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Abstract

Consider the problem of n trustees, any k of which are needed to be in agreement
to make an action x. In addition, if only £ — 1 are in agreement, we would like
to ensure that the action can not be made. Solutions to this type of problem have
been independently proposed by Shamir [Sha79] and Blakley [Bla79]. The solution is

commonly referred to as a threshold scheme.

Numerous uses for threshold schemes are presented. These uses range from pro-
tecting encryption keys to preventing military and management actions without
proper authority. Several general methods for implementing such schemes are ex-
amined in the literature. In this thesis we look at methods based on polynomial
interpolation, on the intersection properties in finite geometries, and, more generally,
Steiner systems, on those utilizing error correcting codes, and on those employing the

Chinese Remainder Theorem.

Some of the threshold schemes in the literature present variations to the general
scheme including the detection and the prevention of cheating. Others explore the
implementation of threshold schemes that permit a hierarchy of authority for the par-
ticipants in the scheme. The aim of this thesis is to present and explore variations and
expansions of existing methods for threshold schemes to accommodate hierarchical
information. Some of the proposed schemes not only provide hierarchical information

but also implement hierarchical authority.
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Chapter 1

Introduction

Consider the problem of n trustees, any k of which are needed to be in agreement
to make an action x. In addition, if only £ — 1 are in agreement, we would like
to ensure that the action can not be made. Solutions to this type of problem have
been independently proposed by Shamir [Sha79] and Blakley [Bla79]. Shamir, as well
as other authors who built on Shamir’s work, refer to the solution as a k-out-of-n
secret sharing scheme. In these works, the partial keys given to the n trustees are
referred to as shares. In contrast, these partial keys are referred to as shadows and
the scheme is known as a (k,n) threshold scheme ! by other authors whose work
was primarily based on that of Blakley. In this thesis, we survey research on these
secret sharing/threshold schemes as well as suggest a variation to protect hierarchical

information.

1Such schemes have also been referred to as key safeguarding schemes and key sharing schemes.
As well, Blakely and Swanson [BS81] have called their system an information protection scheme. In
that paper, they also sought to standardize the terminology in the area but later papers in the area

have not followed their suggestions.
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1.1 Possible Uses of Threshold Schemes

Various uses for threshold schemes have been proposed. Karnin et. II. [KGHS83]
examine the situation in which a legitimate owner of a file loses the key used to
enciphered it. One possible solution is to make multiple copies of the key. If one key
is stolen, the secret is compromised. If a threshold scheme were to be utilized, the
security is only compromised if k keys are stolen. The access is compromised only if

more than n — k keys are lost.

A similar situation was proposed by Blakely [Bla79]. He describes four events
that one needs to protect against when using a key in an RSA (Rivest, Shamir and

Adleman) or DES (Data Encryption Standard) cryptosystem. They are:

e Destruction by accident,
o Degradation - for example, if a person loses the key and makes one up,

o Defection - when a trustee gives the key to the opposition but not to the orga-

nization that entrusted the trustee, and

o Dereliction - when a trustee gives the key to the opposition as well as those who

entrusted the trustee.

A threshold scheme could then be used to protect against any expected number of
the aforementioned events. If an organization predicts that at most £ — 1 of these
events would occur, then a (k,n) threshold scheme could be utilized to protect the

safety of their cryptosystem key (for n > 2k — 1).

Asmuth and Blakley [AB82] present the scenario in which one is sending a large

message over parallel channels where at most £—1 channels are possibly inoperative. If
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the message can be encoded using a (k, n)-threshold scheme, the message is decodable
as long as k of the n channels are operative. In addition, as long as an opponent could
not obtain access to k or more of the channels, the message is secure. Harari [Har83]
mentions that financial terminals as well as access to remote computer equipment

could be implemented using a secret sharing scheme.

Simmons [Sim90] [Sim89] [Sim88] suggests many military applications for secret
sharing schemes. This area alone presents endless examples of applications. One of
the more obvious amongst these is that “pushing the button” should certainly be
controlled by a threshold scheme. This would prevent any one person from making
such a decision without the consent of the minimum threshold. This is also true
of making any potentially destructive and critical decisions in both military and

administrative capacities.

It remains an open question as to whether any of the schemes that exist today

could be utilized for all of the proposed uses.

1.2 Framework for A General Model

While there are several methods for implementing threshold schemes, it is convenient
to describe a general model within which all methods can be described. The following

describes a (k, n)—threshold scheme, also referred to as simply a k—threshold scheme.

In a threshold scheme there exist partial keys, s1,...s, where n is the number of
participants. These partial keys are given to each of the n participants or trustees
by the distributor. Given these partial keys, one can construct a larger object, the
master key. The master key, S, may be the information that is being protected, or

it may itself be a key that permits access to the information or permits an action to
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occur. This master key is constructible whenever k, the threshold, or more of the
partial keys are submitted to the master key constructor. The master key constructor
is the algorithm that transforms the partial keys into the master key. The contents of
the partial key, as well as the algorithm of the master key constructor, is dependent

on the method used.

While describing the schemes within this framework, we also qualitatively evaluate

the various methods by the following criteria.

criterion 1. The size of the partial key.
The size may be in terms of the information being protected or in terms of the

number of participants.

criterion 2. The master key construction time.
If the master key requires days or even several hours to construct it may be

impractical for many applications.

criterion 3. Storage requirements for the partial keys and the master key.

This criterion also affects the criterion of master key construction time.
criterion 4. Security of the scheme which consists of two points:

criterion 4a. The amount of information revealed about the master key by

fewer than k partial keys? and

criterion 4b. The independence of the partial key to the amount of authority
it permits (suggested by Simmons [Sim89] [Sim8§]).
An extrinsic scheme is one in which the value of the partial keys is in-

dependent of the key and is determined by the master key constructor’s

ZA perfectly secure scheme is one in which k& — 1 partial keys pooled together have no more

information about the master key than a complete outsider [SS89] [SV88a] and [BS89].
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handling of the key. In addition, all partial keys are the same size despite
possible difference in authoritative power [Sim88]. An intrinsic scheme in
one in which the partial key’s value is contained within the key and not
in the master key constructor’s handling of the key [Sim88]. Currently, all

threshold schemes appear to be intrinsic.

criterion 5. Variety of known schemes of this type.
If there are insufficient schemes of this type that exist or that are known to
exist, it may be impractical to use this scheme. In addition, the method may
be impractical if the methods known to construct or verify that the scheme is

valid require more time than is available to set up the scheme.

As one would suspect, some of the criteria may be more objectively applied than
others. Many of the criteria are interdependent. This interdependence is discussed

within the specific methods when relevant.

An example to illustrate the various aspects of a threshold scheme follows. The
secret being protected is S. Let k, the number of partial keys needed to reconstruct
the master key, equal 3. Let n, the number of participants holding partial keys, equal
5. Let the n partial keys equal (s1, $2, $3, 84, $5) Where participant p; is given partial
key s; and s; is chosen from a set, (', of possible partial keys. Let the size of each
s; equal the size of S, the master key. The master key constructor algorithm is the
function ¢, a mapping from any subset of (' to a subset of a set M of possible master
keys such that ¢(s;,s;,s%) = 5 (where ¢ # j # k;1 < 4,5,k < 5). Furthermore,
let ¢(si,8;) = M and let ¢(s;) = M. In other words, ¢ applied to any ¢ partial
keys, ¢ < k, defines M, the entire set of possible master keys. Suppose that ¢ is a

polynomial time computable function.

Evaluating this scheme by criterion 1, the size of the key is equivalent to the
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size of the secret being protected. The construction time for the master key should
be relatively low since the function is said to take polynomial time in terms of the
parameters. By criterion 3, the storage requirements for the partial keys equals five
times the storage requirements for the secret itself since each of the five keys are as
large as the secret itself. Criterion 4 reveals that the scheme is perfectly secure since
2 partial keys reveal nothing about the specific master key. Criterion 5 is irrelevant

in this general example.

1.3 Variations to the General Method

This section introduces variations and extensions to the general problem of secret

sharing.

The first variation to the general model is that of preventing and detecting cheaters.

The forms of cheating that have been discussed in the literature include:

e collaboration of the partial key holders,

o deliverance of an illegitimate key by the distributor,

e the presentation of an illegitimate key by a trustee (also see [Fel87] [CCD88].),
o illegitimate take over of the key distributor,

e deliverance of information about the identity of the partial keys themselves

[Ben86],
e the take over of the partial key distributor [Mea88],

e the take over of the master key constructor [Mea88], and
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e the tapping one of two communication channels by an outsider [Yam89].

Research by Blakely and Dixon [BD86] reveals that one cannot detect tampering
in a secret sharing system which is perfectly secure, and in which the size of the key
is less than or equal to the size of the secret (i. e. which does not involve expansion
for those methods in which the master key is the protected information). Simmons
[Sim90] notes that if the information contained in the partial keys includes the secret
itself, then the system can not be perfect (since insiders have more information than
outsiders). This seems to be a driving motivation behind work on the second variation
of the general model, imperfect schemes. The goal is to maintain a high level of
security but to keep the computational and other communication complexities low.
For example, users of a system may not mind that 3 keys out of a very large set of

possible keys can be eliminated. Addition information on imperfect threshold schemes

can be found in [BM85] and [Yam86].

A third variation to the general model is a type of threshold scheme that allows a
hierarchy of authority; these are multilevel schemes. The hierarchy may involve two
or more levels of authority. This variation generally allows certain partial keys to be
weighted. An example would be giving a president a partial key which is equivalent
to two partial keys of a vice-president. Sometimes, this weighting essentially involves

giving multiple keys to partial key holders with more authority.

Another type of hierarchical authority may be a compartmented scheme [Sim89]
[Sim90] [BV89]. In this type of scheme the partial keys for the master keys are
themselves constructed by partial keys. Thus, there is a threshold for each group or
compartment. There then must be enough of the groups to submit their keys to reach

the threshold for the master key.

A conditional multilevel scheme is also proposed in [Sim90]. This is useful when
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one desires a multilevel system for use under emergency (or non-normal) circum-
stances. In such circumstances, conditions would render communicating the whole
scheme to be difficult. Simmons considers an approach which can be considered a
special form of key distribution. In this approach each set of sub-keys form a 56 bit
key for a DES system (for example). The sub key holders have no information about
the secret until it is activated, i.e. until a message is encrypted and sent. Then, and
only then, is the key useful. This allows the separation of the private sub-keys from

the actual secret they conceal.

Recent work by Beutelspacher [Beu89] permits yes-no partial keys. Each trustee
is given yes-partial key and no-partial keys. There is a threshold for yes keys, k£ and
a threshold for no keys, s. If there are more than s no-partial keys, regardless of the

number of yes keys, no action can occur.

1.4 Hierarchical Information Schemes

The aim of this thesis is to present and explore variations and expansions of existing
methods for threshold schemes to accommodate hierarchical information. In this
section, we expand the general method to accommodate hierarchical information or

information which may be divided into two or more layers.

In a hierarchical information scheme, the information may be separated into sev-
eral levels which may be viewed as security levels. These higher levels may be accessed

in the following three manners:

e participation of more partial key holders,

e participation of a partial key holder with more authority, and
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e participation of more partial key holders with more authority.

The latter two not only provide hierarchical information but also require hierar-
chical authority. In addition, the lower levels may be separate and not necessarily

hierarchical themselves.

When attempting to provide hierarchical information in a threshold scheme, one
needs to identify some sort of hierarchy in the master key. If there is a natural
hierarchy in the structure of the master key, the scheme is genuine. In other cases,
the hierarchy may be developed by building a larger scheme on top of the existing
scheme. In this situation, one is actually superimposing one threshold scheme on
another. If the hierarchical scheme is the “union” of simpler schemes each participant
needs several keys. This could be termed the “janitor problem”. Of course, many
partial keys could be encoded to form a single more complex key, alleviating the
“janitor” problem. This is not a satisfactory solution, however, if the resulting key is

large, requiring significant storage.

The hierarchical information schemes are presented in the last sections of chapters

2 through 6.

1.5 Overview

The various methods surveyed and described in terms of the general model include
those based on linear interpolation in Chapter 2, finite geometries in Chapter 3, the
more general Steiner systems in Chapter 4, those based on error correcting codes in
Chapter 5, and finally, those based on the Chinese Remainder Theorem in Chapter 6.

Chapter 7 presents the conclusion of the research conducted. Appendix A contains
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the glossary of the major terms used throughout the thesis (indicated throughout the
thesis by™*).



Chapter 2

Polynomial Interpolation

The first method is based on polynomial interpolation. It was first proposed by
Shamir [Sha79].

2.1 The method

The secret is assumed to be representable as a number, S. The information is then
divided into pieces s;, ¢ = 1,...n. A random k — Ist degree polynomial, ¢(x) =

k—1

ap+ajx+ - Farzx is chosen with the constraint that aq is set to equal S. The

remaining coefficients are chosen randomly, uniformly, and independently from a finite
field such as GF(p®), the Galois field of order p®. The prime, p, is chosen such that
it is greater than n, the number of participants, and 5, the secret. The partial keys,
$1 to s, are then: s1 = (21,y; = ¢(1) mod p),...,s; = (2,4, = ¢(¢) mod p),..., s, =
(a0, Yn = q(n) mod p).

Thus, the points that represent the partial keys are (x;,v;). Any k points

(i Yi)y ooy (@, yx) With @; # 25,1 <0 < g1 < j < 4,0 # j, suffice to determine

11
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the coefficients of ¢(x), a polynomial of degree k& — 1. This polynomial, ¢(x), is
defined to be ag + a1z + -+ + ay_12""! where ¢(z;) = y; for all 7. An additional
advantage by criterion 4a is that ¢(x) is unique and any (k — 1) keys have as good
a chance of reconstructing the polynomial ¢(x) as random guessing. Shamir [Sha79]
points out that the size of each partial key does not exceed the size of the original
data(criterion 1), although Denning [Den82] remarks that there might be some
expansion in G'F(p) since p must be larger than k, the threshold. The master key is
ag. In addition, algorithms for the master key constructor exist that have a running
time of O(nlog?n) where n is the total number of partial keys [AHU74] [Knu69] (

criterion 2).

The following is an example for a (3,5) threshold scheme implemented in G F'(p)
where p = 17,5 = 13, and ¢(z) = 62> + 7o + 13(n =5,k = 3). ¢(x) for x =1 to 5 is

y1 =¢(1l) =16 mod 17 = 16
y2 = ¢(2) =41 mod 17 =17

ys = ¢(3) = 78 mod 17 = 10
ys = q(4) = 129 mod 17 = 8
Y5 = q(5) =188 mod 17 =1

Thus, the partial keys are (1,16),(2,7),(3,10),(4,8), and (5,1). Determining the
master key is accomplished using the Lagrange Polynomial.
k j— j— j—
Jr) =Y Sl —aq)(x —a2) .. (x — )

(e —a1)(Te — @2) oo (we — @p)

If three partial key holders entered their keys, s(1),s(3), and s(5)

5) (x — 1)(x —b) (x —1)(x =3
-5 e ne-5 T G-106G-3

/()= (10
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Expanding the example for four partial keys, s(1), s(2), s(3), and s(5)
o= R =3
i e

(T T A0 199 ed 1T

= 9222 + 10z + 13 = q(x).

Once again expanding the example for five partial keys, s(1), s(2), s(3), s(4), and

s(5):

== - —5)  (r— 1) -3 — )z —5)

L T I TG 1 S g T g Y Sy

T =D =D = e =5)  (r = Die = 2)(x = 3)(x —5)
BoLB-2B-D6-3) - nUI-3a-3)1-3)

(2 = Dz =)(e = 3)(x —1)
e 26 a6y M

_|_

17 , 119 , 1147 , 1123

= Rttt T

x4+ 71) mod 17

= 9222 + 10z + 13 = q(x).

Thus, once the threshold is reached or surpassed, the master key can still be

constructed.
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2.2 Detection of Cheaters

Tompa and Woll [TW86] added security to Shamir’s scheme proposed in [Sha79].
Their scheme allows the additional property that there is a small probability ¢ > 0
that any k& — 1 participants 27 ...7,_1 can fabricate new shares S7;1, 575 ...5/;._1 that
deceive a k™" participant. In other words, they desire that the reconstruction of a
legal but incorrect secret occurs with probability € > 0. This can be accomplished by
having the distributor sign each share with an unforgable signature. The advantages

of this approach according to Tompa and Woll, include:

1. It does not rely on the hypothesis of the intractability of integer factorization
(this is also true of Shamir’s scheme [Sha79]), and

2. It is as easily implemented as Shamir’s Scheme (polynomial in terms of k,n, log

s, and log (1/€)).

This approach assumes the distributor is honest. The implementation of this

scheme is as follows:

1. Choose any prime p > max(s/e+ k,n)
2. Choose ay,as,...a;_1 € Z, randomly, uniformly, and independently
3. Let g(z) = S+ a1z + aza? + ... + ap_qak1

4. Choose (21,3, ...,1,) uniformly and randomly from all permutations of n dis-

tinct elements from 1,2,...p — 1.Let S; = (a;,s;) where s; = q(x;)'.

!This scheme differs from Shamir’s scheme in this requirement. Shamir’s scheme can be described
as above except that this step would be replaced by : Let S; = ¢(4)Vi 1 < ¢ < n where the evaluation

of q(1) is over Z,.
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Tompa and Woll sketch a proof showing that participant ¢2;, deceives with probability
e>(s—1)(k—1)/(p—Fk). They also note that while the cheaters are detected, they
often obtain the secret while the other members don’t. An outline to a solution to
this problem is also examined. Briefly summarized, one chooses a dummy legal value
s, that is never used. The secret S is then encoded as S*, S2,...S! where S' = s for
all j #iand S = S for some ¢ chosen randomly. Each element of the sequence
is divided into shares using the aforementioned scheme. Thus, the probability of

cheating while going undetected at possible previous cheats is less than (1 — €)%~

2.3 Hierarchical Authority

The idea of hierarchical authority in this method is presented in Shamir’s original
paper [Sha79]. He suggests that tuples of polynomial values be given to higher levels
in the hierarchy. Thus, the weighting is accomplished by those with more authority

carrying more keys.

Adapting the example presented in section 2.1, one key holder is given more au-
thority by holding the partial key sy, and s,. The (3,5)-threshold scheme would now
be a (3,4)-threshold scheme with one partial key holder possessing more authority. In
this situation, any three members may enter their partial keys to obtain the master
key, or the more authoritative partial key may be entered along with any of the other
three remaining partial keys. Thus, the threshold scheme implemented in G'F(p)
where p = 17,5 = 13, and ¢(z) = 62> + 7o + 13(n =5,k = 3). ¢(x) for x =1 to 5 is

y1 =¢(1l) =16 mod 17 = 16
y2 = ¢(2) =41 mod 17 =17
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ys = ¢(3) = 78 mod 17 = 10
ys = q(4) = 129 mod 17 = 8
Y5 = q(5) =188 mod 17 =1

The partial keys are [(1,16),(2,7)],(3,10),(4,8), and (5,1). The Lagrange Poly-

nomial

is still used.

The following is an example if two partial key holders entered their keys which
included the more authoritative member. Using the partial keys of s[; o) and s5

(x — 1)(x —2)

, (x —2 T —
1) =) =s P e neos P eo ey MY

= (2:1;2 — %x + 52—7) mod 17

= 9222 + 10z + 13 = q(x).

2.4 Hierarchical Information

The first natural extension would be to have the higher levels of information accessible
by more partial key holders. Thus, more partial key holders could interpolate a
polynomial of higher degree. Since hierarchical authority was implemented through
the issuance of multiple tuples, this scheme could implement hierarchical authority
and information. In order to avoid the maintaining of large keys, it would be best if
the partial key holders were able to utilize exactly the same key when attempting to

access the different security levels of information.
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Without loss of generality, we look at the case in which there are two security

levels and show that this cannot be accomplished using this method.

Let ¢(z) = ao + a1x + - -+ + az_12"~", the polynomial for the lower level of infor-
mation. Let p(z) = by + byx + -+ + by_y2™ ™', the polynomial for the higher security
level information where & < m. Choose p, the prime such that & < m < p. If
q(x) # p(x) then, without loss of generality, there exists a point (z,y) on ¢(x) that
is not on p(a). However, in order for the partial key holders to use exactly the same
key for each level, ¢(x;) = p(x;) for all ¢ where 7 is an element of G F(p). Thus, there
is a contradiction of our assumption that ¢(x;) = p(x;) for all 7 and the polynomials

are the same. In addition, ag = by which is the secret the schemes are protecting.

A possible solution to attempt to accommodate hierarchical information is to give
the partial key holders an additional s; for each level they are allowed to access. The
index, ¢ may be the same thus allowing the partial key to be half has large as the
original partial key for each access level permitted. Hierarchical authority may also
be imposed by simply not giving a partial key to participants who are not authorized
to access that level. If one wishes to restrict the higher security levels to more people
with higher authority, then the polynomial for the higher levels is chosen such that

it requires more partial keys to interpolate it.

Evaluating this scheme by criterion 1, if the size of the partial key for one
level is 27, a partial key for L levels would be v 4+ L~. This is assuming that the
partial key requires « storage space for the x coordinate and « storage space for the y
coordinate. Thus, by maintaining the same x coordinate for hierarchical information

schemes 2L~y — (v + Lvy) = v(L — 1) less storage space is utilized.

Let the various thresholds for m levels of authority be represented as kq,...k,,
where 1 < --- < m. The partial keys would still be points as in the general method.

They would be chosen from GF(p) where p is greater than k,, n (the number of
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participants) as well as all the secrets. Once the index value which serves as the x
coordinate is chosen for a particular partial key holder for one scheme, it remains the
same. These values may be chosen uniformly and randomly from all permutations of
distinct elements from 1,2,...p — 1 as recommended by Tompa and Woll [TW86] in
order to detect tampering. The threshold scheme for each level would be the same
as the general method. Specifically, for level k,, any k, points (x;,4:),... (Tk,, Yka )
with @; # z;,1 <1 < 35 1 <3 <1, 1 # j, suffice to determine the coefficients of
¢a(2), the polynomial of degree k.. The secret at level o would be y-intercept for the
polynomial interpolated at that level. As in the general method, ¢, () is defined and
unique. Furthermore, any k, — 1 keys have as good of a chance of reconstructing the

polynomial as random guessing.

The following is an example of a hierarchical information threshold scheme im-
plemented in GF(p) where p = 11. The lowest level secret is not hierarchical itself
and consists of two (2,3)-threshold schemes. Level 2 requires a higher threshold than
level 1 and is a (3,6)-threshold scheme. Level three is a (3,4)-threshold scheme with
all participants not receiving partial keys. Thus, at this level there is a hierarchy of
authority as well as a hierarchy of information. The polynomials used for the various

levels are as follows:

Level 3 q3(z) = 102? + 3z + 2

Level 2 q2(z) = 62% + Tz + 3

Level 1 qra(2) =92 +5 qp(x) = 22 + 10
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The secret for level la is 5, for 1b is 10, for level 2 is 3, and for the highest level
is 2.

The partial keys are computed in GF(11); s; denotes the i** partial key. Y; denotes
the Y coordinate portion of the partial key for level j. An asterisk denotes a key not

distributed.

i | Yie | Yo | Yo | Y3
sy | 4] 8 * | 6 | *
se 1919 x | 2] 3
S3 | 2 1 * 8 | 4
sq4 | 8] 4 1316
ss | T * 2 |5 | T
sg | 3| * 5 11| *

Table 2.1: Partial keys for Hierarchical Information

For level 1a access, if partial keys s, and s3 are used,

(e=2)  (x-9)

71q(7) = (9(9_2) -|-1(2_9))m0d11
8 9
= (?;1; — ?) mod 11

=92 + 5 = qa(2).

For level 1b access, if partial keys s4 and sg are used,

o) = () + 15— mod 1

-1 28
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=2z + 10 = gy,(x).

For level 2 access with partial keys s, s3, and s4, the secret is revealed as follows.

voon e =2)(x=8)  (z—4)(x—-8) _(r—4)(r—2)
o) =650y P 3ecneos) Peoneoy) med !
= (ixz — Zl‘ + %) mod 11

= 62° + Tz + 3 = qo(2)

The final example is for the top level using the partial keys of s5, 55 and s4.

—~
=
|
Ne)
~—
—
|
~—

, B (x (x —9)(x —8) 2
Q3($)_(3(9—2)(9—8) (2—4)(2—3) (8—9)(8—2))m0d11

10, 107 30
e 2 2 ed 1L
(=g + 5pe— ) mo

=102 +3z+2= gs(x)



Chapter 3

Finite Geometries

The second implementation strategy is based on intersection properties of finite ge-
ometries. A finite geometry is defined in terms of a system of axioms and undefined
terms which limits the set of elements(such as points and lines) in the geometry to
a finite number [Tul67]. For example, a finite geometry could consist of a finite set
of points, a finite set of lines, and an incidence relation between the points and the

lines, where the axioms constrain this incidence relation.

3.1 The Method

The general idea behind geometric threshold schemes is that one chooses a block* or
line!, b, to be the master key. The partial keys are n points chosen on that block
such that any k of the n points uniquely determines the block. In addition, any k£ —1
points identify numerous blocks [BV87] [Beu88].

' A line in a finite geometry is assumed to have more than one, but only a finite number of points

[Smag8].

21
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For the master key constructor, Beutelspacher and Vedder point out that one
could store k points [BV8T7] [Beu88]. The master key constructor would then, upon
receiving u > k points, attempt to construct a block. If no such block exists or more
than one blocks exists, then the master key constructor terminates. Otherwise, the
constructor checks if the secretly stored & points lie on the block constructed by the
u points entered. An alternative method improves the scheme’s rating by criterion
3. A set, S of points is chosen such that they intersect the block in a unique point
X; then the master key constructor only needs to store S and X. If u partial keys
are entered and define a unique block ¢, the constructor then computes e S. If

c¢N S = X, the threshold is met.

Various schemes described in [Beu88] [BV87] include a 5-threshold scheme (i. e.
k =5 ) utilizing the fact that through any 5 points in the Euclidean plane, there is a
unique conic. A conic is a set of points that are intersections of corresponding lines in
two projectively related pencils of lines in the same plane. Pencils of lines are the set
of lines through a fixed point which is collinear with pairs of corresponding points on
two lines [Sma88]. Some of the more familiar conics include the ellipse and the circle.
The number n of partial keys distributed is only restricted by the fact that no three
partial keys or points are collinear. The master key constructor could store two points
which define a tangent to the conic as S. A tangent is a line that has one point, X,
in common with the conic. If additional security it needed, they recommend choosing
a secant to the conic. A secant is a line which has two points in common with the
conic. Thus, in this situation, X is a set of two points. Similarly, a 3-threshold scheme
involving a circle could be constructed. The generalization presented is that any &
points determine a “rational normal curve” in k£ — 3-dimensional projective space. In
addition, there exists a unique rational normal curve through any k points, no k — 2

of which may lie on a common hyperplane*.
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A method for using flats, or subspaces is also presented by Beutelspacher and
Vedder [Beu88] [BV8T]. If (i represents an affine or projective geometry of dimension
d, a block is a (k — 1)-dimensional subspace of GG. The partial keys are points in the
subspace chosen such that any k of them span the block. Once again, the master
key constructor only needs to store S. In this scheme, S is a (d — k 4 1)-dimensional
subspace which intersects the block only in the point, X. It is also required that

every (k — 1)-dimensional subspace of ¢ intersect S.

An additional contribution made by Beutelspacher and Vedder is a scheme that
uses Desarguesian projective planes®, specifically those arising from the Galois Field
GF(p*) where p is a prime [BV87]. Blakely [Bla80] states that threshold schemes
in GF(2%) are preferred to those in GF(p®) where p is an odd prime as the imple-
mentation on a computer can be accelerated. This is due to the ability to use the
exclusive-or (XOR), a natural operator in this field. However, the author has not

indicated how secure this type of system would be from the opponents’ viewpoint.

De Soete and Vedder [DSV88] present ¢-threshold schemes for ¢t = 2 and 3 based
on generalized quadrangles®. A finite generalized quadrangle (GQ) of order (o, 7) is

an incidence structure*? which satisfies the following axioms:

1. Each point is incident with exactly 1 + 7 lines (7 > 1) and two distinct points

are incident with at most one line.

2. Each line is incident with exactly 1 +o points (¢ > 1) and two distinct lines

are incident with at most one point.

3. For any line L and any point = not on L, there exists a unique line which is

incident with both = and a (unique) point on L. (In other words, only one of

2An incidence structure, I, is a subset of p x b where p is a set of points and b is a set of blocks

[DSV88]. Another threshold scheme based on incidence structures is presented by Ecker [Eck].
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the 7 lines through x intersects the line L.) [DSV8S]

The scheme uses the span of pointsets. The span of 2 distinct points consists of
all points which are collinear with every point in the trace of x and y. More formally,
let 2% be the set of all points collinear with z, a point. The span of z and y is defined
as : sp(x,y) = {z,y}*t = {u € Plu € Z+ for all Z € tr(x,y)} where tr(z,y),
also denoted {z,y}* is the trace of a pair (x,y) = set 2+ Nyt. A threshold scheme
for k = 2 is described in which the partial keys are the points of sp(x,y) where x
and y are two non-collinear points of (7, a generalized quadrangle of order (o, 7) with

o,7 > 1. The master key is the span of = and y.

De Soete and Vedder [DSV88] state that the probability of obtaining the master

key when one valid partial key and some other invalid point is entered equals

n—1 < T
c:r+or+0c " ocir+or+o
If the partial key holder knows some finite geometry and knows the lines through his
point, the probability increases since o7 + ¢ points are collinear with the partial key.

The resulting probability is

n—1 _n—1<1
0'2T—|-0'T—|-0'—(0'T—|-0')_ ot T o2

An unanimous concurrence scheme with a geometrical base is presented in [1S90].
This type of scheme is one in which the master key is created by all participants, no
one person of which knows the master key. This scheme does not have a distributor.
In this scheme, the inputs are privately made by each of the participants and each
contribution is equally influential in determining the secret. The example presented
in the paper is as follows. If one desires that 2 out of 3 Vice Presidents should be

able to open the vault then each President chooses a plane, the point of intersection
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Qo

Figure 3.1: Compartmental Scheme [Sim88]

of which is the master key. Each President then proceeds to give each of the other 2
Vice-Presidents 2 distinct lines that define his/her plane. The partial keys for each
Vice-President consist of their plane and a line from each of the other two Vice-

Presidents.

3.2 Hierarchical Authority

A compartmented threshold scheme is presented by Simmons [Sim8§]. Fach com-
partment’s threshold is 2 in the example presented. Furthermore, there are two
compartments which make up the master-threshold. Each compartment’s partial key
is a line. The partial keys within the compartments are points. Thus, the participants
receive a point contained on their line. Any two participants of a compartment may
define their line. The two lines, L1 and L are skew and thus do not intersect. The
master key constructor has a third line, L3 known as the domain variety, skew to
both [, and L, that is not contained in the 3-flat they determine. In addition, the
master key constructor has a third, unique line, w which intersects the lines L1, Lo,
and Ls at points ¢,r, and p respectively. (See Figure 3.1 [Sim88].) Thus, when
the two compartmental thresholds are met, a 3-flat, V;, is defined. The master key

constructor then calculates V' N L3y = p, a unique point that serves as the master key.
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Restrictions on the points given as partial keys for each compartment includes that
they may not lie on L3 nor w nor may they equal p. In this scheme, it is assumed
that p is not itself the secret but that the master key constructor, with knowledge of
p, can determine the secret with p as a reference point. The function that determines
the secret may use the distance of p from some reference point, one of its coordinates,
or some other information provided by knowledge of p. Possibilities for generaliza-

tion and incorporation of additional features for this type of scheme may be found in

[SIm88] [Sim89] [Sim90].

A multilevel scheme in which one level, such as computer programs, can never
obtain ultimate authority for a decision over another level of users such as humans is
presented in [BV87] and [Beu88] . To implement this scheme, a (k — 1)-dimensional
subspace, B, is utilized for choosing the partial keys to be utilized by humans. The
human partial keys are in general position (i.e. any k of them span B). The computer
partial keys are chosen in general position from a (k — 1 — ¢)-dimensional subspace
of B, Bt where 7 is the minimal number of human participants required for the
threshold. The human partial keys are contained in B but are outside of B*. Thus,
the human user’s consent is necessary in order to identify the master key, B but the

humans may obtain the threshold without the consent of the programs. (See Figure

3.2 [BVST].)

3.3 An Imperfect Scheme That Detects Cheaters

A nearly perfect threshold scheme in Galois Field (¢) in which any single cheater
is identified with probability 1 — q%l is presented by [BS89]. If there is only one

where n is

honest participant, then the probability of cheating successfully is %

the number of participants and k trustees are needed to access. The scheme is nearly



CHAPTER 3. FINITE GEOMETRIES 27

perfect in that & — 1 participants can eliminate at most 2 keys. The partial key

distributor is assumed to be honest.

The implementation is a modification of Blakely’s threshold scheme [Bla79] which

is described below.

1. The distributor fixes a line L in V, a k-dimensional vector space over GF(q)

where ¢ = p®, p a prime.
2. This line is made known to all participants.

3. The distributor constructs a random (k—1)-dimensional subspace H that meets

L in a point.
4. The distributor then constructs the hyperplane H, = H + p.

5. The distributor then chooses n random points on H,, h;, 1 < ¢ < n such that

no k of them lie in a flat of dimension k& — 2.

6. The master key constructor upon receiving k points can uniquely determine H,

and thus obtain p by calculating H, N L = p which is true by construction.

Brickell and Stinson’s modification is explained in terms of a threshold scheme where
k = 2. The random subspace constructed by the distributor is 1-dimensional and the
hyperplane H, is a line. The distributor then constructs w random 1-dimensional
subspaces, h;, 1 <12 < n. These subspaces are distinct from H, but not necessarily
distinct from each other. The distributor then gives each participant the parallel lines
H;; = h; 4+ s; where s; is a point on H,. Thus, extra information is being distributed
to the participants (criterion 1). For security purposes, the order of the Galois Field,
q, should be large relative to n. Figure 3.3 shows the scheme when all participants

are honest and use the correct partial keys.
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/ J

O Human users
@ Programs

Figure 3.2: Ultimate Hierarchical Authority Scheme [BV8T7]

Figure 3.3: Scheme with honest participants [BS89]

28
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Figure 3.4 displays the result of the partial key holder of sy giving sy. The authors
explain that the cheater would not choose a point on L, nor any point on a line
through the other participants line parallel to L since these points would reveal the
lie. In addition, the cheater would not choose a point on H, since this would reveal
the secret. Thus, through any of the remaining possibilities there is a unique line

which contains the actual and the fake point. An example of such a line is Hqy in

figure 3.4 [BS89]. There are ¢ — 1 possible lines such as Hyy in GF(q).

3.4 Yes-No Threshold Scheme

Finally, Beutelspacher [Beu89] presents an imperfect scheme that allows the additional
feature of yes/no partial keys and thus effects the size of each partial key (criterion
1). Each key holder possess a yes-partial key and a no-partial key. If & yes-partial
keys are given to the master key constructor, the master key is constructed subject
to the existence of fewer than s no-partial keys. This scheme is referred to as a
(k; s)-threshold scheme. Thus, if there are fewer than k yes-partial keys the master
key cannot be constructed. If there are at least & yes-partial keys and fewer than s
no-partial keys, the master key can be uniquely determined. Finally, if there are k or
more yes-partial keys and more than s no-partial keys, there is too much information.
1

The probability of guessing the correct master key in the last case is py where ¢ is

the order of the underlying projective space.

The implementation is similar to the schemes described in [BV87] and in section
1 and 2 of this chapter. The yes-partial keys belong to the set P of points in K, a
(k — 1)-dimensional subspace. The no-partial keys belong to the set N of points in
S, a (s — 1)-dimensional subspace which is skew to K. A line L is fixed such that it

intersects K in a unique point X and is skew to S. L is spanned by the points X and
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Y. The partial keys are chosen such that P U N U {X,Y} is an arc. This constraint
allows any k4 s points to span the whole space. Thus, if U partial keys are presented

to the master key constructor:

o If U contains k — 1 yes-partial keys (points of P), then X is not an element of

< U > and the secret cannot be reconstructed.

e If U contains at most s — 1 no-partial keys (points of V), then Y is not an
element of < U >, and thus the secret may be retrieved if there are enough

yes-partial keys.

e If U contains at least s no-partial keys (points of V), and at least k yes-partial
keys (points of P), then < X, Y >C U and the secret may not be retrieved.

A generalization utilizing a geometry consisting of subspaces is also presented.

3.5 Hierarchical Information

The first approach to hierarchical information based on the intersection properties of
finite geometries is an adaptation of the compartmented scheme proposed by Simmons
[Sim88] and presented in section 3.2. Specifically, the example presented may be
extended to a hierarchical information scheme with two levels of information. The
lower level has two separate groups of partial keys, one for each group of participants.
The partial keys for group 1 are points on [;. A threshold amongst this group
permits access to information level 1a. The partial keys for group 2 are points on Lo,
a line skew to Li. Access to level 15 is permitted when a threshold of users in group 2
is met. The master key constructor once again possesses a third line, L3 which is

skew to both L; and L, and a unique line w which intersects L, Ly and L3 at points
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q,7, and p respectively. If there is a threshold amongst the participants in group 1

and group 2, access is permitted to information in level 2.

The adaptation of Simmons’ scheme simply involves the master key constructor.
If the partial keys presented identify L, the master key constructor is able to identify
the point ¢ as described in section 3.2, it permits access to information in level la. If
the partial keys submitted allow the identification of point r, level 1b access is granted.
Furthermore, if the point p is identifiable thus signifying a threshold amongst partial
key holders in group 1 and group 2, then the higher level information in level 2 is
accessible. In conclusion,this scheme is still essentially a compartmented hierarchical
scheme with a small adaptation to the master key constructor to allow access when

a threshold in each compartment is reached.

Assuming the master key constructor previously stored line w as well as ¢, r, and
p, the storage requirements for hierarchical information are the same for the master
key (criterion 3). This is also true for the size of the partial keys since they have

gone unchanged in this scheme (criterion 1).

A generalization based of a compartmented scheme presented in [Beu] is used
as a basis for a generalization of this type of hierarchical information scheme. Let
Gy, ...G, represent n groups each of which is allowed access to information in level 1.
Let k; represent the threshold for group G;. For every group, (;, there is a linear
subspace, U; of dimension k; — 1 of a projective space p. The U; subspaces are chosen

such that:

e They generate a space of dimension (37, k;) — 1. (In other words, they are in
general position and the dimension is one less than the sum of the thresholds

for each level.)

e The U;’s generate a space of dimension (3.7, k;) — 1.



CHAPTER 3. FINITE GEOMETRIES 32

o They intersect a subspace U,, of dimension k., — 1 in the points X,... X,

respectively.

Once again, there is a unique line, S, which intersects U, in a unique point X. If the
master key constructor is able to construct X;, then access to information in level 1;
is permitted. If each of the thresholds in group G, for ¢ equals 1 to n, then the master
key constructor can construct X and thus permit access to the higher level secret in

level 2.

The second approach to hierarchical information is based on the ultimate author-
ity multilevel scheme presented in [Beu89] [BV87] and in section 3.2. This hierarchical
information scheme also provide a hierarchy of authority. The following is an adap-
tation and provides access to two levels of information and provides two levels of
authority. The lower authority partial key holders may only access the higher level
information if ¢ higher authority partial keys are presented to the master key construec-
tor. The higher authority partial key holders may access either level of information

with the presentation of k partial keys.

To implement this scheme, a (k — 1)-dimensional subspace, B, is utilized for
choosing the partial keys for the higher authority partial key holders. These partial
keys are to be chosen in general position (i.e. any k of them span B). The lower
authority partial keys are chosen in general position from a (k — 1 — ¢)-dimensional
subspace of B, B*. The number of partial keys distributed is limited only by the
above constraints. The higher authority partial keys are contained in B but are
outside of BT. Thus, the higher authority partial keys must be presented in order to
identify the master key, B for the higher level information. By defining B, they also
define any subspace of B and thus the master key constructor will permit access to
any threshold permitted by a subspace as in the scheme by Beutelspacher and Vedder
[Beu] [BV8T7]. The higher authority users may obtain the threshold for either level of
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information without the consent of the lower authority users. The lower level partial
key holders could never define B without 2 higher authority partial keys. Furthermore,
the lower level partial key holders may define Bt subspace with a threshold of k—2—i

and thus obtain access to the lower level information.
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Figure 3.4: Scheme with cheaters [BS89]
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Steiner Systems

More generally, geometrical threshold schemes may be based on Steiner systems*. A
Steiner system S(k,n,v)! is a simple n-uniform hypergraph on v points such that

every k-subset of points define a unique block™*.

4.1 The Method

The partial keys in this method are the v points. From the v points, n are chosen
as partial keys and given to the n participants. The master key constructor, with k
partial keys, can calculate any one of a set of m master keys, {S1,...5,} ?. These
m master keys are the unique blocks defined by every k-subset of unordered points.
The representation for threshold scheme based on Steiner systems is a (k,n,v;m)-

threshold scheme.

'The usual notation for a Steiner system is S(¢, k,v). The notation is changed here in an effort

to maintain consistent notation for & and n within the thesis.

?Additional schemes which consist of a set of master keys, referred to as access structures, can

be found in [ISN87] [BS90]
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Stinson and Vanstone [SV88b] [SV88a] show that there exists a perfect (k,n, v;m)
threshold scheme if and only if there exists m mutually k-compatible* n-uniform
hypergraphs on v points. Two hypergraphs, A, and As, are considered to be k-
compatible if A;(k — 1) = Ay(k — 1) and Ay(k) N Ay(k) = 0 where A(k) equal the

set of all subsets of vertices of order k. They also show that M(k,n,v) = EZ:];E)) if

and only if a S(k,n,v) Steiner system can be partitioned into S(k — 1,n,v) Steiner
systems. (M (k,n,v) is the maximum possible value for m, the number of master keys
in a (k,n,v;m) threshold scheme.) The general upper bounds for M(3,3,v) as well
as the exact value, when known, for M(3,3,v) for v < 30 presented by [SS89] and
[CS89] are displayed in Table 4.1 and Table 4.2 respectively. When the exact value
for v < 30 is not known, the upper and lower bounds known are presented. Table
4.1 has been updated to reflect recent work by Teirlinck * [Tei89]. Table 4.3 displays

one upper and three lower bounds on M (4,4,v) as presented by [SS89]

The schemes presented are for a (k, n, v;m)-threshold scheme where k = 3 and n =
3 and (v;m) = (9;7),(12;8),(14;10), (16;10),(17;13),(23;19) and for a (3,3,v;m)
threshold scheme that meets the upper bound on m. Also presented in their paper

are some combinatorial designs for imperfect schemes.

General bounds for reconstructing keys are presented in [Mer83]. They are report-
edly proven in Merritt’s thesis (See Table 4.4). These bounds involve the relationship

between the number of participants n, and the number of people holding invalid par-

3The original work was by J.X. Lu whose death left his proofs for the existence of certain partitions

of Steiner systems incomplete. Prior to the work by Teirlinck, six cases were left unsettled.
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Value of v Value of M(3,3,v)
v=1or3mod6,v>1 M(3,3,v) <v—2
v=20,20r 5mod6,v > 2 M(3,3,v) <v—4
v=4mod6,v >4 M(3,3,v) <v—6
v=1,3mod 6,v #£ 1,7 M(3,3,v)=v—2
v=2o0r6mod 12,v/2 £ 1,7 | M(3,3,v)=v—4
v="4or12mod24,0/4 £7 | M(3,3,0) > v —8
v =>5mod 30,v/5 £ 7 M(3,3,v) >v—10

Table 4.1: Upper Bounds on M (3,3, )

tial keys b, in a k-threshold scheme.

Evaluating the scheme by the criteria, the size of the partial key, ~ is determined
by the implementor when choosing the partial keys. The master key constructor
needs to store at least + * k * m since the master key is a set of m master keys, each

of which is defined by a minimum of 1 set of k partial keys the size of ~.

An example of a perfect (3,3,9;7)-threshold scheme presented by Chen and Stinson
[CS89] follows. The 9 partial keys are {0,1,2,3,4,5,6,7,8}. The 7 master keys are

represented as 57, S9,...57 and are presented in table 4.5.

If the partial keys {4,2,5} were presented to the master key constructor, the

unique master key S7; would be identified since {2,4,5} is contained in S-.

Other examples presented in [CS89] include those for a (k, n,v; m)-threshold scheme
where k = 3 and n = 3 and (v;m) = (9;7),(12;8), (14;10), (165 10), (17;13),(23;19)
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M(3,3,v)

NolENe s B R e

10
11
12
13 11
14 10
15 13
16 10
17 13
18 14

O I . (= G R

19
20
21
22
23
24
25
26
27
28
29
30

15

8 < M(3,3,20) < 16
19

14 < M(3,3,22) < 16
19

20

23

22

25

20 < M(3,3,28) < 22
M(3,3,29) < 25

26

Table 4.2: Known Values and Bounds for M(3,3,v) v <30

Values for v

Bounds on M (4,4, v)

all v (upper bound)
v =8 or 16 mod 24
v =0 o0r 6 mod 12

v =4 or 20 mod 24,v/4 a prime power

M(4,4,v) <v—3
M(4,4,v) > 3v/4
M(4,4,v /3
M(4,4,0) > v/4

Y

Y

v
v

Y

)
)
)
)

Table 4.3: Bounds onM (4,4, v)
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restrictions on (n, b, k)

upper bounds

lower bounds

k even
k odd
b=1
(7,4,3)
(6,2,4)

b+ 2
b+ 1
b+ 1
b

b+ 2

b+ 1
b
b+ 1
b

b+ 2 conjectured

Table 4.4: Bounds on Threshold Schemes with Invalid Partial Keys

St

S

53

Sy

Ss

Se

Sz

{7,8,0 } | {7.8,1 }
{0,1,6 } | {1,2,0 }
{0,2,5 } | {1,3,6 }
{0,34 } | {145}
{1,244 } | {235 }
{3,5,6 } | {4,6,0 }
{7,1,5} 1 {726 }
{7,2,3} 1 {734}
{746 } | {7,5,0 }
{8,3,1 } | {84,2 }
{8,6,2 } | {8,0,3 }
{8,5,4 } | {8,6,5 }

{7,8,2 }
{2,3,1 }
{2,4,0 }
{2,5,6 }
{3,4,6 }
{5,0,1 }
{7,3,0 }
{7,4,5 }
{7,6,1 }
{8,5,3 }
{8,1,4 }
{8,0,6 }

{7,8,3 }
{3,4,2 }
{3,5,1 }
{3,6,0 }
{4,5,0 }
{6,1,2 }
{7,4,1 }
{7,5,6 }
{7,0,2 }
{8,6,4 }
{8,2,5 }
{8,1,0 }

{7,84 } | {7.8,5 }
{4,5,3 } | {1,6,4 }
{4,6,2 } | {1,0,3 }
{4,0,1 } | {1,1,2 }
{5,6,1 } | {2,0,2 }

{0.2,3

{4,344}

{7,5,2 } | {7,6,3 }
{7,6,0 } | {7,0,1 }

{7.1,3

{724}

{8,0,5 } | {8,1,6 }
{8,3,6 } | {8,4,0 }

{8.2,1

b1 {832}

{7,8,6 }
{6,0,5 }
{6,1,4 }
{6,2,3 }
{0,1,3 }
{2,4,5 }
{7,0,4 }
{7,1,2 }
{7,3,5 }
{8,2,0 }
{8,5,1 }
{8,4,3 }

Table 4.5: Master keys for a (3,3,9; 7)-threshold scheme
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and for a (3,3,v;m) threshold scheme that meets the upper bound on m. Imperfect
schemes are also presented in their paper. Additional examples and information on
threshold scheme based on Steiner systems may be found in [SS89], [CvO89], [SV88al,
[SV88b], [DSV88] and [BVSET].

4.2 Hierarchical Information

The hierarchical information threshold scheme based on a Steiner system, S(k,n,v),
allows access to higher levels based on a greater number of participants. Let ky,... &;
represent the thresholds for levels 1...j. Level j is implemented using a S(k;,n,v)
Steiner system. Assume S(k;,n,v) is partitionable into S(k; — 1,n,v) which is also
partitionable. Assume S(k; — 1,n,v) is partitionable into S(k; — 2, n,v) which is also
partitionable and so on. Then, we eventually have S(k;,n,v) which is partitionable
into a S(kj_1,n,v). In addition, S(k;_1,n,v) is partitionable into S(k;_3,n,v)...S(k2, n,v),
and S(ki,n,v). Then, whenever k; partial keys are submitted to the master key
constructor, a block in S(ky,n,v) is identified and access to level 1 information is
granted. When k, partial keys are submitted to the master key constructor, a block
in S(k1,n,v) as well as a larger block in S(kg,n,v) is identified. Thus, those who
submitted the ky partial keys are granted access to level 1 and to level 2. In general,
when k; partial keys are submitted, access is granted to level ¢ information as well as

to all levels below level 1.

Evaluating the scheme by the criteria, the partial keys being distributed are not
changed from the single level information threshold scheme. The master key con-
structor may have to store additional information in order to be able to identify all
the partitioned blocks. However, Chen and Stinson [CS89], point out that if v = n,
then each block of a S(k,n,v) is itself an S(k —1,n,n). In this situation, the master
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key constructor would be able to identify the various partitions by identifying the
partial block defined by the partial keys. Thus, if block (x,y, z) where defined the
access would not be as great as those would could define block (x,y) since (x,y, z)
is only a portion of block (x,y). The major problem with this scheme is revealed
when evaluating it by criterion 5. As pointed out by Chen and Stinson [CS89], little
successful investigation has been accomplished in the area of solving the problem of

decomposing Steiner systems. Furthermore, only a few Steiner systems are known for

k =4 and k =5 and none are known for k£ > 5 [BV8T].



Chapter 5

Error Correcting Codes

Methods for threshold schemes involving error correcting codes have also been pre-
sented. An error correcting code consists of a set of codewords also referred to as
vectors and blocks. Assuming a binary code, the elements of the vectors belong to
the set {0,1}, the alphabet of the code. A generator matrix for an (a,b)-code is a
b x a matrix whose rows are a vector space basis for the code where a-tuples of bits are
embedded into b tuples to provide redundancy to allow the detection and correction of
errors. The distance between two codewords, also known as the Hamming distance®,
is the number of bits in which the two codewords differ. The Hamming distance of
the code is the minimum distance between any two codewords. An error correcting
code with distance d where d > 2t + 1 can correct t errors. The Hamming weight* of

a vector is the number of non-zero coordinates or bits in the vector, denoted w(s) for

an error vector s. The Hamming weight for the error vectors sq,... sy is
k
W(®d Si)=t
=1

where @ is the bit by bit exclusive OR of the vectors [VvO89].

42
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5.1 The Method

One approach is presented by Davida, DeMillo, and Lipton [DDL80]. The secret
is assumed to be representable as [ x b information bits which are contained in a
vector S of length L consisting of b blocks (groups of bits). The partial keys are
also vectors of length L, represented as sq,...s,. Fach code vector or partial key
differs from all other partial keys in at least d bits where d > 2t + 1, the distance of
the code. The master key constructor is an (L, I, d) error correcting code algorithm.
The partial keys are chosen such that the Hamming weight* of any k error vectors is
t. Furthermore, the Hamming weight of any & — 1 vectors is ¢ 4+ e where e is some
residual error which forbids the correction by the master key constructor. Thus, the
presentation of any k error vectors has a Hamming weight of ¢ and is correctable. The
master key constructor constructs S & 5" where " = & 3" | s;. Then, it exclusive
ORs this with the exclusive OR of the partial keys presented. If the threshold is met,

an error correction algorithm obtains S.

McEliece and Sarwate [MS81] show that extensions and generalizations of Shamir’s

method [Sha79] can be obtained by the decoding algorithms used for Reed-Solomon

1. A Reed-Solomon code is the code generated by g(z) where g(z) = (z —

codes™
Bz — ) (r =B and B € F = GF(q),|3| =n (i.e. 37 =1but 3*#1
for an positive s < n) and where 6 > 2 and ¢ > 0 [VvO89]. In one form of the Reed-
Solomon code, an information word or vector is @ = (ag, a1,...ax_1) where the a;’s

are elements of a finite field of order r, ¥ = ag, aq,...qa,_1. The information word «

is encoded into the codeword 5" = (s1, $2,...5,). The partial keys are s; = Zf;é ajozf.
As in Shamir’s scheme, the secret S = ag. In this scheme, ay = —Zf;ll s;. Il u

k < u < n) partial keys are presented, ¢ of which are in error, applying an error-
( p y p , , applying

L Additional generalizations of Shamir’s method may be found in [Ben86] [Kot85] [Mea88] [BLS8S].
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and-erasure decoding algorithm reveals the master key provided that & < u — 2t as
in the previous error correcting based scheme. McEliece and Sarwate point out that
Shamir’s scheme [Sha79] is a special case in which the order of the field is prime and

t=0.

Evaluating the scheme by the criteria, the partial keys are of the same length
as the master key. According to McEliece and Sarwate, standard algorithms exist

for the master key constructor that require O(n?) as well as an efficient O(n log®n)

algorithm [MS81].

Denes and Keedwell [DK90] show the connection of the above schemes to Golomb-
Posner codes. This is achieved through the generator matrix for the extended Reed-
Solomon code corresponding to a threshold scheme. If there are only two rows in
this matrix, a minor substitution reveals it to be the codeword obtained by Golomb-
Posner in [GP64]. Let a be the primitive element of GF(¢). The matrix in which &k

partial keys are need for a threshold is:

101 1 . ]
0 0 1 « o? L. al™2
00 1 o ot o a2a-2)
01 1 of !t 2= q=1(e-2)

If there are only two rows, the second row contains all the elements of the field. The

resulting matrix is

ro1 1 1 ... 1

001 a o ... a??

Denes and Keedwell proceed to show that if ap = 0 and «; = 1, then the codeword,

obtained by adding «; times row 1 to «; times row 2 is

(i, 0 + arag, a; + @y, ..o 0 + ag_1qj).
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This is the codeword obtained in the Golumb-Posner [GP64] construction using the
entries of the ¢th row and the jth column of the members of the complete set of
g — 1 mutually orthogonal Latin squares® in G'F'(¢) [DK90]. A Latin square of order
n is a n X n matrix in which each row and column is a permutation of its row or
column elements. Two Latin squares are mutually orthogonal if the superimposition
determines another Latin square in which all the entries are distinct. The construction
of the extended Reed-Solomon code generator matrix from Latin squares is shown in
Wu [Wu85]. Denes and Keedwell point out that when Latin squares are used, the
threshold is always 2 (i.e. k = 2) due to the above connection [DK90].

An alternative method involving error correcting codes is presented by Harari
[Har83]. The partial keys that are given out consist of multiple tuples of a bit (as-
suming binary representation of the secret) and bit location. When k partial keys are
submitted, the undefined locations are arbitrarily set to 0. If enough partial keys are
submitted, the decoding algorithm of the master key is able to correct the arbitrary
bit to the correct value, correct the vector and thus reveal the secret. Table 5.1, from
[Har83], shows examples of possible threshold schemes based on Reed-Solomon codes
in terms of the maximum number of participants, minimum threshold, the length of
the secret vector, and the number of bits each partial keys. The values are related
to the maximum distance of each code. Additional details are available in Harari

[Har83].

5.2 Hierarchical Authority

A hierarchical authority threshold scheme is proposed by Davida, DeMillo and Lipton
[DDL&0]. This is accomplished by giving users at different levels different keys such
that if level 7 requires k; partial keys for the threshold, the the partial keys for level ¢
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Number of bits | Number of bits | Maximum value | Minimum value
in the Secret | per partial key of n of k
47 9 4 2
101 10 10 4
149 10 18 11
197 8 24 15
293 8 35 19

Table 5.1: Possible systems based on Reed-Solomon codes

are such that the the Hamming weight of any k; of them equals ¢. Furthermore, the
Hamming weight of any k; — 1 of them is £ + e;. This can best be summarized by
Table 5.2.

Authority Level | Threshold | Weight of k; partial keys
1 ky W(Byh, s) =t
2 ko W(myh, s) =t
3 ks W(Byh, s;) =t
L kr, W(oyht, s) =t

Table 5.2: Hierarchical Authority Levels and Weights

The authors also state that collusion of users at different levels may take place or
may be prohibited by selecting vectors that add to the error if members from different
levels work together. No details on the construction of vectors for the allowance or

prohibition of users of different levels are provided in the paper.
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5.3 Hierarchical Information

The hierarchical information threshold scheme is based on the scheme proposed by
Harari [Har83]. This is a hierarchical authority and hierarchical information scheme.
Thus, participants with more authority are required in order for a higher level infor-
mation. As in the scheme proposed by Harari, the partial keys consist of multiple
tuples of bits (assuming binary representation of the secret) and bit locations. The
restriction on the partial keys is that for a participant who only has access to level
¢, the locations of all of their bits are between location 1 and location |S;| where |.5;]
is the size of the vector for 5;, the secret for level :. If a participant has authority
for level 7, j > ¢, then the locations of all of their bits are between location 1 and
location |S;]. Since j > i, the first |.S;| bits of S; = S;. This permits those of higher
authority to also access the lower levels. As in Harari’s scheme, when k; partial keys
with authority for at least level 7 are submitted, the undefined locations are arbitrarily
set to 0 (where k; is the threshold for level ¢). If enough partial keys are submitted,
the decoding algorithm of the master key is able to correct the arbitrary bits and thus
correct the vector and reveal S; by correcting the secret for the bits 1 through |.5;].
When k; partial keys of authority for at least level j are presented, the master key
constructor once again arbitrarily sets the undefined bits to 0. A decoding algorithm
is able to correct the code for bits 1 though |5;|. Thus, secrets S; and S; as well as
all S,,a < j are revealed. One restriction to the scheme is that |S;| +d < |Si41]. If
there are not at least d bits separating the size of one level of the scheme to the next,
then if all participants of level ¢ entered their partial keys, the decoding algorithm
may be able to correct the next level secret as well since only d bits, the distance of

the code, are undefined and the vector is correctable for level 5;,4.

The partial key for the higher levels must have the minimum number of bits for
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each level below its maximum level and thus the partial key is larger.
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Chapter 6

Chinese Remainder Theorem

The final method is based on the Chinese Remainder Theorem*. The Chinese Re-
mainder Theorem is as follows: Let ny,no,...,n; be positive integers such that
ged{n;,n;} = 1 for ¢« # j. If n = niny---ny and a, by, by,..., by are integers,
then there exists a unique integer b such that ¢« < b < ¢ + n and b = b; mod n;

fore=1,... k. [FisT7]

6.1 The Method

The first method is presented by Asmuth and Blakley [AB82]. The secret is once
again to be representable as a number, S. A prime p is chosen. The partial keys
in this scheme are congruence classes of a number associated with S. The n partial
keys are s; to s, such that s; = 5" mod d;, where d; through d,, are chosen with the

following constraints:

odi<di+1 \Vll%j

49
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e ged(d;,d;) =1 Yi# j (pairwise relatively prime)
e ged(p,d;)) =1 Yi

o Let M =T[T%, m; such that M > p[T'=! mu_ipa

The master key is S” = S + Ap where A is an arbitrarily chosen integer subject to
the condition that 0 < 5" < M (i.e. A is in the range [0, (M/p)-1]. The master key

is also assumed to be less then p and greater than or equal to 0.

The master key S, can be constructed when k partial keys, sq,..., s, (without
loss of generality), are presented. Specifically, by the Chinese remainder theorem,
S" = (8121 + S9z9 + -+ + Spzx) mod w where w = MME,d; and z; = = x y; where

y; = the inverse of % and d; (i.e. y; satisfies ((% y;) mod d; = 1. This is solved by

extended Euclidean algorithm.) The secret is then S = 5" — Ap.

Evaluating the scheme by criterion 1, the partial keys, s;, are given modulus
the secret, S (since s; = S mod d;,s; < 5), however, the s;’s and d;’s must both be
stored . Thus, the partial keys are twice the size of the master key. The master key in
this scheme requires the storage of the secret, as well as A, p and S’. Thus, assuming
A, p and 5 require as much storage as the secret, the master key constructor for the
secret requires four times the storage as the secret itself. With respect to criterion

2, Asmuth and Blakely state that the master key construction algorithm is O(k).

The following example is presented in Denning [Den82]. The secret equals 3, n
or the number of partial key holders equals 3, the threshold £ equals 2. The random
prime chosen, p, is 5 and the random integer, A equals 9. Thus S’ = S 4+ Ap =
34 (9%5) =48. The d;’s chosen and the related partial keys, s; are as follows:

d =7 51 =48 mod 7T=6
dy =9 S, =48 mod 9 =3
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ds =11 s3 =48 mod 11 =4

The master key can be calculated using any two partial keys since k equals 2.
Choosing sy and s3, wy = dy *d3 = 7T+ 11 = 77. Using the extended Fuclidean
algorithm to find y; and y, where y; satisfies 7—77 xyy mod7 = 1; 1y, =satisfies
% * yp mod 11 = 1; thus y; = 2;y, = 8. It follows that z;y = 11 x2 = 22 and
z9 = T+ 8 = 56. Thus, the master key,

S"= 12246 + 56 4] mod 77

= 356 mod 77 =48 = 5.

The secret
S=48—(9%5) =3

as required.

Extending the example for three partial keys, we choose sy, s5, and s3. We find

w=0693,y1 =1,y2 =2,y3 =7, and z; = 99, zo = 154, and z3 = 441. Thus
S"=(6%99 + 3% 154 + 4 % 441) mod 693 = 48 = 5’

As expected, the secret
S =48 —(9%5) =3.

The second scheme based on the Chinese remainder theorem is presented by
Mignotte [Mig83]. This scheme can be described as follows. Let A be the ring of
integers, Z, and let [ be an ideal* of A. Also, let [; = d;Z2 and 1 < j < n and
dy,...d, are coprime in pairs. The master key or the secret, 5, is then an element
of Z, where ¢« < 5 < b; a,b € Z. The partial keys are represented as s; where

s; = S modd; where 1 < j < n. Once again, dy,...,d, are chosen such that the
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product of any k of the d; is greater than b and that the product of (k — 1) of the d;
is less than a. Then, the secret S is equivalent to s1z1 + -+ + spzp mod dy ... d;.
The z;’s are once again obtained using the extended Euclidean algorithm.

Mignotte states that if only £ — 1 partial keys are used, then there exists at least

b—a

YA values which satisfy S = (s1z14- - -+8k_12,-1) mod dy - - - dj_1 in the interval

[a,b] (criterion 4a). Thus, this scheme is not perfect. Evaluating the scheme by
criterion 1, the partial keys are given modulus the secret as in the previous scheme
and require the same storage space. However, the master key in this scheme requires

only the storage of the secret.

The previous example can be adapted to show this scheme. Let the secret, S,
equal 48, n equal 3, and k equal 2. Let a, the upper bound on the product of any
k—1 partial keys equal 6. Let b, the lower bound on the product of any k partial keys
equal 62. d; through ds and s; through ss, where s; = S mod d; could be as follows:

d =7 51 =48 mod 7T=6
dy =9 S, =48 mod 9 =3
ds =11 sy =48 mod 11 =4

Once again choosing s; and s3, the y;’s and z;’s are the same as the previous example
and thus,
S =(22%6456+4) mod 77 = 356 mod 77T =48 = S

6.2 Validating Shadows

Asmuth and Bloom [AB83] state that there is an extremely small probability that

two distinct sets of k partial keys would yield the same, but incorrect master key.
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In a (20,30)-threshold scheme with six partial keys being in error, the probability

24
of this happening is Eggg < 28%. An alteration to the scheme presented in section 1

20
eliminates partial keys found to be incorrect prior to distribution.

The constraints for choosing d; through d,, are changed slightly to the following

constraints:

° di<di+1 \Vll%j
[ J gcd(di,d]‘) = qu \V/Z 7£]
e ged(p,d;)) =1 Yi

e [cm(any k of the d;) > p* lem(any k — 1 of the d;)

Thus, by changing the second constraint and thus not requiring all the d;’s to be
relatively prime, one may validate the partial keys. The validation occurs since if ¢; ;
is known, then s; = s; mod ¢; ;. Asmuth and Bloom state that the congruence class

of most if not all of the ¢; ; would change if there was a random error in s;.

To construct the d;’s to aid in defeating tampering, choose (Z) pairwise relatively
prime integers. A set of r of these integers is represented as {i1,1s,...,%,} the product

of which corresponds to the integer ¢;,. ;. The modulus, d;, is defined as: d; =

Hje{ﬁ,...ir} qﬁ,...ir .

6.3 Hierarchical Information

The following hierarchical threshold scheme, based on the Chinese Remainder The-
orem, is an extension to the system proposed by [Mig83]. To get a (ki, ks, ... ky,n)

threshold scheme where (k1, k2, ... ky,) are various access levels, the partial keys for
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level i are s;; where 1 < j < n and s;;, = 5; mod d;. The secrets are Sy, S3,...5,
where ¢ < 57 < ¢y and ¢35 < 53 <3+ a1 < S < ¢ and where ¢, ¢, ... Copp
are integers, 0 < ¢; < ¢y < ¢y The d;’s, dy, ..., d,, are taken such that

e the product of any k4 — 1 of the d; are less than ¢,
o the product of any &y of the d; are greater than c;,
e the product of any k; — 1 of the d; are less than cs,

o the product of any k; of the d; are greater than ¢y,

e the product of any k,,_; — 1 of the d; are less than ¢y, _3,
e the product of any k,,_; of the d; are greater than cy,,_3,

e the product of any k,, — 1 of the d; are less than cz,,—1,

the product of any k,, of the d; are greater than cy,,.

When k;,1 < < m, of the s; are known, then
Sa = Say 21+ -+ + Sak 2k mod didy ... dy,

where s, ; denotes the portion of the partial key, s;, for security level a. And the
z’s are found using the extended Euclidean algorithm. The s;’s are dependent on the

secret of each level and thus if the storage requirements for the partial keys for a single
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level of information are ~, for m levels, they are m * 4. Hierarchical authority may
be also be implemented with the hierarchical information by simply not distributing

a partial key for the level that the participant shouldn’t be able to access.

An example for three levels of information, five participants with level one requir-
ing a (2,5)-threshold scheme, level two requiring a (3,5)-threshold scheme and level
three requiring a (4,5)-threshold scheme follows. Let the secrets, S; = 47,53 = 356,

and S3 = 3999. The following d;’s may be used and the corresponding s; are listed.

d; 51, =47 mod d; | sy, =356 mod d; | s3; = 3999 mod d;
dy =7 5 6 2
dy =9 2 5 3
ds =11 3 4 6
dy =13 8 5 8
ds =17 13 16 4

Table 6.1: Partial Keys for Hierarchical Information

The ¢;’s used are ¢; = 6, ¢y = 62, ¢35 = 222, ¢4 = 692, ¢5 = 2432, and ¢g = 9008.

For level one, using partial keys s; 1 and sy 5, the y;’s must first be determined as

119
7

119

described in section 1. y; satisfies === *y; mod 7 = 1 and y; satisfies 5=

*ys mod 17 =
1. Using the extended Euclidean algorithm, y; = 5. and y5 = 5. The z,’s are

119
119

The secret for level 1,

S1=(5*%85+35%13) mod 119 =47 = 5.
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For level two, using partial keys s;2, 523, and sz 45w =9 * 11 % 13 = 1287, the y;’s

are determined to be y3 = 8,y3 = 8, and y4 = 5. The z;’s are

1287
Zy = o x5 = 1144

1287
Z3 = T x4 = 936,
1287

Thus the secret

= (5% 1144 + 4 % 936 4+ 495  5) mod 1287 = 356 = 5.

For the top level using partial keys s31, 53,2, S3,3, and sz 43w = 79+ 1113 = 9009,

the y;’s are determined to be
y1=06,y2 = 5,y3 = 9,54 = 10.
The z;’s where z; = d% * 1; are:
21 = 1722, 29 = 5005, z5 = 7371, z4 = 6930.
As expected,

S = (2% 7722 4+ 3 % 5005 + 6 * 7371 4 8 * 6930) mod 9009 = 3999 = S.

An alternate hierarchical threshold scheme using the Chinese Remainder Theorem
utilizes the same s;’s for all levels of the hierarchy. In order to implement their
system with a hierarchy of authority as well, each s; is given modulus the highest
level authority permitted for that partial key holder. The highest level in the overall
scheme, m, is the same as the above scheme. The first through (m — 1) levels’ master

key is 5;, for level ¢, which is a set which contains all possible solutions for valid
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partial keys for level ¢ to s121 4 - - - sg, 2, mod dyds . . . dg, where k; is the threshold for

level <.

For each of the lower levels, v, the order of S, is at most (kz ) (S, is smaller when
all n participants are not granted authority for level v). While the storage space for
the partial keys remains the same as for single level information, the space required
for the master key greatly increases. The computation required to find the S;’s to
set up the scheme is equivalent to the required time for the master key constructor.
However, this must be computed (IZ) times for each of the ¢ lower levels. Thus, if the
master key constructor requires an average time of T', there is added overhead time

of [17* {(IZ) * T} added to the set-up time for this scheme.

An example for 4 partial keys where level one requires (2,4)-threshold and level
two requires a (3,4) threshold follows. Let S; = 48,53 = 356. Let the d;’s and the
partial keys, sy ---s4 be the following.

d; s;1 = 356 mod d;
dy =17 6
dy =9 5
d3 =11 4
dy =13 5

Table 6.2: Partial Keys for Alternate Hierarchical Information Scheme

For level two, the secret would be revealed as before. There are (;1) = 6 elements
in S to be found. To find the elements of 51, we must solve 5" = s,z; 4 s;z; mod d;d;

for all unordered combinations of {1,2,3,4}. Using the partial keys s; and sy, w =
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63,41 = 4,y = 4. Thus the z;’s are as follows:

63

63
Thus,
S"=(6*36 +5*28) mod 63 =41 € 5,
Similarly, to find a second element of 51, using partial keys s3syq, w = 143, y3 =

6,y4 = 6,23 = 78,24 =66 and 70 € Sl.

The rest of the members of S; are found in the same manner.



Chapter 7

Conclusion

Numerous uses for threshold schemes are presented. These uses range from protect-
ing encryption keys to preventing military and management actions without proper
authority. Several general methods for implementing such schemes are examined in
the literature. The implementations have different mathematical foundations. In this
thesis we looked at methods based on polynomial interpolation, on the intersection
properties in finite geometrics, on the more general Steiner systems, on those utilizing

error correcting codes as well as the Chinese Remainder Theorem.

The are several things one needs to consider when setting up a hierarchical infor-
mation threshold scheme. The first concerns the requirements needed for the higher
level information. The second is a set of concerns regarding the criteria as defined in
chapter 1. Table 7.1 and table 7.2 present summaries of our research with regard to
these concerns. Table 7.1 is a summary of the threshold schemes with hierarchical in-
formation presented in this thesis. In this table, an ‘X’ indicates a threshold scheme
with that type of access is presented in this thesis. According to the information

presented in this table, we observe that, in terms of the types of thresholds used to

39



CHAPTER 7. CONCLUSION 60

implement hierarchical information, the method based on Steiner systems seems to be
most restrictive in the sense that there are no obvious ways to implement hierarchical
information based on strictly more authoritative participants other than to distribute

multiple keys.

In addition to determining the type of threshold, there may be additional con-
straints to the type of threshold scheme one may use. This is the aforementioned
‘second set of concerns.” We have identified several criteria one may consider when
implementing a threshold scheme particularily with hierarchical information. Ta-
ble 7.2 summarizes the evaluation of the methods presented in this thesis in terms
of these criteria. If criterion 1, the size of the partial key, is important as well as
criterion 2, the master key construction time, one might consider the approaches
based on finite geometries or Steiner systems. If only criterion 1 is important, the
second approach discussed in section 6.3, based on the Chinese Remainder Theorem
implemented using the same s;’s and d;’s for each level, may be used. However, if
criterion 1 is not of concern but the set up time is, any of the approaches except the
2nd Chinese Remainder Theorem approach could be utilized. The chart also reminds
us by criterion 5 that little successful investigation has been accomplished in the
area of solving the problem of decomposing Steiner systems [CS89]. Specifically, the
Steiner systems needed are those which are partitionable into Steiner systems which
are themselves partitionable. Furthermore, only a few Steiner systems are known for
k =4 and k =5 and none are known for k > 5 [BV87]. Overall, the finite geometry
based approach to hierarchical information appears to be the best in terms of types

of thresholds that can be used as well as in terms of the size of the keys.

Ideally, any of these methods would be usable for all purposes. Thus, future
work includes developing schemes which can optimize the size of the partial keys and

minimize the computational time and overhead for the master key and master key
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more
partial key
holders

more authoritative
partial key
holders

more partial
key holders

with more authority

Interpolating

Polynomials

Finite

Geometry

Steiner

systems

Error

Correcting Codes

Chinese Remainder

Theorem

Table 7.1: Hierarchical Information Schemes Presented

61



CHAPTER 7. CONCLUSION

62

Criterion 1

Criterion 2

Criterion 3

Criterion 4

Criterion H

Size of Master Key | Storage Req. | Amount of Variety
partial construct. for partial info. of known
key time and revealed by | schemes of
master key | < k—1 keys | this type
I
Interpolating |~ + L~y S I/1 S N.A.
Polynomials
Finite S S S/S S N.A.
Geometries
Steiner S S S/S S very
systems limited
Error
Correcting I S S/S S N.A.
Codes
Chinese I(1st) S(1st) I/S (1st)
Remainder S N.A.
Theorem S(2nd) [(2nd) S/1 (2nd)

I=increased:

S=same as uni-level information scheme

Table 7.2: Hierarchical Information Schemes evaluated by Criteria
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constructor. Additionally, one would like to be able to use any of the methods to
implement any type of hierarchical information threshold scheme. As the research in
the area of Steiner systems advances, this approach may become more viable of an
approach to hierarchical information threshold schemes. Additional work is needed to
find out other natural implementations of hierarchical information threshold schemes.
The polynomial interpolation method and the Chinese Remainder theorem approach
may be implementable with smaller partial and master keys. The Chinese Remainder
theorem is polynomial interpolation in a different domain. Unification of the two
methods along with all the variations is also a topic of future research. Furthermore,
the finite geometries seem to provide an easy method for storing the master key
without storing the whole master key. Determining if this is possible for the other
methods is another topic for future research. Several uses for threshold schemes have
been proposed. Future research includes determining which of these uses may be
implemented with each of the methods. In addition, there is a need to determine

exactly how practical are each of the methods.

Another method not examined in this thesis is based on graph theory. Such a
graph theory based method has been proposed in [BS89]. The partial keys in this
scheme are the vertices of the graph. Pairs of participants, represented as edges in
a graph, are able to compute the master key, the graph. A general result is proven
for the information rate® which is at least 2/(n + 3), where n is the maximum degree
in a graph, (G. The information rate is the amount of information being distributed
as partial keys as compared to the size of the master key. While there has been very
limited research into this type of implementation, this method may prove to be very

promising in terms of hierarchical information.

Some papers present threshold schemes which deal with cheating. There are var-

ious forms of cheating to prevent. These include reconstruction of legal but incorrect
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master keys, unauthorized control of key distribution, distribution of invalid partial
keys as well as acquiring unauthorized information about the set of partial keys. Addi-
tional research is needed to accommodate these features into hierarchical information

threshold schemes.

Also reviewed in this thesis are some methods which allow a threshold scheme to
implement various levels of authority or to permit conditional distribution of author-
ity. The geometrical hierarchical authority schemes seem to naturally adapt to hier-
archical information. As more is known about hierarchical authority implementations
(other than the distribution of more partial keys to more authoritative participants),
there will be an increased amount of future work to determine if the relationship may
be extended to other methods as well as for the implementation of hierarchical infor-
mation. An additional topic for future research includes expanding the idea of yes-no
threshold schemes to other methods, to accomodate the detection and prevention of
cheaters as well as to possible expand hierarchical information threshold schemes to

yes-no hierarchical information schemes.



Appendix A

Terms

1. block [BM82] - a connected graph that has no cut vertices.

2. Chinese Remainder Theorem [Fis77] -Let ny,na, ..., ng be positive integers
such that ged{n;,,n;} = 1for ¢ # j. lf n = ning---ng and a, by, by, ..., b
are integers, then there exists a unique integer b such that ¢ < b < a 4+ n and

b=b;, mod n; fore=1,...,k.

3. k-compatible [SV88b] [SV88a| - two hypergraphs, A; and A,, are considered
to be k-compatible if Aj(k—1) = Ay(k—1) and A1(k) N Ay(k) = 0 where A(k)

equal the set of all subsets of vertices of order k.

4. Desarguesian plane [BJL85] planes arising from fields, if the field is finite

then the plane is also considered a Pappian plane.

5. A (finite) generalized quadrangle (GQ) of order (o, 7) [DSV88] -an inci-

dence structure which satisfies the following axioms:

(a) Each point is incident with exactly 1 + 7 lines (7 > 1) and two distinct

points are incident with at most one line.
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10.

11.

12.

(b) Each line is incident with exactly 1 +o points (¢ > 1) and two distinct

lines are incident with at most one point.

(¢) V& and VYL, where x is a point and L is a line, which are not incident with
each other, there exists a unique line which is incident with both = and a

(unique) point on L.

. finite geometry [Tul67] - a geometry defined in terms of a system of axioms

and undefined terms which limits the set of elements(such as points and lines)

to a finite number [Tul67].

Hamming distance [VvO89] - the number of coordinate positions in which
two codewords or vectors differ also known as the minimum distance. The
Hamming distance of a code is the minimum of the Hamming distance between

any two codewords in the code.

Hamming weight [VvO89]- the number of non-zero coordinates of the error

vector, s, denoted w(s).

hyperplane - the largest proper subspace of R™ whose dimension is m — 1.

(eg. aline in R?).

Ideal (of a ring) - A is an ideal if it is a subring of a ring R such that for every

rin R, and for every a in A, ra and ar are in A.

incidence structure [DSVS88] - an incidence structure, I, is a subset of p x b

where p is a set of points and b is a set of blocks.

information rate [BS90] - the amount of information being distributed as

partial keys as compared to the size of the master key.
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13.

14.

15.

16.

17.

18.

Latin square of order n [Wu853] - is a n x n matrix in which each row and
column is a permutation of it row or column elements. An example of a latin

square of order 3 is:

01 2
120
2 01

mutually orthogonal latin squares [Wu85] - two latin squares are mutually
orthogonal if the superimposition determines another latin square in which all

the entries are distinct.

perfect threshold scheme [SV88a], [SS89] and [BS89]- If the k—1 participants

pool their information, they have no more knowledge than a complete outsider.

Reed-Solomon code [VvO89] - The code generated by g(z) where g(z) =
(x = pr*o)(x = §22) - (x = f7 ) and € F' = GF(q),|B| = n (ie. §7=1
but 3% # 1 for an positive s < n) and where 6 > 2 and a > 0.

Steiner system S(¢,w,v) - A simple w-uniform hypergraph on v points such

that every t-subset of points define a unique block*.

incidence matrix [BJL85] - Let D be a finite structure and label the points as
p1-...py and let the blocks be labeled as By, ... B, . The matrix M = (m;;)

where ¢ =1,...,v; 3 =1,...,b. The incidence matrix for D is then defined by
1 if Di I B]‘
mg; =
0 otherwise

Where p; I B; indicates that (p, B) € I CV x B where V isthe set of points.
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