Conflict-Free Access to Rectangular Subarrays in

Parallel Memory Modules

Doreen Lynn Erickson

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 1993

(©Doreen Lynn Erickson 1993

i1

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-
tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

i1

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

11

Abstract

In a parallel computing environment, we consider conflict-free access to constant-
perimeter rectangular subarrays, using a natural formulation in terms of latin
squares. For parallel matrix computations, there are frequently portions of data,
referred to as templates, that one desires to be stored and retrieved in such a way
that one can operate on the data simultaneously with each processor working on
one element of the template. If more than one processor attempts to retrieve data
from a single memory module during the same memory cycle, there is a memory
conflict. When the array is stored to allow the desired templates to be accessible
from the memory modules without memory conflicts, it is conflict-free for that set
of templates. In this thesis, we examine a set of structured templates where the
number of template instances defined by template grows with respect to the max-
imum size of a template. In particular, we examine the set of constant-perimeter

rectangular subarrays.

A square is perimeter rectangular conflict-free (p..s) if it is conflict-free for all
rectangular subarrays whose perimeter is less than or equal to 2p. If p is even,
the problem is to provide conflict-free access to all rectangular subarrays of size

(5 —1) x (5 +1) for =% <4 < 2. We show that the necessary number of memory

modules is 1’2—2 — p+ 1. Furthermore, p; — p+ 1 memory modules are sufficient, and
there is a linear skewing scheme to realize this bound. If p is odd, the problem is to

provide conflict-free access to all rectangular subarrays of size (|5| —1) x ([5] +1)

for —|2] < ¢ < [2]. We show that the necessary number of memory modules is

|2]?, and there is a linear skewing scheme that realizes this bound. We also provide
bounds and constructions for subsets of constant-perimeter rectangular subarrays,
in particular all (z —) x (y + ¢) rectangular subarrays of an n x n array for all

nonnegative ¢ where p = z + y. The linear results for the constant-perimeter

v

rectangular subarrays hold when the subarrays are stretched by a factor of v where
v is relatively prime to the number of memory modules. A subarray is stretched by
v if every vth element in a row and every vth row is selected. In this situation, the
perimeter includes only those elements in the rectangular subarray and not those
elements skipped because of the stretch. Thus, the perimeter of a given rectangular

subarray is the same regardless of its stretch.

In addition, the perimeter results provide a lower bound for conflict-free access
to constant-area rectangular subarrays. An upper bound is found using a technique
of relating conflict-free access to the chromatic number of a graph. In addition to
bounds for constant-area rectangular subarrays, some computational results are
provided. Finally, we propose a new method for defining skewing schemes, in

particular, skewing schemes defined by permutations.

Acknowledgements

First and foremost, I wish to extend my sincerest gratitude to my supervisor, Char-
lie Colbourn. Thank you for keeping me as motivated as I wanted to be, for your
advice, your guidance, your endless assistance, for always finding time even when no
time existed and for introducing me to a whole new world of research and academia.
One could not ask for a better supervisor and I’'m glad I have had the priviledge of

working with you.

I would like to send my gratitude to my committee for their encouragement
throughout the program and their helpful comments on my thesis. Specifically, I
would like to thank Ron Mullin, Wei Pai Tang (and his ‘warm body’ representative,
Peter Forsyth), and my external examiner, Frantisek Franek. I would also like
extend a HUGE thank you to David Taylor who was an extremely helpful committee
member and an office neighbour. Thank you for everything including your detailed
and helpful comments on the thesis and preliminary papers and for putting up with

my stereo on weekends.

I would like to acknowledge the University of Waterloo, in particular, the Math
Faculty and the Computer Science Department, for providing me with the envi-
ronment and means for me to learn all that I have during my stay as a graduate
student. In particular I would like to thank the high school liason group for sharing
with me, their love of teaching and working with students and Sue Guckenberger

for her endless help.

I wish to acknowledge Mark Fishman, Ed Gallizzi and George Loftquist at

Eckerd College. It was their encouragement in undergrad that brought me into

vi

computer science, it was their faith in me that brought me to graduate school and
it was the knowledge and background I obtained from them that helped me in my

research.

I would like to extend my appreciation to a great friend, Ron Castelletto.
Thanks for being a friend through the good times and the stressed times. I ap-
preciate all the times you would listen just to help me think. I appreciate all the
distractions when I needed them and the encouragement when things were not go-
ing the best. I would also like to acknowledge Ron’s family in particular his mother

and the fantastic chicken soup that helped me through many cold winter days.

I would like to acknowledge those that have opened their homes to me during
the defence/correction phase and have helped me through a very tough time in the
program and in life. In particular, I would like to thank Mandy Skaff, Verna Friesen
and her family.

Finally T would like to thank all my friends in the department, the Minotians,
the SigSporters, my buddies at Abstract, my email buddies, new friends I have met
and friends I have yet to meet and finally, my fellow Floridian, Drew. The tough

times are always easier and the good times are better with friends like ya’ll.

Thank you everyone.

vil

Dedication

This thesis is dedicated to my parents who have always believed in me, who have
always tried to understand and who have always encouraged me to chase my dreams

even if it means living 1500 miles away.

This thesis is also dedicated to the memory of my grandma, Anna Bednarz. It
was the strength I inherited from her through my mother that helped me through the

many tough times that accompany a Ph.D. program.

Thank you!

Doreen

viil

Contents

1 Introduction
1.1 Skewing Schemes
1.1.1 Skewing Schemes and Latin Squares.
1.1.2 Skewing Schemes and Tilings
1.2 Background on Interconnection Networks
1.2.1 Design Issues of Interconnection Networks
1.2.2 Topologies of Interconnection Networks

1.2.3 Evaluation of Interconnection Networks

1.3 Overviewof the Thesis @ v i v v i i v oo .

2 Some Constant-Perimeter Subarrays
2.1 Preliminary Definitions and Theorems

2.2 Bounds and Constructions v i e

3 All Constant-Perimeter Subarrays

3.1 Preliminary Definitions and Theorems

X

11

12

13

18

21

23

24

29

47

3.2 Bounds and Constructions i e

3.3 Additional Implications L.

4 Constant-Area Subarrays
41 New UpperBound,

4.1.1 Graph-Colouring Method

4.1.2 Skewing Using Permutations

5 Conclusions

5.1 Future Directions« o o v i o e e e e e e e

A Terms

Bibliography

78

79

85

86

87

90

93

98

List of Tables

1.1

1.2

1.3

1.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

5.1

Skewing scheme for ILLTACIV 6
Latin square of order 3o 7
A diagonal latin square L. Lo 7
Perfect latin square L oL 8
The Asquarefore=1 64
List of prime factors of n values 1 <2 <125 71
List of prime factors of n values 126 <2z <215 72
List of prime factors of n values 216 <2 <300 73
Additional skewing schemes found forevenp 75
Additional skewing schemes found forodd p 76
Results for blocks of equal size and stretch 7
Constant area constructions for 6 < z<372 81
Constant area constructions for 372 <z <2000 82
Table of upper and lower bounds 88

5.2 Table of constructions

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

2.2

2.3

24

2.5

2.6

SIMD model of computation 2
An example of Shapiro’s handles 11
A(2,2) x(3,2)block 12
Crossbar interconnection network 14
An order 3 hypercube network 15
A d-stargraph L. 16
A2x2switchbox 17
A perfect shuffle for eight elements 17
A multi-stage shuflle-exchange network 18
An (z,y)s-cut diamond oL 25
Shift-box placed over (z,y);-cut diamond 31
Shifting rows %w + g through z to shift-box 31
Shifting rows 2 through %w + % to shift-box 31
Example of D square with 2 =4,y =5,n=18 33
Shift-box placed over (z,y);-cut diamond 34

xiil

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Shifting rows 2 through e to shift-box 35

Shifting rows e + 1 through 2e to shift-box 35
The (z,y),-cut zircon 37
zy-box placed over the (z,y);-cut zircon 38
Shifting rows 2 through 2e —1to zy-box 38
Shifting rows 2e through 4e —1to zy-box 38
The (z,y),-cut sapphire 41
Transposed shift-box placed over the (z,y);-cut sapphire 42
Shifting rows 2 through 2e — 1 to transposed shift-box 42
Shifting rows 2e through 4e — 1 to transposed shift-box 42
The (z,y),-cut rhinestone 44
Shift-box placed over the (z,y);-cut rhinestone 45
Shifting rows 2e + 2 through 4e + 2 to shift-box 45
The p-diamond 49
Shift-box placed over the p;-diamond 52
Shifting row # + 1 to shift-box 53
Shifting rows = + 2 through 2z — 1[z odd] to shift-box 53
Shifting rows 1 through = to shift-box 53
First possible tiling of the p,-diamond for even p and evenz 55
Second possible tiling of the p,-diamond for even p and even z . . 56
The py,-zircon oo e e e 57

xiv

3.9 Shift-box placed over the p;-diamond and p;-zircon 58

3.10 Shifting rows & + 1 through 2z — 1 to shift-box 58
3.11 Shifting rows 1 through z to shift-box 59
3.12 The p,-thinestone 61
3.13 The p,-sapphire 62
3.14 First 3e — 1 rows continue 3e —2rows down 63
3.15 The p,-ruby o 65
3.16 The p,-topaz 66
3.17 The py,-emeraldo 68
3.18 The py,-opal 69
4.1 Constant-perimeter vs. constant-area 80
4.2 The star-diamondo L oL 83

XV

Chapter 1

Introduction

In a parallel computing environment, consider the problem of storing an n X n array
in n parallel memory modules. If the entire array is stored in the same memory
module, then a memory ‘bottle neck’ occurs when multiple processors are simulta-
neously operating on the array. More formally, a memory conflict 1* occurs when
more than one request is given to the same memory module during a single memory
cycle. Hence, one may wish to spread the information among the various memory
modules. Ideally, one would optimize the distribution of information among the n
memory modules. This may be accomplished by determining which parts of the
array will be requested by the processors at the same time. Historically, to make
this determination, one would assume that all the processors work under the same
clock. This would imply the use of the SIMD (single instruction stream, multiple
data stream) model for parallel computation (see Figure 1.1). One could instead
assume that the synchronization is done at the software level, and thus generalize

to any parallel computation model. Intuitively, a template* specifies the shape of

LAn asterisk is used in the text to denote an expression listed in Appendix A, Terms

CHAPTER 1. INTRODUCTION 2

CONTROL UNIT

roc.0 roc.1 roc.2 o o o roc.m-1
Lpoco | [poct | [proc2 | [proc

INTERCONNECTION NETWORK

o o o
mem.0 mem.1 mem.2 mem. n-1

Figure 1.1: SIMD model of computation

a subarray, all instances of which, are desired to be conflict-free. More formally, a
template consists of a distinguished position called the handle and possibly other
array positions defined by their relative location with respect to this handle. If
the actual position of the handle is not specified, it is assumed to be the leftmost
element in the uppermost row. Common templates include the row template, the
column template, and front and back diagonal templates. All template instances*
are translates of a template. Thus, a template instance is a specific instantiation
of a template such as the first row. Only one template instance is accessed in a
given memory cycle. An array element could refer to an elementary entity such as
an integer or it could refer to a composite entity such as a portion of a larger array.
Without loss of generality, we consider it to be an elementary entity. The size of a
template is the number of elements contained in the template. The function that
maps the array elements into the memory modules is a skewing scheme*. A skewing
scheme is linear* if it maps the array elements a;; = g(¢ —a) + (5 — 8) (mod n)

for some fixed integers g, 7, a and 3 [Kuc68]. Otherwise the skewing scheme is non-

CHAPTER 1. INTRODUCTION 3

linear. A square defined by a linear skewing scheme is a cyclic square. A skewing
scheme may provide conflict-free access to a single template such as row template
or it may provide conflict-free access to a set of templates such as rows, columns

and constant-perimeter rectangular subarrays.

In a more general framework, when one has a parallel algorithm, an efficient
implementation is desired. One aspect of the efficient implementation entails the
storage and retrieval of data. There are several factors or points which allow this
action to occur efficiently. The templates are determined by the algorithm (and the
synchronization). One could design algorithms to fit existing skewing schemes, or
develop skewing schemes that fit the needs of algorithms. One could choose to use
a skewing scheme that is conflict-free for a large set of templates. Preferably, one
would employ a skewing scheme which realizes at least the templates dictated by

the algorithm. This is best summarized by our first point.

POINT 1 The set of templates accessible without memory conflicts

should reflect the needs of algorithms.

Once we have a skewing scheme that provides us with the appropriate set of tem-
plates, we want to ensure that the skewing scheme is efficient. Efficiency is depen-
dent on the model of computation used. In this thesis, we use the uniform cost
RAM model of computation. The function the skewing scheme performs is deter-
mining which memory module contains the desired data for a given processor, the

second point.

POINT 2 The computation to generate the address of the appropriate

memory module should require constant time.

Once the processor computes the memory module it needs to access, it uses an in-

terconnection network (IN) to access the appropriate module. The skewing scheme

CHAPTER 1. INTRODUCTION 4

and the IN need to be compatible. Thus, all the processors and memory modules
need to be efficiently connected with respect to the skewing scheme. This idea is

expanded upon in Section 1.2 and leads us to the third point.

POINT 3 There should exist an interconnection network that can effi-

ciently realize the processor/memory connections needed by the skew-

ing scheme.

Finally, we want to ensure efliciency in terms of the memory utilization. Memory
utilization® is the percentage of memory modules being accessed for an arbitrary
template instance. Using n? memory modules would lead to a trivial solution for

an n X n array but low memory utilization. This is the final point.

POINT 4 The memory utilization should be high.

These points are all significant if one is to run a parallel program efficiently.
Let us further examine the first point. One could design algorithms to fit exist-
ing skewing schemes or develop skewing schemes that fit the needs of algorithms.
Ideally, the natural set of templates that one desires for a particular algorithm
are those provided by an existing skewing scheme. Suppose there are no skewing
schemes that provide conflict-free access to the exact set of templates needed for
a particular algorithm or the existing skewing schemes are unacceptable by any of
the aforementioned points. In this situation, one would desire to find a new skew-
ing scheme. Thus, the next step would involve determining what is theoretically
possible. This would help narrow down the search for a skewing scheme. If no
theoretical results are available, one would then desire to have some techniques to
discover what is possible. Some theoretical results can be found in [Sha78, Wij89].

When developing skewing schemes, one must predetermine what set of templates

CHAPTER 1. INTRODUCTION 5

are to be conflict-free. One reasonable approach in choosing a set of templates is to
accommodate those that are frequently found in parallel computing applications. In
this thesis, we focus on rectangular subarrays. These appear in algorithms for ap-
plications involving image processing [SMJ92, DH91], biological simulation [RM85]
and scientific computing [Fei82, Chu88]. We present lower bounds that apply to
both linear and non-linear skewing schemes. We also present constructions, most

of which are linear skewing schemes.

The next section, Section 1.1, presents background information on skewing
schemes. For the sake of completeness, this chapter includes a survey on inter-
connection networks in Section 1.2. Finally, an overview of the thesis is presented

in Section 1.3.

1.1 Skewing Schemes

In 1968, Kuck [Kuc68] described the linear skewing scheme used for ILLIAC IV.
The scheme provided conflict-free access to columns and rows. The skewing scheme
isa;;j =t+7 (mod n). For examplea;; =1+1 (mod 4) = 2. Table 1.1 demon-
strates where each of the elements of a 4 x 4 array are mapped. Each array location
is mapped to the memory module identified by the integer in the center of the
square. Lawrie and Vora [LV82] claimed to have improved the average case for
address generation in their computation model when the number of memory mod-
ules is a prime and have their address generation accomplished in hardware. When
one assumes that n is prime, the skewing scheme is referred to as a prime mem-
ory system [LV82]. In 1977, Batcher [Bat77] used a non-linear skewing scheme for
STARAN that provided for the same set of templates as Kuck’s [Kuc68]. This

scheme is best known for its simplicity in terms of addressing hardware and in-

CHAPTER 1. INTRODUCTION 6

@o,0 | @®o,1 | @0,2 | @0,3

10 | @11 | @12 | Q1,3

Q20 | @21 | Q2,2 | @23

a3zo | @31 | @32 | @33

Table 1.1: Skewing scheme for ILLIAC IV
terconnection network. This scheme uses the xor function and maps a;; =1 @ J
(mod n) where ¢ and j are in their binary form.

A larger set of templates is conflict-free in the linear skewing scheme proposed

by Budnik and Kuck [BK71]. This scheme provided conflict-free access to rows,

columns, diagonals and y/n — 1 X y/n — 1 subarrays. This scheme uses a prime,
P, larger than the dimension of the array as the number of memory modules. In
addition, a skewing factor, s, is used. Specifically, a; ; = ¢s+j (mod P). A similar
set of templates is accessible by the scheme proposed by Lawrie [Law75]. The set
of templates here include the row template, the column template, diagonals and
/1 X 4/n tectangular subarrays. This scheme is not conflict-free for all of these
templates but guarantees that each template instance can be accessed in no more

than two memory cycles.

CHAPTER 1. INTRODUCTION 7

1.1.1 Skewing Schemes and Latin Squares

In 1989, Kim and Kumar [KK89] expressed the problem of skewing schemes in
terms of latin squares®. A latin square of order n is composed of the symbols 0 to
(n — 1) such that no symbol appears more than once in any row or column [DK74].

Table 1.2 shows a latin square of order 3.

012
1120
201

Table 1.2: Latin square of order 3

A diagonal latin square* (Table 1.3) is a latin square such that no symbol appears

more than once in either one of its two main diagonals [DK74].

0123
21301
312110
1710132

Table 1.3: A diagonal latin square

A new type of latin square, a perfect latin square*, was proposed by Kim and
Kumar [KK89, HKK92] in 1989 (see Table 1.4 for an example). A perfect latin
square of order n is a diagonal latin square such that no symbol appears more than

once in any main subsquare*. The order, n, must be a perfect square. A subsquare

CHAPTER 1. INTRODUCTION 8

of order v/n, S; ;, is a main subsquare if its top left cell is (3, j) where ¢ = 0 mod /n
and 7 = 0 mod /n [HKK92].

0 3 6 1 4 7 2 5 8
2 5 8 0 3 6 1 4 7
1 4 7 2 5 8 0 3 6
3 6 0 4 7 1 5 8 2
5 8 2 3 6 0 4 7 1
4 7 1 5 8 2 3 6 0
6 0 3 71 4 8 2 5
8 2 5 6 0 3 7 1 4
71 4 8 2 5 6 0 3

Table 1.4: Perfect latin square

They also show that all subsquares of size y/n are accessible in two memory
cycles when using perfect latin squares. When the perfect latin squares are of order
22% for k an integer, the address generation may be accomplished in constant time.

In addition, they present skewing schemes for 3D arrays (n X n x n).

Colbourn and Heinrich [CH92] used latin squares to access an z X y rectangular

subarray. Specifically, there is an (z,y) conflict-free latin square* for alln = zy+p

CHAPTER 1. INTRODUCTION 9

for 1 < p < y. An (z,y) conflict-free latin square is a latin square in which no
element appears more than once in any z X y subarray as well as the rows and
columns. Since p may be equal to one, only one spare memory is required for
conflict-free storage. They have also shown that if # > y + 1, there is an {z,y}
conflict-free latin square* of order n for n > zy + y [CH92]. An {z,y} conflict-free
latin square is a latin square in which no element appears more than once in any
z X y or y X ¢ subarrays as well as the rows and columns. If 2 <y < 2z < 2y
they have shown that a {z,y} conflict-free latin square of order n exists if n >
zy + (2y — z)(z —y) + 1. This implies that if z > y then a {z,y} conflict-free latin
square of order n exists if n > zy + y [CH92]. They improved the lower bounds
for the situation in which # Z 1 (mod y), # > 2y — 1, and > y > 3. In this
situation, a {z,y} conflict-free latin square of order n existsif n > zy +y. f z =1

(mod y), then a {z,y} conflict-free latin square of order n exists if n = zy + y.

Colbourn and Heinrich have also presented some results for d-Manhattan latin
squares*. A d-Manhattan latin square does not have two entries containing the same
element whose Manhattan distance* is less than 2d + 1. The Manhattan distance
between the entries (¢,7) and (k,1) is |[¢ — k| + |7 — | [CH91]. It is shown that there
exists a d-Manhattan latin square of order n where n = 2d? + 2d 4 1 for all d > 0.

1.1.2 Skewing Schemes and Tilings

This section contains various theoretical limitations known for skewing schemes.

Shapiro has shown that a given template of size n it can be stored conflict-free
in 7 memory modules if no two template instances involve the same array elements
[Sha78]. This is equivalent to tiling the plane with the template. If one can tile the

plane with the template, one can provide conflict-free access in n memory modules.

CHAPTER 1. INTRODUCTION 10

Shapiro shows that for a set of R templates:
1. if all templates are of size n,
2. each template may be stored conflict-free, and

3. each template has the same set of designated elements* for the set of template

instances involved in the tiling,

then this set of R templates may be stored conflict-free in n memory modules
[Sha78]. The designated element or handle of Shapiro’s template instance is the
first element of the template instance when it is represented as a list of its elements
[Sha78]. Thus, each template instance for each template can be defined by one
element, the handle and a relationship of the other elements in the template instance
to this handle. Each handle is a translate of the handle which defines the template.
Informally as explained by Shapiro [Sha78], place each set of template instances
involved in the tiling on a clear plastic overhead. Mark each handle with an asterisk.
There is a valid skewing scheme for any set of templates which allow the asterisks to
be overlaid. Recall that a skewing scheme only allows one template instance from
the set of templates to be accessed without conflicts in any given memory cycle.
One example can be seen in Figure 1.2. The element denoted with an asterisk
is the handle. The clear rows to the left are template instances of partial rows
from a partial row template. The shaded regions denote partial columns from a
partial column template. Once again, this is equivalent to tiling the plane with
a template and if more than one template is desired to be conflict-free, then the
handle must match up for each individual tiling. If we can tile the plane subject to

these restrictions, we can provide conflict-free access.

Additional theoretical results can be found in the monograph by Wijshoff [Wij89].

One result of particular interest is that concerning block templates*. A (p1,v1) ¥

CHAPTER 1. INTRODUCTION 11

Designated element

Figure 1.2: An example of Shapiro’s handles

(p2,v2) X ... X (pd,vq)-block template B on a d-dimensional array is the set

{(F1v1,%202, . . ., 5q04)|0 < 01 < p1,0 < iy < pay ..., 0 < ig < pg} [Wij89]. Informally,
the mth tuple relates to the mtt dimension. Blocks in two dimensions are also
referred to as rectangular subarrays. p; indicates the number of elements chosen
and v; indicates one chooses every v}h element in ith dimension for 1 < ¢ < d. See
Figure 1.3 for an example. They have shown that one cannot store two different
block templates which have equal stretch and equal size, n, in » memory modules
[Wij89]. The stretch of a block defined above is (vy,va, . ..vq) [Wij89]. If the stretch

is not specified it is assumed to be equal to one. When v > 1, the blocks are also

referred to as stretch blocks.

1.2 Background on Interconnection Networks

The interconnection network, IN, allows the processors and the memory modules to
communicate. These networks are also referred to as alignment and permutation

networks [Sie85]. Section 1.2.1 reviews the design issues involved in an IN. Sec-

CHAPTER 1. INTRODUCTION 12

®:-0-0-..

Stretch of 2 10 11 12 13 14 15 e @

®: 0@

30 31 32 33 34 35 ee

Figure 1.3: A (2,2) x (3,2) block

tion 1.2.2 presents various topologies and Section 1.2.3 presents various evaluation

techniques for INs with respect to the needs of a skewing-scheme designer.

1.2.1 Design Issues of Interconnection Networks

There are various design issues concerning an IN [Roo91] [RP91] [Dan91]. Feng

[Fen81] mentions the following four issues.

1. Mode of Operation. The type of communication may be synchronous and
controlled by a system-wide clock or it may be asynchronous. In this thesis

we are concerned with synchronous systems.

2. Control Strategy. The control for the routing may be distributed or cen-
tralized. If the routing is centralized it is dependent on a critical element,
the controller. This may introduce delays and thus, distributed routing is

generally used.

CHAPTER 1. INTRODUCTION 13

3. Switching Methodology. The two primary switching methodologies are
virtual circuit and packet switching. In a virtual circuit the entire path be-
tween the source and destination is reserved. A reservation means that all
links on this path are locked during communication and no one else may use
them. In packet switching, a packet or specified fixed amount of information
is sent on a free line in the direction of the destination. No specific route is
reserved or specified. If a link is busy, the packet is either blocked or sent
along another link. There are also variations and combinations of these two

methodologies.

4. Network Topology. A network topology may be static or dynamic. A
static topology cannot be reconfigured while dynamic topologies may. Dy-
namic INs are reconfigured during operation by their switches which allow
various connections. Static links are predetermined at the time the network
is constructed and will always connect the same links in the same manner. Dy-

namic INs are also referred to as reconfigureable switching networks [Dan91].

1.2.2 Topologies of Interconnection Networks

Since we are operating in a synchronous environment, we assume our INs operate in
a synchronous manner. As previously stated, centralized routing is slow. It follows
that most of the INs we present in this review use distributed routing. We now
present a brief overview of various topologies. Many topologies can be shown to be

equivalent. For more information see Siegel [Sie85].

CHAPTER 1. INTRODUCTION 14

Crossbar Interconnection Network

One of the simplest dynamic INs is the crossbar network (see Figure 1.4). A cross-
bar network of size n X n (connecting n memory modules with n processors) requires
O(n?) switching elements. Therefore this network is quite expensive. The advan-
tages of this network include 100% Permutation capability* and a delay independent
of the size of the network [Dan91].

1 2 3 n
1
2
3 XX > AN
n

X = SWITCH

Figure 1.4: Crossbar interconnection network

Hypercube

A well known static IN is the hypercube. The hypercube is defined in terms of
its dimension. A k-cube is a graph with 2* vertices. These are also referred to
as binary hypercubes [Dan91]. The vertices are numbered from 0 to 2¥ — 1 (see
Figure 1.5). Two vertices in a binary hypercube are connected if and only if the

binary representations of the vertices differ in exactly one bit [Ro091]. For example,

CHAPTER 1. INTRODUCTION 15

vertices 0100 and 0101 are connected but 0100 and 0111 are not. The benefits of this
topology include the fact that the distance between the source and the destination
is equivalent to the number of bits in which they differ. This number is also known
as the Hamming distance. The number of routing choices at any internal vertex
along the route is equal to the Hamming distance between the current vertex and

the destination vertex [Roo91].

D)

010 011
100) (10
000 001

Figure 1.5: An order 3 hypercube network

Star Graphs

The star graph was proposed to help alleviate the problems associated with the high
degree of the vertices that result in binary hypercubes [Roo91]. A k - star graph
connects K = k! vertices. Each vertex is labeled with a permutation on k elements.
A vertex, p, is connected to another vertex, g, if and only if ¢’s permutation is
equivalent to p’s with p’s first element exchanged with any other single element.

For example, vertex 1234 and 2134 are connected but 1234 and 1324 are not (see

CHAPTER 1. INTRODUCTION 16

431

2314

3214
1234

Figure 1.6: A 4-star graph

Figure 1.6 for a 4-star graph with some labelled vertices from [Roo091]).

Shufie-Exchange Network

One of the most dynamic networks is the shuffle-exchange network. The switches
in this type of network allow dynamic reconfiguration of the network [Dan91]. A
simple example of a 2 x 2 switch can be seen in Figure 1.7. A 2 x 2 switch allows
the inputs to proceed straight through, to be exchanged, or either of the inputs to
be broadcast. The behaviour of the box is determined by the control bits. The
network shuffles the data between the levels of switch boxes much the way one
shuffles a deck of cards. A perfect shuffle is achieved if the ‘higher’ destinations
are perfectly interleaved with the ‘lower’ destinations (see Figure 1.8). The other
function, the exchange, allows communication with a destination whose address
only differs in the lowest bit [Sie85]. Figure 1.9 is an example of a multi-stage
shuffle-exchange network with eight inputs and outputs [Dan91]. An interesting

feature of this network is that any source can find the destination by its address.

CHAPTER 1. INTRODUCTION

>

straight-through exchange

-

upper broadcast lower broadcast

Figure 1.7: A 2 x 2 switch box

0 S(0)=0
! S4)=1
2 S(1)=2
3 S(5)=3
> S(6)=5
6 S(3)=6
7 S(7)=7

Figure 1.8: A perfect shuffle for eight elements

17

CHAPTER 1. INTRODUCTION 18

2X 2 2X 2 2X 2
000 — | Switch

— | switch —] Switch [— 000
001 Box Box Box [— 001
2X2 2X2 2X2
010 Switch Switch Switch [010
011 Box Box Box |— 011
2X2 2X2 2X2
100 Switch Switch Switch [100
101 Box Box Box — 101
2X2 2X2 2X2 |
110 Switch Switch Switch 110

111 —— Box Box Box — 111

Figure 1.9: A multi-stage shuffle-exchange network

The highest bit determines the action to be taken at the first stage, the second-
highest bit at the second stage, etc. A 1-bit indicates the bottom output and a
0-bit indicates the top output should be taken. Thus, the destination address can be
used to set switch settings to route a message [Dan91]. Various other networks are
based on the shuffle-exchange network. They vary in terms of the type of control
strategy and the functions and size of the switching boxes [Dan91]. Examples
include Benes networks [Ben65] [HKK92], the Omega networks [Law75] [Bro91],
the Banyan Network [CM85] and the Theta Network [Lee88|.

1.2.3 Evaluation of Interconnection Networks

There are various methods one may use to evaluate INs. Criteria may be deter-
ministic and evaluate such characteristics as the number of paths in the network

[MMS80]. Alternatively, the criteria may be probabilistic. In this situation, one

CHAPTER 1. INTRODUCTION 19

would be concerned with something such as the probability of blocking when a
particular source and destination wish to communicate [MM80]. In this thesis, the
evaluation criteria we are concerned with must be helpful to designers with a skew-
ing scheme searching for an interconnection network. The designers will then use

various criteria to find an IN to suit their needs.

The following set of desirable features for an IN were presented by Kim and

Kumar [HKK92].

e The IN should be able to realize the required permutations between the
processing elements and the memory modules (determined by the skewing

scheme).

e The IN should provide fast routing. This includes network set-up time and
network delay time. The maximum delay time should be minimized since the
length of time for a communication cycle must accommodate the worst-case

delay time.

o The cost, in terms of the number of logic gates or switches, and in terms of

the total VLSI chip area, should be low.

We expand on the first point since it is the most important criterion to a designer
with a skewing scheme. The required connections between the memory modules
and the processors or the memory module/processor permutations are determined
by the skewing scheme employed. Rooks [Ro0o91] [RP91] suggests a related crite-
rion referred to as the permutation capability of the networks. More specifically, a
network is viewed in terms of the percentage of all possible permutations that it can

satisfy. It is desirable to have a network capable of all n! permutations. A network

CHAPTER 1. INTRODUCTION 20

is rearrangeable* if it can realize all these permutations. Evaluating the satisfia-
bility of all n! permutations is not tractable on an n-node network [Roo91]. Thus,
the permutation capability is frequently estimated. Szymanski [Szy89] observes
a relationship between the blocking probability of a circuit and the permutation
capability [Roo91]. While rearrangeable INs will always satisfy our permutation

needs, what can be said about INs that are not rearrangeable?

There are various methods for increasing the permutation capability of an IN.
Some of the methods recirculate* data through a network, some use a multi-stage*
IN, some dilate* the network, and some combine the aforementioned methods. En-
hancing the permutation capability seems very beneficial. If the capability is in-
creased to 100% and the network becomes rearrangeable, then we know we can
realize all desired permutations. Suppose we have a high permutation capability
but not 100%. What do we then know about the ability of the IN? How do we
know that the permutations we need are represented in the permutation capability?
Using only this measure, we do not know if this IN will satisfy our needs. This calls
for additional measures in terms of the permutations the network can realize. Some

classifications for sets of permutations can be found in [BR88, YL81, NS81, Len78]

Thus, the challenge to designers who do not wish to use a rearrangeable network
is to determine what set of processor/memory module permutations they need.
Ideally, this set can be realized by an existing IN. Additional consideration should
be given to the class of permutations involving a larger number of memory modules
than processors. That is, when n > m (see Figure 1.1). It is possible that the
templates may demand more than » memory modules in order to provide conflict-
free access. This would involve permutation problems for an IN which connects n

processors and n + k memory modules for some positive integer k.

CHAPTER 1. INTRODUCTION 21

1.3 Overview of the Thesis

In the literature, the set of templates that are accommodated by existing skewing
schemes contain a fixed number of templates. In contrast, the number of templates
in the set of templates accommodated by skewing schemes in this thesis grow with
respect to the maximum size of a template. Specifically, we examine the templates
that provides conflict-free access to constant-perimeter rectangular subarrays. The
number of templates is a function of the perimeter. For example, if the desired
perimeter is 14, there are six templates to accommodate. If the desired perime-
ter is 32, there are 15 templates which need to be conflict-free. In general, for
the perimeter, v = 2p, there are p — 1 templates for a given constant perimeter.
Furthermore, if you allow the rectangular subarrays to be stretched, each stretch
produces a unique template, and the number of templates in the set is once again

increased.

Thus, the most significant results can be found in Chapters 2 and 3. Chapter 2
presents bounds and constructions for all (z —7,v) x (y +1¢,v) rectangular subarrays
of an n x n array for all nonnegative 7, where v is the stretch of the subarray. These
subarrays are a subset of those rectangular subarrays that have constant perimeter.
The set of templates contains z distinct rectangular subarrays plus a template for
each stretch allowed. The results that have implications for the complete set of
constant-perimeter rectangular subarrays, and those that are stretched by v, where
v is relatively prime to n, are presented in Chapter 3. The partial and complete
constant-perimeter results use a mega-template which encapsulates the interactions

of the set of constant-perimeter templates.

Chapter 4 examines a problem in which we want conflict-free access to all

constant-area rectangular subarrays. In this chapter, we use the constant-perimeter

CHAPTER 1. INTRODUCTION 22

results to obtain a lower bound on the number of memory modules needed for
conflict-free storage. Furthermore, we relate the problem to that of the chromatic
number of a graph and obtain an upper bound. An additional approach is proposed
which involves the use of permutations for skewing schemes. Finally, computational
results for constant-area rectangular subarrays are presented. Chapter 5 contains

concluding remarks and areas for future research.

Chapter 2

Some Constant-Perimeter

Subarrays

Squares and rectangular subarrays are natural templates to examine [KK89, HKK92,
CH92]. In this chapter, we consider cases involving a subset of constant-perimeter
rectangular subarrays, which are a type of block template. Let # and y be integers.
We examine conflict-free access to all (z —i,v) X (y + 1, v) rectangular subarrays of
an n X n array for all nonnegative :. Let the perimeter of the rectangular subarray
desired to be conflict-free be defined as v = 2(z + y). Thus, these templates rep-
resent a subset of all constant-perimeter rectangular subarrays. Squares that are

conflict-free for all such subarrays are denoted by (z,y),.f,*. If v is not specified it

ref»
is assumed to be equal to one. Any n X n square on n symbols that is conflict-free
for rows and columns is a well-studied combinatorial structure, a latin square. If

the (z,y) square is also latin, it is a latin rectangular conflict-free square with

ref»
stretch v* (z,Y)]pcf,- As the perimeter desired increases, the skewing scheme needs

to be conflict-free for a larger set of templates, all of varying shapes. There are

23

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 24

two main reasons for interest in this problem. First, it is of theoretical interest
as a prototypical problem in which the number of templates and their shape is a
function of the desired perimeter. Secondly, it is of practical concern in certain
navigational and layout problems [SD90], for example when accessing a portion of
a two-dimensional map or layout corresponding to elements at a fixed horizontal
and vertical rectilinear distance from a fixed point. Thus, these templates reflect

the needs of algorithms and satisfy Point 1.

2.1 Preliminary Definitions and Theorems

To prove our bounds, we use a mega-template® which encapsulates the essence of
the interaction of the set of templates we want to be conflict-free. A mega-template
is the set of elements which are forced to be distinct by the templates we wish to
be conflict-free. In other words, every element in a mega-template is in a template
instance with each other element. Furthermore, no element outside of the mega-

template is in a template instance with every element of the mega-template.

The following definitions and lemmas are needed for the proofs of (w7y)rcf,v
squares. The rectangular subarray S,(a,b : c,d), refers to the subarray of S with
the rows a to v(b — a) + a inclusive and the columns ¢ to v(d — ¢) + ¢ inclusive, a
(b—a+1,v) x (d — ¢+ 1,v) rectangular subarray. Furthermore, S,(a : ¢,d) is a
partial row of row @ from column ¢ to v(d — ¢) + ¢ and S,(a,b : ¢) is the partial
column of column ¢ from row a to v(b—a)+a. A similar notation is used in [CH92].
The following definitions are needed to define a diamond which we use as a mega-

template. In addition, we proceed with some fundamental theorems regarding the

mega-template needed for the proofs of (z,y),.¢, and (z,y)j;cf, sSquares.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 25

e The baseis S,(0,z —1:0,y — 1).
e A stair at level L on the West sideis S,(L,z—1—L:—L):0< L < L%;lj
e A stair atlevel L on the Fastsideis S,(L,z—1—L:y—1+L): 0 < L < |%51].

e An (z,y),-cut diamond is a template that is the union of the base, the West,
and East stairs (see Figure 2.1) or any translate in an n X n square with

wrapping.

Recall that a square is cyclic if and only if it can be defined by a linear skewing

scheme.
x-2L elementsat level L
\ (00) y increasing
B B e E
= edement in (x,2)X(y,2)base U ooBgan
with stretch = 2 U EEEEUD
- O B 08 00
o o I |
L =level

X increasing

Figure 2.1: An (z,y)s-cut diamond

Theorem 2.1.1 Let M be a square. The following two conditions are equivalent.

1. Each (z,y),-cut diamond is conflict-free in M and if z is even, each (1,v) X

(z +y — 1,v) subarray is also conflict-free in M.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 26

2. For each0 < i < @, each (z—1,v) X (y+1,v) template instance is conflict-free
mn M.

Proof: (1) = (2): Assume that (2) is false, so that some (z — ¢,v) x (y +
i,v) subarray does not contain distinct symbols. The definition of the (z,y),-cut
diamond ensures that every (z — i,v) X (y + ¢,v) subarray is contained in some
(z,y),-cut diamond or is a (1,v) X (# + y — 1,v) subarray. Thus, (1) does not hold
if (2) does not and hence (1) = (2).

(2) = (1): Assume first that some (z,y),-cut diamond does not contain distinct
elements. Let the two equal entities be at horizontal distance vh and vertical
distance vk from one another. Then vk < v(z —1) since the cut diamond has height
vz, and v(k+ h) < v(z+ y — 2) for any two entries of the cut diamond. Now since
v(k+h) <v(z+y—2)and vk <v(z—1), and some (k+1,v) x (h—1,v) rectangular
subarray is not conflict-free, and thus, some (z —¢,v) x (y + ¢,v) template instance
is not conflict-free and (2) does not hold. Similarly if some (1,v) x (z +y — 1,v)
subarray contains a conflict, (2) does not hold. Thus (2) = (1). O

Corollary 2.1.2 Let M be a cyclic square. The following two conditions are equiv-

alent.

1. Some (z,y),-cut diamond is conflict-free in M and if = is even, some (1,v) X

(z +y — 1,v) subarray is also conflict-free in M.
2. For each 0 <1 < z, some (z—1,v) X (y+1,v) template instance is conflict-free

in M.

Proof: One instance of a template is conflict-free if and only if all instances in M

are conflict-free. This follows immediately by the cyclic construction. Thus, the

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 27

proof is complete by Theorem 2.1.1. a

We now proceed to count the elements contained in the (z,y),-cut diamond.
We use a convenient notation suggested by Knuth [Knu92|, denoting by [z odd],
the function whose value is one if z is odd, and zero otherwise. The stairs can be
examined in two separate cases. Let z be the length of the side of the base upon
which the stairs are built. Let n(z) be the number of elements in the set of stairs
on side z.

Lemma 2.1.3 n(z) = ;2> — 1z 4 ; if z is odd.

Proof: For odd z, the number of elements in the set of stairs is:

n(z)zi(z—?i)
_ z;1+2§:i

1=0

Lemma 2.1.4 n(z) = ;2> — 1z if z is even.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 28

Proof: If z is even, then the number of elements in the set of stairs is:

=1

= 2) (i)
1=0
z—2 z

= 0
1

= *22—12.
4 2

Lemma 2.1.5 The (z,y),-cut diamond contains zy+ tz° —x + [z odd] elements.

Proof: The number of elements in an (z,y),-cut diamond is the sum of the base

and the two sets of stairs. By Lemma 2.1.3, n(z) = %z2 — %z + ‘11 if z is odd. By

Lemma 2.1.4, n(z) = %z2 — %z if z is even. Thus, the number of elements in the

(z,y).-cut diamond is zy + 2n(z) = zy + j2*> — = + [z odd]. O

Define a (¢, s,7,v) shift-boz* by S,(1,t:1,s)US,(t+1:1,r).

Theorem 2.1.6 If W is a (t,s,7,v) shift-box then W contains distinct elements
in ¢ where ¢ is an n X n cyclic square defined by (a;;),a;; = (1 —1)s+3 (mod n),

st +7r =mn and v 1s relatively prime to n.

Proof: Recall the skewing function for a cyclic square. Successive array locations

in a row are mapped to successive integers modulo n. If v equals one, the first

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 29

row in W is mapped to the first s integers. The first element in the second row
is mapped to the integer s + 1. Thus, the first ¢ rows are mapped to the first st
integers. Thus, there are r integers remaining which are mapped into row ¢t+1. Since
n = st + r all the array locations in the shift-box are mapped to distinct integers
which represent the memory modules. If v is greater than one but relatively prime
to n, the array locations in the first row of the (¢,s,r,v) shift-box are mapped to
Lv+ 1,2v + 1,...,8(v — 1) + 1. The second row is mapped to v(s) + 1. If v
is relatively prime to n, the mapping will cycle through all the integers since the
mapping is modulo n. Thus all the elements in the shift-box are mapped to distinct

integers. O

Lemma 2.1.7 If a;,; = a5+ (mod n), then a;; = aitobjtve (mod n) in a

cyclic square.

Proof: If a; ; = a;ypj+c (mod n), then according to the cyclic construction, bg +
cr =0 (mod n). Thus, v(bg+ cr) =0 (mod n) = vbg + ver (mod n). This

implies that a;; = @itupjtve (mod n). O

Observation 2.1.8 If a skewing scheme is conflict-free for a template, then the
transpose of that skewing scheme is conflict-free for the transpose of that template.

Furthermore, observe that the transpose of a cyclic skewing scheme s cyclic.

2.2 Bounds and Constructions

We now proceed with the proofs for (z,y) squares. The general strategy is to

ref»

exhibit a mega-template that is easily seen to be conflict-free, and for which the

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 30

absence of conflicts implies the whole square is conflict-free for the set of templates.
Rather than directly show that the (z,y),-cut diamond is conflict-free within the
square, we insert an intermediate step involving a box, usually a shift-box. The
primary remaining step is to show the relationship between the shift-box and the

(z,y),-cut diamond.

Theorem 2.2.1 If an (z,y) or an (w,y)lrcfv square of order n exists, n >

TrClv

zy + 312> —z + L[z odd.

Proof: By Theorem 2.1.1 all of the elements in the (z,y),-cut diamond must be
distinct. By Lemma 2.1.5, n > zy + ;z* — = + ;[odd]. O

Let n = zy + ;2> — z + 1, and define an n x n array C = (a;;),a;; =

(i—1)(2y+2z—2)+7 (modn).

Theorem 2.2.2 For all odd & and v relatively prime to n, C' s an (w,y)rcfv and

an (z, y)lrcf,v square.

The proof is based on the following lemma.

Lemma 2.2.3 If a (%w — %,23/ +z—2,y+ %w — %,v) shift-box contains distinct
elements in C, then the (z,y),-cut diamond contains distinct elements for odd =z

and v relatively prime to n.

Proof: First we examine the (z,y);-cut diamond. The upper left-hand corner
of the shift-box is placed over the North-West corner of the base of the (z,y);:-cut

diamond as displayed in Figure 2.2. Now, a;; = @i 1o lifyile 3 (mod n) since

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 31

(—%w—%)(2y—|—w—2)—|—y—|—%w—gE—wy—%ﬁ—l—w—%zﬂ (mod n) and

the element is the same. Thus, rows (%w + g) through z are shifted up (%w + %)

rows and over (y + ;& — 2) columns to the left as displayed in Figure 2.3. Now,
@i = i1 j4294+a—2 (mod n)since —12y+z—2)+2y+z—2=0 (mod n)and
the element is the same. Thus, the final shift involves all the elements from rows
2 through (%w + %) not contained in the shift-box which are shifted up one row

and over (2y + — 2) columns. This shift is displayed in Figure 2.4. Finally, by

Figure 2.2: Shift-box placed over (z,y);-cut diamond

Figure 2.3: Shifting rows jz + 2 through z to shift-box

Figure 2.4: Shifting rows 2 through %w + % to shift-box

Lemma 2.1.7, the above shifts are valid for (z,y),-cut diamonds. a

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 32

Proof of Theorem 2.2.2: By Corollary 2.1.2, if C is conflict-free for some (z,y),-
cut diamond, then it is a (z, y)I'Cf,v square. By Lemma 2.2.3, an (z,y),-cut diamond
contains the same elements as the shift-box. Finally, by Lemma 2.1.6 the shift-box
contains distinct elements and C' is an (w7y)rcf,v square for odd z and v relatively

prime to n.

Finally, we need to show the shift is relatively prime to n when z is odd.

1 1
gcd(wy—l—in—w—l— 5,2y—|—w—2)

1 1 xr 1
= gedlay+ e et - Dy e -9 4e)
2 2 2 2
1 1
— gedQy+z—2,y+ - — -
ged2y +2 -2,y + je —)
=1
Thus, C' is an (z,y)];.f, Square. O

Now we treat the case when z is even, and y is any integer. Let n = zy+ %w2 —z.
For the construction to be presented, for positive integers a and b, we let Q(a,bd)

and R(a,b) be the quotient and remainder, respectively, when a is divided by b.

z
27

Rliye)(y +e— 1)+ R(j,y +e— 1)+ e(y + e~ DI(QUre) + Qiyy + e — 1)) odd]
An example is given in Figure 2.5. Note the repeated pattern of (e) x (y + e — 1)

Now we write e = and define an n x n square D = (d;;) as follows: d;; =

rectangular subarrays.

Theorem 2.2.4 D is an (w,y)rcfl square for even © and n = zy + ;z° — .

The proof is based on the following lemmas.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 33

3 4511213141516 17 0 1 2 3 45

9 10 11118 19 20 21 22 23| 6 7 8 9 10 11

12 13 14 1516 171 0 1 2 3 4 5|12 13 14 15 16 17
18 19 20 21 22 23| 6 7 8 9 10 11|18 19 20 21 22 23
45|12 131415161710 1 2 3 45

9 10 11118 19 20 21 22 23| 6 7 8 9 10 11

12 13 14 1516 171 0 1 2 3 4 5|12 13 14 15 16 17
18 19 20 21 22 23| 6 7 8 9 10 11|18 19 20 21 22 23
45|12 131415161710 1 2 3 45

9 10 11|18 19 20 21 22 23| 6 7 8 9 10 11

12 13 14 1516 17/ 0 1 2 3 4 5|12 13 14 15 16 17
18 19 20 21 22 23| 6 7 8 9 10 11|18 19 20 21 22 23
45|12 131415161710 1 2 3 45

9 10 11118 19 20 21 22 23| 6 7 8 9 10 11

12 13 14 1516 17/ 0 1 2 3 4 5|12 13 14 15 16 17
18 19 20 21 22 23| 6 7 8 9 10 11|18 19 20 21 22 23
3 45|12 13141516 17 0 1 2 3 45

9 10 11118 19 20 21 22 23| 6 7 8 9 10 11

Figure 2.5: Example of D square with z =4,y = 5,n = 18

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 34

Lemma 2.2.5 If a (2¢,y + e — 1,0,1) shift-box contains distinct elements in D,
then the (z,y)1-cut diamond contains distinct elements for even z, where e is an

integer.

Observe that this shift-box is just a (2e,1) x (y + e — 1,1) rectangular subarray.
Proof: First, the upper left-hand corner of the shift-box is placed over the North-
West corner of the base in the (z,y);-cut diamond as displayed in Figure 2.6. Next,
rows 2 through e not contained in the shift-box are shifted over (y + e — 1) columns
and down e rows as displayed in Figure 2.7. The remainders remain unchanged,
and the quotients each increase by 1. Thus the evaluation of [(Q(¢,e)+ Q(j,y+e—
1)) odd| remains unchanged and we have the same element. Finally, rows (e 4 1)
through (2e — 1) not contained in the shift-box are shifted up e rows and over
(y + e — 1) columns. Once again, the remainders remain unchanged and the value
of Q(7,e) decreases by one and the value of Q(j,y + e — 1) increases by one: thus,
the evaluation of [(Q(7,e) + Q(j,y + e — 1)) odd] remains unchanged and we have

the same element. O

Figure 2.6: Shift-box placed over (z,y);-cut diamond

Lemma 2.2.6 Fach (2e,y + e — 1,0,1) shift-box contains distinct elements in D

where e is an integer.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 35

Figure 2.7: Shifting rows 2 through e to shift-box

Figure 2.8: Shifting rows e + 1 through 2e to shift-box

Proof: Suppose that two entries of D in some (2e) x (y + e — 1) rectangular
subarrays are the same. Let (s1,t1) and (s2,t2) be the indices of two such entries.
By the definition of D, R(s1,e)(y+e—1)+ R(t1,y+e—1)+e(y+e—1)[(Q(s1,¢)+
Qt1,y +e—1)) 0dd] = Blsy,e)(y+e— 1)+ R{tz,y+e— 1)+ eyt e~ 1[(Q(sne) +
Q(t2,y + e — 1)) odd]. Considering this equation modulo y + e — 1, we find that
R(t1,y +e—1) = R(t2,y + e — 1). Thus, ¢; and ¢, differ by a multiple of y + e — 1.
However, since the two entries cannot be y + e — 1 or more columns apart, we
conclude that t; = t;. Thus, R(si,e) + e([(Q(s1,¢) + Q(t1,y + e — 1) 0dd]) =
R(s2,e)+e([(Q(s2,€)+Q(t1,y+e—1)) odd]). That implies that R(s1,e) = R(sa,¢€)
and Q(s1,e) = Q(s2,¢) (mod 2). If follows that s; = s, mod 2e. Since the two

entries appear fewer than 2e rows apart, it follows that s; = s,.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 36

Thus, any two equal entries in a rectangular subarray in fact occur at the same

position, so each rectangle is conflict-free. a

Proof of Theorem 2.2.4: By Theorem 2.1.1, D contains distinct elements if
each (z,y);-cut diamond contains distinct elements. By Lemma 2.2.5, a (z,y):-
cut diamond contains distinct elements if each shift-box contains distinct elements.

Finally, by Lemma 2.2.6 each shift-box contains distinct elements and D is an

(%,Y);cf square. O

Theorem 2.2.7 If an (w,y)lrcfv square of order m exists for even x, n > xy +

1
§w2—w—|—1.

Proof: By Theorem 2.2.1, n > zy+ %w2 —z for even z. Thus, we only need to show
that n # zy + %w2 — 2. Shapiro shows in general that a template tiles a plane if and
only if a skewing scheme exists [Sha78]. Thus, there must be a tiling of the plane
with an (#,y),-cut diamond for even p that is conflict-free for rows and columns if
there is to be an (w7y)11'Cf,v square. By Theorem 2.2.4, we know there is a tiling
that is conflict-free for all (z — ¢,v) X (y + ¢,v) rectangular subarrays. One can
examine each possible tiling by picking a single external element of the (z,y),-cut
diamond and attempting to place it next to the external elements of another copy
of an (z,y),~cut diamond. This case analysis shows that this is the only tiling.

Since this tiling is not conflict-free for rows and columns n > zy + %w2 —z+1. O

Let n = 24e? + 8ed + 2 and ¢ = 4e, y = 4e + 2d 4+ 1. Define an n x n array
E = (aij;),a;; = (1 —1)(12e* + 4ded —6e —2d + 1) +j (mod n) where e and d are

integers.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 37

Theorem 2.2.8 F is an (w,y)lrcfv square for ¢ = 4e, y = 4e +2d + 1 and v

relatively prime to n, where e and d are integers.

The proof is based on the following lemma.

An (z,y),-cut zircon is the (z,y),-cut diamond for z = 4e,y = 4e 4 2d + 1,
together with S,(1 :y + 1)U Sv(g +1:75+ y) which is one element added onto
the North side of the first level of East stairs and another element added onto the

far-East set of stairs as depicted in Figure 2.9.

Figure 2.9: The (z,y),-cut zircon

Define an zy-box to be S,(1,5 +1:1,5 +y)U Sy(5 +2,z:1,5 +y —2).

2

Lemma 2.2.9 [f the zy-box contains distinct elements in E, then the (z,y),-cut
zircon contains distinct elements for x = 4e, y = 4e + 2d + 1, where e and d are

integers.

Proof: First we examine the (z,y);-cut zircon. Place the zy-box over the North-
West corner of the base of the (z,y);-cut zircon as depicted in Figure 2.10. Now,
ai; = @Giy2et1jr6et2d—1 (mod n)since (2e+1)(12e*+4ed—6e—2d+1)+6e+2d—1 =
24e® + 8e?d + 2¢ = 0 (mod n) and the two elements are the same. Thus, those

elements in rows 2 through (2e — 1) not contained in the zy-box are shifted down

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 38

Figure 2.10: zy-box placed over the (z,y);-cut zircon

Figure 2.11: Shifting rows 2 through 2e — 1 to zy-box

Figure 2.12: Shifting rows 2e through 4e — 1 to zy-box

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 39

(2e + 1) and over (6e + 2d — 1) columns as depicted in Figure 2.11. Next, a;; =
Qi_9eq1,j16et2d41 (mod n) since (—2e+1)(12e? +4ed —6e —2d+ 1)+ 6e+2d+1 =
—24e® — 8e’d —2e +24e®* +8ed+2 =0 (mod n). Thus, the elements in rows (2e)
through (4e — 1) not contained in the zy-box are shifted up (2¢ — 1) rows and over
(6e + 2d + 1) columns. This is depicted in Figure 2.12. Finally, by Lemma 2.1.7,

the above shifts are valid for the (z,y),-cut zircon. O

Lemma 2.2.10 The xzy-box in F contains distinct elements for ¢ = de,y = 4e +
2d + 1, where e and d are integers.

Proof: According to the construction, each array element is mapped to an integer
which represents the memory module in which it is stored. The sequential mapping
of elements from array locations in row b are followed by the mapping of those
elements in row b+ 2e — 1 (mod 4e). If b < 2e + 1, the last integer mapped into
row bis (b—1)s +6e+2d+1 (mod n) where s = 12¢* + 4ed — 6e — 2d + 1 and
n = 24e* + 8ed + 2. This is equivalent to bs — 12e? — 4ded + 4d + 12e (mod n).
The integer mapped to the location preceding the first element in row (b + 2e — 1)
is (b+2e —2)s (mod n).

= bs+ 24e> + 8e¢%d — ded — 12€% + 2e — 2s (mod n)
= bs—4ded —12e* — 24e” — 8ed +4d + 12¢ — 2 (mod n)

= bs—4ded —12e® +4d + 12¢ (mod n).

If b =2e+4+1+a,a > 0, the value of the last element’s mapping in the row is
(2e+a)s+6e+2d—1 (mod n) = as—4ed—12e*+6e+2d—1 (mod n). The next
row according to the mapping defined above gets mapped to 2¢e+1+a+2e—1=a
(mod 4e). Thus, the integer that the element preceding the first element in the

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 40

next sequential mapping row is (a — 1)s (mod n) = as — 12e? —4ded + 2d 4 6e — 1
(mod n). Finally, since 2e — 1 is relatively prime to 4e, all the rows are included in

this cyclic mapping of the elements. a

Proof of Theorem 2.2.8: By Corollary 2.1.2 if F is conflict-free for some (z,y),-

cut diamond and for some (1,v) x(z+y—1,v) subarray, then itis a (z, y) square.

rcfo

The (z,y),-cut zircon contains the (z,y),-cut diamond and thus the statement

holds. Since

ged(24€® + 8ed + 2,12¢” + ded — 6e — 2d + 1)
= gcd(12€® + ded + 1,12 + ded — 6e — 2d + 1)
= ged(6e + 2d,12¢” + ded + 1)

= 1,

the square is latin and thus conflict-free for all (1,v) x (# + y — 1,v) subarrays.
By Lemma 2.2.9 an (&,y),-cut zircon is conflict-free if the shift-box is conflict-free.

Finally, by Lemma 2.2.10 all of the elements in the shift box are distinct and E is

a (Z,Y)]pef, Square. O
Let n = 24e? + 8ed — 2e + 1 and = = 4e, y = 4e + 2d. Define an n X n array
F =(aij),ai; = (7 —1)(4e) + (¢) (mod n) where e and d are integers.

Theorem 2.2.11 F is an (w,y)lrcfv square for x = 4e, y = 4e+2d and v relatively

prime to n, where e and d are integers.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 41

The proof is based on the following lemma.

The (z,y),-cut sapphire is the (z,y),-cut diamond for z = 4e,y = 4e + 2d,
together with S,(1 : y—l—l)USv(g—l—l : g—l—y)USv(w—L—l—l : y+ L) for
1 <L <5 -1 (each level of stairs on the East side of the diamond). In other
words, there is one element added onto the North side of the first level of East
stairs and one element added onto the South-East side of the Fast set of stairs.
The remaining 7 — 1 elements are added onto the South side of each East stair as

depicted in Figure 2.13.

Figure 2.13: The (z,y),-cut sapphire

Here we use the transpose of a (6e +2d — 1,4e,2e + 1,v) shift-box where e and

d are integers.

Lemma 2.2.12 [f the transposed (6e+2d—1,4e,2e+1,v) shift-box contains distinct
elements F, then the (z,y),-cut sapphire contains distinct elements for z = de,

y = de + 2d and v relatively prime to n, where e and d are integers.

Proof: First we examine the (z,y);-cut sapphire. Place the transposed shift-
box over the North-West corner of the base of the (z,y);-cut sapphire as depicted
in Figure 2.14. Now, a@;; = @it2e+1,j+6e+24—1 (mod n) since (6e + 2d — 1)(4e) +
2¢ +1 = 24e* + 8ed —2e +1 = 0 (mod n) so the symbol is the same. Thus,

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS

Figure 2.14: Transposed shift-box placed over the (z,y);-cut sapphire

Figure 2.15: Shifting rows 2 through 2e — 1 to transposed shift-box

Figure 2.16: Shifting rows 2e through 4e — 1 to transposed shift-box

42

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 43

those elements in rows 2 through (2e — 1) not contained in the transposed shift-
box are shifted down (2e + 1) to rows (2e 4 3) through 4e and over (6e + 2d — 1)
columns as depicted in Figure 2.15. Finally, a;; = @i—2e+1 j+6e+24 (mod n) since
(6e + 2d)(4e) + (—2e + 1) = 24e? + 8ed —2¢e +1 =0 (mod n) so the symbol is
the same. Thus, the elements in rows (2¢) through (4e — 1) not contained in the
transposed shift-box are shifted up (2e — 1) rows to rows 1 through 2e and over
(6e 4+ 2d) columns. This is depicted in Figure 2.16. Finally, the above shifts are

valid for the (z,y),-cut sapphire by Lemma 2.1.7. O

Proof of Theorem 2.2.11: By Corollary 2.1.2 if F'is conflict-free for some (z,y),-

cut diamond and for some (1,v) x (z 4+ y — 1,v) subarray, then it is an (z,¥),.f,

square. The (z,y),-cut sapphire contains the (z,y),-cut diamond and thus the

statement holds. Since

ged(24€® + 8ed — 2e + 1,6e + 2d — 1)
= ged(6e +2d—1,2e + 1)

=1

the square is latin and thus conflict-free for all (1,v) X (# +y — 1,v) subarrays. By
Lemma 2.2.12 an (z,y),-cut sapphire is conflict-free if the shift-box is conflict-free.
Finally, by Theorem 2.1.6 applied to the transpose by Observation 2.1.8 all of the

elements in the shift box are distinct and F is an (z,y)|;.f, Square. a

Let n = dey + 3y + 8e? +4e — 1 and z = 4e + 2. Define an n x n array
G =(ai;),a;; =(1—1)(4e+2y —1)+j (mod n), where e and d are integers.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 44

Theorem 2.2.13 G s an (w,y)lrcfv square for x = 4e + 2 and v relatively prime

to n, where e and d are integers.

The proof is based on the following lemma.

The (z,y),-cut rhinestone is the (z,y),-cut diamond for z = 4e + 2, together
with Sy(5 1y + 5,2y + 5 — 2). In other words, y — 1 elements are added onto the
North-East side of the East stairs as depicted in Figure 2.17.

Figure 2.17: The (z,y),-cut rhinestone

Lemma 2.2.14 [fa(2e+1,4e+2y—1,y+2e,v) shift-bozx contains distinct elements
G, then the (z,y),-cut rhinestone contains distinct elements for ¢ = 4e + 2 for v

relatively prime to n, where e and d are integers.

Proof: We first examine the (z,y);-cut rhinestone. Place the shift-box over
the North-West corner of the base of the (z,y):-cut rhinestone as depicted in Fig-
ure 2.18. Now a@; ; = ;1 jtaet2y—1 (mod n) since —1(4de42y—1)+4e4+2y—1=0
(mod n) and the elements are the same. Thus, those elements in rows 2 through
2e + 2 not contained in the shift-box are shifted up one row and over 4e + 2y — 1
columns. Next, a;; = @;_2¢-2j+yt2e—1 (mod n) since (—2e —2)(4de+2y —1)+y +
2¢ —1=—-8e? —4ey—3y—4e+1=0 (mod n) and the elements are the same.

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 45

Figure 2.18: Shift-box placed over the (z,y);-cut rhinestone

Figure 2.19: Shifting rows 2e 4 2 through 4e + 2 to shift-box

Thus, the elements in rows (2e + 3) through (4e + 2) are shifted up (2e + 2) rows
and over (y + 2e — 1) columns. This is depicted in Figure 2.19. Finally, the above
shifts hold for the (z,y),-cut rhinestone by Lemma 2.1.7. O

Proof of Theorem 2.2.13: By Corollary 2.1.2 if G is conflict-free for some (z,y),-

cut diamond and for some (1,v) x (z +y — 1,v) subarray, then it is an (z,¥)..f,

square. The (z,y),-cut rhinestone contains the (z,y),-cut diamond and thus the

statement holds. Since

ged(dey + 3y + 8e® +4e — 1,4e +2y — 1)
= ged(de +2y — 1,2e + y)
~ 1,

CHAPTER 2. SOME CONSTANT-PERIMETER SUBARRAYS 46

the square is latin and thus conflict-free for all (1,v) X (# +y — 1,v) subarrays. By
Lemma 2.2.14 an (,y),-cut rhinestone is conflict-free if the shift-box is conflict-

free. Finally, by Lemma 2.1.6 all of the elements in the shift-box are distinct and

G is an (z,y)|pcf, SQuare. O

Chapter 3

All Constant-Perimeter Subarrays

In this chapter, we examine the templates that represents all constant-perimeter
rectangular subarrays. Once again, as the perimeter desired increases, the skewing

scheme has a larger set of templates for which to provide conflict-free access.

Let the perimeter of the rectangular subarray desired to be conflict-free be
defined as v = 2p where p = ¢ +y, = = |7],y = [7]. A square is said to be a
perimeter rectangular conflict-free square with stretch v * (p,.f,) if it is conflict-free
for all rectangular subarrays whose perimeter is less than or equal to . If the p,..¢ .

square with stretch v is also latin, it is a perimeter latin rectangular conflict-free

square with stretch v * (pjef,)-

To prove our bounds, we once again use a mega-template which encapsulates

the essence of the interaction of the set of templates we want to be conflict-free.

47

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 48

3.1 Preliminary Definitions and Theorems

The following definitions are needed to define a p,-diamond which we use as a
mega-template. In addition, we proceed with some fundamental theorems needed

for the proofs of p..¢, and pj..¢, squares.

The baseis S,(0,z —1:0,y — 1).

A stair at level L on the North sideis S,(—L: L,y—1—L):0< L < Ly;—lj

o A stair at level L on the South sideis S,(z — 14+ L:L,y—1—L):0< L <
1450

A stair at level L on the West sideis S,(L,z —1—L:—L):0< L < L%J

o A stair atlevel L on the Eastsideis S,(L,z—1—L:y—1+L):0 < L < L%J

o A p,-diamond is a template that is the union of the base, the North, South,
West and East stairs (see Figure 3.1) or any translate in an n X n square with

wrapping.

Corollary 3.1.1 Let M be a latin square. The following two conditions are equiv-

alent.

1. FEach p,-diamond 1s conflict-free in M.

2. For each t satisfying 0 < ¢ < p, each (p — t,v) x (4,v) template instance is
conflict-free in M.

Proof: Since M is latin all (p — 1,v) x (1,v) and (1,v) x (p — 1,v) rectangular

subarrays are conflict-free. Observe that if p = 1,2 (mod 4), the p,-diamond is

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 49

y-2L elements

Xx-2L elements /
H

\ 09 0 OO yincreasing
O B B E
with stretch =2
OpEEEEO
o o I
OO
L =leve X increasing -

Figure 3.1: The p,-diamond
isomorphic to the (p — 1,1),-cut diamond. Apply Theorem 2.1.1 for (z,y),-cut
diamonds to obtain the result.

Similarly, if p = 0,3 (mod 4), the p,-diamond is isomorphic to the (p — 2,2),-
cut diamond. Again, apply Theorem 2.1.1 for (z,y),-cut diamonds to obtain the

result.

Corollary 3.1.2 Let M be a cyclic latin square. The following two conditions are

equivalent.

1. Some p,-diamond is conflict-free in M.

2. For each v satisfying 0 < i < p, some (p — ¢,v) X (¢,v) template instance is

conflict-free in M.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 50

Proof: One instance of a template is conflict-free if and only if all instances in M
are conflict-free. This follows immediately by the cyclic construction. Thus, the

proof is complete by Corollary 3.1.1. O

We now proceed to count the elements contained in p-diamond. Recall that

[z odd] denotes the function whose value is one if z is odd, and zero otherwise.

Lemma 3.1.3 The p,-diamond contains zy+ ;2> + ty*—z —y+3[x odd+ }[y odd]

elements.

Proof: The number of elements in a p,-diamond is the sum of the base and the
four sets of stairs. Once again, let z be the length of the side of the base upon
which the stairs are built. Let n(z) be the number of elements in the set of stairs
on side z. By Lemma 2.1.3, n(z) = ;2% — 3z + ; if z is odd. By Lemma 2.1.4,

n(z) =

1
4
zy + 2n(z) + 2n(y) = zy + %w2 + %y2 —z—y+ %[m odd] + %[y odd] .

2% — %z if z is even. Thus, the number of elements in the p,-diamond is

3.2 Bounds and Constructions

We now proceed with the proofs for p..¢ and pj..;, squares. We first treat the case
when p is odd. Let z = |2,y = [£] (recall by Observation 2.1.8 that the results
apply if z = [2],y = [5]). We want conflict-free access to all (z —4,v) x (y +1,v)

rectangular subarrays of an n x n array, where —z < ¢ < z. This is equivalent

to requiring that all rectangular subarrays of perimeter v be conflict-free where

v = 2p.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 51

Theorem 3.2.1 Ifann xn Pref, Square exists for odd p, then n > 2z2.

Proof: By Corollary 3.1.1 all the elements in the p,-diamond must be distinct. It
follows by Lemma 3.1.3 that n > zy + ;2> + Jy* —z —y+ ; [z odd] + }[y odd] where
y=x+ 1.

nZw(w—l—l)—l—%ﬁ—l—%(w—l—lf—w—(w—l—l)—l—%[m odd]—l—%[(w—l—l) odd] =

1 1 1
w(w+1)—|—§w2—w—|—§+§(w—|—1)2—(w—|—1)

1 1 1
= w2—|—w+§w2—w+§+§(w2—|—2w—|—1)—(w—|—1)

N T 1
T QT T Tt TET T

= 2%

Let n = 2z? and define an n x n square A = (a;;),a;; = (1 — 1)(2z — 1) +
(mod n).

Theorem 3.2.2 A s a Pref, and a Plrcf, Square for odd p when v s relatively

prime to n.

The general strategy is to exhibit a mega-template that is easily seen to be
conflict-free, and for which the absence of conflicts implies the whole square is
conflict-free for the set of templates. Rather than directly show that the p,-diamond
is conflict-free within the square, we frequently insert an intermediate step involving
a box, usually a shift-box. The primary remaining step is to show the relationship
between the shift-box and the p,-diamond. Thus, the proof of Theorem 3.2.2 is

based on the following lemma.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 52

Lemma 3.2.3 Ifan (z— 1,2z — 1,3z — 1,v) shift-boz contains distinct elements in
A then the p,-diamond contains distinct elements for all z, odd p and v relatively

prime to n.

Proof: First we examine the p;-diamond. The upper left-hand corner of the shift-
box is placed over the North-West corner of the North-most stair of the p;-diamond
as displayed in Figure 3.2. a;; = a;_1,j42.—1 (mod n) since (—1)(2z — 1) + (22 —

4|_|

=T

L]] 1

=R

Figure 3.2: Shift-box placed over the p;-diamond

1) =0 (mod n), and the symbol is the same. Thus, row (z + 1) is shifted up one
row and over (2z — 1) columns as displayed in Figure 3.3. Now, a; ; = ¢i—z—1 121
(mod n) since (—z —1)(2z —1)+(z—1) = —222 =0 (mod n) and the symbol is
the same. Thus, rows (z+2) through (22 — 1[z odd]) are shifted up (z+1) rows and
over (¢ —1) columns as displayed in Figure 3.4. Finally, a; ; = a;_1 j42.—1 (mod n)
since (—1)(2z — 1) + (22 — 1) =0 (mod n) and the symbol is the same. Thus,
all the elements in rows 2 through # not contained in the shift-box are shifted up 1
row and over (2z — 1) columns. This final shift is displayed in Figure 3.5. Finally,
the above shifts are valid for the p,-diamond by Lemma 2.1.7. O

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 53

=

bl

Figure 3.3: Shifting row = + 1 to shift-box

Figure 3.4: Shifting rows 4+ 2 through 2z — 1[z odd] to shift-box

L

Figure 3.5: Shifting rows 1 through z to shift-box

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 54

Proof of Theorem 3.2.2: Since n = 2z? is relatively prime to s = 2z — 1, the
square is latin. Thus, by Corollary 3.1.2 if A is conflict-free for some p,-diamond
then it is a Pref, square. By Lemma 3.2.3, a p,-diamond is conflict-free if the
shift-box is conflict-free. Finally, by Theorem 2.1.6 all of the elements in the shift

box are distinct and A is a pj..¢, square. a

Let o be the maximum size of any template in the set of constant-perimeter

templates. For odd p, o = 2% 4 z and for even p, o = z2.

Corollary 3.2.4 The Plrcf, Square for odd p can be accessed in two memory cycles

when stored in o memory modules if v is relatively prime to n.

Proof: Since n = 2z? < 2z(z + 1) = 20 for all z > 0, any memory modules from o
to 20 — 1 can be mapped onto the memory modules 0 to o — 1 and can be accessed

in the second memory cycle. a

Thus, if one wishes to increase memory utilization to satisfy Point 3, one can

store the templates in ¢ memory modules.

Now, we turn to the second main case, when the perimeter v = 2p and p is
even. We write p = 2z, and thus y = z = £. We would like conflict-free access to

all (z —¢,v) X (@ + ,v) rectangular subarrays of an n x n array for —z < i < @.
Theorem 3.2.5 If a Pref, Square of order n exists for even p, n > 2z? — 2z + 1.

Proof: By Corollary 3.1.1 all of the elements in the p,-diamond must be distinct.
It follows by Lemma 3.1.3 that n > 2z? — 2z + [z odd]. Thus, when z is odd, we

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 55

achieve the bound in the statement of the theorem. When z is even, we obtain
n > 2z? — 2z by Lemma 3.1.3. Thus, we only need to show that n # 2z — 2z.
Shapiro shows in general that a template tiles a plane if and only if a skewing scheme
exists [Sha78]. Thus, any Prcf, Square of order 2z? — 2z must correspond to a tiling
of the plane with a p,-diamond. Thus, one can choose an arbitrary external element
of the p,-diamond and attempt to place it next to every possible external element
in a replica copy of a p,-diamond. This type of case analysis reveals that there
are only two possible tilings which are represented in Figure 3.6 and Figure 3.7.

In the first tiling, a (1,v) x (# + ¢ — 1,v) template is not conflict-free. Thus,

T

o] vl [

| | |7

T T

Figure 3.6: First possible tiling of the p,-diamond for even p and even z

while the p,-diamond tiles the plane, the tiling does not provides a p,.¢, square.

In the second tiling, an (z + z — 1,v) x (1,v) template is not conflict-free. Thus,

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

IL_ =1 :b
= =

Figure 3.7: Second possible tiling of the p,-diamond for even p and even =

56

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 57

there is no possible tiling of the plane with the p,-diamond and n > 2z? —2z +1. O

Let n = 222 —2z+1, and define an n xn square B = (a; ;),a;; = (:—1)(2z—1)+7
(mod n).

A p,-zircon is the p,-diamond for even p and even z together with the cell
Sv(g —liz+ 3 — 1), which is an element added onto the North-East side of the

East stairs as depicted in Figure 3.8.

Figure 3.8: The p,-zircon

Theorem 3.2.6 B is a Pref, and a Plrcf, Square for even p when v s relatively

prime to n.
The proof is based on the following lemma.

Lemma 3.2.7 If an (z — 1,2z — 1, z,v) shift-box contains distinct elements in B,
then the p,-diamond for odd x and the p,-zircon for even x contain distinct elements

for even p when v s relatively prime to n.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 58

Proof: First we examine the p;-diamond and the p;-zircon. The upper left-hand
corner of the shift-box is placed over the North-West corner of the North-most

stair of the p;-diamond or the p;-zircon as displayed in Figure 3.9. Next, a;; =

Figure 3.9: Shift-box placed over the p;-diamond and p;-zircon

all

il

Figure 3.10: Shifting rows = 4 1 through 2z — 1 to shift-box

@iz jte—1 (mod n)since (—z)(2z—1)+(z—1)=0 (mod n). Thus, according to
the cyclic construction, this element is the same element and rows (z + 1) through
(22 — 1) are shifted up z rows and over (z — 1) columns as displayed in Figure 3.10.

Now, a;; = @;—1j+20-1 (mod n) since (—1)(2z — 1)+ 2z —1 =0 (mod n), this

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 59

element is the same. Thus, all of the elements in rows 2 through z not contained
in the shift-box are shifted up one row and over (2z — 1) columns. This shift is
displayed in Figure 3.11. Finally, by Lemma 2.1.7, the above shifts are valid for

po-diamonds and p,-zircons. O

Figure 3.11: Shifting rows 1 through z to shift-box

Proof of Theorem 3.2.6. Since (2z — 1) is relatively prime to (2z* — 2z + 1) =
(2¢ —1)(z — 1)+, B islatin. Thus, by Corollary 3.1.2 if B is conflict-free for some
py-diamond then it is a Pref, square. Since the p,-zircon contains the p,-diamond,
this also holds for the p,-zircon. By Lemma 3.2.7, the p,-diamond and the p,-zircon
are conflict-free if the shift-box is conflict-free. Finally, by Theorem 2.1.6 all of the

elements in the shift box are distinct and B is a pj,.f, square. a

Recall that o is the maximum size of any template in the set of constant-

perimeter templates.

Corollary 3.2.8 The Plrcf, Square for even p can be accessed in two memory cycles

2

when stored in o = x° memory modules if v 1s relatively prime to n.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 60

Proof: Since n = 2z% — 2z + 1 < 2z% = 20 for all z > 0, any memory modules
from o to 20 — 1 can be mapped onto the memory modules 0 to (¢ — 1) and be

accessed in the second memory cycle. a

Once again, if one wishes to increase memory utilization, one can store the
templates in ¢ memory modules. This would lead to a higher memory utilization
and accommodate Point 3. Observe that if vu = n, that is to say, v is not relatively
prime to n, there are v symbols in the p-diamond which are repeated u times. Each
set of v symbols requires two memory cycles. Thus, for vu = n, 2u memory cycles

are required when stored in ¢ memory modules.

Since the skewing scheme should reflect the needs of algorithms (Point 1) and
maximize memory utilization (Point 3), one may desire more flexibility for the
situation when v is not relatively prime to n. Thus, we offer another set of skewing
schemes. If the number of memory modules used in the first scheme is relatively
prime to the number of memory modules used in the additional scheme, then the
only stretches which cannot be accommodated are those which have a common

prime factor with each scheme.

Once again, let the perimeter of the rectangular subarray be v = 2p. We treat
the case when p is even, the perimeter v = 2p and thus y = z. In this case
we directly show that the p-diamond is conflict-free within the square. This is
accomplished by breaking the problem into three cases, when ¢ = 0,1,2 (mod 3).
We would like to be able to have conflict-free access to all (z—¢) x (z+1) contiguous

rectangular subarrays of an n x n array where —z < 1 < z.

Let n = 22 —2z+3 = 18¢®—18e+7, and define an n xn square A = (a;;),a;; =
(: —1)(6e* —8e+4)+j (mod n) where z = 3¢ — 1 and e is an integer.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 61

Let the p,-thinestone be the p,-diamond for p = 0 (mod 4) together with
Sv(g tx+ g)USv(g—l—l:w—l—g—l)USv(§—|—2:w—|—§—2). In other words, there
is one element added onto the South-East end of the three East-most stairs (see

Figure 3.12).

Figure 3.12: The p,-rhinestone

Let the p,-sapphire be the p,-diamond for p = 2 (mod 4) together with
So([5] + 2 + ng -1HU Sv((ﬂ +1:z+ EJ) In other words, there is one el-

2
ement added onto the South side of the two East-most stairs (see Figure 3.13).

Theorem 3.2.9 A s a Pref, and a Plrcf, Square for even p and x = 3e — 1 where

e 1s an integer.
The proof is based on the following lemmas.

Lemma 3.2.10 The p,-sapphire contains distinct elements in A for x = 3e — 1

where € is an even integer.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 62

’_D_‘

o

Figure 3.13: The p,-sapphire

Proof: For even e, there are 6e — 3 rows in the p,-sapphire. The first 3¢ — 1 rows
continue counting 3e — 2 rows down since @;; = @it13e-2;-3¢+1 (mod n). Thus,
rows 3e — 3 through 6e — 3 are a continuation of these rows (see Figure 3.14). Rows
3e and 3e + 1 continue at rows 3e — 3 and 3e — 2 as they are shifted up three rows
since a; ; = ;3 j-¢e+5 (mod n). The remaining rows, row 3e 4+ 2 through 6e — 3
continue counting 3e + 1 rows up since a;; = @;—3c—1,j-3e+4 (mod n). Thus, all

the rows and all the elements are uniquely accounted for. a

Lemma 3.2.11 The p,-rhinestone contains distinct elements in A for z = 3e — 1

where e is an odd integer.

Proof: For odd e, e > 1, there are 6e — 4 rows in the p,-rhinestone. The first 3e — 2
rows continue counting 3e—2 rows down since a; ; = @;13¢-2,j-3c+1 (mod n). Thus,
rows 3e — 3 through 6e — 4 are a continuation of these rows. Rows 3e — 1 through
3e + 1 continue at rows 3e — 4 through 3e — 2 as they are shifted up three rows
since a; ; = a;_3j-¢e+5 (mod n). The remaining rows, row 3e + 2 through 6e — 4
continue counting 3e + 1 rows up since a;; = @;—3c—1,j-3e+4 (mod n). Thus, all

the rows and all the elements are uniquely accounted for.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

14
26 27
38 39 40
7 8 9 10
19 20 21 22
28 29 30 31 32 33

43

Figure 3.14: First 3e — 1 rows continue 3e — 2 rows down

x=3(2)-1
s=12

n=43

63

For the case when e = 1, the 4,-diamond is conflict-free as exhibited in the

square in Figure 3.1.

Proof of Theorem 3.2.9: Since,

ged(18€® — 18¢ + 7,6€* — 8e + 4)
= gcd(18€® — 18e + 7,3¢” — 4e + 2)
= gcd(3€® — 4e +2,6e — 5)

= gcd(6e® —8e +4,6e — 5)

a

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 64

01,23/ 4/5/|6
231415 601
4156012 3
6012 345
11234560
3/4/5/6 /012
56,0123 4

Table 3.1: The A square for e =1

= gcd(6e —5,—3e +4)
= ged(—3e +4,3)

= 1.

the shift is relatively prime to n and A is a latin square. By Corollary 3.1.2, A
is a Plrcf ,-Square if the p,-diamond contains distinct elements. Since p,-sapphire
and the p,-rhinestone contain the p,-diamond, this also holds for the p,-sapphire
and the p,-rhinestone. By Lemmas 3.2.10 and 3.2.11, the p,-sapphire and the p,-

rhinestone respectively contain distinct elements. a

Let n = 22® — 2z + 5 = 18¢? — 6e + 5, and define an n x n square B = (a;;),a;; =

(: —1)(6e* —4e+2)+j (mod n) where z = 3e and where ¢ is an integer.

Let the p,-ruby be the p,-diamond for p = 0 (mod 4), together with the
elements Sv(%“”—l—l : g—l—l)USv(g : w—l—g—l)USv(g—l—l : w—l—%—?,w—l—g). In other
words, there is one element added onto the East side of the North-most stair, one

element added onto the South-East set of stairs, and three elements added onto the

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 65

East side of the stairs at level £ — 2 (see Figure 3.15).

2@

T

Figure 3.15: The p,-ruby

Let the p,-topaz be the p,-diamond for p = 2 (mod 4), together with the
(ﬂ, (ﬂ + 1)U Sv((ﬂ x4 ng — 1,z + ng) In other words,
there are two elements added onto the North-East side of the North stairs, and

elements S,(| 5] :

two elements added onto the Fast side of the East stairs at level ng — 1 (see
Figure 3.16).

Theorem 3.2.12 B is a Prefo and a Plrcf, Square for even p and © = 3e.
The proof is based on the following lemmas.

Lemma 3.2.13 The p,-ruby contains distinct elements in B for even © = 3e,

where e and p are even.

Proof: For even e, there are 6e — 2 rows in the p,-ruby. The first 3e rows continue
counting 3e — 2 rows down since @; ; = @;13e-2,;-3c—1 (mod n). Thus, rows 3e — 1
through 6e — 2 are a continuation of these rows. Row 3e+ 1 continues at row 3e —2

since a;; = a;—3j-6e+1 (mod n). The remaining rows, row 3e + 2 through 6e — 2

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 66

Figure 3.16: The p,-topaz

continue counting 3e + 1 rows up since a; ; = @;_3e—1,j-3c+2 (mod n). Thus, all

the rows and all the elements are uniquely accounted for. a

Lemma 3.2.14 The p,-topaz contains distinct elements in B for even z = 3e,

where e is odd and p is even.

Proof: For odd e, there are 6e — 1 rows in the p,-topaz. The first 3e + 1 rows
continue counting 3e — 2 rows down since @;; = @;t13e-2;-3.—1 (mod n). Thus,
rows 3e — 1 through 6e — 1 are a continuation of these rows. The remaining rows,
row 3e+2 through 6e—1 continue counting 3e+1 rows up since a; ; = @;_3e—1,j—3¢+2

(mod n). Thus, all the rows and all the elements are uniquely accounted for. O

Proof of Theorem 3.2.12: Since,

ged(18€® — 6e + 5,6¢” — de + 2)

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 67

= gcd(18€® — 6e + 5,3e> — 2e + 1)
= gecd(3e® —2e +1,6e — 1)

= gcd(6e® — de +2,6e — 1)

= ged(be —1,—3e +2)

= gcd(—3e+2,3)

= 1L

the shift is relatively prime to n and B is a latin square. By Corollary 3.1.2, Bis a
Plrcf,-Square if the p,-diamond contains distinct elements. Since p,-ruby and the
p,-topaz contain the p,-diamond, this also holds for the p,-ruby and the p,-topaz.
By Lemmas 3.2.13 and 3.2.14, the p,-ruby and the p,-topaz respectively contain

distinct elements. O

Let n = 22? — 2z + 5 = 18¢® + 6e + 5, and define an n x n square C' = (a;), a;; =
(: —1)(6e* +4e+2) +j (mod n) and where z = 3e + 1, where e is an integer.

Let the p,-emerald be the p,-diamond for p = 0 (mod 4) together with the
elements Sv(§—2 ret 5 — 2,2+ g)USv(g—l : w—l—g—l)USv(w+§—2 : g—l—l). In
other words, there are three elements added onto the East side of the East stairs at

level 7 — 2, one element added onto the East side of the stairs at level § —1 and one

element added onto the East side of the South stair at level § —1 (see Figure 3.17).

Let the p,-opal be the p,-diamond for p = 2 (mod 4) together with the ele-
ments S,(|5| —1:z+ (5] — 2,2+ (5] —1)US,(z+ 5] —1:[5]+1,[5] +2).
In other words, there are two elements added onto the East side of the East stairs

at level ng — 1 and two elements added onto the East side of the South stairs at

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 68

i

I |
I [

=

Figure 3.17: The p,-emerald

level + ng + 1 (see Figure 3.18).

Theorem 3.2.15 C s a Prefo and a Plrcf Square for even p and x = 3e + 1 where

e 1s an integer.
The proof is based on the following lemmas.

Lemma 3.2.16 The p,-opal contains distinct elements in C' for x = 3e where ¢

and p are even.

Proof: For even e, there are 6e + 1 rows in the p,-opal. The first 3e — 1 rows
continue counting 3e + 2 rows down since @;; = @it3e42,-3¢+1 (mod n). Thus,
rows 3e + 3 through 6e + 1 are a continuation of these rows. The remaining rows,
row 3e through 6e + 1 continue counting 3e — 1 rows up since a; ; = @;_3e41,j—3¢—2

(mod n). Thus, all the rows and all the elements are uniquely accounted for. O

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 69

FE=iy

T

h

Figure 3.18: The p,-opal

Lemma 3.2.17 The p,-emerald contains distinct elements in C' for @ = 3e where

e is odd and p is even.

For odd e, there are 6e rows in the p,-emerald. The first 3¢ — 2 rows continue
counting 3e + 2 rows down since a;; = @;13e42,j-3¢+1 (mod n). Thus, rows 3e + 3
through 6e are a continuation of these rows. Row 3e — 1 continues at row 3e + 2
since a; ; = a;1+3,j-6e—1 (mod n). The remaining rows, row 3e through 6e continue
counting 3e — 1 rows up since @;; = @;_3e41,j-3c—2 (mod n). Thus, all the rows

and all the elements are uniquely accounted for. a

Proof of Theorem 3.2.15 Since,

ged(18€® + 6e + 5,6 + 4e + 2)
= ged(6e® + 4de +2,—6e — 1)
= ged(—6e —1,3e +2)
= gcd(3e +2,3)

= 1.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 70

the shift is relatively prime to » and C is a latin square. By Corollary 3.1.2, A
is a Plrcf,-Square if the p,-diamond contains distinct elements. Since p,-opal and
the p,-emerald contain the p,-diamond, this also holds for the p,-opal and the p,-
emerald. By Lemmas 3.2.16 and 3.2.17, the p,-opal and the p,-emerald respectively

contain distinct elements. O

Tables 3.2 through 3.4 contain the listings of the prime factors of the n value
for our minimum linear skewing scheme, referred to in the tables as first, and the
aforementioned schemes referred to in the tables as second. If one or the other
scheme yields a prime number of memory modules, for a particular = value, then
that @ value is not listed since all possible stretch values are possible in those cases.
A stretch value which will not be conflict-free must have a prime factor in each of
the two categories, otherwise it is conflict-free in the scheme with which it does not

share a prime factor.

Table 3.5 indicates computational results for additional linear skewing schemes
for Plrcf, Squares for even p. They are displayed by their # value and by the num-
ber of memory modules utilized above the minimum linear skewing scheme. The
bold-face numbers represent the families of skewing schemes proved in this thesis.
Table 3.6 indicates computational results for additional linear skewing schemes for
Plrcf, Squares for odd p. They are displayed by their value and by the number of
memory modules utilized above the minimum linear skewing scheme. The bold-face
numbers indicate those schemes which are equivalent to using the skewing scheme

for p + 1.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

X first second X first second
16 13, 37 5, 97 75 17, 653 5, 2221
19 5, 137 13, 53 76 13, 877 5, 2281
28 17, 89 37, 41 (i 2341, 5 23, 509
34 5, 449 13, 173 78 41, 293 61, 197
37 15,13, 41 17, 157 81 13, 997 5, 2593
38 29, 97 5, 563 82 5, 2657 97, 137
41 | 17,193 7, 67 84 5, 2789 | 13, 29, 37
44 5, 757 7, 541 90 37, 433 5, 641
45 | 17,233 | 5,13, 61 96 | 17,29, 37 | 5,41, 89
46 | 41, 101 5, 829 97 5,149 | 13, 1433
49 5, 941 17, 277 99 5, 3881 | 13, 1493
53 | 37,149 5, 1103 || 102 | 5, 13, 317 37, 557
54 5, 229 17, 337 ||| 104 5, 857 7, 3061
55 | 13,457 | 5,29,41 || 106 113,197 5, 61,73
58 | 17,389 13, 509 ||| 107 | 5,13,349 7, 463
59 5, 37 41, 167 | 112 5, 4973 13,1913
60 73,97 | 5,13, 109 | 113 17,1489 5,61,83
62 | 5,17,89 @ 7,23,47 || 114 5,5153 73,353
65 | 53,157 | 7,29,41 || 115 13,2017 5,1049
68 | 13,701 5, 1823 ||| 117 5,61,89 17,1597
69 | 5, 1877 41, 229 ||| 121 113,257 | 5,37,157
72 5, 409 53, 193 || 125 29,1069 | 7,43,103
74 | 5,2161 | 101, 107

Table 3.2: List of prime factors of n values 1 < & <125

71

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

X first second X first second

126 17, 109 5, 6301 || 171 53, 1097 | 5,29, 401
128 | 13, 41, 61 5,7,929 || 172 @ 5,13, 181 89, 661
130 | 17,1973 5,6709 || 177 | 5,17, 733 13, 4793
134 5, 7129 43, 829 || 178 61, 1033 | 29, 41, 53
135 97, 373 5, 7237 ||| 180 13, 4957 5, 12889
137 | 5, 29, 257 83,449 || 181 17, 3833 5, 13033
139 5, 7673 17, 37, 61 || 182 5, 13177 41, 1607
141 | 13, 3037 5, 53, 149 || 185 13, 5237 103, 661
142 5, 8009 29, 1381 || 187 5, 13913 73, 953
143 | 17, 2389 5, 8123 || 191 181, 401 7, 10369
146 | 13, 3257 7,23, 263 ||| 192 5, 14669 41, 1789
149 5, 8821 7, 6301 || 193 13, 5701 137, 541
151 89, 509 | 5, 13, 17, 41 || 195 29, 2609 | 5, 37, 409
152 5, 9181 29, 1583 || 197 5, 3089 29, 2663
153 | 241, 193 181, 257 ||| 201 | 37, 41, 53 | 5, 13, 1237
156 | 137, 353 5, 17, 569 ||| 202 | 5, 109, 149 17, 281
159 | 5, 13, 773 109, 461 | 204 5, 3313 113, 733
160 | 17, 41, 73 5,10177 || 207 | 5,37,461 | 17, 29, 173
162 | 5, 10433 13, 4013 ||| 209 5, 17389 7, 12421
164 | 5,17, 37 127, 421 || 210 41, 2141 | 5,97, 181
166 | 29, 1889 5, 10957 ||| 211 | 13, 17, 401 5, 709
167 | 853, 5, 13 7,89 || 212 | 5,29, 617 7, 12781
169 | 5, 41, 277 109, 521 | 214 5, 18233 13, 7013
170 | 37, 1553 7, 8209 || 215 17, 5413 23, 4001

Table 3.3: List of prime factors of n values 126 < z < 215

72

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

X first second X first second
216 317, 293 | 5, 13, 1429 || 256 137, 953 5, 26113
217 5, 18749 241, 389 ||| 257 5, 26317 181, 727
219 5,13, 113 | 17, 41, 137 ||| 258 13, 101 | 17, 29, 269
220 557, 173 5,19273 || 263 | 13, 10601 | 5,43, 641
228 17, 6089 61, 1697 || 269 5, 28837 23, 6269
229 5, 4177 | 13, 29, 277 ||| 270 29, 5009 | 5, 17, 1709
232 | 5,13, 17, 97 37,2897 || 271 | 13, 11257 5, 29269
233 73,1481 | 5,7,3089 || 272 5, 5897 7, 21061
235 109, 1009 5, 21997 ||| 274 5, 29921 41, 89
238 37,3049 | 101, 1117 || 275 37,4073 7, 21529
239 5,61, 373 29,3923 ||| 276 | 13, 11677 | 5,97, 313
240 89, 1289 | b5, 13, 353 || 278 233, 661 5, 30803
241 29, 3989 | 5, 17, 1361 || 279 5,17, 73 | 13, 11933
242 5,41, 569 67,1741 || 284 | 5, 13, 2473 | 23, 29, 241
246 809, 149 5, 24109 ||| 287 5, 32833 181, 907
247 5, 4861 53, 2293 || 289 | 5, 13, 197 61, 2729
248 101, 1213 | 5, 107, 229 || 292 | 5, 41, 829 | 13, 17, 769
249 | 5,17,1453 | 113,1093 || 293 | 137,1249 | 5,7, 4889
250 | 13, 61,157 | 5,37,673 || 294 5, 34457 | 13, 29, 457
251 41, 3061 7, 17929 ||| 295 89, 1949 5, 34693
252 5, 25301 73,1733 ||| 296 | 17,10273 | 7,61, 409
253 29, 4397 | 13, 17, 577 || 300 | 17, 61, 173 | 5, 53, 677
254 5, 53, 97 7,43, 61
255 281, 461 | 5, 13, 1993

Table 3.4: List of prime factors of n values 216 < = < 300

73

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS 74

In general, to find a family of skewing schemes, one attempts to find a pattern
in the number of memory modules. If a pattern is located, one then examines all
the related skew factors and tries to find a pattern. If a pattern is found, one
then attempts to prove that this pattern of skews represents a family of skewing
schemes by proving that the elements in the p-diamond are distinct. It would be
of substantial interest to find a mechanical technique for finding such patterns.
By examining Tables 3.5 and 3.6, one realizes that one cannot arbitrarily choose
a value for n above the minimum when implementing a skewing scheme. All n
values, even if larger than the upper bound, do not realize a construction because
of constraints on the relationship of the skew value, the n value and the set of
templates. Furthermore, the aforementioned techniques do not seem to be helpful

in identifying additional linear skewing schemes for p..¢ squares.

3.3 Additional Implications

In addition to the above results, there are additional implications when one is
dealing with (z,v) x (y,v) rectangular subarrays because of the theorem regarding
shift-boxes which allows them to be stretched, in particular Theorem 2.1.6 and
because of the lemma which allows the shifts to hold, in particular, Lemma 2.1.7.
Recall from Wijshoff that two blocks of equal size n and equal stretch can not be

stored in n memory modules [Wij89].

Define a (z,y), conflict-free latin square* to be a (z,y) conflict-free latin square

with stretch v.

Lemma 3.3.1 There is a(z,y), conflict-free latin square of order n withn = zy+p
for1 <p<y.

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

X Difference above minimum n

2 314 6|78 9 11 12 |13 |14 |15 |16 | 17 18
3 4156 8191011 12|13 |14 |15 |16 | 17 | 18
4 4 67 8|9 12 |13 |14 | 15 | 16 18
5 4 6 81910 12 14 16 | 17 | 18
6 4 6 8 10 |11 |12 |13 |14 |15 16 | 17 | 18
7 4 6 10 12 113 | 14 16 18
8 4 8 10 12 14 |15 | 16 | 17 | 18
9 4 6 8 12 14 16 | 17 | 18
10 4 6 10 12 16 18
11 6 8 10 12 16 18
12 4 6 12 14 16 18
13 4 6 10 12 16 18
14 4 8 12 14 16 18
15 4 10 12 14 16 18
16 4 6 10 12 16 18
17 4 6 8 12 14 16 18
18 4 6 10 12 16 18
19 4 6 12 16 18
20 6 8 10 12 16

21 4 10 12 16 18
22 4 12 16 18
23 4 6 8 10 12 14 16 18
24 4 6 12 16 18
25 4 6 10 12 16 18

Table 3.5: Additional skewing schemes found for even p

75

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS

76

X Difference above minimum n

x 516, 7/8/9|10|11 |12 13 |14 |15 |16 |17 18 19
2 5 7 9 11 13 15 17 19
3 5 7 11 13 17 19
4 5 7 9 11 13 15 17 19
5 9 11 17 19
6 7 11 13 17 19
7 9 11 13 15 17 19
8 9 11 15 17

9 11 17 19
10 11 13 17 19
11 15 17

Table 3.6: Additional skewing schemes found for odd p

CHAPTER 3. ALL CONSTANT-PERIMETER SUBARRAYS (i

Proof: By Theorem 2.1.6 their shift-box equivalent may be stretched. By Lemma 2.1.7
their shifts are valid if the blocks are stretched. The non-stretch proofs are pre-
sented in [CH92]. O

Define a {z,y}, conflict-free latin square* to be a latin square in which no
element appears more than once in any (z,v) X (y,v) or (y,v) x (z,v) subarray as
well as the rows or columns. Table 3.7 displays extensions to the results from [CH92]
which follow immediately from Theorem 2.1.6 and Lemma 2.1.7 for v relatively

prime to n.

relations for and y n value
z>y+1 n>axy+y
2<y<e<y n>ey+(2y —z)(z—y)+1
z>y n>zy+ty

z>y>2andz=1 (mody) | n=zy+y

z>y>2and ged(z,y) =1 n=y(z+y—1)

Table 3.7: Results for blocks of equal size and stretch

Lemma 3.3.2 When « > 4 is even, there is no {x,2}, conflict-free latin square of

order 2z + 2 or 2z + 3.

Proof: As before, by Theorem 2.1.7, Lemma 2.1.6 and by [CH92]. O

Lemma 3.3.3 If ¢ # 1 (mod y),z > 2y — 1,z > y > 3, there is no {z,y},

conflict-free latin square of order xy + y.

Proof: As before, by Theorem 2.1.7, Lemma 2.1.6 and by [CH92]. O

Chapter 4

Constant-Area Subarrays

The previous chapters all concern constant-perimeter rectangular subarrays. These
results can be used for lower bounds for conflict-free access to constant-area rect-
angular subarrays. Consider the problem of conflict-free storage of all @ x 8 < z
contiguous rectangular subarrays of an n x n array. Such a square is said to be area
conflict-free (zacf)*' If the square is also latin, the square is said to be area latin
conflict-free (z,1.¢)*. This problem has a set of templates whose size is a function

of the area.

Consider all rectangular subarrays of fixed area z. Now choose a perimeter p
satisfying p? — 1 < 4z < (p + 1)%. Every rectangular subarray of perimeter p has
area at most z. Thus, we can apply our results to obtain a lower bound, using a
Plref Square when p is odd. Figure 4.1 presents a comparative graph. The previous
lower bound results from work by Colbourn and Heinrich [CH92]. The linear results
for constant-area rectangular subarrays are found by brute force and represent the
minimal linear skewing schemes for constant-area rectangular subarrays plotted at

every change in skew factor and number of memory modules. The new lower bound

78

CHAPTER 4. CONSTANT-AREA SUBARRAYS 79

represents the results for constant-perimeter rectangular subarrays plotted at their
z values. The actual computation values for minimal linear skewing schemes are
located in Tables 4.1 and 4.2. This table presents the minimum and maximum z

value that works for a given shift value, s, and a given n.

4.1 New Upper Bound

We wish to find an upper bound on n, the number of memory modules needed to
store z,.¢ squares. In order to obtain a rough upper bound, we consider a single
element, the star-element. Next we consider every other element that may be
possibly involved in a template instance with our chosen element. These elements
together with the star element form the star-diamond. An example of a star-

diamond is shown in Figure 4.2.
Lemma 4.1.1 There are at most 4zInz + O(z) elements in the star-diamond.

Proof: Partition the star-diamond into three pieces, the center row, the portion
above the center and the portion below the center. The center row has 2z — 1

elements. The portion below and the portion above have the same number of

elements. The number of elements in the portion above is less then 32771 (2i — (:—

7i7) where 2: — 1 defines the width and (% — ;%;) defines the height for a given

segment of the star-diamond. Thus, counting the elements in the star-diamond, we

see that

z—1

n<2z—1+42) (21— 1)

=1

z z)
v 141

CHAPTER 4. CONSTANT-AREA SUBARRAYS

A Comparative Graph

"Number of memories" x 103

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Figure 4.1:

1.00

2.00

80

Constant Area

Previous Lower Bound

"Sizeof 2" x 103

Constant-perimeter vs. constant-area

CHAPTER 4. CONSTANT-AREA SUBARRAYS

z | s |n|n/z| z s n | n/z| = s n | n/z
6 3| 8125 | 54 29105 | 1.94 | 195 144 377 | 1.93

70 3 8 114 | 59| 29| 105 1.22 || 196 | 131 | 443 | 2.26
8| 512 15| 60 34 |123|2.05 203 | 131 | 443 2.17
9 5|13 144 | 69 34 |123 1.78 | 204 | 123 | 445 | 2.18
11| 5 13 | 1.18 70 | 55 | 144 | 2.06 || 227 | 123 | 445 | 1.96
12 8|21 | 1.75 80 | 55 | 144 | 1.82 | 228 | 131 | 474 2.07
15| 821 |1.41 81 | 47 | 170 | 2.09 || 230 | 131 | 474 | 2.06
16 | 8 29 | 1.81 94 | 47 | 170 | 1.81 || 231 | 212 | 505 | 2.19
17 8129 | 1.71 | 95| 81 | 193 | 2.03 || 245 | 212 | 505 | 2.06
18 |13 34 | 1.88 96 | 55 | 199 | 2.07 || 246 | 144 | 521 | 2.12
23 113 134|142 107 | 55| 199 | 1.86 || 263 | 144 | 521 | 1.98
24 |13 | 47 | 1.96 | 108 | 89 | 233 | 2.16 || 264 | 212 | 555 | 2.10
27 |13 | 47 | 1.52 | 125 | 89 | 233 | 1.86 || 269 | 212 | 555 | 2.06
28 121 | 55 | 1.96 | 126 | 81 | 274 | 2.17 || 270 | 233 | 610 | 2.25
35121 |55 | 1.24 127 | 81 | 274 | 2.15 || 307 | 233 | 610 | 1.98
36 | 18 | 65 | 1.81 | 128 | 76 | 275 | 2.15 || 308 | 212 | 717 | 2.33
37118 165 | 1.75 | 143 | 76 | 275 | 1.92 || 327 | 212 | 717 | 2.19
38 |31 | 74 | 1.95 144 | 131 | 312 | 2.17 || 328 | 199 | 720 | 2.20
39 12176 | 1.95 | 152 | 131 | 312 | 2.05 | 359 | 199 | 720 | 2.01
43 |21 | 76 | 1.76 || 153 | 89 | 322 | 2.10 || 360 | 212 | 767 | 2.13
44 | 34 ' 89 | 2.02 | 167 | 89 | 322 | 1.93 || 371 | 212 | 767 | 2.06
53 |34 | 89 | 1.67 | 168 | 144 | 377 | 2.24 || 372 | 343 | 817 | 2.19

Table 4.1: Constant area constructions for 6 < z < 372

CHAPTER 4.

CONSTANT-AREA SUBARRAYS

82

z s n | n/z z s n | n/z z s n | n/z
395 | 343 | 817 | 2.06 | 699 | 555 | 1453 | 2.70 || 1291 | 788 | 2851 | 2.21
396 | 233 | 843 | 2.13 | 700 | 610 | 1597 | 2.20 || 1292 | 898 | 3037 | 2.21
417 | 233 | 843 | 2.02 | 769 610 1597 2.08 || 1375 | 898 | 3037 | 2.21
418 | 343 | 898 | 2.15 | 770 | 487 | 1762 | 2.28 || 1376 | 843 | 3050 | 2.22
434 | 343 | 898 | 2.06 | 799 | 487 | 1762 | 2.20 || 1439 | 843 | 3050 | 2.12
435 | 377 | 987 | 2.27 | 800 | 555 | 1877 | 2.35 || 1440 | 898 | 3249 | 2.26
483 | 377 | 987 | 2.04 | 851 | 555 | 1877 | 2.21 || 1529 | 898 | 3249 | 2.12
484 | 301 | 1089 | 2.25 852 | 521 | 1885 | 2.21 | 1530 | 1453 | 3461 | 2.26
495 | 301 | 1089 | 2.20 899 | 521 | 1885 | 2.10 || 1631 | 1453 | 3461 | 2.12
496 | 343 | 1160 | 2.34 | 900 | 555 | 2008 | 2.23 || 1632 | 987 | 3571 | 2.19
527 | 343 | 1160 | 2.20 || 959 | 555 | 2008 | 2.09 || 1679 | 987 | 3571 | 2.13
528 | 322 | 1165 | 2.21 | 960 | 898 | 2139 | 2.23 || 1680 | 1453 | 3804 | 2.26
569 | 322 | 1165 | 2.05 || 1019 | 898 | 2139 | 2.10 || 1784 | 1453 | 3804 | 2.13
570 | 343 | 1241 | 2.18 || 1020 | 610 | 2207 | 2.16 || 1785 | 898 | 4147 | 2.32
599 | 343 | 1241 | 2.07 || 1049 | 610 | 2207 | 2.10 || 1797 | 898 | 4147 | 2.31
600 | 555 | 1322 | 2.20 || 1050 | 898 | 2351 | 2.24 || 1798 | 1597 | 4181 | 2.31
638 | 555 | 1322 | 2.07 || 1119 | 898 | 2351 | 2.10 || 1959 | 1597 | 4181 | 2.13
639 | 377 | 1364 | 2.13 || 1120 | 987 | 2584 | 2.31 || 1960 | 987 | 4558 | 2.33
659 | 377 | 1364 | 2.07 || 1224 | 987 | 2584 | 2.12 || 1975 | 987 | 4558 | 2.31
660 | 555 | 1453 | 2.13 || 1225 | 788 | 2851 | 2.33 || 1976 | 1275 | 4613 | 2.33

2000 | 1275 | 4613 | 2.31

Table 4.2: Constant area constructions for 372 < z < 2000

CHAPTER 4. CONSTANT-AREA SUBARRAYS

The Star Element

Figure 4.2: The star-diamond

*

83

CHAPTER 4. CONSTANT-AREA SUBARRAYS 84

=191
= 2z—1—|—2z§ —
i:17'(7"|'1)

02 z 1

= 2z—1+2z - — —
[;z—l—l ;z(z—l—l)]

< 2z—14+2 —

= +z[i:1i—|—1

< 2z—-1+4z H,

< 2z—-1+44zlnz+ 0(1)

< 4zlnz + O(z)

H, is defined to be the A1 harmonic. See [GKP89] for more details. Thus, if
we count these elements, we get an upper bound on the number of elements of

4zlog z + O(z). O

Theorem 4.1.2 There exists a constant ¢ and an ng such that if n > ng and

n > czlog z one can always provide a Zgef Square (that is, n is Q(zlog 2)).

Proof: Relating this problem to graph-colouring, we let every element in the square
be a vertex. We place an edge between two vertices if and only if the two elements
are involved in a template instance. Thus, Lemma 4.1.1 provides an upper bound
on the maximum degree of a vertex in the graph. The upper bound on the de-
gree provides an upper bound on the chromatic number of the graph. Since the
chromatic number is equivalent to the minimum number of memory modules for
conflict-free storage, we have an upper bound on n by Brooks’s Theorem [CL86].

a

This is a large improvement over the previous results of O(z?) which can be

found using d-Manhattan results by Colbourn and Heinrich [CH91].

CHAPTER 4. CONSTANT-AREA SUBARRAYS 85

4.1.1 Graph-Colouring Method

In general, we can always relate the conflict-free problem to graph-colouring to
attempt to obtain an upper and lower bound for a given set of templates. First,
we let every element in the square be a vertex. We place an edge between two
vertices if and only if the two elements are involved in a template instance. Thus,
every template instance forms a clique. Two vertices have an edge if and only
if they are in a template instance together. By definition of the vertex-colouring
problem, two vertices are not coloured the same colour if they are connected by an
edge. Likewise, two elements should not be placed in the same memory module if
they are contained in a common template instance. Thus, the chromatic number
of the graph is equivalent to the minimum number of memory modules necessary
to store the set of templates conflict-free. If one can find the chromatic number
of the graph in general, one has found the minimum number of memory modules
necessary. If not, one needs to look for bounds. In finding a pessimistic upper
bound on the chromatic number of a graph, one often uses Brooks’s Theorem. This
implies bounding the maximum degree of the graph. The upper bound on the
maximum degree then, through Brooks’s Theorem, one obtains an upper bound.
There are several techniques one could use to attempt to lower this bound such as
classifying the graph, but this may be difficult. One technique that is frequently
used involves dividing the graph into subgraphs. One can then independently colour
the subgraphs, and sum the number of colours used on the subgraphs. Since the
edges between the subgraphs are connected to the different colour groups used by

the subgraphs, they can be ignored.

CHAPTER 4. CONSTANT-AREA SUBARRAYS 86
4.1.2 Skewing Using Permutations

Consider a permutation pq,ps2,...,pn. Let p, represent where a 1 is placed in row
a of column p,. Thus, one could use the permutation to define a skewing scheme.
The rest of the elements of the row continue sequentially from the first, modulo
n. One could then place restrictions on the permutation to represent the set of
templates one desires to be conflict-free. For example, a permutation is considered
to be conflict-free for all rectangular subarrays of area z with horizontal wrapping
where z = minimum over all a and 8 of (min(|p, — ps|, 7 — |pa — ps|))(|a — B]). If
one also desires vertical wrapping, then a permutation is considered to be conflict-
free for all rectangular subarrays of area z with horizontal wrapping where z =

minimum over all & and 8 of (min(|ps —pgl, 7 — |pa— ps|))(min(|a—B|,n—|a—7]))

By the permutation scheme, the element in row ¢ of the array and column p; + 5
is put into memory module j4¢ (mod n). Thus, this is a compact storage scheme
in which one only needs to store n elements for address generation, specifically the

permutation.

Chapter 5

Conclusions

In order to provide conflict-free access to all constant-perimeter rectangular subar-
rays, one has to accommodate the entire set of templates. The size of this set is
a function of the perimeter. In addition, the templates are all of different shapes.
The set of templates further expands when one allows the rectangular subarrays to
be stretched. In this thesis, we employ the p-diamond and the (z,y)-cut diamond
as mega-templates which encapsulate the interactions of the templates contained
in the set of constant-perimeter templates and thus, the essence of the constant-
perimeter problem. This mega-template is employed not only to find lower bounds
which apply to any type of skewing scheme, but is also helpful in finding a construc-
tion. This set of templates appears to be useful for various applications, satisfying
Point 2, which requires that the templates accessible without memory conflicts re-
flect the needs of algorithms. In addition, the linear skewing schemes are eflicient,

which satisfies Point 1.

In 1989, Kim and Kumar [KK89, HKK92] showed that two memory cycles are

necessary for the retrieval of \/n X 1/n subsquares of an n xn square when stored in n

87

CHAPTER 5. CONCLUSIONS 88

memory modules. Thus, one of the more surprising aspects of the results presented
in this thesis is that all constant-perimeter rectangular subarrays can be accessed in
two memory cycles when stored in ¢ memory modules where o is the maximum size
of a template in the set of constant-perimeter templates. This satisfies Point 3,
which requires high memory utilization. Table 5.1 presents a summary of all the
upper and lower bounds found for constant-perimeter rectangular subarrays with
stretch v when v is relatively prime to n. While experimental data reveals that in
most cases the upper bound for (w7y)11'Cf,v squares is minimal for a linear skewing
scheme, there are instances which can beat this upper bound. For example, the
upper bound and the related construction provided for a (2’3)1I'Cf,v square uses 8
memory modules when one could store it in 7 using a skew factor of 3. Table 5.2
gives the constructions for the linear skewing schemes presented in this thesis. The
order of the square is the upper bound given in Table 5.1. The research presented

in Chapter 2 and Chapter 3 is summarized in [EC92b, EC93].

p | = cond. y cond. lower bound upper bound
Plrcf even y==z 222 — 2z + 1 2¢2 —2¢x + 1
odd y=xz+1 222 222

(T Y)pet odd zy + %$2—$—|- % ry + %w2 —x+ %

even Y + %w2 — Ty + %w2 —
(w’y)IICf,v odd gyt el —z+5 wy+izi—z+

4e de+2d+1 | zy+izi—z+1 zy+ 22—z 42

4e 4e + 2d wy—l—%ﬁ—w—l—l wy—l—%ﬁ—w—l—?e—l—l

de +2 ey+ie’ —z+1 eyt e’ —z+y—1

Table 5.1: Table of upper and lower bounds

CHAPTER 5. CONCLUSIONS 89

p | x cond. y cond. skew factor
Plrefo even y==c 2¢ — 1
odd y=x+1 22 — 1

(Z,Y)rct odd 2+ — 2

even non-linear
(w7y)11'Cf,v odd 2y +x—2

4e de +2d+1 | 122 + 4ded — 2d — 6e + 1

4e de + 2d 4e (column)

4e + 2 de 4+ 2y — 1

Table 5.2: Table of constructions

The results for constant-perimeter also imply a lower bound for constant-area
rectangular subarrays as discussed in Chapter 4 (see also [EC92a]). An upper bound
for the constant-area is also provided by a relationship of conflict-free access to the

problem of determining the chromatic number of a graph.

Thus, we have presented techniques to find bounds for sets of templates. In
the problems we examined, the number of templates is a function of the maxi-
mum size of a template. For Plrcf, Sduares, these techniques have found tight
bounds. The lower bounds apply to any type of implementation one may choose
to employ. In addition, we have found linear skewing schemes which are eflicient
and satisfy Point 2. When linear skewing schemes are deemed to be acceptable,
our constructions can be applied to solve the conflict-free access problem. Future
work includes determining which interconnection networks can efficiently realize the

skewing schemes presented and thus, how these skewing schemes satisfy Point 4.

CHAPTER 5. CONCLUSIONS 90

5.1 Future Directions

In this thesis, we examined a set of template where the number of templates is
not fixed. This problem is more complicated than examining a set of templates
containing a fixed number. While the templates are related since they represent
constant-perimeter rectangular subarrays, this is a positive step into developing
bounds and constructions for arbitrary templates. We have used such tools as
mega-templates and graph-colouring as techniques for finding skewing schemes as
well as bounds on the number of memory modules necessary for conflict-free access.
We have also proposed the use of permutations to define skewing schemes. As
new research on the problem of the chromatic number of a graph is conducted,
the results may have implications for skewing schemes. Future directions include
finding additional tools for those desiring new skewing schemes. These tools need
to help identify theoretical bounds for the desired sets of templates as well as
constructions. The hope is to someday have a general framework that one could

employ for arbitrary sets of templates of arbitrary types.

The problem of conflict-free access is based on shared-memory modules for com-
putation. Future directions include a related problem for localized memory, in other
words, when each processor has its own memory. In this situation we want to min-
imize communications costs. Let a template represent the portion of data we wish
to process locally. While each processor may have more than one local memory
module, we assume that all local memory operations have the same communication
cost. Thus, the memory module number and the processor number are assumed
to be equivalent. For example, if one only wants localized memory access to rows,
then one stores each row in a different memory module/processor location. For

this template and storage scheme, there are no communication costs. If a skewing-

CHAPTER 5. CONCLUSIONS 91

scheme for conflict-free access requires ¢ memory cycles for a maximum template
instance size of u, then © — ¢ communications are necessary for the communication
problem in the second model. As with the conflict-free problem, one would desire
to have high memory utilization as well as processor utilization. Storing the entire
array in one memory module would solve the problem but lead to poor processor
utilization. Thus, determining the optimal communication cost with respect to
processor utilization is a problem for future research which may be aided by the
unification of the problem with research regarding the conflict-free access problem.

Following are two possible models for formulating the communication problem.

In the first model, one assumes that communication cost is determined by the
number of different processors involved in communication. This model assumes
that the communication to request and receive a singular element or several ele-
ments has the same cost. In this situation, we want to minimize the number of
different symbols in a template instance. Thus, if a single template instance con-
tains two distinct symbols which represent their location, how many times each
symbol appears is irrelevant but the number of different symbols that appear is
very relevant. In conclusion, this model seeks to minimize the number of different

symbols appearing in a template instance.

In the second model, one assumes that the communication cost is a function
of every element or piece of data that must be retrieved from non-local memory.
The symbol appearing most frequently should represent which processor functions
on that template instance. In this situation, we want to minimize the number of
different symbols and the frequency with which they appear in a template instance.
Thus, by putting an upper bound on the number of elements different from the
dominating element appearing in a template instance, we have a bound on the

communication cost.

CHAPTER 5. CONCLUSIONS 92

The problem of conflict-free access and the aforementioned communication prob-
lem have structural similarities but opposite goals. Conflict-free templates require
that the elements in an instance be as different as possible while communication
templates want the elements in an instance to be as similar as possible. The con-
nection of the conflict-free access problem to that of the chromatic number of a
graph is one particular technique presented in this thesis which may be adaptable.
In particular, form a graph for the communication templates in the same manner
as we did for conflict-free templates. The complement of the graph has an edge
between two vertices if and only if those two vertices are not involved in a template
instance. Thus, those vertices may be stored in separate memory modules. Observe
that these two vertices do not have to be stored in separate memory modules and
thus, the communication problem is not exactly solved by colouring the complement
of the graph. One could also observe that both models ignore the topology of the
processing array. Future directions include expanding the two models to accommo-
date the topologies, specifically, different locations having different communication

costs.

Finally, one could have an algorithm that desires to employ conflict-free tem-
plates and their communication counterparts. Thus, we need a model that works
with communication templates as well as conflict-free templates. The two sets of
templates have very different objectives but both must be accommodated simulta-
neously. The skewing scheme would need to minimize memory conflicts on one set
of templates and minimize communication cost for another set of templates. This
might be accomplished by finding the complement of the communication graph,

and then adding in the restrictions of the conflict-free graph.

Appendix A

Terms

e area conflict-free (zacf): a square that is conflict-free for all @ x 8 < z con-

tiguous rectangular subarrays of an n x n array.

o area latin conflict-free (zalcf): a square that is conflict-free for all @ x 8 < z
contiguous rectangular subarrays of an n x n array as well as all rows and

columns.

o block template: a (p1,v1) X (p2,v2) X ... X (p4,vq)-block template B on a
d-dimensional array is the set {(¢1v1,7202,...,%404)|0 < 43 < p1,0 < 45 <

Payee,0 < ig < pa} [WijB].

o designated element : the first element of the template instance when the

template is represented as a list [Sha78]. Also referred to as the handle.

o diagonal latin square: consists of the symbols 0 to (n — 1). The same symbol

never appears more than once in the same row, column or any of its two main

diagonals [DKT74].

o dilating: accomplished by replacing each line of an interconnection network

with [lines. Such a network would have a dilating factor of I [Roo91].

93

APPENDIX A. TERMS 94

e handle : the first array element in a template definition whose location is
specified. All other array element’s locations are specified with respect to this
handle. If the handle is not specified it is assumed to the leftmost element in

the uppermost row.

o interconnection network: the network that connects the independent memory

modules and processors.

o latin square of order n: an n X n array which consists of the symbols 0 to
(n — 1). The same symbol never appears more than once in the same row or

column [DK74].

o linear skewing scheme: a skewing scheme that maps the array elements a; ; =

gt —a)+r(j — B) (mod n) for some fixed integers p and ¢ [Kuc68].

e main subsquare: an \/n X y/n subarray S; ;, such that the top left cell is (3,)
where ¢ = 0 mod /n and j = 0 mod /n in an n x n array [HKK92].

e Manhattan distance: the entries (¢,7) and (k,!) have a Manhattan distance
defined as |¢ — k| + |7 — I| [CH92].

o d-Manhattan latin square : a square that does not contain two identical entries

whose Manhattan distance is less than 2d + 1 [CH92].

o mega-template: a set of elements which are forced to be distinct by the set of
templates we wish to be conflict-free. It is used to encapsulate the interactions

between a set of templates.

e memory conflict: when more than one processor requests information from a

single memory module during a single memory cycle.

APPENDIX A. TERMS 95

o memory utilization: the percentage of memory modules being accessed for

the retrieval of an arbitrary template instance.

o multi-stage interconnection network: an interconnection network which re-
sults from joining two or more copies of a given network. The networks are
joined by having the output lines of one connected to the input lines of another

network. Each copy is referred to as a stage.

o perfect latin square of order n?: a diagonal latin square such that no symbol

appears more than once in any main subsquare [HKK92].

o perimeter rectangular conflict-free (p..f): a square that is conflict-free for all

rectangular subarrays whose perimeter is less than or equal to v = 2p.

o perimeter rectangular conflict-free square with stretch v (py.f,): a square that
is conflict-free for all rectangular subarrays with perimeter less than or equal
to vy = 2p and a stretch of v. The perimeter does not include elements skipped

because of the stretch.

o perimeter latin rectangular conflict-free (p);.f): a square that is conflict-free
for all rectangular subarrays whose perimeter is less than or equal to v = 2p

and all rows and columns.

o perimeter latin rectangular conflict-free square with stretch v (pj;.f,): a square
that is conflict-free for all rectangular subarrays with perimeter less than or
equal to v = 2p and a stretch of v. In addition, it must be conflict-free for all

rows and columns.

o permutation capability: the percentage of all possible n permutations of the

inputs to the outputs that an interconnection network can realize.

APPENDIX A. TERMS 96

o (t,s,r,v) shift-boxis S,(1,t:1,s) U S, (¢t +1:1,r).

e stretch: the stretch of a block template as defined above is (vy,vs,...04)
[Wij89]. For a two dimensional block, one takes every v;th element from
every voth row. If subscripts are not specified, they are assumed to be equal.

If no stretch is specified, it is assumed to be equal to 1.

e rearrangeable: an interconnection network than can realize all possible per-

mutations.

o recirculate: a permutation-increasing operation which involves connecting the
output lines of an interconnection network to the input lines and sending the

data though the network multiple times.

o skewing scheme: the function that maps the array elements into the memory
modules. A skewing scheme may provide conflict-free access to a template or

a set of templates.
o stretch blocks: blocks whose stretch is greater than one.

o template: consists of a distinguished position called the handle and possibly
other array positions defined by their relative location with respect to the
handle. If the actual position of the handle is not specified it is assumed to

be the leftmost element of the uppermost row.
o template instance: a specific translate of a template such as row one.

o (z,y) conflict-free latin square: a latin square in which no element appears

more than once in any z x y subarray as well as the rows or columns [CH92].

APPENDIX A. TERMS 97

o (z,y), conflict-free latin square: a latin square in which no element appears
more than once in any (z,v) X (y,v) subarray as well as the rows or columns

[CH92].

o {z,y} conflict-free latin square: a latin square in which no element appears

more than once in any ¢ X y or y X ¢ subarray as well as the rows or columns.

o {z,y}, conflict-free latin square: a latin square in which no element appears
more than once in any X y or (y,v) X (z,v) subarray as well as the rows or

columns.

Bibliography

[Bat77]

[Ben65]

[BKT71]

[BRS3]

[Bro91]

[CHY1]

[CHY2]

K.E. Batcher. The multidimensional access memory in STARAN. [EEE
Trans. Computers, C-26:174-177, 1977.

V.E. Benes. Mathematical Theory of Connecting Networks and Telephone
Traffic. Academic Press, New York, 1965.

P. Budnik and D. J. Kuck. The organization and use of parallel memories.

IEEE Trans. Computers, C-20:1566-1569, 1971.

R. Boppana and C. S. Raghavendra. On self routing in Benes and shuffle
exchange networks. In Proc. International Conference in Parallel Pro-

cessing, volume 1, pages 196-200, 1988.

A. Brodnik. Theoretical limits on interconnection networks. private com-

munication, 1991.

C. J. Colbourn and K. Heinrich. Conflict free access to parallel memories.

Research Report, Center for Systems Sciences, Simon Fraser University,

January 1991.

C. J. Colbourn and K. Heinrich. Conflict free access to parallel memories.

Journal of Parallel and Distributed Computing, 14:193-200, 1992.

98

BIBLIOGRAPHY 99

[Chu88]

[CL86]

[CM85]

[Dan91]

[DHO1]

[DK74]

[EC92a]

[EC92b]

[EC93]

E. Chu. Orthogonal Decomposition of Dense and Sparse Matrices on
Multiprocessors. PhD thesis, University of Waterloo, 1988. Department

of Computer Science.

Gary Chartrand and Linda Lesniak. Graphs and Digraphs. Wadsworth,
Inc., 1986.

V. Cherkassky and M. Malek. On permuting properties of regular rect-
angular sw-banyans. [EFE Trans. Computers, C-34(6):542-546, 1985.

S. P. Dandamudi. Hierarchical Hypercube Multicomputer Interconnection

Networks. Ellis Horwood, 1991.

F. Dehne and S.E. Hambrusch. Parallel algorithms for determining k -
width connectivity in binary images. Journal of Parallel and Distributed

Computing, 12:12-23, 1991.

J. Dénes and D. Keedwell. Latin Squares and Theiwr Applications. Aca-
demic Press, 1974.

D. L. Erickson and C. J. Colbourn. Conflict-free access to rectangular

subarrays. Congressus Numerantium, 1992. To Appear.

D. L. Erickson and C. J. Colbourn. Conflict-free access to rectangular

subarrays with constant perimeter. Preprint, 1992.

D. L. Erickson and C.J. Colbourn. Conflict-free access for collections
of templates. In Proceedings of the Sizth SIAM Conference on Parallel

Processing for Scientific Computing, 1993. To Appear.

BIBLIOGRAPHY 100

[Fei82]

[Fen81]

[GKP89)

[HKK92]

[KK89]

[Knu92]

[Kuc68]

[Law75]

[Lee88]

[Len78|

M. Feilmeier. Parallel numerical algorithms. In D. J. Evans, editor,
Parallel Processing Systems, pages 285-338. Cambridge University Press,
1982.

T. Y. Feng. A survey of interconnection networks. Computer, 14(12):12—-
27, 1981.

R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 1989.

K. Heinrich, K. Kim, and V. K. Kumar. Perfect latin squares. Discrete
Applied Mathematics, 37/38:281-286, 1992.

K. Kim and V. K. P. Kumar. Perfect latin squares and parallel memory
access. In Proc. Sizteenth Int. Symp. Computer Architecture, pages 372—
379, 1989.

D.E. Knuth. Two notes on notations. The American Mathematical

Monthly, 99(5):403-422, May 1992.

D. J. Kuck. ILLIAC IV software and application programming. [IEEE
Trans. Computers, C-17:758-770, 1968.

D. H. Lawrie. Access and alignment of data in an array processor. IEEE

Trans. Computers, C-24:1145-1155, 1975.

D. Lee. Scrambled storage for parallel memory systems. In Int. Symp.

Computer Architecture, pages 232-239, 1988.

J. Lenfant. Parallel permutations of data: A Benes network control al-
gorithm for frequently used permutations. IEFE Trans. Computers, C-
27(7):637-647, 1978.

BIBLIOGRAPHY 101

[LV82]

[MM30]

[NS81]

[RMS5]

[Roo91]

[RP91]

[SD90]

[Sha78]

[Sie85]

K.H. Lawrie and C.R. Vora. The prime memory system for array access.

IEEE Trans. Computers, C-31:435-442, 1982.

M. Malek and W. W. Myre. Figures of merit for interconnection net-
works. In Proc. Workshop on Interconnection Networks for Parallel and

Distributed Processing, pages 74-83, 1980.

D. Nassimi and S. Sahni. A self routing Benes network and parallel per-

mutation algorithms. IEEE Trans. Computers, C-30(5):332-340, 1981.

R. Ransom and R.J. Matela. Computers in Biology: An Introduction.
Open University Press, 1985.

A. Rooks. Routing and cost effectiveness of directly-connected intercon-
nection networks. Master’s thesis, University of Waterloo, 1991. Depart-

ment of Electrical and Computer Engineering.

A. Rooks and B. Preiss. A unifying framework for distributed routing
algorithms. Preprint, 1991.

M. Shiva and D.v. DeYong. Enhancement of single pixel targets using
two-dimensional digital filters. In IEEE PLANS 90: Position Location
and Navigation Symposium Record, pages 231-239, 1990.

H. D. Shapiro. Theoretical limitations on the effective use of parallel

memories. [EEE Trans. Computers, C-27:421-428, 1978.

H. J. Siegel. Interconnection Networks for Large-Scale Parallel Processing.

Lexington Books, 1985.

BIBLIOGRAPHY 102

[SMJ92] W. Sung, S. K. Mitra, and B. Jeren. Multiprocessor implementation of
digital filtering algorithms using a parallel block processing model. IEEE
Trans. Parallel and Distributed Systems, 3(1):110-120, 1992.

[Szy89] T. Szymanski. On the permutation capability of a circuit-switched hy-
percube. In Proceedings of the International Conference on Parallel Pro-

cessing, pages 1103-1110, 1989.

[Wij89] H. A. G. Wijshoff. Data Organization in Parallel Computers. Kluwer
Academic Publishers, 1989.

[YL81] P.C. Yew and D. Lawrie. An easily controlled network for frequently used
permutations. IEEE Trans. Computers, C-30(4):296-298, 1981.

