
Model Checking Timing Requirements �

Joanne M� Atlee

University of Waterloo

Waterloo� Ontario

John Gannon

University of Maryland

College Park� Maryland

Abstract

Model checking has been used successfully to analyze concurrent� �nite�state systems� The behavioral

speci�cation of the system is transformed into a �nite representation of the speci�cation�s reachability

graph� System properties to be veri�ed are expressed as temporal logic formulae� A model checker

accepts a system�s reachability graph and a system property� and through exhaustive analysis determines

whether or not the property holds in the system� In this paper� we extend the Software Cost Reduction

�SCR� requirements notation to specify systems� timing requirements� We describe an analysis tool

that transforms timed SCR speci�cations into timed reachability graphs� and show how some real�time

properties can be veri�ed with a model checker for branching�time temporal logic� In addition� we compare

our system for analyzing SCR requirements with other model checkers that verify properties of real�time

systems�

� Introduction

Software errors frequently arise from incorrect system requirements� Successful requirements ac�
quisition requires a thorough review process in which both domain experts and implementors can
participate� Research groups have developed requirements notations with precise meanings that
can be read by both groups of reviewers ���� ���� In �	�� we showed how one such notation� the Soft�
ware Cost Reduction 
SCR� requirements notation ����� could be analyzed using a model checker�
SCR requirements are not always rigorously de�ned
 redundant information is often excluded
from the SCR behavioral requirements to enhance readability� We developed methods for detail�
ing SCR tabular requirements with information that appears elsewhere in the SCR requirements
document� translating the detailed requirements into a �nite state machine that represents the
system�s reachability graph� and proving safety assertions with a model checker for branching�time
temporal logic�

In this paper� we extend the SCR requirements notation to specify systems� timing properties�
We describe an analysis tool which automates the detailing and translating steps of our analysis
technique and produces input for the model checker� We also compare our system for analyzing
SCR speci�cations with other model checkers that verify real�time properties�

At present� model checkers exist for three types of temporal logics� All three types of temporal
logics and representative model checkers can be used to specify and analyze timing requirements�

�A previous version of this paper was presented at ISSTA����
�This paper only looks at model checkers that analyze pre�constructed reachability graphs� Model checkers that
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� Branching�time temporal logic� In a logic with branching�time semantics� a formula is inter�
preted at discrete states of the system�s reachability graph� In any system state� the future
of a system�s execution looks like a tree� where each branch represents a possible execution
path� Branching�time logic formulae� when interpreted at a particular state� cannot refer
to the next state since it is not known� Instead� the logic formulae must quantify over the
set of possible next states� To prove that a formula is an invariant property of the software
requirements� the property must be determined true for all states in the system�s reachability
graph� Examples of model checkers for branching�time logics include CTL ��� ��� TPCTL
����� Xesar ����� and SVM ���� the Concurrency Workbench ��� also contains a CTL�based
model checker�

� Linear�time temporal logic� In a logic with linear�time semantics� a formula is interpreted at
discrete points in time with respect to a particular path in the system�s reachability graph�
The logic model being analyzed is an execution path
 for each state� there exists a unique
next state� thereby de�ning a unique linear execution path� To prove that a formula is an
invariant property of the software requirements� the property must be interpreted over all
possible execution paths in the reachability graph� Model checkers exist for the TRIO ����
and RTTL ���� ��� linear�time logics�

� Interval temporal logic� In a logic with interval semantics� a formula is interpreted over
an interval of time� For example� in Modechart ���� ��� ���� a time interval is represented
by a sequence of states that is delimited by two event occurrences� The formula to be
veri�ed� expressed in Real�Time Logic 
RTL�� speci�es the pair
s� of events that delimit the
intervals of interest� To prove that an RTL formula is an invariant property of a Modechart
speci�cation� the model checker searches the system�s reachability graph for all time intervals
delimited by the events referenced in the logic formula and determines whether the formula
is true with respect to those intervals� HMS ��� is another interval logic for which model
checking algorithms have been developed� though not implemented�

In a real�time system� the set of possible futures for a particular system state may depend on
how the system reached that state� Di�erent execution paths to the state may cause di�erent
timing constraints to be unsatis�able in that state� thereby disabling some of the transitions
leaving the state� To distinguish between system states that have di�erent future behaviors� the
reachability graph of a real�time system contains duplicate nodes� where each copy of a replicated
node is annotated with the same system properties but has a di�erent set of future behaviors�
Unfortunately� this replication of graph nodes adds to the state explosion problem that plagues
reachability analysis techniques� the timed reachability graphs of some concurrent systems are so
large that model checking becomes ine�cient�

We are able to generate and analyze timed reachability graphs that do not contain duplicate
nodes� The analysis tool we are using is a model checker for Computational Tree Logic 
CTL�
���� CTL has branching�time semantics� and all of CTL�s temporal operators are quanti�ed over
the set of possible futures� For example� there are two nextstate operators� one for asking whether
property p is true in some next state and one for asking whether p is true in all next states�
Because the temporal operators are quanti�ed� the CTL model checker does not always need to

analyze symbolic representations of a system�s reachability graph and checkers that construct the reachability graph
during analysis were not included in this study�
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distinguish between system states that have di�erent futures
 if system state x is represented by
duplicate nodes and property p is true in all next states of xi� where xi is the ith copy of node x�
then p is true in all next states of x� We take advantage of the fact that CTL�s temporal operators
are quanti�ed and construct timed reachability graphs in which each system state is represented
by a single graph node� The disadvantage of this approach is that only a subset of CTL can be
veri�ed against our compact representation of a system�s timed reachability graph�

To determine if we could verify interesting properties of existing system requirements� we used
our extended SCR notation and analysis tool to analyze safety and timing requirements for two
well�known small problems
 a railroad crossing system and a nuclear control rods system� These
problems are often used to demonstrate the e�ectiveness of real�time speci�cation and veri�cation
techniques� For comparison� we analyzed the same problems using model checkers for TRIO 
a
temporal logic with linear�time semantics� and Modechart�RTL 
a temporal logic with interval
semantics�� The three model checkers analyze reachability graphs of varying degrees of detail
 the
more timing information a reachability graph contains� the richer the logic that can be checked
against it� However� a more detailed reachability graph usually means a larger graph� and a rich
logic is not always needed to express a system�s safety and real�time properties� We conclude the
paper with some preliminary guidelines for choosing the most e�cient model checker based on the
types of properties one wants to verify�

� SCR�CTL

This section describes Software Cost Reduction 
SCR� requirements speci�cations and the Compu�
tational Tree Logic 
CTL� model checker� A more formal presentation of the combined SCR�CTL
methodology and how it can be used to analyze behavioral requirements appears in ��� 	�� This
section extends the SCR�CTL methodology to specify and verify timing requirements�

System speci�cation� SCR requirements speci�cations were developed by a research group
at the Naval Research Laboratory as part of a general Software Cost Reduction project ��� �	� ����
An SCR document speci�es a software system�s behavior as a �nite set of concurrent� event�driven�
state�transition machines called modeclasses� Each modeclass is composed of a set of modes 
so
named because they represent the system�s di�erent modes of operation� and transitions among
the modes� at least one of the modes must be an initial mode of the modeclass� The modeclasses�
sets of modes are �nite and mutually disjoint� Informally� each modeclass describes one aspect of
the system�s behavior� and the global behavior of the entire system is de�ned by the composition
of the system�s modeclasses� The system is in exactly one mode of each modeclass at all times�

The system�s environment is represented by a set of boolean environmental conditions�� An
event occurs when there is a change in the values of these conditions� Event �T
A� occurs when
environmental condition A becomes true� similarly� event �F
A� occurs when A becomes false�
The occurrence of an event can depend on the values of other environmental conditions


�T
A� WHEN �B�

occurs if A becomes true while B is true� more formally� the event occurs at time t if A is false
and B is true at time t��� and A and B are both true at time t� In the above event� A is called
a triggering condition and B is called a when condition� The model of time is discrete� Event

�Although conditions are boolean� �rst�order predicate conditions that can be represented by a �nite number of
boolean conditions �such as integer ranges	 are also expressible�
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Figure �
 SCR requirements speci�cation of the railroad crossing system�

occurrences trigger mode transitions between modes in the same modeclass� The mode transitions
are instantaneous and occur at the same time as their respective transition events�

Figure � is an SCR requirements speci�cation for the classic railroad crossing problem� The
speci�cation consists of two modeclasses
 a MONITOR that monitors the location of the train�
and a GATE�CONTROLLER that controls the position of the railroad crossing gate based on the
train�s location� The four MONITORmodes describe the four equivalence classes of train locations

Approach� BC 
Before Crossing�� Crossing� and Passed�� The four GATE�CONTROLLER
modes represent the four positions of the gate 
Up� MoveDown� Down� and MoveUp�� The
initial modes of the system are Approach and Up� assuming that the initial environmental
conditions satisfy predicate �Train� the system is not de�ned if a train is initially present�

SCR requirements have a tabular format� Each row in the table speci�es an event causing
a transition from the mode on the left to the mode on the right� Each column in the center of
the table represents an environmental condition� A table entry of ��T� or ��F� represents the
condition becoming true or becoming false� respectively� A table entry of �t� or �f� signi�es that
the condition must already be true or false� respectively� If the value of a condition does not
a�ect the transition event� then the corresponding table entry is marked with a hyphen 
����� For
example� if the railroad crossing MONITOR has been in mode BC for at least 	�� time units

In�BC�������t�� and the train enters the crossing 
TrainXing���T��� then the MONITOR will
transition into mode Crossing�

The set of relationship declarations at the bottom of the speci�cation describe constraints on the
values of the environmental conditions� The syntax and semantics of the relationship speci�cations
are described in ���� for the purposes of this paper� relation �j� denotes an enumeration and relation
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����� denotes a type of implication� The �rst declaration states that at most one of the conditions
representing the train�s location 
Approaching� Train� and TrainXing� can be true at any time�
The second declaration states that condition GateUp is false whenever GateDown is either true or
becoming true� and vice versa�

Timed system speci�cation� We adapted van Schouwen�s Inmode
� and Drtn
� functions
���� to represent state and timing constraints as boolean �environmental� conditions� A state
condition speci�es whether or not the system is in a particular mode� Such a condition is especially
useful for synchronizing the activities of concurrent modeclasses� State conditions have format

In
mode�

where mode must be the name of a mode in one of the speci�cation�s modeclasses�
A timing condition speci�es whether or not the system has been in a particular mode for a

particular length of time� Timing conditions have format

In
mode� time�

where mode is the name of a mode in the speci�cation and time is a positive integer� Timing con�
ditions can be used either to synchronize concurrent modeclasses or to specify delay and deadline
constraints on transitions� Delay constraints are speci�ed by using timing conditions in when
clauses
 the when condition In�BC����� in the second row of the MONITOR modeclass ensures
that the transition from BC to Crossing is delayed until the system has been in mode BC for
��� time units� Deadline constraints are expressed as negated timing conditions in when clauses

when condition �In�MoveDown��	� in the second row of the GATE�CONTROLLER modeclass
ensures that the �rst transition from MoveDown to Down cannot occur if the system has been
in mode MoveDown for more than �� time units� Hard deadlines are speci�ed as uncondi�
tional events
 event �T
In�MoveDown��	�� in the second transition from MoveDown to Down
speci�es that the system must exit mode MoveDown within �� time units of entering the mode�

Timed reachability graph� We have built an analysis tool� tcart ��� 	�� that accepts an SCR
requirements speci�cation and builds the system�s reachability graph� Each node in the reachability
graph 
called a global mode� represents a composite mode consisting of exactly one mode from each
of the system�s modeclasses� Each edge in the graph 
called a global transition� represents an event
that causes the system to transition from one global mode to another� Initially� tcart ignores the
mode transitions� timing constraints and generates an untimed reachability graph� To ensure that
only reachable global modes are represented in the graph� tcart starts with the system�s initial
global modes and adds a new node to the graph if and only if there is a satis�able transition from
a reachable global mode to a new global mode that is not yet represented in the graph�

Next� tcart removes all global transitions whose timing constraints are not satis�able� There
are �ve conditions under which a transition�s timing constraints cannot be satis�ed


�� The transition�s delay constraint is greater than its deadline constraint�

�� The transition�s delay constraint is greater than the hard deadline for leaving the transition�s
source global mode�

	� The transition�s deadline constraint has already passed when the transition�s source global
mode is entered�

�� The transition�s event contains a state condition In�A� or timing condition In�A�t� that must
be true� but A is not a component mode of the source global mode�

�� The transition�s event contains a state condition In�A� that must be false� but A is a com�
ponent mode of the source global mode�
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Whether or not a global transition�s timing constraints are satis�able depends on how long the
system has been in the component modes of the transition�s source global mode when this mode is
entered� Let T be a global transition from global mode S to global mode D whose timing constraints
are satis�able� We use T�s timing constraints and information on how long the component modes
of S had been active 
upon entry into S� to calculate how long the component modes of D have
been active 
upon entry into D�� If A is a component mode of D� then the minimum and maximum
amounts of time the system could have spent in A at the time D is entered 
AD�min and AD�max�
respectively� are calculated as follows�


�� If component mode A is entered when global mode D is entered� then the system has spent
zero time units in A upon entering D�

AD�min � AD�max � �

�� If T�s transition event contains triggering event �T
In�A��� then the system has spent zero
time units in A upon entering D�

AD�min � AD�max � �

Similarly� if T�s transition event contains triggering event �T
In�A�t��� then the system has
spent exactly t time units in A upon entering D�

AD�min � AD�max � t

	� Otherwise� the amount of time the system has spent in A upon entering D is not exactly
known� and bounds on how long the system has been in A must be determined�


a� If T has no timing constraints� then it is unknown how long the system has been in A
upon entering D�

AD�min � �
AD�max � �


b� If the system must exit mode A within d time units of entering A� then the maximum
time spent in A upon entering mode D must be less than d


AD�max � d� �


c� If T�s event contains delay constraint In�A�t�� then the system has spent at least t� �
time units in A upon entering D


AD�min � t� �

If T�s event contains deadline constraint �In�A�t�� then the system has spent at most
t� � time units in A upon entering D


AD�max � t� �


d� If T�s event contains timing constraints based on component modes other than A� then
the minimum amount of time spent in A upon entering D is at least as large as the
minimum amount of time spent in A upon entering S 
AS�min� plus the minimum
amount of time T is delayed 
T�delay�


AD�min � AS�min� T�delay

�If mode A is not a component mode of D� then the amount of time the system has spent in A is unde�ned�
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The maximum amount of time spent in A upon entering D is at most as large as the
maximum time spent in A upon entering S 
AS�max� plus the maximum abount of time
T is delayed 
T�deadline�


AD�max � AS�max� T�deadline


e� Finally� the minimum and maximum time bounds on how long A has been active are
a�ected by any tightening of the minimum and maximum bounds of component modes
C that were entered after A was entered� The increase from AS�min to AD�min cannot
be less than the increase from CS�min to CD�min for any component mode C that was
entered after A


AD�min �MAX
fAS�min� 
CD�min� CS�min� j CS�max � AS�maxg�

Likewise� the increase from AS�max to AD�max cannot be more than the increase from
CS�max to CD�max for any component mode C that was entered after A


AD�max �MIN
fAS�max� 
CD�max�CS �max� j CS�max � AS�maxg�

If more than one of the above rules 
a��
e� applies to the same transition T� then AD�min

is the largest of all the applicable AD�min values and AD�max is the smallest of all the
applicable AD�max values�

The above rules 
���
	� calculate the bounds on how long a component mode of a destination global
mode has been active with respect to a single global transition T� When the calculation terminates�
the minimum amount of time that a component mode A has been active upon entering global mode
D is the smallest of all the minimum values calculated for all the satis�able global transitions
entering D� Likewise� the maximum amount of time that A has been active upon entering D is the
largest of all the maximum values calculated for all the satis�able global transitions entering D�

Removing unsatis�able transitions from an untimed reachability graph is an iterative process
that continuously updates the timing information of the global modes� component modes based on
incoming satis�able transitions and tests exiting transitions to determine if their timing constraints
are satis�able with respect to their source global mode�s current timing information� This iterative
process terminates when the global modes� timing information reach a �xed point and none of the
unsatis�ed timing constraints are any closer to being satis�ed� The result of this computation is a
global� event�driven� state�transition machine that represents the speci�cation�s timed reachability
graph�

We demonstrate our algorithm for transforming untimed reachability graphs into compact
timed reachability graphs by applying the algorithm to the following SCR requirements speci�ca�
tion� Each of the transitions is triggered by a timing condition on how long the system has been
in the transition�s source mode�
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The untimed reachability graph for the above SCR requirements speci�cation appears below� In
this example� the untimed reachability graph is the Cartesian product of the two modeclasses�
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All of the transitions leaving all of the reachable global modes must be tested to determine
if the transitions have satis�able timing constraints� The transition�testing algorithm starts with
set of initial global modes� When initial global mode M��M� is �rst entered� it has been in both
component modes for � time units� Transition M��M� will be activated after the system has
been in component modeM� for 	� time units� and transition M��M� will be activated after the
system has been in M� for �� time units� Based on how long the component modes of M��M�
have been active upon entering the initial global mode� only transition M��M� has satis�able
timing constraints� the system will have exited global modeM��M� before the timing constraints
for transition M��M� can be satis�ed� When the system enters global mode M��M�� it has
been in mode M� for exactly �� time units and mode M� for � time units� From global mode
M��M�� transition M��M� again has unsatis�able timing constraints� and only the transition
from M� to M� is allowed� At this point� all of the transitions leaving all of the reachable global
modes have been tested� The resultant reachability graph from this �rst iteration is shown in
Figure �
a�� The unsatis�able transitions and the unreachable global modes are displayed in light
grey�
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a� First iteration� 
b� Second iteration�
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The timing information stored in global mode M��M� re�ects the information known when
the global mode�s transitions were tested� Sometime after it�s transitions were tested� a new
transition M��M��M��M� was added to the timed reachability graph that changed the timing
information of component mode M� in M��M�
 according to the new timing information� when
the system entersM��M� it could have been inM� anywhere from � time units 
if the system has
just started� to �� time units 
if the global mode is entered from M��M��� Whenever the timing
information of one of the global modes changes after the global mode�s transitions were tested
and the changes are such that one of the unsatis�ed timing constraints is closer to being satis�ed�
all of the transitions are retested using the all of the global modes� new timing information� In
our current example� the changes to M��M��s timing information causes the transition�testing
algorithm to iterate a second time� The timed reachability graph after second iteration is shown
in Figure �
b�� as before� the unsatis�able transitions are displayed in light grey� The transition�
testing algorithm terminates at the end of the second iteration because none of the unsatis�ed
transitions are any closer to being satis�ed at the end of the iteration than when they were tested�

Finally� some of the satis�able global transitions in the timed reachability graph may 
or must�
be activated as soon as the system enters their source global mode� In the above example� the
global transition from M��M� to M��M� must occur immediately upon entering M��M� since
the system has been in component mode M� for �� time units by the time M��M� is entered� In
e�ect� events 
T�In�M���	�� and 
T�In�M���	�� occur at the same time and the system really
transitions fromM��M� toM��M�� To capture this e�ect� sequences of transitions that occur at
the same time are represented as single compound transitions from the source global mode of the
�rst segment of the sequence to the destination global mode of the last segment of the sequence�
the individual segments that compose the sequence are removed from the reachability graph� The
result of collapsing all sequences of zero�time transitions in Figure �
b� produces the following �nal
timed reachability graph�
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CTL machine� At this point� the requirements speci�cation is in a format that can be
formally analyzed� To use a particular analysis tool� one needs to transform the timed reachability
graph into an appropriate representation that the analysis tool will accept� tcart converts the
reachability graph into a Computational Tree Logic 
CTL� machine� which can then be analyzed
with the CTL model checker� Informally� a CTL machine is an extended �nite state machine� in
which each state is annotated with attributes 
properties of the state� and transition conditions

environmental conditions�� The values of the transition conditions determine which of the current
state�s transitions is enabled� If more than one transition can be enabled simultaneously� then the
CTL machine is nondeterministic�
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A CTL machine cannot naturally model events� CTL state transitions occur based on the
current state and the current values of the environmental conditions� To model transitions that
are activated by event occurrences� two CTL states are used to represent a global mode
 a CTL
mode state and a CTL exit state� The CTL states and transitions below model SCR transition
BC�Down�Crossing�Down�

BC  Down  ExitBC  Down

~TrainXing & 
    InBC299  

TrainXing & 
  InBC299 Crossing  Down

The CTL mode state represents the system in the global mode and is annotated with the names
of the global mode�s component modes 
e�g�� BC and Down�� The CTL exit state represents the
system leaving the global mode due to the occurrence of an event� It is annotated with the names
of the global mode�s component modes plus the additional state attribute Exit� The transition
leaving the CTL exit state 
and entering the CTL mode state of the transition�s destination
global mode� is annotated with the values of the environmental conditions when the transition
occurs 
TrainXing and In�BC������� The transition from the CTL mode state to its exit state is
annotated with the values of the conditions immediately before the transition occurs 
�TrainXing
and In�BC������� The two CTL transitions together represent the event�s triggering conditions
changing value 
�T
TrainXing�� while its when conditions are satis�ed 
In�BC����� is true��
Multiple CTL exit states are needed to represent the events of multiple transitions leaving the
same global mode�

Assertion language� The property speci�cations are expressed in an assertion language that
we have developed and are translated into Computational Tree Logic 
CTL� formulae� However�
given the compact representation of our timed reachability graph� the CTL model checker is no
longer sound with respect to the entire CTL language� Consider the following two sub�graphs


a b c

d d d

e f g

a b c

d

e f g

Figure 	
 
a� Traditional timed reachability graph� 
b� Compact timed reachability graph�

On the left is a sub�graph of a traditional timed reachability graph� in which system states that have
di�erent future behaviors are represented by multiple graph nodes� System state d is represented
by three graph nodes� and the future behavior of the system in state d depends on which state
preceded state d� For example� the future state is e if the preceding state was a� The sub�graph
on the right is our compact representation of the same sub�graph� CTL formula

AG
a� EX
EX
f���

states that from state a it is possible to reach state f in two transitions� This formula is false in
the traditional timed reachability graph but may be true in the compact timed reachability graph�
the formula is true in the compact graph if all transitions leaving state a lead to states that have
possible next states f�

An assertion language provides a more intuitive representation of the properties to be veri�ed�
and it restricts the user to the subset of CTL that can be validly checked against our compact timed
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reachability graph� The assertions used in this paper are described below� The de�nition of the
full assertion language� including representations of the assertions in CTL� appears in Appendix A�

Strong Mode Invariance� smi�M�p�
The smi assertion is used to express mode invariants� The assertion is true if propositional logic
formula p is true whenever the system is in mode M �

Transition Delay Invariance� tdelay�S�D�tc�
This assertion is used to express an invariant delay constraint on all transitions from mode S to
mode D� The assertion states that the system cannot transition from source mode S to destination
mode D if timing constraint tc is not true�

Mode Delay Invariance� mdelay�M�tc�
This assertion is used to express an invariant delay constraint on all transitions leaving mode M �
The assertion states that the system cannot exit mode M if timing constraint tc is not true�

Transition Deadline Invariance� tdead�S�D�tc�
This assertion is used to express a hard deadline that causes the system to invariantly transition
from mode S to mode D� The assertion states that if the system is in source mode S and the
timing constraint tc is true �i�e�� the deadline has been reached�� then the system must be in
destination mode D in the next system state� Note that this assertion will not hold if there exist
other transitions leaving S that have the same delay constraint or no timing constraint and have a
di�erent destinationmodeD	
 in such a case� the system is nondeterministic and will not invariantly
transition to destination mode D when the deadline is reached�

Mode Deadline Invariance� mdead�M�tc�
This assertion is used to express a hard deadline constraint for leaving mode M � The assertion
states that if the system is in mode M and timing constraint tc is true �i�e�� the deadline has been
reached�� then the system will not be in mode M in the next system state�

Some of the invariant properties that should hold in the railroad crossing example are

smi
Crossing�Down�
mdelay
Passed� In
Passed� ����
tdead
MoveDown�Down� In
MoveDown� ����

The �rst assertion is the safety property associated with the railroad crossing problem� it is a
strong mode invariant that states if the train is in the railroad crossing� then the gate must be
down� The second assertion is a mode delay invariant� it states that all of the transitions leaving
Passed are delayed until timing constraint In�Passed���� is true� The last assertion is a transition
deadline invariant� it states that the transition from MoveDown to Down must be activated
next if the system has been in mode MoveDown for �� time units�

We have created a translator that will accept a set of assertions and generate the set of equiv�
alent CTL formulae� The set of CTL formulae can then be input to the model checker directly�
Appendix A describes the mapping from our assertion language into CTL formulae� In Appendix B�
we prove that the CTL model checker ��� is sound with respect to the subset of CTL we use in our
assertion language and to the compact timed reachability graph we are analyzing�

Because CTL is a propositional temporal logic� there is no notion of real�time in the logic� the
model checker is only capable verifying temporal boolean formulae� While the names of state and
timing conditions imply that they possess some concept of time� they do not� They are simply the
names of boolean conditions� Thus� we can only verify real�time formulae that reference those state
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and timing conditions that appear in the SCR tabular requirements� For example in the railroad
crossing problem� we can verify that whenever the system enters mode Passed� it remains in that
mode for at least ��� time units� we can verify this property because the speci�cation contains
timing condition In�Passed����� We cannot verify that the system remains in Passed for at least
�� time units under these same circumstances because the appropriate timing condition does not
appear in the tabular speci�cation�

Model checker� The MCB model checker accepts a CTL machine and a CTL formula� and
determines whether or not the formula holds in the machine� The model checking algorithm
determines the truth of a formula F in phases� �rst processing F �s subformulae of length one� then
F �s subformulae of length two� etc�� until �nally processing the entire formula F � During phase
i� all subformulae of length i are evaluated at each state with respect to that state�s annotated
propositions� its transition conditions� and its evaluations of subformulae of length less than i�
Formula F is a property of the system if it is evaluated true in the machine�s initial state�

� Modechart

This section brie�y describes the Modechart speci�cation language and its veri�er� More thorough
descriptions of this system can found in ���� �	��

Timed system speci�cation� Modechart requirements have a hierarchical� graphical rep�
resentation� The modes of operation are represented by graph nodes� and mode transitions are
represented by edges annotated with transition conditions� Each mode is either parallel� serial� or
primitive� Parallel and serial nodes contain sets of child nodes� When a parallel node is entered�
all of its children are entered simultaneously and executed independently� When a serial node is
entered� one of its children 
the initial node� is entered and only one child is executed at any time�

Transitions between modes may be conditioned on the occurrence of events 
e�g�� mode entry
or action execution�� the values of predicates� or delay and�or deadline constraints� A transition
activated by an event occurs at the same time as the event� A transition conditioned on delay�
deadline pair 
r� d� is enabled when at least r and at most d time units have passed since the
transition�s source mode was entered� the transition must occur after d time units have passed� if no
other transition from the source mode has been activated� Mode transitions are instantaneous� and
it is possible for a sequence of transitions to occur in zero time units� The Modechart speci�cation
language is actually richer than the description presented here� but the veri�er will only accept
speci�cations in the above format�

Figure � contains a Modechart speci�cation for the railroad crossing problem� Machine mode
MONITOR monitors the location of the train� and machine mode GATE�CONTROLLER controls
the position of the crossing gate� The lower�level modes correspond to the modes used in the SCR
speci�cation of the same system� All of the transitions in the MONITOR mode are enabled by
timing conditions� while those in GATE�CONTROLLER are either activated by timing conditions
or by mode entry events in the MONITOR mode� The GATE�CONTROLLER transition from
MoveUp to Up is annotated with timing constraint 
�������� specifying a transition delay of ��
time units and a deadline of ��� time units� The transition from MoveUp to MoveDown is
annotated with �BC� indicating it is activated when the MONITOR enters BC� Delay�deadline
pair 
������� corresponds to the timing conditions In�MoveUp���� and �In�MoveUp��		� in the
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Figure �
 Modechart requirements speci�cation of the railroad crossing system�

SCR speci�cation�� and mode entry event�BC corresponds to triggering condition �T
In�BC���
Computation graph� Modechart�s veri�er builds a �nite computation graph representing the

system�s state space� Each node is labeled with the set of current system modes� the current values
of state variables� the set of actions currently being performed� and a list of simultaneous events�
Each edge represents a single change in the annotations of the edge�s source and destination
nodes 
e�g�� a new system mode or new variable value�� thus� if multiple state changes occur
simultaneously� a sequence of nodes may be entered and exited in a single time instant�

For each node N� a set of potential successors and a separation graph are generated� The
separation graph nodes are nodes which lie on the path from the system�s initial node to N plus
N�s potential successors� The separation graph edges are weighted to represent timing constraints�
positive weights are delays and negative weights are deadlines� A potential successor Pi is pruned
from the computation graph if a transition to another potential successor Pj must activate 
due
to timing constraints� before any of the transitions to Pi is enabled� Let the distance between two
points be the maximum sum of the weights along any path from the �rst point to the second� Two
nodes in the computation graph are equivalent if they have the same label� their sets of potential
successors have the same labels� and the distances between the nodes and their potential successors

and vice versa� are identical� In such a case� one of the nodes is deleted from the graph and edges
to it are replaced by edges to the other node�

Assertion language� The Modechart veri�er checks a subset of Real�Time Logic 
RTL�� and
a user�friendly interface ensures that the formulae to be veri�ed are restricted to this subset of
RTL� There are two sets of operators which specify assertions about modes and mode entry events�
respectively� We only de�ne the meanings of the formulae used in our case studies�

An M�interval is a set of consecutive nodes in a computation graph� each of which is labeled
with system mode M� The following formulae state relationships between M�intervals�

cm M� M� evaluates to true if and only if each M��interval contains a subsequence which rep�

�In this paper� one time unit is subtracted from SCR delay constraints so that a transition annotated with a
WHEN delay constraint is enabled at the same time as a transition annotated with the 
equivalent� Modechart
delay�
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resents an M��interval�

xm M� M� evaluates to true if and only if there is no overlap between any M��interval and
M��interval�

et M� gives the minimum and maximum times the system spends in all its M��intervals�

An M�interval formula is only verifyable if the modes referenced in the formula cannot starve 
i�e��
there is no in�nite execution trace in which the modes do not occur in�nitely often��

An MN�interval is a set of consecutive nodes in a computation graph that starts with a mode
entry event into mode M and ends with a mode entry event into mode N� The second set of
assertions supported by the Modechart veri�er express relationships between MN�interval� One
such formula is iu�

iu �M� �M� �M� �M� evaluates to true if and only if every 
xth� M�M��interval is contained
within some 
yth� M	M��interval�

MN�interval formulae can only be used if the formula is preserved along every path and every cycle
in the computation tree� A formula is preserved on a computation path 
cycle� if and only if for
each MN�interval referenced in the formula� the endpoints of that interval appear an equal number
of times along that path 
cycle�� For example� an interval formula is not preserved if the beginning
endpoint of an interval occurs before a cycle and the ending endpoint of the interval occurs within
the cycle� in this case� the formula is not preserved in the cycle because after every traversal of
the cycle� the beginning endpoint of the interval will have occurred more often 
once more� than
the endpoint of the interval�

The safety assertion we want to verify in the railroad crossing example 
that the gate is down
if the train is in the railroad crossing� can be expressed as either a cm formula or a iu formula�

cm�Crossing� Down�
iu��Crossing� �Passed� �Down� �MoveUp�

The �rst formula states that every Crossing�interval is contained within a Down�interval� The
second formula states that every interval delimited by entry events into modes Crossing and
Passed is contained within an interval delimited by entry events into modes Down andMoveUp�

Model checker� The decision procedures for RTL formulae are graph�search algorithms� For
example� the decision procedure for xm M� M� sequentially searches the computation graph
nodes for all M��intervals� For each of these� recursive searches locate all subsequent and prior
M��intervals� The distances between the entries and exits of each pair of M�� and M��intervals
are compared to determine if any of the intervals overlap��

� TRIO

This section brie�y describes the TRIO logic and model checker� More thorough descriptions of
this system can be found in ��� ����

�The decision procedure for xm M� M� cannot simply search for nodes annotated with both M� and M��
Mode entry and exit events may occur within a sequence of simultaneous events� thus� there may be graph nodes
that represent the time instant that M� �or M�	 is being entered or exited but that are not labeled with M� �or
M�	�
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Figure �
 A TRIO history speci�cation for the railroad crossing system�

Timed system speci�cation� A TRIO timed system speci�cation is a history speci�cation
that represents a possible execution of the system� Variables� predicates� and functions are either
time�independent 
i�e�� their values are constant� or time�dependent 
i�e�� their values change over
time�� The history speci�cation assigns invariant values to time�independent variables� predicates�
and functions� and for each time�dependent variable and predicate� it assigns values for each time
instant in the temporal domain�

Figure � depicts a TRIO history speci�cation for one execution of the railroad crossing system�
The speci�cation uses the boolean and temporal domains and consists entirely of time�dependent
predicates� There is a time�dependent predicate for each of the MONITOR modes 
Approach���
BC��� Crossing��� and Passed���� each of the GATE�CONTROLLER modes 
Up��� MoveDown���
Down��� and MoveUp���� each of the three possible locations of the train 
approaching��� train���
and trainxing���� and each of the stable positions of the crossing gate 
gatedown�� and gateup����
The horizontal lines in Figure � depict the time instances when each predicate is true� For example�
predicate Approach�� is true during time intervals ���� �������� and �������� One can see that the
system cycles among the modes in the two modeclasses 
MONITOR and GATE�CONTROLLER��
and that exactly one mode in each of the two modeclasses is true all all times� except during a
mode transition when both the source and then destination modes are true�

Assertion language� TRIO is a �rst�order logic language� extended with temporal operators
Futr and Past that de�ne the truth of predicates in the future and past� respectively� TRIO terms
are de�ned inductively�

� Every variable is a term�

� Every n�ary function applied to n terms is a term�

TRIO formulae are also de�ned inductively�
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� Every n�ary predicate applied to n terms is a formula�

� If A and B are formulae� then �A and A 	B are formulae�

� If A is a formula and x is any time�independent variable� then 
xA is a formula�

� If A is a formula and t is a temporal term� then Futr
A� t� and Past
A� t� are formulae�

Futr
A� t� means that formula A will be true t time units in the future� Past
A� t� is de�ned
similarly� A number of other temporal operators can be de�ned in terms of the Futr and Past
operators ����� the operators used in this paper are


AlwF 
A� �def 
t

t � � 	 Futr
true� t��� Futr
A� t��
AlwP 
A� �def 
t

t � � 	 Past
true� t��� Past
A� t��
Always
A� �def AlwP 
A� 	A 	AlwF 
A�
Sometimes
A� �def �AlwP 
�A� �A � �AlwF 
�A�
Lasted
A� t� �def 
t�
� � t� � t� Past
A� t���
Until
A�� A�� �def �t
Futr
A�� t� 	 

t�
� � t� � t� Futr
A�� t

���

The �rst two operators state that A will hold in every future time instant and that A was true in
every past time instant� respectively� Always
A� means that A holds in all time instances of the
temporal domain� and Sometimes
A� means that A holds in some time instant of the temporal
domain� Lasted
A� t� means that A has been true for the last t� � time instances� not including
the current time instant� As demonstrated above� TRIO is at least as expressive as temporal logic
since the latter�s operators 
e�g�� AlwF 
A� and Until
A�� A��� can be de�ned in the former�

The following TRIO formulae represent some of the invariant properties that should hold in
the railroad crossing example�

Always
Crossing
�� Down
��
Always

MoveDown
� 	 �
Lasted
MoveDown
�� ����� � not
Futr
Down
�� ����
Always

MoveDown
� 	 Lasted
MoveDown
�� ���� � Futr
Down
�� ���

The �rst TRIO formula is the railroad crossing safety property
 if the train is in the Crossing�� then
the gate must be Down��� The second formula states that if the system is in mode MoveDown��
but has not consistently been in that mode for the last �� time units� then the system cannot be
in mode Down�� in the next time instant� The third formula states that if the system has been in
mode MoveDown�� for the last �� time units� then the system will be in mode Down�� in the next
time unit�

Model checker� Model checking of TRIO formulae is decidable if all of the speci�cation�s
domains� including the temporal domain� are �nite� A version of the tableaux algorithm is used
to evaluate a formula with respect to a single state 
representing an instant of time� of the history
speci�cation� To verify a formula over the entire history speci�cation� the model checker must
check the formula against all time instances� which is why the temporal domain must be �nite�

� Case Studies

To evaluate the di�erent types of model checkers� we used the SCR�CTL� Modechart� and TRIO
veri�cation systems to analyze two existing requirements speci�cations� The railroad crossing
speci�cation used in this study was originally speci�ed using Petri nets ����� and was adapted
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to Modechart in ��	�� we created equivalent SCR and TRIO speci�cations� The speci�cation for
the nuclear rods control system was originally speci�ed as a set of RTL formulae ����� from these
formulae we produced SCR� Modechart� and TRIO requirements�

Railroad crossing� This system�s MONITOR and GATE�CONTROLLER modeclasses are
so tightly coupled that the system�s reachability graph is virtually a simple cycle� For example�
the Modechart computation graph contains �	 nodes� only one of which has more than a single
successor� Thus� verifying this speci�cation was quite straightforward�

The SCR system speci�cation for the railroad crossing example was displayed previously in
Figure �� The most important formula to verify is the safety property
 if the train is in the railroad
crossing� then the gate must be down� This property is expressed by the following assertion


smi
Crossing�Down�

In addition� the speci�cation has several delay and deadline constraints� The following assertions
express invariant transition delays
 if there is a delay constraint on a transition and that amount
of time has not yet passed� then the transition is not allowed� For example� the �rst assertion
states that all transitions from MoveDown to Down are delayed until the system has been in
MoveDown for �� time units�

tdelay
MoveDown�Down� In
MoveDown� ����
tdelay
MoveUp�Up� In
MoveUp� ����
tdelay
BC�Crossing� In
BC������
tdelay
Passed�Approach� In
Passed� ����

The next two assertions express invariant deadline requirements
 if there is a hard deadline con�
straint on a transition and that amount of time has passed� then the transition must be activated�
For example� the �rst assertion states that the system must transition fromMoveDown toDown
if it has been in mode MoveDown for �� time units�

tdead
MoveDown�Down� In
MoveDown� ����
tdead
MoveUp�Up� In
MoveUp� �����

All of the safety and timing properties listed above were translated into equivalent CTL formulae
and were successfully veri�ed using the CTL model checker�

The Modechart system speci�cation of the railroad crossing example was shown in Figure ��
Either of the following operators could be used to express system�s safety property� The �rst
formula states that every Crossing�interval is contained within a Down�interval� The second
formula states that every interval that starts with an entry into mode Crossing and ends with
an entry into mode Passed is contained within an interval that starts when Down is entered and
ends when MoveUp is entered�

cm
Crossing�Down�
iu
�Crossing��Passed��Down��MoveUp�

One can verify delay and deadline constraints using the veri�er�s et command� which determines
the minimum and maximum times the system spends in any mode� The Modechart veri�er calcu�
lated the following bounds on the length of time the system could spend in modes BC� Passed�
MoveDown� and MoveUp�

et
BC� � �	��� inf �
et
Passed� � ����� inf�
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et
MoveDown� � ���� ���
et
MoveUp� � ���� ����

The TRIO history speci�cation that we analyzed 
which only represents one possible execution
path� was depicted in Figure �� The system�s safety property is expressed by the following TRIO
formula


Always
Crossing
�� Down
��

The formula states that whenever predicate Crossing�� is true� predicate Down�� must be true�
This formula is valid in the history speci�cation we chose to analyze� We were also able to verify
the following delay constraints�

Always

BC
�	 �Lasted
BC
�� 	������Futr
Crossing
�� ���
Always

Passed
�	 �Lasted
Passed
�� �������Futr
Approach
�� ���
Always

MoveDown
�	 �Lasted
MoveDown
�� ���� ��Futr
Down
�� ���
Always

MoveUp
�	 �Lasted
MoveUp
�� 	���� ��Futr
Up
�� ���

The �rst formula states that if predicate BC�� is true but has not been true for the last 	��
consecutive time units� then predicate Crossing�� cannot be true in next time unit� The other
formulae are similarly structured� We were also able to verify the following deadline constraints�

Always

MoveDown
� 	 Lasted
MoveDown
�� ���� � Futr
Down
�� ���
Always

MoveUp
� 	 Lasted
MoveUp
�� ������ Futr
Up
�� ���

These formulae state that if a mode predicate has been true for the last t consecutive time units�
where t equals the transition�s hard deadline constraint� then a new mode predicate must be true
in the next time unit�

Nuclear control rods� The nuclear control rods system regulates the movement of two
control rods in a nuclear reactor� Each rod is controlled by a separate SUBSYSTEM modeclass�
and a MANAGER modeclass coordinates the operation of the two subsystems to ensure that the
control rods never move at the same time� A human operator can request that a rod be moved
by pushing a button� The associated SUBSYSTEM then runs tests to ensure that it is safe to
move the rod� requests permission to move the rod� waits until it receives permission from the
MANAGER process� and then moves the rod� Timing constraints limit the period during which a
rod can be moved and the frequency with which the Manager can grant requests�

The SCR and Modechart speci�cations� shown in Figures � and �� each contain three mod�
eclasses running in parallel
 modeclasses SUBSYS� and SUBSYS� describe the subsystems that
operate the two control rods and modeclass MANAGER determines which of the subsystems 
if
any� can move its rod� The MANAGER modeclass consists of four modes
 MStart�� Stable

no rods are moving�� Grant�� and Grant�� The subsystem modeclasses each have six modes�
describing the various stages of a control rod�s movement� The modes for modeclass SUBSYS�
are
 S�None� S�Check� S�Req 
request permission to move rod�� S�Wait� S�RecGrant

receive permission to move rod�� and S�MoveRod� Modeclass SUBSYS� has the same modes
as modeclass SUBSYS�� pre�xed with S� rather than S��

The original speci�cation included a safety property that stated the two control rods could not
move at the same time� Two smi assertions are needed to express this property� Together� they
imply that the system cannot be in both S�MoveRod and S�MoveRod at the same time�

�Mode MStart is only used in the Modechart speci�cation� it is needed to ensure that the ui assertions we
want to verify are preserved along all cycles in the system�s computation graph�
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Figure �
 SCR speci�cation of the nuclear rods control system�

smi
S�MoveRod��S�MoveRod�
smi
S�MoveRod��S�MoveRod�

In addition to the above assertions� we were able to verify several related invariant properties�

smi
S�RecGrant��S�RecGrant�
smi
S�RecGrant��S�RecGrant�
smi
S�RecGrant�Grant��
smi
S�RecGrant�Grant��
smi
S�MoveRod�Grant��
smi
S�MoveRod�Grant��

The conjunction of the �rst two assertions states that the two subsystems cannot have permission
to move their rods at the same time� The next two assertions state that if a subsystem has
received permission to move its rod� then the MANAGER has granted such permission� Finally�
the last two assertions state that if a subsystem is moving its rod� then the the MANAGER has
granted the subsystem permission to do so� The original speci�cation also stated that several
timing constraints must hold invariantly�
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Figure �
 Modechart speci�cation of the nuclear rods control system�

mdelay
Grant�� In
Grant�� 	���
mdead
Grant�� In
Grant�� 	���
mdead
S�RecGrant� In
Grant�� ���
mdead
S�MoveRod� In
S�MoveRod� ����

The �rst assertion states that the system must remain in mode Grant� until it has been in
Grant� for 	� time units� the second assertion states that the system must exit mode Grant� if
it has been in Grant� for 	� time units� Together� these two assertions state that the system al�
ways exits modeGrant� after the system has been inGrant� for exactly 	� time units� The third
and fourth assertions state that there are also hard deadlines for leaving modes S�RecGrant
and S�MoveRod� All of the assertions listed above 
plus similar assertions expressing invari�
ant timing properties for modes Grant�� S�RecGrant� and S�MoveRod� were successfully
veri�ed against the SCR speci�cation using the CTL model checker�

The Modechart veri�er assertions that correspond to the nuclear systems� safety assertions are

xm
S�RecGrant� S�RecGrant�
xm
S�MoveRod� S�MoveRod�
cm
S�RecGrant�Grant��
cm
S�RecGrant�Grant��
cm
S�MoveRod�Grant��
cm
S�MoveRod�Grant��

The �rst formula states that the subsystems� RecGrant modes are mutually exclusive 
i�e�� the
two subsystems cannot both be in mode RecGrant at the same time�� Similarly� the subsystems�
MoveRodmodes are also mutually exclusive� The second pair of formulae state that all instances
of RecGrant are contained within an instance of the appropriate Grant mode� The last pair
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Figure �
 A TRIO history speci�cation for the nuclear rods control system�

of formulae state that all instances of MoveRod are also contained within an instance of the
appropriate Grant mode� None of these safety properties could be checked with the version of
the veri�er we used��

We were able to verify all of the system�s timing constraints� using the et operation to cal�
culate the minimum and maximum times the system spent in modes Grant� RecGrant� and
MoveRod�

et
Grant�� � �	�� 	�� et
Grant�� � �	�� 	��
et
S�RecGrant� � ��� �� et
S�RecGrant� � ��� ��
et
S�MoveRod� � ��� ��� et
S�MoveRod� � ��� ���

The TRIO history speci�cation that we analyzed is depicted in Figure �� We were able to
verify all of the following TRIO formulae� which represent the system�s safety properties�

Always
� 
S�MoveRod
� 	 S�MoveRod
���
Always
� 
S�RecGrant
� 	 S�RecGrant
���
Always
S�RecGrant
�� Grant�
��
Always
S�RecGrant
�� Grant�
��
Always
S�MoveRod
�� Grant�
��
Always
S�MoveRod
�� Grant�
��

�We used a version of the Modechart veri�er which was dated February 
���� We aborted each veri�cation
attempt after ��� cpu minutes� We do not know whether the veri�er would have terminated had we waited longer�
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The conjunction of the �rst two formulae states that the system cannot be in the two MoveRod
or the two RecGrant modes simultaneously� The next four formulae state that the SUBSYS
modeclasses cannot be in their respectiveRecGrant orMoveRodmodes unless the MANAGER
modeclass is in the associated Grant mode�

We were also able to verify all the required delay and deadline constraints�

Always

Grant�
�	 �Lasted
Grant�
�� 	���� Futr
Grant�
�� ���
Always

Grant�
� 	 Lasted
Grant�
�� 	�����Futr
Grant�
�� ���
Always

S�RecGrant
� 	 Lasted
S�RecGrant
�� �����Futr
S�RecGrant
�� ���
Always

S�MoveRod
� 	 Lasted
S�MoveRod
�� ���� ��Futr
S�MoveRod
�� ���

The �rst two formulae state that if the system is in mode Grant�� then the system will exit
Grant� after exactly 	� time units� The last two formulae state that SUBSYS� must exit its
S�RecGrant and S�MoveRod modes whenever the deadlines for leaving those modes have
passed� The delay and deadline constraints that regulate the execution of modeclass SUBSYS�
are similar to those given above�

� Comparison

Each of the systems used in the above experiments have their strengths and weaknesses� Based
on our experience in running these case studies� we draw the following comparisons�

Ease of property speci�cation� The ease of property speci�cation relates to the ease with
which one can formally express the properties one wants to verify about the system speci�cation�
The speci�cation of RTL and CTL properties is fairly straightforward because there exist intuitive
assertions languages whose assertions are automatically translated into logic formulae� One of the
main purposes of these assertion languages is to restrict the type of RTL and CTL formulae one
can input to the respective veri�ers�

More expertise is needed to formulate TRIO property speci�cations� since one needs to be
pro�cient at formulating �rst order logic expressions� A front�end� similar to the one for the
Modechart veri�er or the assertion language translator we introduced in this paper� could be
constructed for the TRIO model checker� which would ease the phrasing of the formulae to be
veri�ed�

Ease of system speci�cation� SCR and Modechart system speci�cations are fairly easy
to create and to understand because both speci�cation languages are based on extended �nite
state machines� The Modechart speci�cation language is especially convenient because one can
specify persistent state variables and actions to be performed upon mode entry� However� since
the veri�cation formulae can only reference modes and mode entry events� no analysis can be
performed on the values of variables or the status of actions� Furthermore� there is a problem
with the semantics of Modechart that allows a state variable to be both true and false in the same
time instant 
in di�erent nodes along a zero�time path��� Also� a transition�s timing constraints

�Our initial Modechart speci�cation for the nuclear control rods system contained a zero�time transition cycle
�which went undetected	� We had assumed that actions R
 and R� �which respectively assign request variables
req
 and req� the value true	 would cause delays in the sub�system cycles because actions cannot be performed
in zero time units� action R
 �R�	 is started when mode S�Req �S�Req	 is entered� and mode S�Req �S�Req	
cannot exit until action R
 �R�	 terminates� However� if the action terminates at the same time as mode S�Req
is entered �i�e�� if zero time units have passed since mode S�Req last exited	� then the transition out of S�Req is
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can only depend on how long the system has been in the transition�s source mode� one cannot
annotate a transition A�B with a delay or deadline constraint on how long the system has been
in a third mode C�

The most di�cult aspect of using the Modechart speci�cation language is that it is possible to
write speci�cations that cannot be veri�ed� For example� cm� xm� and et formulae can only be
veri�ed if the modes referenced by these formulae cannot starve� which is possible in speci�cations
that have in�nite deadlines on transitions� Furthermore� MN�interval formulae such as iu can only
be veri�ed if the mode intervals referenced by the formula are preserved along every path and
every cycle in the computation graph� For example� an interval formula is not preserved in a cycle
if the beginning endpoint of an interval occurs before the cycle and the end of the interval occurs
within the cycle
 after every traversal of the cycle� the beginning endpoint of the interval will have
occurred once more often than the terminating endpoint of the interval� The use of unique initial
modes helps to avoid unpreserved interval formulae in most cases� we added initial modeMStart
into the MANAGER modeclass of the Modechart speci�cation of the nuclear rods example to
ensure that ui assertions about rod movements would be preserved� However� the introduction of
unique initial modes sometimes causes other interval formulae that originally were preserved to
become unpreserved�

TRIO system speci�cations 
execution paths� are conceptually simple to create� but the process
is time consuming and prone to error because the speci�cations are created manually� There is
work on a tool that will transform ASTRAL speci�cations into TRIO logic formulae� and there
exists another tool that will accept a TRIO formula and generate a partial history speci�cation
that satis�es the formula� The composition of these two tools may allow one to generate history
speci�cations from ASTRAL speci�cations in the future�

Reachability graph� The greatest di�erence between SCR�CTL� Modechart� and TRIO
analyses is the representation of the speci�cations� reachability graphs� A TRIO history speci��
cation is an execution path that consists of one node per time unit� Each node speci�es which
predicates are true at that time unit� The size of the speci�cation is bounded by the number of
time instances the human veri�er chooses to analyze�

In a Modechart computation graph� each edge represents a single event or a single change in
the system state� If multiple state changes occur simultaneously� these changes are represented
by a sequence of nodes that are traversed in zero time units� Furthermore� the same system state

de�ned by the current modes� variable values� and active actions� may be replicated� where each
copy of the state has a di�erent set of future behaviors because a di�erent set of timing constraints
are satis�able in that node� As a result� the size of the computation graph explodes whenever
the system consists of loosely coupled processes� The nuclear control rods system� for example�
contains two subsystem modeclasses that operate asynchronously� the computation graph for this
system consisted of ���� good nodes� �����	 total nodes� and ������ edges	�

In a CTL machine� each edge represents a compound state change� If multiple events occur
simultaneously or if multiple transitions are concurrently activated by the same event� all the
resultant state changes are collapsed into a single compound transition� In addition� each system
state is represented by a single node in the system�s timed reachability graph� The result is a

still enabled and the action is not restarted� We added a one unit time delay to the transition from MoveRod to
None to remove the zero�time cycle�

	We list the number of total nodes in the computation graph because some of the veri�cation algorithms search
through all of the nodes and edges�
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more compact representation of the reachability graph
 the CTL machine for the nuclear control
rods system consisted of 	�	 nodes and ��� edges� As an added convenience� tcart detects the
existence of zero�time cycles in the reachability graph and issues appropriate error messages� The
Modechart and TRIO veri�ers do not yet support this capability�

Analytical ability� The timed reachability graph that we generate from SCR speci�cations
has a compact representation in which each system state is represented by one graph node� The
disadvantage of compacting all of the system�s behavior into this reduced state space is that the
CTL model checker is no longer sound with respect to the entire CTL language� As stated above�
one of the purposes of our assertion language is to restrict the property speci�cations to the subset
of CTL that can safely be checked against a compact timed reachability graph� Appendix A de�nes
the subset of CTL that we use� and Appendix B contains proofs that the CTL model checker is
sound with respect to this subset of CTL and compact timed reachability graphs�

In a Modechart computation graph� the precise length of time a mode has been active is always
known because a di�erent graph node is used to represent each equivalence class of the possible
system states� Since information about how long a mode has been active is retained in the compu�
tation graph� time bounds can be computed� For example� formula et M� gives the minimum and
maximum times the system spends in mode M� in a Modechart speci�cation� However� a mode�s
minimum and maximum times are bounded by the delay and deadline constraints on its transitions�
and SCR�CTL analysis can verify invariant delay and deadline constraints� The biggest problem
we had using the Modechart veri�er was the veri�er�s response time� On small examples like the
railroad crossing system� the response time was negligible� The veri�er also responded quickly
when calculating timing properties of the nuclear control rods system� However� we were not able
to check M�interval and MN�interval formulae against the nuclear control rods speci�cation�

A TRIO history speci�cation explicitly states which predicates are true at every point in time�
In addition� TRIO assertions can reference the value of a predicate at any point in time� For
example� one can ask if a predicate A has been true for the last �� time units 
Lasted�A��	��� the
last �� time units 
Lasted�A��	��� etc� In contrast� the CTL machine that is input to the CTL
model checker contains no timing information� Imprecise 
but accurate� timing information is used
to construct the timed reachability graph� but this information is discarded when the system�s
reachability graph is transformed into a CTL machine because the model checker cannot use it�
As a result� arbitrary formulae about time cannot be veri�ed against an SCR speci�cation using
the CTL model checker� Only assertions that reference timing conditions that have been declared
in the system speci�cation 
e�g�� In�MoveDown��	�� can be veri�ed� In the above experiments�
this capability was su�cient�

� Conclusion

The most important lesson learned from these experiments is that a real�time analysis tool is not
always needed to analyze real�time properties� All the safety and timing properties one wanted
to verify in the railroad crossing and nuclear rods examples could be veri�ed with respect to the
systems� compact timed reachability graphs using the CTL model checker�

The type of analysis tool one needs depends on the types of formulae one wants to verify� If one
wants to verify safety assertions and invariant delay and deadline requirements� the most e�cient
analysis technique is to generate the system�s compact timed reachability graph and to analyze
the graph using the CTL model checker� If one is not concerned with verifying safety properties
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and is most interested in a tool that calculates time bounds 
as opposed to verifying time bounds��
then one should generate the system�s computation graph and use the Modechart veri�er� If one
wants to verify safety assertions� liveness assertions� and complex timing requirements� then one
will need to generate a timed reachability graph 
with replicated nodes� and use a model checker
for a real�time logic such as TRIO or RTTL�

A Assertion Language

The syntax and semantics of the assertion language is given below� The following symbols are
used in the assertion de�nitions�

M�S�D represent modes in one of the system�s modeclasses�

�M��M�� ����Mn� is a set of modes� each in a di�erent modeclass�

tc is a timing condition �e�g�� In�BC�������

p is a propositional logic formula� The modes and environmental conditions �including state and
timing conditions� de�ned in the system�s speci�cation represent the set of atomic propositions�
Every atomic proposition is a propositional logic formula� If p� and p� are propositional logic
formulae� then so are � p�� p�� p�� and p� j p� �where symbols � �not�� � �and�� and j �or� are
logic connectives and have their usual meanings��

Below are the set of assertions composing our assertion language� We assume that the reader is
familiar with the syntax and semantics of CTL ����

Strong Mode Invariance� smi�M�p�
The smi assertion is used to express mode invariants� The assertion is true if propositional logic
formula p is true whenever the system is in mode M �

smi�M� p� �def AG�M � p�

The smi assertion can also be used to verify global mode invariants� In this case� the assertion is
true if propositional logic formula p is true whenever the system is in the set of modes M�� M�� ����
and Mn� The syntax of the smi assertion for verifying global mode invariants is

smi��M��M�� ����Mn��p�

and its CTL representation is

smi��M��M�� ����Mn�� p� �def AG��M�� ����Mn�� p�

Weak Mode Invariance� wmi�M�p�
The wmi assertion is used to verify a weaker form of mode invariant
 the assertion is true if
propositional logic formula p holds when the system is in mode M � but p need not hold while the
system is exitingmodeM � For example� if event 
F �p� causes the system to exit modeM � assertion
wmi�M� p� might be true� depending on the rest of the system speci�cation� but smi�M� p� would
not be true�

wmi�M� p� �def AG��M � �Exit�� p�

The wmi assertion can also be used to verify a weaker form of global mode invariant� In this case� the
assertion is true if propositional logic formula p holds when the system is in modes M�� M�� ����Mn

however� p need not hold while the system is exiting one of these component modes� For example�
if event 
F �p� causes the system to exit mode M�� then assertion wmi��M��M�� ����Mn�� p� might
be true� depending on the rest of the system speci�cation� but assertion smi��M��M�� ����Mn�� p�
would not be true� The syntax of the wmi assertion for verifying weak global mode invariants is
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wmi��M��M�� ����Mn��p�

and its CTL representation is

wmi��M��M�� ����Mn�� p� �def AG��M�� ����Mn� �Exit�� p�

Reachability� reach�p�
This assertion is used to verify that a particular relationship among the system�s modes and con�
ditions is possible�

reach�p� �def EF �p�

Causality� cause�p�M�
The cause assertion is used to verify that a system property invariantly causes the system to enter
�or to be in� a certain mode� The assertion is true if whenever propositional logic formula p holds�
either the system is already in mode M or will be in mode M in the next system state�

cause�p�M� �def AG�p� �M j AX�M���

Transition Delay Invariance� tdelay�S�D�tc�
This assertion is used to express an invariant delay constraint on all transitions from mode S to
mode D� The assertion states that the system cannot transition from source mode S to destination
mode D if timing constraint tc is not true�

tdelay�S�D� tc� �def AG��S� � tc���EX�D��

Mode Delay Invariance� mdelay�M�tc�
This assertion is used to express an invariant delay constraint on all transitions leaving mode M �
The assertion states that the system cannot exit mode M if timing constraint tc is not true�

mdelay�M� tc� �def AG��M � � tc�� AX�M��

Transition Upper�Bound Invariance� tub�S�D�tc�
This assertion is used to express an invariant upper bound on all transitions from mode S to D�
The assertion states that the system cannot transition from source mode S to destination mode D
if timing constraint tc is true �i�e�� if the upper bound has passed��

tub�S�D� tc� �def AG��S� tc���EX�D��

Mode Upper�Bound Invariance� mub�M�tc�
This assertion is used to express an invariant upper bound on all transitions leaving mode M � The
assertion states that the system cannot exit mode M if the timing constraint tc is true �i�e�� if the
upper bound has passed��

mub�M� tc� �def AG��M � tc�� AX�M��

Transition Deadline Invariance� tdead�S�D�tc�
This assertion is used to express a hard deadline that causes the system to invariantly transition
from mode S to mode D� The assertion states that if the system is in source mode S and the
timing constraint tc is true �i�e�� the deadline has been reached�� then the system must be in
destination mode D in the next system state� Note that this assertion will not hold if there exist
other transitions leaving S� having a satis�able timing constraint or no timing constraint and
having a di�erent destination mode D	
 in such a case� the system is nondeterministic and will not
invariantly transition to destination mode D when the deadline is reached�

tdead�S�D� tc� �def AG��S� tc�� AX�D��
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Mode Deadline Invariance� mdead�M�tc�
This assertion is used to express a hard deadline constraint for leaving mode M � The assertion
states that if the system is in mode M and timing constraint tc is true �i�e�� the deadline has been
reached�� then the next transition must take the system out of mode M �

mdead�M� tc� �def AG��M � tc���EX�M��

B Soundness of CTL model checker

As system�s timed reachability graph can be modeled by a ��tuple M � hS� q� I�O� P�Ri� where

� S is a �nite set of states

� q 
 S is the machine�s unique initial state

� I is a �nite set of input propositions used to activate transitions�

� O is a �nite set of output propositions used to annotated states with boolean properties�
I � O � ��

� P 
 S � �O is an assignment of output propositions to states�

� R � 
S� �I �S� is the transition relation� If 
s�D� t� 
 R� then whenever the machine is in
state s and receives input D 
 �I � it may transition to state t� The term dom
R� refers to
the domain of relation R



s
S�
D
�I

s�D�
dom
R� � �t
S

s�D� t�
R��

Our tcart analysis tool produces a compact representation of the system�s timed reachability
graph� It can be modeled by a ��tuple MC � hSC � qC� I� O� PC� RCi� where

� SC is a �nite set of compact states� SC is de�ned to be a partition on the set of states S
such that all states t 
 S that are labeled with the same output propositions belong to the
same block of the partition�

SC � fS�� S�� � � � � Sj�Ojg 
t
S
�i � � i � �O
t
Si��
Sj�Oj
i
� Si � S 
s� t
S

s
Si 	 t
Si�� P 
s� � P 
t��


i� j
i �� j � Si � Sj � ��

Since all states t
S that are in the same block of the partition are labeled with the same
output propositions P 
t�� we de�ne block SP �t� to be the partition block containing state t



t
S
�i � � i � �O
SP �t� � Si��


s� t
S
P 
s� � P 
t�� SP �s� � SP �t��

� qC
SC is the machine�s initial compact state� qC is block SP �q� in partition SC �

� I is the same set of input propositional variables�

� O is the same set of output propositional variables� I � O � ��

� PC 
 SC � �O is an assignment of output propositions to compact states�


t
S
P 
t� � PC
SP �t���
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� RC � 
SC � �I � SC� is the transition relation of our compact Moore machine� If there
exists a transition from state s
S to t
S in machine M� then in machine MC there is a
transition from the block containing s to the block containing t



s� t
S�
D
�I
h

s�D� t� 
 R� 
SP �s��D� SP �t�� 
 RC

i

Furthermore� if there is a transition from block Si 
 SC to block Sj 
 SC in machine MC �
then machine M must have a representative transition from a state in block Si to a state in
block Sj�


Si� Sj
S
C�
D
�I

h

Si�D� Sj� 
 RC � �s 
 Si��t 
 Sj

s�D� t� 
 R�

i

We will use the term dom
RC� to refer to the domain of relation RC 



Si
S
C�
D
�I

Si�D�
dom
RC �� �Sj
S

C

Si�D� Sj�
R
C��

In model M� the truth of a formula f is determined with respect to the behavior of the
model M� the current state s in the model� and a particular transition out of s annotated with
some input condition D� Thus� the MCB model checker determines whether or not the following
property holds


M� s�D j� f

In model MC� the truth of a formula f is determined with respect to the behavior of the model
MC� the current compact state Si in the model� and a particular transition out of Si annotated
with some input condition D� Thus� the MCB model checker determines whether or not the
following property holds


MC� Si�D j� f

We want to verify that a formula f is true in a timed reachability graph M if and only if
f is true in M�s representative compact timed reachability graph MC� This statement is true
with respect to propositional logic formulae and temporal logic formulae containing universally
quanti�ed temporal operators 
e�g�� AX�� Thus� if f holds with respect to state s and input
condition D in model M � then in model MC � f holds with respect to compact state SP �s� 
which
contains state s� and input condition D


M� s�D j� f � MC � SP �s��D j� f

In addition� if f holds with respect to compact state Si and input condition D in model MC� then
in modelM� f holds respect to input condition D and all the states s belonging to partition block
Si that have transitions labeled with D


MC� Si�D j� f � 
s
Si

s�D�
dom
R� �M� s�D j� f�

The above properties also hold for temporal logic formulae f containing existentially quanti�ed
temporal operators 
e�g�� EX� if those operators are evaluated at the initial state of the model� In
general� the evaluation of existentially quanti�ed temporal operators is not sound because the set
of transitions out of states s
Si and t
Si may be di�erent� thus� for example� the determination
that f is true in some next state of Si does not imply that f is true in some next state of s�

This appendix consists of proofs that the MCB model checker is sound with respect to a
restricted set of the CTL branching�time temporal logic� The restricted set of CTL correponds to
the set of CTL operators used in our assertion language� described in Appendix A�

The �rst three theorems use the property that a block in partition SC has the same output
propositions as its member states
 
t
S
P 
t� � PC
SP �t���
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Theorem B�� An atomic proposition ap is true with respect to input condition D and state Si of
a compact timed reachability graph MC if and only if ap is true with respect to input condition D
and all states s
Si that have transitions labeled D in timed reachability graph M


MC� Si�D j� ap � 
s
Si

s�D�
dom
R� �M� s�D j� ap�

Proof�
M� s�D j� ap � ap
D � ap
P 
s�

� ap
D � ap
PC
SP �s��
� MC � SP �s��D j� ap

MC � Si�D j� ap � ap
D � ap
PC
Si�
� 
s
Si

s�D�
dom
R�� 
ap
D � ap
P 
s���
� 
s
Si

s�D�
dom
R��M� s�D j� ap�

�

Theorem B�� An negated formula �f is true with respect to input condition D and state Si of a
compact timed reachability graph MC if and only if �f is true with respect to input condition D
and all states s
Si that have transitions labeled D in timed reachability graph M


MC � Si�D j��f � 
s
Si

s�D�
dom
R� �M� s�D j��f�

Proof�
M� s�D j� �f � 
D 	 P 
s��� �f

� 
D 	 PC
SP �s���� �f
� MC� SP �s��D j� �f

MC� Si�D j� �f � 
D 	 PC
Si��� �f
� 
s
Si

s�D�
dom
R� � 

D 	 P 
s����f��
� 
s
Si

s�D�
dom
R� �M� s�D j� �f�

�

Theorem B�� A disjunction f � g is true with respect to input condition D and state Si of a
compact timed reachability graph MC if and only if f � g is true with respect to input condition D
and all states s
Si that have transitions labeled D in timed reachability graph M


MC � Si�D j� f � g � 
s
Si

s�D�
dom
R� �M� s�D j� f � g�

Proof�
M� s�D j� f � g � 
D 	 P 
s��� 
f � g�

� 
D 	 PC
SP �s���� 
f � g�
� MC � SP �s��D j� f � g

MC� Si�D j� f � g � 
D 	 PC
Si��� 
f � g�
� 
s
Si

s�D�
dom
R� � 

D 	 P 
s��� 
f � g���
� 
s
Si

s�D�
dom
R� �M� s�D j� f � g�

�

The following theorems use the concept of a path in a reachability graph� Let a path in a
timed reachability graph be denoted by a sequence of ordered pairs of states and input conditions
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� t
�D
 ��� t��D� �� ����� where all ordered pairs � ti�Di � belong to the domain of R and all
subsequences of the path of length � are connectd by R 
i�e�� if � ti�Di ��� ti���Di�� � appears
in the path� then 
ti�Di� ti��� 
R�� Likewise� let a path in a compact timed reachability graph
be denoted by a sequence of ordered pairs of compact states and input conditions 
� T
�D
 ���

T��D� �� ����� where all ordered pairs � Ti�Di � belong to the domain of RC and all subsequences
of the path of length � are connected by RC 
i�e�� if � Ti�Di ��� Ti���Di�� � appears in the
path� then 
Ti�Di� Ti���
RC��

Because the following theorems use the concept of a path in a reachability graph� they use the
property that if there exists a transition from state s
S to t
S in machine M� then in machine
MC there is a transition from the block containing s to the block containing t



s� t
S�
D
�I
h

s�D� t� 
 R� 
SP �s��D� SP �t�� 
 RC

i

They also use the property that if there is a transition from block Si 
 SC to block Sj 
 SC in
machine MC� then machine M must have a representative transition from a state in block Si to
a state in block Sj�


Si� Sj
S
C�
D
�I

h

Si�D� Sj� 
 RC � �s 
 Si��t 
 Sj

s�D� t� 
 R�

i

Theorem B�� Formula AXf is true with respect to input condition D and state Si of a compact
timed reachability graph MC if and only if AXf is true with respect to input condition D and all
states s
Si that have transitions labeled D in timed reachability graph M


MC� Si�D j� AXf � 
s
Si

s�D�
dom
R� �M� s�D j� AXf�

Proof� AXf is true with respect to input condition D in a state s
S 
or Si
SC� if and only if
for all next states t
 S 
or all next states T 
 SC� reachable via a transition labeled with input
condition D� f is true in state t 
or state T �� More precisely� f must be true with respect to all
next states t 
T � and all input conditions E that activate transitions out of t 
T ��

M� s�D j� AXf � 
paths in M leaving state s via a transition labeled D


� s�D ��� t�E �� ���� 
 M� t� E j� f

� 
t
S�
E
�I


s�D� t�
R 	 
t� E�
dom
R��� 

P 
t� 	 E�� f��
� 
T 
SC �
E
�I


SP �s��D� T �
RC 	 
T�E�
dom
RC���



PC
T � 	 E�� f��
� 
paths in MC leaving SP �s� via a transition labeled D


� SP �s��D ��� T�E �� ���� 
 MC � T�E j� f

� MC� SP �s��D j� AXf

MC � Si�D j� AXf � 
paths in MC leaving state Si via a transition labeled D


� Si�D ��� T�E �� ���� 
 MC� T�E j� f

� 
T 
SC�
E
�I 


Si�D� T �
RC 	 
T�E�
dom
RC���


PC
T � 	 E�� f��

� 
s
Si�
t
S�
E
�I


s�D� t�
R 	 
t� E�
dom
R���


P 
t� 	 E�� f��

� 
paths in M leaving each state s
Si via a transition labeled D


� s�D ��� t�E �� ���� 
 M� t� E j� f

� 
s
Si

s�D�
dom
R��M� s�D j� AXf

�

	�



The following theorems use the concept of reachable states 
reachable via some path in the
model�� The existence of a path from state s to state t in model M imples a path from compact
state SP �s� to compact state SP �t� in model MC� However� the existence of a path from Si to Sj in
model MC does not necessarily imply a path from some state s
Si to some state t
Sj in model
M
 a path from Si to Sj through intermediate state Sm could be representative of two disjoint
paths in model M� one from s
Si to m
Sk and the other from n
Sk to t
Sj�

Fortunately� because the technique used to build a compact timed reachability graph actually
traces the system�s timed reachability graph� only states s
S that are reachable from the system�s
initial state q are represented in the compact timed reachability graph� Therefore� the existence
of a path from initial compact state qC to state Si in model MC does imply the existence of paths
from initial state q 
 qC to all states s 
 Si� although we do not know the sequences of ordered
paths that comprise those paths� The following theorems refer to the truth of formulae AGf and
EFf with respect to the initial state of the model�

Theorem B�� Formula AGf is true with respect to input condition D and initial state qC of a
compact timed reachability graph MC if and only if AGf is true with respect to input condition D
and initial state q in timed reachability graph M


MC� qC�D j� AGf � 
s
Si

s�D�
dom
R��M� q�D j� AGf�

Proof� AGf is true with respect to input condition D in initial state q 
or qC� if and only if
for all reachable states t
S 
or all reachable states T 
SC� via an initial transition labeled with
input condition D� f is true in state t 
or state T �� More precisely� f must be true with respect
to all reachable states t 
T � and all input conditions E that activate transitions out of t 
T ��

M� q�D j� AGf � 
states t reachable from state q via an initial transition labeled D


� q�D �� ���� � t�E �� 
 M� t� E j� f

� 
t
S 

� a path in M
� t
� E
 ��� t�� E� �� ���� � tn� En ��	
q � t
 	D � E
 	 
i�n

ti� Ei� ti���
R� 	 
tn� En�
dom
R�	
t � tn 	 E � En � � 

P 
t� 	 E�� f� �

� 
T 
SC
��
� a path in MC
� SP �t��� E
 �� ���� � SP �tn�� En ��	

q � t
 	 q
C � SP �t�� 	D � E
 	 
i�n

SP �ti�� Ei� SP �ti����
R

C�	

SP �tn�� En�
dom
RC� 	 T � SP �tn� 	 E � En ��


PC
T � 	 E�� f� �

� 
states T reachable from qCvia an initial transition labeled D


� qC�D �� ���� � T�E �� 
 MC � T�E j� f

� MC� qC�D j� AGf

	�



MC� qC�D j� AGf � 
states T reachable from state qC via an initial transition labeled D


� qC�D �� ���� � T�E �� 
 MC � T�E j� f

� 
T 
SC
��
� a path in MC
� T
� E
 ��� T�� E� �� ���� � Tn� En ��	

qC � T
 	D � E
 	 
i�n

Ti� Ei� Ti���
RC�	

Tn� En�
dom
RC� 	 T � Tn 	 E � En � � 

PC
T � 	 E�� f� �

� 
t
T 

� a path in M
� t
� E
 ��� t�� E� �� ���� � tm� Em ��	
q � t
 	D � E
 	 
i�m

ti� Ei� ti���
R� 	 
tm� Em�
dom
R�	
t � tm 	 E � Em � � 

P 
t� 	 E�� f� �

� 
states t reachable from q via an initial transition labeled D


� q�D �� ���� � t�E �� 
 M� t� E j� f

� M� q�D j� AGf

�

Theorem B�	 Formula EFf is true with respect to input condition D and initial state qC of a
compact timed reachability graph MC if and only if EFf is true with respect to input condition D
and initial state q in timed reachability graph M


MC� qC�D j� EFf � 
s
Si

s�D�
dom
R��M� q�D j� EFf�

Proof� EFf is true with respect to input condition D in initial state q 
or qC� if and only if in
some state t
 S 
or in some state T 
SC� reachable via an initial transition labeled with input
condition D� f is true in state t 
or state T �� More precisely� f must be true with respect to some
reachable state t 
T � and some input condition E that activates a transition out of t 
T ��

M� q�D j� EFf � � some state t reachable from state q via an initial transition labeled D


� q�D �� ���� � t�E �� 
 M� t� E j� f

� �t
S 
� a path in M
� t
� E
 ��� t�� E� �� ���� � tn� En ��	
q � t
 	D � E
 	 
i�n

ti� Ei� ti���
R� 	 
tn� En�
dom
R�	
t � tn 	 E � En 	 

P 
t� 	 E�� f� �

� �T � S
SC
�
� a path in MC
� SP �t��� E
 �� ���� � SP �tn�� En ��	

q � t
 	 qC � SP �t�� 	D � E
 	 
i�n

SP �ti�� Ei� SP �ti����
R
C�	


SP �tn�� En�
dom
RC� 	 T � SP �tn� 	 E � En	


PC
T � 	 E�� f� �

� � some state T reachable from qC via an initial transition labeled D


� qC�D �� ���� � T�E �� 
 MC � T�E j� f

� MC� qC�D j� EFf

	�



MC� qC�D j� EFf � � some state T reachable from state qC via an initial transition labeled D


� qC�D �� ���� � T�E �� 
 MC � T�E j� f

� �T 
SC
�
� a path in MC
� T
� E
 ��� T�� E� �� ���� � Tn� En ��	

qC � T
 	D � E
 	 
i�n

Ti� Ei� Ti���
RC� 	 
Tn� En�
dom
RC�	
T � Tn 	 E � En 	 

PC
T � 	 E�� f� �

� �t
T 
� a path in M
� t
� E
 ��� t�� E� �� ���� � tm� Em ��	
q � t
 	D � E
 	 
i�m

ti� Ei� ti���
R� 	 
tm� Em�
dom
R�	
t � tm 	 E � Em 	 

P 
t� 	 E�� f� �

� � some state t reachable from q via an initial transition labeled D


� q�D �� ���� � t�E �� 
 M� t� E j� f

� M� q�D j� EFf

�
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