the user starts at the �rst document in the library and examines
the cover� If the document is of interest� the user then scans the document in more detail by moving
among the sections of the document in some predetermined order from front to back� The sections
of the document and the order of those sections are determined by the type of the document�

� The Structure of the Library

Document

Book Report Paper Letter Magazine Newspaper

Novel Technical Book Cookbook Dictionary

Figure �� A Hierarchy of Document Types for a Library � An is a Relation

The library consists of a number of documents and these documents are of many di�erent types
such as book� report� paper� letter� magazine� and newspaper� Many of these document types can
be further subdivided into di�erent classi�cations� For example� a book can be a novel� technical
book� cookbook� or dictionary� This relationship among document types can be represented as a
hierarchy and is shown in Figure �� As we move from top to bottom in the hierarchy each document
type becomes more specialized and inherits the properties of its superior entry in the hierarchy�
Inheritance is often called an is a relation�

Each document type in a library may have a di�erent composition� For example� a novel has
a title� author� preface and a number of chapters� while a technical book is composed of a title�
author� table of contents� chapters� appendices and an index�� The structure or composition of a
speci�c type of document namely� a novel and a technical book is illustrated in Figure � where boxes
inside each other indicate composition by nesting� � and the left to right order of boxes indicates

�This description is a simpli�cation of the structure of various kinds of books� but it is certainly adequate for the

present example�

�Both inheritance and composition by nesting could be illustrated using a tree diagram� We have chosen two

di�erent representations to emphasize that these are di�erent concepts�






Title/Author
Table of
Contents IndexChapter (*) Appendix (*)

Technical Book

Preface

Title/Author Preface Chapter (*)

Novel

Figure �� The Structure of two Document Types � An is a component of Relation

order of appearance in the document� The asterisk ��
 beside the name of a component indicates
that the component may appear several times in sequence� The term is a component of is often
used to describe the nesting relationship�

� An Object�oriented Design for the Library

In this section we consider an object�oriented design for the library in order to motivate the need
for encapsulation� inheritance� and composition by nesting� Object�oriented design requires that we
identify the basic objects which can act together as atomic units to produce the desired behavior�
If we con�ne the contents of the library to novels and technical books� it is clear from Figure �
that we need objects such as title� author� preface� chapter� table of contents� appendix and index�
The library then becomes an ordered collection of documents and each document in the library
such as a novel or technical book becomes an ordered composition of these basic objects�

In order to browse the library we need to de�ne two methods or functions for each document�
namely �get next� and �examine�� The method �get next� will move to the next document and
the method �examine� will allow a detailed examination of each section of a speci�c document� The
method �get next� can be de�ned for all documents as it is only necessary for the system to know
how to move to the next element in the ordered collection of documents� The method �examine�
is more specialized because an examination of a document requires knowledge of the speci�c type
of document and is an example of the requirement for the �locus of association��

��� Encapsulation and Inheritance

Conventional structured design would specify the �examine�method for books using the pseudo�
code structure shown in Figure 
� In this Figure the document type is located in a standard place
in each document and is then interrogated in a case statement� Based on the value in the case
statement the �examine� method can call the correct function for a speci�c type of document�

�



record document �typecode � integer������

�����

method examine�item�

type item � document

case item�typecode

novel� examine�novel�item�

technicalbook� examine�technical�book�item�

cookbook� examine�cookbook�item�

dictionary� examine�dictionary�item�

report� examine�report�item�

paper� examine�paper�item�

�����

esac

Figure 
� A Conventional Pseudo�code Speci�cation for �examine�

In the object model of design the state of an object is encapsulated or hidden and is queried and
changed through a set of associated methods or functions� Since the methods are really part of the
object they can be used by naming an object and its associated method� For example� accessing
the method �examine� for the object �item� can be written as

item�examine�

and replaces the pseudo�code of Figure 
�
We nowmust add the method �get next� to each object so that the entire library can be browsed�

Unfortunately we now must duplicate the �get next� speci�cation for every type of object in the
library� The concept of inheritance solves this problem� Inheritance allows the de�nition of a type
which may be specialized and thus implements the hierarchy shown in Figure �� Since �get next�
is the same for all documents� we can now attach the speci�cation and the corresponding state
to the document type� When the newer types inherit from document they also inherit the state
and all accompanying methods such as �get next�� This means the speci�cation and state for this
method are only located in one place in the program design� although it is accessible to all subtypes
that inherit from the type document� A type that allows inheritance is usually called a class�

��� Composition by Nesting

Invoking the method �examine� for each document type requires that each component of the
document be displayed in succession under user control� A simpli�ed version of the class book
containing only the components preface and chapter and their associated �display� method� might
be expressed as shown in Figure � if we use only the concepts of encapsulation and inheritance�
Inheritance is made explicit with the expression

novel is�a book�

�



class book is�a document

where � �preface� chapter�

function examine�preface�item�

item�display

where 	
 chapter

function examine�chapter�item�

item�display

where 	
 preface

class novel is�a book

where 	
 preface

method examine�item�

case where

preface � examine�preface�item�

chapter � examine�chapter�item�

esac

Figure �� An Object�oriented Approach to the function �examine� for the objects book and novel

This solution illustrates a strict object�oriented style of design where the designer interpreted both
the relations is a and is a component of in Figures � and � as inheritance trees�

Instances of the classes book and novel maintain a variable �where� which records the next item
to be examined in the document� Note the use of the case statement with the variable �where�
to select the correct version of �examine�� This solution has the same problem as the one

which motivated encapsulation� Also this solution has to be created for each class because the
solution must be specialized to that speci�c class� Such specialization limits reuse�

Note that this speci�cation could be implemented using an array of object pointers� However�
the expression of nesting would not be explicit� but would be implied by the semantics of the
program�

class novel is�a book

novel is�composed�of �title�author� preface� chapter�

method examine

next�display

next 	
 succ�next�

Figure �� An Object�oriented Approach to the class novel using composition by nesting

We create the concept of composition by nesting to build a class� Each class is composed of its

�



constituent classes and their associated methods� We illustrate composition by nesting in Figure
� by using a version of the class novel� The statement

novel is�composed�of �title�author� preface� chapter�

indicates that the class novel is composed of the classes title�author� preface and chapter� and that
they appear in the order presented� In our case each of these constituent classes has a method
called �display� which is invoked by naming the object of that class� and then the method� For
example� �display� for the object �item� of class �chapter� would be invoked with the expression

item�display

Associated with this list of constituents in each object is a variable named �next� that is used
to traverse this list� The �rst time the variable �next� is used its value is the �rst object in the list
of constituents� There is also a successor method named �succ� that moves the value of the variable
to the next element in the list of constituents� The method �succ� will move to the beginning of the
list of constituents after accessing the last element� Thus� we have provided the design speci�cation
with an object�set browsing capability�

When a class such as novel is instantiated� its list of constituents is de�ned� but the list does
not contain any instances of constituent classes� That is� the type and order of the constituents
is known when the class is de�ned� As an object of a class such as novel �grows� and �shrinks�
new instances of constituent classes are added and removed from the list� Hence� methods such as
�insert� and �remove� must be de�ned for constituent lists and could be based on the position of
the variable �next�� We should also note that type and number violations are not allowed� For
example� the constituent list for novel may not have an instance of an index� and if the list already
contains an instance of a preface then trying to enter another preface would cause an error� We
say we have achieved locus of association through nesting�

We observe that nesting has maintained the separation of concerns� since we �rst solved the
problem of manipulating each individual component and then we solve the problem of composition�
the two solutions proceed independently� Although the enclosing object of a class such as novel
knows the identity of its constituent classes� the enclosed objects of classes such as preface and
chapter have no knowledge of the state of novel� We call this property of the design nesting

encapsulation�
Also using this design language involving composition by nesting to invoke the methods �ex�

amine� does not require any knowledge of the position in the constituent list from either of these
methods� In fact we could easily change the constituent list without changing any of the speci��
cation associated with the object novel� This form of limited change makes any of these objects
highly reusable�

Because the knowledge of position in the constituent list is encompassed by the variable �next�
we can use inheritance to associate the method �examine� with the class document� This concept
is illustrated in Figure �� The constituent lists for document and book are empty� but this does
not a�ect the program design� These lists become completed when the class novel is declared�

Of course it is possible to have some of the constituents in a list to be composed of lists� This
can be easily handled within the constituent itself� For example� consider a class tech chapter which
consists of sections� This could be expressed as shown in Figure � and except for a change of name
is exactly the same speci�cation as used in Figure ��

�



class document

document is�composed�of ��

method examine

next�display

next 	
 succ�next�

class book is�a document

book is�composed�of ��

class novel is�a book

novel is�composed�of �title�author� preface� chapter�

Figure �� Associating the method �examine� with the class document

class chapter

chapter is�composed�of ��

method examine

next�display

next 	
 succ�next�

class tech�chapter is�a chapter

tech�chapter is�composed�of �section����

Figure �� Nested Composition

� Conclusions

This paper has used a simple example to illustrate that design using decomposition by form and
function require inheritance� encapsulation� and composition by nesting� Hence� composition by
nesting has a signi�cant role in object�oriented design� Reuse of design was used as a �metric� to
demonstrate the need for composition by nesting� since reuse is more viable at the design level� Our
example also clari�es the informal semantics of composition by nesting for the designers of both
design and programming languages by introducing the notions of locus of association� object�set
browsing and nesting encapsulation� The properties of nesting that have been illustrated� also give
some indication of how to extend formal methods to incorporate this important design concept�

Most of the notions of the design approach illustrated in these examples� can be implemented
more or less directly in existing object�oriented languages� although they do not use the syntactic
method we have described here to produce this implementation� It would be ideal if the language
used to implement our design notion of composition by nesting could exhibit some form of poly�

	



morphic behavior� since the constituent list can contain objects of any class� Also management of
objects would be made easier� because the constituent list contains the names of all classes that
compose a class� Because the names are easily found it should be possible to build a tool that can
locate all the classes which make up a document class since they are connected in a nesting tree�

� Acknowledgement

The authors wish to thank P�J� Bumbulis� L�M�F� Carneiro and M�H� Co�n for their many com�
ments on the contents of an earlier version of this paper�

References

�Ala		� B� Alabiso� Transformation of data �ow analysis models to object� In Proceedings of
OOPSLA� ����� ��		�

�Ass��� Swedish Standards Association� Simula � Data Processing Programming Languages�
Swedish Standard SS�
����SIS� �����

�Boo��� Grady Booch� Object Oriented Design with Applications� The Benjamin�Cummings
Publishing Company� Inc�� �����

�BS	
� D� G� Bobrow and M� Ste�k� The LOOPS Manual� Xerox Corporation� ��	
�

�BZ		� P� A� Buhr and C� R� Zarnke� Nesting in an object oriented language is not for the birds�
In Proceedings of ECOOP���� European Conference on Object�Oriented Programming�
��		�

�Car��� Luiza M� F� Carneiro� A Speci�cation�based Approach to User�Interface Design� PhD
thesis� University of Waterloo� December �����

�CDD���� D� Carrington� D� Duke� R� Duke� P� King� G� Rose� and G� Smith� An Object�Oriented
Extension to Z� In Formal Description Techniques �FORTE ��	� North Holland� �����

�CHB��� D� Coleman� F� Hayes� and S� Bear� Introducing Objectcharts or How to Use Statecharts
in Object�Oriented Design� IEEE Transactions on Software Engineering� �	��
� ����
�����

�CILS�
a� D� D� Cowan� R� Ierusalimschy� C� J� P� Lucena� and T� M� Stepien� Abstract Data
Views� Structured Programming� ����
����
� January ���
�

�CILS�
b� D� D� Cowan� R� Ierusalimschy� C� J� P� Lucena� and T� M� Stepien� Application Inte�
gration� Constructing Composite Applications from Interactive Components� Software
Practice and Experience� �
�

��������� March ���
�

�CN��� B� J� Cox and A�J� Novobilski� Object Oriented Programming� Addison Wesley� �����

�



�Fit��� J� S� Fitzgerald� Modularity in Mode�Oriented Formal Speci�cations and its Interaction
with Formal Reasoning� Technical report� Department of Computer Science� University
of Manchester� Technical Report Series� UMCS��������� �����

�GR	
� Adele Goldberg and David Robson� Smalltalk��
� the Language and its Implementation�
Addison�Wesley� Palo Alto� CA� January ��	
�

�Ier��� Roberto Ierusalimschy� A Method for Object�Oriented Speci�cations with VDM� Tech�
nical report� Monogra�as em Ci�encia da Computa�c�ao� PUC�Rio� February �����

�Jal	�� P� Jalote� Functional re�nement and nested objects for object�oriented design� IEEE
Trans� on Software Engineering� ��� ��	��

�Lel		� W� Leler� Constraint Programming Languages� Addison Wesley� ��		�

�Mad	�� O� L� Madsen� Block structure and object oriented languages� In B�� Shiver and P� Weg�
ner� editors� Research Directions in Object�Oriented Programming� MIT Press� ��	��

�Mah��� M� L� Maher� Process Models for Design Synthesis� AI Magazine� Winter �����

�PLC�
� A� B� Potengy� C� J� P� Lucena� and D� D� Cowan� A ProgrammingApproach for Parallel
rendering Applications� Technical report� Monogra�as em Ci�encia da Computa�c�ao�
PUC�Rio� April ���
�

�R���� James Rumbaugh et al� Object�Oriented Modeling and Design� Prentice Hall� �����

�Rob�
� Ierusalimschy Roberto� A Formal Speci�cation for a Hierarchy of Collections� to appear
IEE Software Engineering� ���
�

�S���� S� A� Schuman et al� Object�oriented process speci�cation� In Speci�cation and Veri��
cation in Concurrent Systems� Springer�Verlag� �����

�Str	�� B� Stroustrup� The C�� Programming Language� Addison�Wesley� ��	��

��


