On Object Layout for Multiple Inheritance *

William Pugh
Department of Computer Science
University of Maryland, College Park
pugh@cs.umd.edu

Grant E. Weddell
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

gweddell@watdragon.uwaterloo.edu

*This research was supported in part by NSF grant CCR-8908900, the Natural Sciences and Engineering Research
Council of Canada, by Bell-Northern Research Ltd., and by the Information Technology Research Center. The Flavors
data was extracted from equipment supported by NSF research equipment grant CDA-8811952.

2 Pugh and Weddell

Abstract

We consider the problem of encoding objects for object-oriented programming languages that
allow subtyping and multiple inheritance among class definitions. This is an important problem
since a choice of encoding will determine the implementation for a number of common operations:
extracting a property value from an object, comparing two object references for equality, and
expression retyping.

We expand on earlier work in [9] in which we proposed a new algorithm for obtaining an object
encoding that assigns a fixed offset to each property. This allows property values to be extracted
with the same efficiency as in systems that do not provide multiple inheritance. We present both
analytic and experimental evidence that suggests that this is an important performance issue and

that our method works well in practice.

Index Terms: object-oriented programming languages, object encoding, compilation.

On Object Layout for Multiple Inheritance 3

1. Introduction

Recently developed type systems for polymorphic programming languages allow a user to organize
a description of objects in terms of a generalization taxonomy of class types. In this paper, we
expand on earlier work in [9] that proposed a new algorithm for obtaining an object layout in cases
where multiple inheritance occurs in the taxonomy. We propose a new algorithm that generalizes
earlier approaches based on the idea of conversion to single inheritance [11], of table lookup [2] and
a two-directional algorithm in [9].

The choice of object encoding is important since it determines:
e how property values are extracted from objects,
e how object references are compared for equality, and
e how to retype expressions at runtime.

Determining a choice of behavior for an object reduces to the problem of extracting property values
from an associated class object, so procedures for obtaining an object encoding may also be used to
implement method dispatch.

We begin in the next section with a simple example to help motivate the results of this paper.
Section 3 that follows is a survey of previous work on the problem of finding an object encoding.
This includes a review of the procedures used to implement multiple inheritance in Smalltalk and
in C++4. We base our review on a simple type definition language introduced at the start of the
section in which both class and record types may be defined. Instances of the former constitute a
logical or conceptual view of a collection of objects while instances of the latter specify how objects
are actually encoded in memory.

Our main results follow in Section 4 in which we present a new algorithm for obtaining an object
encoding. The algorithm incorporates a generalized version of Algorithm B in [9], and can produce
an object encoding in which each property is assigned a fixed offset. We demonstrate that the main
advantage of this is that property value access can proceed with the same efficiency as in systems
that do not provide multiple inheritance. Our analytic and experimental results further confirm that
the method works well in practice, and that the efficiency of the method itself will not be a problem
for cases involving class types likely to occur in practice.

In our summary comments in Section 5, we discuss a number of remaining issues and suggest
some future directions of research. Part of discussion focuses on the issue of interactive use and
separate compilation.

We stated above that the object encoding problem is an important performance issue. In
support of this claim, we refer the reader to [12] which outlines an experiment performed on a C
compiler. The results of the experiment indicate that the means of property value extraction alone
can significantly affect overall performance of the compiler. This suggests that the object layout
problem is an important performance issue for software systems with components that require the

extensive manipulation of memory-resident data. Note that this is not the case if the data resides

4 Pugh and Weddell

TYPE OFFSET TYPE OFFSET
0 1 2 3 -1 0 1 2
student | Name Advisor ‘ student ‘ Name Advisor ‘
teacher | Name — Salary ‘ teacher | Salary Name ‘
tutor | Name Advisor Salary Boss‘ tutor | Salary Name Advisor Boss‘
(a) One-directional fixed offsets. (b) Two-directional fixed offsets.

Figure 1: OBJECT LAYOUTS FOR THE UNIVERSITY TYPES.

mainly on mass store; that is, when the cost of finding a property value given an “object identifier”

must include the time to read a block in which the object is encoded from mass store.!

2. A Motivating Example

Consider a simple university application with object types student, teacher and tutor with respective

informal specifications given as follows.
¢ A student has a name and an aedvisor who is a teacher.
e A teacher has a name and a salary.

e A tutor is both a student and a teacher, and therefore has a name, an advisor and a salary.

In addition, a tutor has a boss who is a teacher.

Suppose also that the university application has a function Rich(T) that returns true if T’s salary
is more than $50,000. Clearly, it should be possible to call this function with either a teacher or a
tutor object as an argument (even if the result in the latter case is almost certainly false).

What code should a compiler produce to extract the salary of T? This code must work in cases
where T refers to either a teacher or tutor object, and therefore will depend on the representation
chosen for teacher and tutor types. One way to represent objects is simply by a list of their properties
(e.g., LISP property lists). This allows us to extract an attribute of an object by scanning down
the list until we find the property we are looking for. Unfortunately, this approach is clearly very
expensive, even if objects have only a few properties.

In languages without multiple inheritance, we can just assign a fixed offset to each property.
With multiple inheritance, we can still assign fixed offsets, although doing so may cause us to waste
space, as in Figure 1(a). (Teacher objects waste the space at offset 1.)

However, if we allow objects to be placed at negative offsets, then we can layout this type

structure without any wasted space, as shown in Figure 1(b). Placing properties at both positive

Tt has been previously established for this case that the time implied by almost any choice of search strategy within

this representation will be insignificant by comparison [8].

On Object Layout for Multiple Inheritance 5

and negative offsets is termed a “two-directional record layout” in [9]. Using a two-directional record
layout does not always allow us to avoid wasted space. However, in practice, we can substantially
reduce the amount of wasted space over a one-directional layout, as we show in this paper. Finding
a layout that wastes the minimal amount of space, for either a one or two directional layout, is an
NP-hard problem. However, we present a heuristic algorithm that we have found to work well in

practice.

3. Definitions and Review
Almost all existing approaches to encoding objects in the presence of multiple inheritance either
require a more complicated field extraction process or require performing runtime manipulation of
pointer values to perform retyping directives (called coercions). To the best of our knowledge, the
only published exception is a two-directional scheme outlined in a preliminary version of this paper
[9]. In this section, we review three of the earlier methods in detail. Borning and Ingalls proposed the
first method as a way of implementing multiple inheritance for Smalltalk-80 [2], and is representative
of techniques involving a table lookup when extracting field values. Bjarne Stroustrup [10] proposed
the second method, which is used by most C++ compilers. This method is an extension of an earlier
approach by Stein Krogdahl [7] that allows fields to be loaded from fixed offsets. The extension
overcame a problem with the earlier approach which worked only for class structures in which no
class could inherit a field by more than one path to a superclass. Both approaches may impose
runtime overhead for coercions. One of the authors proposed the third method in his thesis [11], and
was the first based on the idea of introducing unused store in records in order to align their fields.
To focus on the essential ideas, we define a simple type definition language in which both class
and record types may be defined. The former are a straightforward elaboration of type extensions

proposed in [13].

Definition 1: A type schema S consists of a set of class or record definitions with the respective

forms

C = [VIRTUAL | CLASS (C1, ..., Cy) Py : typey; ... P, : type,; END (3.1)

and
R = RECORD F; : typey; ... F, : type,; END. (3.2)

The possible types for property P or field F are given by the following grammar.
type := POINTER TO C | POINTER TO R | R | INT | STRING(n)

We assume fields of type INT or POINTER will be allocated a single unit of store. To avoid name
overloading and more complex type inference issues which are beyond the scope of this paper, we
also assume any given property name P occurs at most once in a given type schema, and denote the
associated type as Type(P). (Any given field name, however, may occur in any number of different
record type definitions.) A type schema consisting solely of class definitions (resp. record definitions)

is called a class schema (resp. record schema). O

6 Pugh and Weddell

Our intention is that the definition of class C in (3.1) serves only to associate a set of properties
with C objects, and therefore constitutes a logical or conceptual view of these objects. Following
standard practice, we view C objects to also be C; objects, and to have a value for property P only
when P = P,, for some 1 < % < n, or when C; objects have a value for property P. (In the latter
case, P is usually called an inherited property.) Also following standard practice, we assume that all
objects are created with respect to a single non-virtual class—that the set of non-virtual classes in a
type schema is an exhaustive enumeration of the kinds of objects that can exist at runtime. (A class
is non-virtual if the keyword “VIRTUAL” is not mentioned is its definition.)

In contrast, the definition of record R in (3.2) is intended to suggest the actual layout in memory
of a sequence of fields. We use record types in this paper to indicate how objects and their property
values are actually encoded in memory. The presumed relationship to class types is straightforward:
a field name which is the same as a property name encodes values for the property, while a record
name which is the same as a class name specifies the internal encoding of objects created from the
class.

A formal specification of the university object types of the previous section is given by the
class schema in Table 1 (we refer to this as the “university schema” in the remainder of the paper).
Observe that an additional virtual class Person is introduced as an immediate superclass of Student
and Teacher in order to factor the common Name property. Note that, since class Person is virtual, a
person object must also be (at least) a student or teacher object. The student and teacher classes are
themselves declared as immediate superclasses of the class Tutor. Consequently, each tutor object
will have the required four property values: a Boss since the definition of the tutor class mentions
this property, an Advisor and Salary since the tutor class inherits these properties from its immediate

superclasses, and a (single) Name since class Tutor inherits this property from class Person indirectly.

Table 1: THE UNIVERSITY CLASS SCHEMA.

Person = VIRTUAL CLASS () Name: STRING(20); END
Student = CLASS (Person) Advisor: POINTER TO Teacher; END
Teacher = CLASS (Person) Salary: INT; END

Tutor = CLASS (Student, Teacher) Boss: POINTER TO Teacher; END

Recall our earlier comments that a choice of object encoding determines how property values
are extracted from an object, how object references are compared for equality, and how coercion

operations are implemented at runtime. A simple expression language comprised of these operations

On Object Layout for Multiple Inheritance 7

which will suffice for our illustrative purposes is given as follows.

exp u= ¢ (denotes a C' object)
| exp— P (property value access)
| exp = exp (object equality)
| exp ASC (type coercion)

For an example relating to the university schema, assume that a student object student has a tutor

object as the value of its advisor property. The expression
((student — Advisor) AS Student) — Advisor — Name (3.3)

evaluates to the “name of the advisor of the advisor of student” in the following manner. First,
the advisor property value for the initial student object is retrieved. Since type analysis of the
university schema can only determine that the result is a teacher object, a coercion operation to
the Student class is necessary before the advisor property value for the tutor object is retrieved.?
Finally, a character string that is the name of the advisor of this tutor object is returned. For another
example, the expression

(student — Advisor) = (tutor — Advisor) (3.4)

determines if a given student object student and tutor object tutor have the same advisor.

3.1 Multiple Inheritance in Smalltalk-80

In Smalltalk-80, an internal identifier is maintained for each object that is essentially the address of
a record in memory encoding the object’s property values (properties are called instance variables
in Smalltalk-80). A field is added at the start of each record to record the internal identifier, also an
address, of each object’s class object. A class object stores the compiled functions, called methods,
peculiar to objects of that class together with the address of at most one immediate superclass. Any
compiled method accessing the value of a property assumes that the value can always be found at a
particular offset within the record for any object for which the property is defined. This is easy to
ensure when multiple inheritance is not permitted by always locating the fields for properties defined
on a class prior to those for properties defined on its subclasses.

The mechanism proposed in [2] to support multiple inheritance uses this same scheme whenever
the field offsets of any properties accessed by a method are not ambiguous. If this is not the case for
some method (if the object layout for two different classes locates fields for some property accessed
by the method at different offsets), then a separate copy of the method is compiled and stored with
each class object for which the method is defined.

The location of a property within a record type depends on the order in which immediate
superclasses are mentioned in the definition of a class. Properties inherited from the first immediate
superclass are followed by those of the class itself, and then by those inherited from the remaining
immediate superclasses not already present. According to this scheme, record types specifying the

layout of objects for the university schema would appear as in Table 2.2 Observe in the case of

2As in [13], we would like to support coercion operations that cannot be guaranteed safe at compile time.
3This is not quite true in Smalltalk-80 for two reasons: instance variables are not typed, and strings must usually

8 Pugh and Weddell

Table 2: OBJECT LAYOUT IN SMALLTALK-80.

Person = RECORD Teacher = RECORD
Tag: POINTER TO MethodTable; Tag: POINTER TO MethodTable;
Name: STRING(20); Name: STRING(20);
END Salary: INT;
END
Student = RECORD Tutor = RECORD
Tag: POINTER TO MethodTable; Tag: POINTER TO MethodTable;
Name: STRING(20); Name: STRING(20);
Advisor: POINTER TO Teacher; Advisor: POINTER TO Teacher;
END Boss: POINTER TO Teacher;
Salary: INT;
END

the Tutor record that the Advisor field occurs prior to the Salary field since the Student class is
the first immediate superclass mentioned in the definition of the Tutor class. As a consequence,
any method defined for the Teacher class that accesses Salary values must have separate compiled
versions attached to the Teacher and Tutor class objects.

Another way of understanding this is to consider that there are two ways of compiling operations
accessing property values. The first is an optimal indexed load that may be employed whenever the
offset of the field encoding the property is unambiguous. A simple indexed load, for example, can

be used for all “—” operators in expressions (3.3) and (3.4) above, or in the expression
tutor — Salary.

The second is a more costly table lookup that uses a “tag” field value at the start of a record that
identifies the record type, together with an indication of the property itself, to find the actual field
location for the property in some suitably organized table. This would be necessary for the “—”

operator in the expression
teacher — Salary

since, at runtime, teacher might refer to either a Teacher object or Tutor object.

With this approach to object layout, object identifiers can correspond uniformly to the address

”

of the start of the record encoding the object. Consequently, both “=" and “AS” operators have

be encoded as separate objects with their own “arrayed” instance variable.

On Object Layout for Multiple Inheritance 9

optimal overhead at runtime: comparing two pointer values in the first case, and doing nothing at
all in the second.

Note that the Smalltalk arbitration procedure for choosing the ordering of fields within records
is based on the order in which immediate superclasses occur in class types. Since this determines
which of the “—” operators will require a more expensive table lookup at runtime, a preferable

means of arbitration might be based on the relative frequency of execution of these operators.

3.2 Multiple Inheritance in C++

In C++, the internal identitier of an object is also the address of a record encoding the object’s
property values (properties in this case are called members). However, unlike the Smalltalk scheme,
the mechanism proposed in [10] to support multiple inheritance allows an optimal indexed load to
be used for all operations accessing property values. This is accomplished at the cost of additional
overhead for some coercion operations at runtime. In particular, it might be necessary to add a
(possibly negative) constant offset to a pointer value, or to obtain another pointer value to a different
location within the same record by accessing the contents of a special field within the record.

The kind of overhead that will be necessary for a given “AS” operator depends indirectly on
the declaration of virtual superclasses by the user. In particular, a superclass C mentioned in the
definition of class C' should be declared as a virtual superclass of C' by the user if (1) C' has a
subclass C" for which a subclass path exists from C that does not pass through C’, and (2) if a
single copy of C’s properties are to be inherited by C". For example, since there are two subclass
paths to Tutor from Person (one via Student and the other via Teacher), the class Person in Table 1
should be declared as a virtual superclass in the definitions of classes Student and Teacher to ensure
that objects in the Tutor class have a single Name property value.

Record types specifying an object layout for the non-virtual classes in the university schema
that correspond to the layout determined by the procedures in [10] are given in Table 3. Observe
that an additional “C'Template” record type exists for each class C. Like the Smalltalk-80 approach,
the format of C'Template depends on the order in which immediate superclasses are mentioned in
the definition of C'. In particular, a field named “C;Part” for each immediate superclass C; of C is
allocated in this order, followed by fields encoding the uninherited properties of C'. The type of field
“C;Part” is either “C;Template”, if C; is not declared as a virtual superclass of C, or “POINTER
TO C;Template” otherwise. The latter circumstance creates what we referred to as a special field
above. Record type C for a non-virtual class C is then assigned a “C'Template” field followed
by “C'Template” fields for each superclass C’' of C for which there exists another (not necessarily
distinct) superclass C" of C declaring C’ as a virtual superclass. For example, the Tutor record type
has a PersonStore field following a TutorStore field since class Student, for example, is a superclass
of Tutor declaring Person as a virtual superclass.

This approach to object layout requires each “POINTER TO C;Template” field occurring in
the record type for a new C record to be initialized with the address of the “C;Store” field in the '
record. To help clarify this, Figure 2 illustrates an instance of each C record type for the university

class schema. The property values indicate, for example, that Mary is the advisor of both Jane and

Pugh and Weddell

Table 3: OBJECT LAYOUT IN C++.

Student = RECORD
StudentStore: StudentTemplate;
PersonStore: PersonTemplate;

END

Teacher = RECORD
TeacherStore: TeacherTemplate;
PersonStore: PersonTemplate;

END

Tutor = RECORD
TutorStore: TutorTemplate;
PersonStore: PersonTemplate;

END

StudentTemplate = RECORD
PersonPart: POINTER TO PersonTemplate;
Advisor: POINTER TO Teacher;

END

TeacherTemplate = RECORD
PersonPart: POINTER TO PersonTemplate;
Salary: INT;

END

TutorTemplate = RECORD
StudentPart: StudentTemplate;
TeacherPart: TeacherTemplate;
Boss: POINTER TO Teacher;

END

PersonTemplate = RECORD
Name: STRING(20);
END

On Object Layout for Multiple Inheritance 11

Student |* ° I L “Fred”
Teacher [* ¢ | 40000 |“Mary”|
Tutor [¢ | ¢ s | 35000 ¢ [<Jane

Figure 2: EXAMPLE OBJECT LAYOUT IN C++.

Fred, and that Jane (who is a tutor) is her own boss. The special fields needed for this case are
marked with an asterisk.

Assume compile time type analysis can determine that expression ezp must evaluate to a C
object. If class C inherits property P from a proper superclass C’, then the C++ approach to
object encoding requires that a compiler first transforms any expression of the form “exzp — P”
by introducing additional coercion operators to C’. This is also true for expressions of the form

“exp; = exp,” if the types of the argument expressions differ. For example, the expressions

tutor — Salary

(tutor — Advisor) = student

would require the addition of four coercion operators as follows:

(tutor AS; Teacher) — Salary
(((tutor AS, Student) — Advisor) AS; Person) = (student AS; Person).

Operators AS; and AS, are added in order to access the Salary and Advisor property values of the
Tutor object. Operators AS; and AS, are added to convert the arguments of the equality operator
to a common type.

The compiler must then replace each AS operator by either no code at all, code that adds a
(possibly negative) constant offset to a pointer value, or code that loads the value of a special field.
An example of the first case is AS, above, since the expression tutor will evaluate to something that
already “looks” like a Student object. An example of the second case is AS; in which a constant
equal to the size of a StudentTemplate record must be added to (the result of evaluating) tutor in
order to produce an address of something that looks like a Teacher object. Finally, operators AS3
and AS, above are examples of the last case in which code to load the value of a PersonPart field is

generated.

12 Pugh and Weddell

In addition to its complexity, a main limitation of this approach to object layout is that it does
not directly support a casting operation through virtual superclass links. For example, if a Person

object person is also (at least) a Student object, and we wish the value of the expression
(person AS Student) — Advisor,

then we must relocate the start of the Student record by some other means since we cannot determine

in general where a PersonTemplate field occurs in a record.

3.3 Object Layout by Conversion to Single Inheritance
The C++ approach to object layout may require allocating additional store for special fields to
enable navigating within an object encoding. This is necessary to ensure that fields can be loaded
from a fixed offset. Another approach explored by one of the authors in his thesis [11] also allocates
additional store to align fields. In this case, however, navigating within an object is never necessary.
This earlier work considered how to convert a class hierarchy with multiple inheritance into
a class hierarchy with single inheritance in a manner that would result in a minimal number of
superfluous inherited property values. The conversion procedure essentially involved a depth-first-
search of the class hierarchy, starting from the most general classes. Based on object count and
property size estimates, disjoint superclass paths are merged to produce an alternative hierarchy
with single inheritance. This is done in such a way as to preserve any superclass relationships in the
original hierarchy. For example, if these estimates imply that there are more Student objects than
Teacher objects, then Table 4 lists the new class types that would be output by this procedure when
applied to the university schema. Observe that the important change made to the original schema in
Table 1 was to replace the immediate superclass Person in the definition of Teacher by class Student.
The net effect of this will be that new Teacher objects will be allocated space for an unnecessary

Advisor property value.

Table 4: OBIECT LAYOUT BY CONVERSION TO SINGLE INHERITANCE.

Person = VIRTUAL CLASS () Name: STRING(20); END
Student = CLASS (Person) Advisor: POINTER TO Teacher; END
Teacher = CLASS (Student) Salary: INT; END

Tutor = CLASS (Teacher) Boss: POINTER TO Teacher; END

Like the Smalltalk-80 approach to object layout, object identifiers can correspond uniformly to

“w_"”

the address of the start of the record encoding the object, and therefore “=" and “AS” operators

On Object Layout for Multiple Inheritance 13

have the same optimal overhead at runtime. However, by admitting the possibility of unused store,
this approach allows all property value access to be implemented as an optimal indexed load. The
main disadvantage with this approach is that it requires additional statistical information beyond
the user defined class types as input in order to be effective. Also, experiments have revealed that the
percentage of unused store in records can become a significant overhead when multiple inheritance

is used more extensively in a type schema.

4. Multidirectional Record Layout

In this section, we present a new algorithm for obtaining an object encoding that generalizes the
above approaches based on the ideas of conversion to single inheritance and table lookup, as well
as a two-directional approach considered in [9]. The algorithm involves applying a sequence of two
procedures. The first of these procedures, a generalized version of Algorithm B in [9], is responsible
for computing an object layout for a given type schema S. The layout consists of direction and offset
assignments for each of the properties occurring in S, and is derived by carefully placing properties
in a way that ensures minimal overhead of wasted store in records encoding objects. The second
procedure then generates a set of record types according to the original class definitions in S and
the object layout computed by the first procedure. The new record types constitute a specification
of the object encoding for the non-virtual classes.

The main reason we give the second procedure is to clarify how our approach can be easily
adapted for use in a preprocessor. For this reason, we do not attempt to prove any results about
the procedure in this paper. Our analysis and our experiments focus instead on evaluating the
performance of the first procedure.

In addition to a type schema, this first procedure is also supplied with a positive integer n
that specifies a bound on the number of directions permitted for object layout. The object layout
produced by this procedure for a particular value of n relates to the layout produced by methods

reviewed earlier as follows.

o If n = 1, then fields encoding the properties occur at a fixed positive offset. This essentially

manifests the conversion to single inheritance approach.

o IF n = 2, then fields encoding the properties also occur at a fixed positive offset. In this case,
however, it must be possible for pointers to address memory at locations prior to the store
allocated for records. This is a variation of the two-directional method, and requires that the

object language supports pointer arithmetic as well as pointer types.

o If n > 2, then a table lookup will be needed when extracting values for fields encoding properties
placed in a direction greater than 2 by the first procedure (assuming the object language
supports pointer arithmetic). Fields encoding properties placed in the first two directions will
still occur as a fixed positive offset. This corresponds to a more sophisticated Smalltalk-80
approach in which we allow additional overhead for (some of the) “—” operators in order to

avoid any need for wasted store to align fields.

14 Pugh and Weddell

A user can therefore effect tradeoffs between store costs and execution efficiency by supplying
different values of n. However, our experiments suggest that this is not an issue in cases where the
object language supports pointer arithmetic, since a bound of 2 appears to be sufficient to ensure
an acceptable overhead of wasted store for type schema likely to occur in practice. (For this reason,
our second procedure given later in this section for generating record definitions does not consider
the case above where n > 2.)

To illustrate our approach, the first (resp. second) column of Table 5 lists record types specifying
the object encoding for the university schema generated by the second procedure when given an object
layout produced by the first procedure for n = 1 (resp. n = 2). In the first column, the field SkipOff2
is needed to ensure Advisor fields occur at a fixed offset. In the second column, the field ShiftOff1 is
needed to ensure both Name and Salary fields occur at a fixed offset (recall that we assume INT and
POINTER fields are allocated the same amount of store). However, unlike the previous case, it is
not necessary to allocate store for this field since it occurs at the start of the record definition. Thus,
a pointer to a new Student record will address memory at a position prior to the store allocated for
the record. (This is why pointer arithmetic is needed when n = 2.) To help clarify this latter case,
Figure 3 illustrates corresponding instances of the records in Figure 2.

In general, assume an expression of the form “ALLOCATE(m)” returns a pointer to newly
allocated store of size m units, and that Shiff(R) denotes a count of the number of “ShiftOff:” fields
occurring in the definition of record R. An expression allocating store for an R record can have the

form*
ALLOCATE(SIZEOF(R) — Shif(R)) — Shif{R).

If the R record is intended to encode an R object, then the returned address will usually qualify
as an object identifier for the R object. In this way, “AS” operators will involve no overhead at
run-time and “=" operators simply require comparing two pointer values for equality.

An exception to this happens in cases where two different records have no fields in common.
For example, if the definition of the Student class did not mention class Person as a superclass,
then the student record definitions in Table 5 would not have Name fields. Consequently, it becomes
possible for the Fred and Mary records in Figure 3 to overlay one another, and therefore that Student
and Teacher can address the same location in memory (i.e. the Advisor field encoding the Advisor
property value for Fred). However, this is not a problem for most real situations since the record
types specifying representations for classes will usually require a common “Tag” field for use in
run-time type checking, for method dispatch, and so on.

With our approach, fields encoding any pointer or pointer-sized properties are assigned a fixed

offset and therefore “—” operators can be implemented as an indexed load in most cases. This is

usually true for other properties as well, but there are circumstances in which more lengthy values

*The two-directional method proposed in [9] assumed that fields values could be extracted from a record at a
negative offset. Consequently, this earlier method was more difficult to adapt for use in preprocessors for existing
languages. Cormack [4] suggested the alternative used here in which a constant value is subtracted from the address of

newly allocated object store. This shifts fields placed in the second direction to a positive offset.

On Object Layout for Multiple Inheritance 15

Table 5: n-DIRECTIONAL OBJECT LAYOUT.

n=1 n=2
Student = RECORD Student = RECORD
Name: STRING(20); Advisor: POINTER TO Teacher;
SkipOff2: INT; Name: STRING(20);
Advisor: POINTER TO Teacher; END
END
Teacher = RECORD
Teacher = RECORD ShiftOff1: INT;
Name: STRING(20); Name: STRING(20);
Salary: INT; Salary: INT;
END END
Tutor = RECORD Tutor = RECORD
Name: STRING(20); Advisor: POINTER TO Teacher;
Salary: INT; Name: STRING(20);
Advisor: POINTER TO Teacher; Salary: INT;
Boss: POINTER TO Teacher; Boss: POINTER TO Teacher;
END END

for some properties require a level of indirection in their encoding within a record. In these cases,
“—” operations will require two indexed loads in order to access the value of a property (we discuss

this point more fully at the end of this section when we present the second procedure).

4.1 Schema analysis and terminology.

Computing an object layout requires some initial analysis of the class schema. Part of this analysis
is to determine a list of property sets that exhaustively enumerates the various combinations of
properties for which objects may have corresponding values at runtime. In our case, each non-
virtual class in the original type schema should therefore contribute one such property set. A formal
definition of property sets, together with some related terminology and notation, are given in the

following.

Definition 2: A property P is in the property set for class C, denoted Pset(C), if and only if a
C object must have a value for property P. The property set list for type schema S consists of
a property set for each non-virtual class C' defined in S. The set of all properties occurring in a

given property set list is denoted props, where the property set list and associated type schema are

16 Pugh and Weddell

Student | * I “Fred” |
Teacher ' |“Mary”| 40000 |
Tutor ¢ |«Jane”| 35000 | ¢ |

Figure 3: EXAMPLE 2-DIRECTIONAL OBJECT LAYOUT.

understood from context. By additional convention, we use z, y and z (possibly subscripted) to
denote instances of props.

For each z € props, the record count for z, written Rcnit(z), denotes a count of the number
of property sets (determined by context) in which # occurs. For each pair of distinct properties
z,y € props, the join count for z and y, written Jenit(z,y), denotes a count of the number of
property sets in which both z and y occur. Note that this latter relationship is symmetric (i.e.
Jent(z,y) = Jent(y,z)), and that all data, including the property set list, can be easily computed

by scanning a given type schema. a

For example, the property set list for the university schema contains the following three property

sets (one for each of the three non-virtual class definitions):
{Name, Advisor}, {Name, Salary} and {Name, Advisor, Salary, Boss}.

Also, for example, Rent(Name) = 3, and Jent(Name, Advisor) = 2.

Lemma 1: For any combination of distinct properties z, y and z in props, if Jent(z,y) = Rent(y)
and Jent(z, z) = 0, then Jent(y, z) = 0.

Proof. Assume Jeni(y, z) # 0. Then there exists a property set § containing properties y and z. If
Jent(z,y) = Rent(y) then z must occur in any property set in which y occurs. Thus S must contain
¢ and therefore Jent(z, z) # 0.]

Definition 3: An n-directional object layout for type schema S is a pair of total functions
Dir : props — {1,...,n} and Off : props — {1,2,...}.

The layout is legal if and only if, for any pair of distinct properties ¢ and y in props, either Dir(z) #
Dir(y), Off(z) # Off(y) or Jent(z,y) = 0. The layout is perfect if and only if it is legal and, for
every property set {@;,...,2;} in the property set list for S, whenever there exists 1 < ¢ < [such
that Off (z;) > 1, there exists 1 < j <[such that Dir(z;) = Dir(z;) and Off (z;) = Off (z;) — 1. O

On Object Layout for Multiple Inheritance 17

For example, Dir and Off functions defining a legal 1-directional object layout for the university

schema are given as follows.

Dir(Name) = 1 Dir(Salary) =1 Dir(Advisor) =1 Dir(Boss) =1
Off(Name) = 1 Off (Salary) = 2 Off(Advisor) =3 Off(Boss) = 4

The layout is not perfect since the property set Pset(Student) = {Name, Advisor} has no property
z; such that Dir(z;) = Dir(Advisor) and Off (z;) = Off (Advisor) — 1 (which implies that records
encoding teacher objects will have wasted store). A perfect 2-directional object layout for the same

schema is given as follows.

Dir(Advisor) = 2 Dir(Name) =1 Dir(Salary) =1 Dir(Boss) =1
Off (Advisor) =1 Off(Name) =1 Off(Salary) =2 Off(Boss) = 3

(Note that these layouts correspond to the record definitions in Table 5.)

We now define an implication relation over the properties occurring in a given type schema S,
and a conflict graph in which the properties occur as vertices. This information will largely determine
the order in which properties will be assigned a direction and offset by a procedure for computing

an object layout.

Definition 4: The implies relation induced by type schema S consists of all ordered pairs (z,y)
of distinct properties in props such that Rent(z) = Jent(z,y) and either Jent(z,y) < Rent(y) or y
compares less than z in lexicographical order. We write z = y as shorthand for the condition that
(z,y) is in the implies relation induced by S.

The conflict graph G = (props, F') induced by S includes each property z in props as a vertex,
and has edge {z,y} in F if and only if Jent(z,y) # 0 and neither # = y nor y = z is true. We write
= y as shorthand for the condition that {z,y} € E. O

Informally, z = y is true if, whenever an # property value exists for an object, a y property
value must also exist for the object. The slight complication in the definition of the implies relation
concerning “lexicographical order” is simply to ensure that the graph imposed by the relation is
acyclic (and therefore admits a topological sort). Also note that the implies relation is transitive. In
the case of the conflict graph, we will see that a perfect object layout will often require properties z

and y to be placed in a different direction if # = y is true.

4.2 Computing an n-directional object layout.

It is straightforward to compute a perfect n-directional object layout for a given type schema S if an
n-coloring for the conflict graph induced by S is already provided. The proof to the following theorem
gives a procedure for doing this which is based on the idea of placing properties in a topological order
of the implies relation induced by S. The procedure we propose for computing an object layout is

based on the same general approach.

Theorem 1: If the conflict graph G induced by type schema S is n-colorable, then a perfect n-

directional object layout exists for S.

18 Pugh and Weddell

Proof. Assume an n-coloring exists for the conflict graph G = (props, E') induced by S. In particular,
assume there exists a total function Color : props — {1,...,n} such that Color(z) # Color(y)
whenever {z,y} € E, and consider an object layout for S computed by the following algorithm.

Algorithm A. In a topological order (z;,s,...,2Z,) of the implies relation induced
by S (in which later properties imply earlier properties), place each property z; by first
updating Dir(z;) with the value Color(z;) and then assigning Off (;) the value

min{ 1 < k| V1 < j < 4, Dir(z;) # Dir(z;) or Off (z;) # k or Jent(z;,z;) =0 }. (4.1)

Algorithm A clearly computes a legal n-directional object layout for S. We now prove that the layout
must also be perfect.

Assume, conversely, that the layout is not perfect. Then there must exist a property set
{¥1,...,y} in the property set list for S and integer 1 < ¢ < [such that Off(y;) > 1 and, for
all1 < j <1, Off(y;) # Off (y;) — 1 whenever Dir(y;) = Dir(y;). The computation of the offset as-
signment for y; (4.1) implies that there exists at least one property z placed (chronologically) before
y; for which (1) Dir(z) = Dir(y;), (2) Off (z) = Off (y;) — 1 and (3) Jent(z,y;) # 0. A consequence
of the first two of these conditions is that z # y; for all 1 < j < I. Thus, Rent(y;) > Jent(z,y;)
and therefore y; = z is false. Since z is placed before y;, z occurs earlier in the above-mentioned
topological order, and therefore z = y; is also false. But then condition (3) implies {z,y;} € F, and
therefore Color(z) # Color(y;), by choice of the function Color, and therefore Dir(z) # Dir(y;)—a

contradiction with condition (1).]

Since a 1-coloring exists for an arbitrary graph if and only if the graph contains no edges, and a
2-coloring exists if and only if the graph is bipartite, it is straightforward to devise a simple procedure
based on Algorithm A that will compute perfect 1 or 2-directional object layouts in these cases. The
first step of this procedure would construct the conflict graph and then n-color the graph in a way
that reduced as much as possible the number of edges connecting properties assigned the same color.
The properties would then be placed according to the above algorithm, leaving wasted space when
necessary. Unfortunately, this procedure does not work very well for many real situations. The
problem is that it does not consider the ramifications of merging two properties by assigning them
the same direction and offset. For example, consider a type schema consisting of the following class

definitions.

C1 = CLASS () A: INT; END

C2 = CLASS () B: INT; END

C3 = VIRTUAL CLASS () C: INT; END
C4 = CLASS (C1, C3) END

C5 = CLASS (C2, C3) END

A perfect 1-directional object layout for the schema is given as follows.

Dir(A) =1 1
Off(A) =1 1

1
Off (C) = 2

On Object Layout for Multiple Inheritance 19

However, since the conflict graph induced by this schema contains the two edges {A, C} and {C,B}
(and is therefore not 1-colorable), the procedure would fail to find this layout if supplied with a value
of n = 2.

This illustrates a case in which a perfect 1-directional object layout exists for a schema, but
where the conflict graph induced by the schema is not 1-colorable. In fact, this circumstance holds

for any value of n.

Theorem 2: For any positive integer n, there exists a class schema S with a perfect 1-directional

object layout, but where the conflict graph induced by S is not n-colorable.

Proof. The case for n = 1 is already given. For n > 1, assume G’ = (V’, E’) denotes an (n+ 1)—clique
(i.e. a graph with n 4 1 vertices and an edge between every pair of vertices), and let S consist of a

class definition for each vertex z in V' with the form
C, = VIRTUAL CLASS () z: INT; END
and for each edge {z,y} in E’ with the form
C,y = CLASS (C,, Cy) zys: INT; .. .; 2y,.1: INT; END.

Thus, for every pair of vertices and y in V', Jent(z,y) = 1, and for every vertex z in V', Rent(z) > 1
(since there must be at least two edges incident to # in G'). This implies that G’ is a subgraph of
the conflict graph G induced by S, and therefore that G is not n-colorable.

A perfect 1-directional object layout for S is easily obtained as follows. First, for an arbitrary
permutation (21,...,2,41) of V', let Off (z;) = i. Now consider the offset for properties zy; occurring
in the definition of the “edge” class C,,. Since these properties occur in a single property set, they
can be safely assigned any offset in the range 1 to » + 1 not already assigned to # or y, and since

there are n — 1 of them, every offset in this range can be assigned a property. a

Consider attempting to compute a 1-directional object layout for the type schema consisting of
classes C1 to Cb above. If properties A and B are assigned offset 1, it becomes safe to place property
C at offset 2. To properly handle such situations, the conflict graph should therefore be colored
only as properties are placed, and when properties are merged (i.e. assigned the same direction and
offset), the effect this has on the conflict graph should be noted immediately.

We have incorporated this idea in the procedure shown in Figure 4. Essentially, the procedure
keeps track of the first property # assigned a given direction and offset. If a later property y is also
assigned the same direction and offset, the procedure updates the Jent function to achieve the effect
that would be obtained by replacing all occurrences of y with « in the original property set list for

the input type schema.

Theorem 3: Given type schema S and integer n > 0, procedure PLACEPROPS computes a valid

n-directional object layout for S.

20 Pugh and Weddell

procedure PLACEPROPS(S, n)
(initialization)

for each z € props, ImpliesCount(z) := |{y € props | ¢ = y}|;
boundary := {x € props | ImpliesCount(z) = 0};
unplaced := props;

placed := 0;
(loop body—terminate when boundary = 0)

Step 1. (property selection)
frustrated := {& € boundary | V1 < i < n,3y € placed s.t. Dir(y) =14 and =z = y};
desperate := {x € boundary | Jy € placed s.t. = = y} — frustrated;
if desperate # ()
then find # € desperate s.t. Vy € desperate, Rent(y) < Rent(z)
else if frustrated # ()
then find z € frustrated s.t. Vy € frustrated, Rent(y) < Rent(z)
else find z € boundary s.t. Yy € boundary, Rent(y) < Rent(z);
remove ¢ from boundary and unplaced;
for each y € props s.t. y = @,
decrement ImpliesCount(y);

if ImpliesCount(y) = 0 then add y to boundary;

Step 2. (property placement)
k:=min{ 0<{ |31 <j<nst. i=|{y€ placed | Dir(y) = j and = = y}| };
Dir(z):=min{ 1 <i<n | k=|{y € placed | Dir(y) =i and z = y}| };
Off () := min{ 1 <4 | Yy € placed, Dir(y) # Dir(z) or Off(y) # i or Jent(z,y) = 0) };

Step 3. (property merging)
if there exists y € placed s.t. Dir(y) = Dir(z) and Off (y) = Off (2)
then for each z € unplaced, Jent(z,y) := Jent(y, z) := Jent(y, z) + Jent(z, 2);
else add = to placed;

Figure 4: A PROCEDURE FOR COMPUTING AN OBJECT LAYOUT.

On Object Layout for Multiple Inheritance 21

Proof. The procedure uses a simple abstraction of Algorithm T in [6] to ensure each property in props
is assigned a direction and offset according to a topological order of the implies relation induced by
S (first placing properties that imply no others). What remains is to show that the layout is legal.
Since Step 3 ensures that the set placed includes a property for each combination of Dir and Off
values assigned to previously selected properties, this follows by a simple inspection of Step 2 and

the correctness of Algorithm A. a

Lemma 2: In the loop body of procedure PLACEPROPS, if (desperateU frustrated) = 0, then there
is no property z € unplaced and property y € placed such that z = y is true.

Proof. If (desperate U frustrated) = 0, then z = y does not hold for any properties z € boundary
and y € placed. Assume there exists properties 2’ € unplaced and y' € placed such that 2’ = y' is
true. Since 2’ € unplaced, there exists z' € boundary such that ' = 2’ is true. Since 2’ = g’ is true,
Jent(2',y') > 0, and since ' = 2’ is true, Jenté(y', z') > 0 by Lemma 1. Thus, since 2/ = y’ does
not hold and ' € placed, z’ = y' must hold, and therefore ' = y' holds by transitivity. But then

z' = y' cannot hold—a contradiction. a

Theorem 4: If the conflict graph induced by schema S is 1-colorable, then procedure PLACE-
PROPS finds a perfect 1-directional object layout. Otherwise, if the conflict graph is 2-colorable,
then the procedure finds a perfect 2-directional object layout.

Proof. If the conflict graph G induced by S is 1-colorable, then there are no edges, and therefore
¢ = y does not hold for any pair of properties # and y in props. In this case, Step 2 must then
assign Dir(z) the value 1 for all properties z in props. Since the procedure assigns offsets according
to Algorithm A, it finds a perfect 1-directional object layout by Theorem 1.

If the conflict graph is not 1-colorable but 2-colorable, then we prove by contradiction that
frustrated = () for all iterations of the main loop, and therefore that the procedure assigns directions
to properties according to a valid 2-coloring of G.

Let z, denote the first property chosen for placement in which z, € frustrated. Then there are
fields #; and y; in placed such that Dir(z,) # Dir(y,) and both zo = #; and 2o = y; are true.
Let (#1,22,...,2;) denote a maximal length sequence of properties in placed such that z; = ;.
holds for all 1 < 7 < I, and such that later properties are placed by the procedure before earlier
properties. Let (y1,¥2,...,¥n) denote likewise. If #; = y;, for some 1 < ¢ < land 1 < j < m,
then the conflict graph G must contain an odd cycle (by virtue of the choice of #,), and therefore
would not be 2-colorable, contrary to assumptions. Without loss of generality, assume property y,,
is placed by the procedure after property x;. Then there exists 0 < ¢ < [such that property «; is
placed after y,, and property #,,; is placed before. Since y,, = z is not true for any z € placed
at the time y,, is chosen for placement, y,, ¢ (desperate U frustrated) at this time, and therefore
(desperate U frustrated) = 0. But then @; must occur in unplaced, and then z; = z;,; cannot hold

by Lemma 2—a contradiction. a

22 Pugh and Weddell

Corollary 1: If at most one immediate superclass is mentioned in any class definition occurring in a
given type schema S, then procedure PLACEPROPS computes a perfect 1-directional object layout
for S.

Proof. A property z mentioned in the definition of a class C implies all properties mentioned in
the definition of any superclasses, and is implied by all properties mentioned in the definition of
any subclasses. Since the generalization taxonomy in this case has the shape of a forest of trees,
Jent(z,y) = 0 for any property y occurring in the definition of a class that is neither a subclass nor
a superclass of C'. Therefore, there are no properties # and y such that # = y and the conflict graph

for S contains no edges. a

The problem outlined above, in which a type schema may have a perfect 1 or 2-directional object
layout but have a conflict graph that is not 2-colorable, relates directly to virtual class definitions.
In particular, we show in the following that perfect n-directional object layouts imply n-colorings

when none of the classes defined in a given type schema are declared as virtual.
Definition 5: A type schema is simple if and only if there are no virtual class definitions.

Theorem 5: If a perfect n-directional object layout exists for a simple type schema S, then the

conflict graph G = (props, E') induced by S is n-colorable.

Proof. Assume we are given a perfect n-directional object layout for S. The theorem follows if we
can prove {z,y} ¢ E for any pair of properties ¢ and y for which Dir(z) = Dir(y). For any such
pair of properties, there are two cases to consider.

Case 1, where Off(z) = Off(y). In this case, Jent(z,y) = 0 since any perfect layout is also a
legal layout by definition, and therefore {z,y} ¢ F also by definition.

Case 2, where Off(z) # Off(y). Assume without loss of generality that Off (z) < Off(y). We
prove that either (1) = y is true , (2) y = @ is true, or that (3) Jent(z,y) = 0. (If any of these
conditions hold, then {z,y} ¢ F by definition, and the theorem follows.)

Let C be the unique class mentioning y in its definition. Since S is simple by assumption, C
must be non-virtual and must therefore have a property set in the property set list for S. Also, since
we are given a perfect layout, then by a simple induction on Off(y) — Off (¢), there exists a property
z in Pset(C') (not necessarily distinct from «) for which Dir(z) = Dir(z) and Off(z) = Off (z).

Therefore, z must occur together with y in any property sets for subclasses of C'; that is,
Jent(z,y) = Rent(y). (4.2)

This implies either that z = y is true or that y = z is true. If z = &, then either condition (1) or
condition (2) above holds. Otherwise, if z # z, Jent(z, z) = 0, again since any perfect layout is also

a legal layout. But this fact together with (4.2) then implies condition (3) above by Lemma 1. O
Corollary 2: Procedure PLACEPROPS finds a perfect 1 or 2-directional object layout for a simple

class schema S if one exists.

Proof. The corollary follows immediately from the correctness of PLACEPROPS (Theorem 3) and

from Theorems 4 and 5 above. a

On Object Layout for Multiple Inheritance 23

4.3 Some empirical results.

We conducted a number of experiments with procedure PLACEPROPS together with the C++ and
the conversion to single inheritance methods reviewed earlier. In the first set of experiments, we used
these approaches to derive object layouts for class schema for a C++ graphics spline library and for
a Lisp Flavors system. The results of these experiments are reported in Table 6 (the “conversion
to single inheritance” method is referred to as the “tree method” in the figure). The data indicates
the percentage of wasted store; that is, the percentage of store allocated to objects that is not used
for encoding property values. In calculating this data for both sets of experiments, we assumed a
uniform distribution of objects to classes, and also that all properties are pointer sized. (The latter is
true in the case of the Flavors data and is nearly true in the case of the spline library.) The result of
an independent experiment using procedure PLACEPROPS with n = 2 on a CLOS class hierarchy
[1] is also included in the table.

Table 6: EXPERIMENTS ON REAL CLASS SCHEMAS.

% of #of | PLACEPROPS | Ci+ TREE
classes properties n=2 METHOD | METHOD
Graphics Spline Library 276 826 0% 3% 10%
Lisp Flavors System 564 2245 6% 10% 39%
CLOS Class Hierarchy ~T750 ~1000 % (n/a) (n/a)

In the second set of experiments, we evaluated the performance of these approaches on a number
of random class schema. A triplet of numbers describes each test scenario: levelsx countx extra. We
assume each class includes a single property is its definition. The first component of a given scenario,
level, specifies the number of levels occurring in the class hierarchy. The second component, count,
specifies the number of class definitions generated for each level in the hierarchy. For all levels ¢
greater than 1, each class inherits from a random class at level ¢ — 1. In addition, eztra random
inheritance links are added from level 7 to level ¢ — 1.

Figure 5 illustrates one of the randomly generated class schemas for the scenario 3 X 4 X 1 that
was used in this second set of experiments. In this figure, each vertex represents a class definition
with the class property and superclasses given by the vertex label and outgoing arcs respectively.
Thus, a new object for the class defining property ;7 would have additional values for properties ¢
and h. Figure 6 illustrates the layouts produced for this schema by most of the methods mentioned
in Table 7 below. A location in an object layout that is labeled “x” indicates wasted store. Thus,
procedure PLACEPROPS found a perfect 2-directional layout and obtained a 1-directional layout
with three units of wasted store. Four units of wasted store were required by the tree method. For
the C++ method, a total of 5 units of extra store were required to ensure that class [would have a
single copy of property c.

The results of this second set of experiments are reported in Table 7. All data given in the

Pugh and Weddell

G W G)

Figure 5: A RANDOMLY GENERATED CLASS SCHEMA (SCENARIO 3x4Xx1)

-,

PLACEPROPS TREE METHOD C++ METHOD
?Djrlz 1) = <:(Dir:;)‘:(§)ir:1):>

4] 4] 4] 4]

2] 2] 2] 2]

| d]e]

e d i d e i d e i

ai] [eyl

e d k d e k d e k

lc an fi|l |fdlen | |dchnf 1] |TdfThZC|

+

Figure 6: LAYOUTS PRODUCED BY VARIOUS METHODS FOR FIGURE 4.

On Object Layout for Multiple Inheritance 25

table is an average over five schemas generated according to the indicated scenario. All data outside
of parentheses indicates a percentage of wasted store. The data given in parentheses for the case of
procedure PLACEPROPS invoked with n > 2 indicates the percentage of properties that must be
placed in a direction greater than 2 in order to ensure that there is no wasted store. Thus, with the
scenario 5 X 16 x 2 for example, the data indicates that extracting values for 4% of all properties

would require a more expensive table lookup.

Table 7: EXPERIMENTS ON RANDOMLY GENERATED CLASS SCHEMAS.

PLACEPROPS
scenario n=1 n=2 mn>2|C++ METHOD | TREE METHOD
Ix4x1 15% 1% (3%) 6% 19%
4x6x1 12% <1% (1%) 11% 19%
4xX6x2 30% 13% (16%) 15% 39%
5hx16 x1 15% 1% (1%) 1% 25%

)

)

)

5x16x2 | 23% 6% (4% 6% 34%
5x16x3| 39% 20% (9% 9% 46%
5x16x4 | 40% 21% (16% 8% 60%

In these experiments, the only circumstances in which the 2-directional layouts obtained by
procedure PLACEPROPS were not one of the best overall occurred in the case of randomly generated
class schema for the scenarios 5 X 16 X 3 and 5 X 16 x 4. In these cases, the C++ approach required
between a third and a half of the store overhead of the 2-directional layouts on average. However, the
reverse was true for two of the non-random class schemas based on real data! Overall, the experiments
indicate that feasible 2-directional layouts are likely to be obtained by procedure PLACEPROPS for
class schema occurring in practice, and that one can expect the percentage of wasted store required
for such layouts to be less than for layouts obtained by existing methods.

One of our implementations in C of procedure PLACEPROPS can obtain a 2-directional layout
at the rate of 1000 properties every 6 seconds when running on a Decstation 3100. As written, the
worst case running time for this implementation is O(|props|®). This can be reduced to O(|props|?)
by refining the implementation with techniques such as incrementally maintaining the desperate and
frustrated sets, as opposed to recomputing the sets from scratch after each field is placed (although
the details of this are beyond the scope of this paper). However, in view of the performance of this

straightforward implementation, such optimizations do not appear to be necessary in practice.

4.4 On the difficulty of optimal n-directional object layouts.

Note that Theorem 4 and Corollary 2 do not prove any results about the ability of procedure
PLACEPROPS to perform merging well, that is, to minimize the need for wasted store in cases
where the conflict graph induced by a given schema is not 2-colorable (although our experimental

evidence suggests that the procedure works very well in practice). Indeed, in this subsection, we prove

26 Pugh and Weddell

that it would be pointless to search for an optimal n-directional layout algorithm. In particular, we
prove that determining if an arbitrary type schema has a perfect n-directional object layout is NP-
complete for n > 0, and that this remains true for simple type schema for n > 2. Since an algorithm
that finds an optimal layout could decide if a perfect layout existed, finding optimal n-directional
object layouts is NP-hard.

Theorem 6: The problem of determining whether or not a simple type schema has a perfect n-

directional object layout is NP-complete for n > 2.

Proof. For an arbitrary graph G' = (V', E’), we can construct a simple type schema S inducing
a conflict graph G = (props, F') isomorphic to G' as follows: for each vertex ¢ € V' add the class

definition

C, = CLASS () z: INT; END,
and for each edge {z,y} € E' add the “edge” class definition

C,, = CLASS (C,, C,) END.

Clearly, # € props if and only if and = € V'. If {z,y} € E’', then Jent(z,y) = 1 and both Rent(z)
and Rcnt(y) exceed 1. Thus, neither = y nor y = « is true and therefore {z,y} € E. Conversely,
if {z,y} € E, then Jent(z,y) > 0 and there exists an edge class definition of the form above, which
implies {z,y} € E'. Thus, G must be isomorphic to G’ and therefore, by Theorem 1 and Theorem 5,
S has a perfect n-directional layout if and only if G' is n-colorable. The theorem follows since we
can easily check a layout to see if it is perfect, and since the problem of determining if an arbitrary

graph is n-colorable is NP-complete for n > 2 [5]. O

Theorem 7: The problem of determining whether or not an arbitrary type schema has a perfect

n-directional object layout is NP-complete for n > 0.

Proof. The case for n > 2 follows from Theorem 6. Our proof of the remaining cases is again by
reduction of the graph coloring problem, and is based on our proofs of Theorem 2 and Theorem 6.
First consider where n = 1. Given an arbitrary graph G’ = (V', E’) and integer k, construct a

type schema S as follows: for each vertex z € V' add the class definition
C, = VIRTUAL CLASS () z: INT; END,
and for each edge {z,y} € E' add the class definition
C,y, = CLASS (C,, C) zys: INT; ...; zy,: INT; END.

Thus, the property set list for S consists of a property set for each edge {z,y} € G’ of the form
{z,y,2ys,...,2yx}. If G' is k-colorable, then a perfect 1-directional object layout is obtained as
outlined in the prove to Theorem 2. Conversely, if we are given a perfect 1-directional object layout

for S, then this layout gives a k-coloring for G': if vertex # in V' is assigned offset 4, then assign z

On Object Layout for Multiple Inheritance 27

the color 7; otherwise, if vertex is not assigned an offset, then it has no incident edges and therefore
assign it the color 1.
Now consider where n = 2. For an arbitrary graph G’ = (V', E’) and integer k, construct a

type schema S as follows: first, initialize S with the following pair of “boundary” classes:

BlockLeft = VIRTUAL CLASS () bl: INT; END, and
BlockRight = VIRTUAL CLASS () br: INT; END.

Now add vertex classes to S as in the case for n = 1 above, and for each edge {z,y} € G’ add four

class definitions of the form

C,y, = VIRTUAL CLASS (C,, C,) ®ys: INT; .. ; zy,: INT; END,
C%, = CLASS (BlockLeft, C,,) END,

Cl = CLASS (C,y, BlockRight) END and

v = CLASS (C2, C2) END.

zy?

In this case, each edge {z,y} € G’ contributes the three property sets

Pset(CZl) ={bl,z,y,zys,... 2y},
Pset(C;’Z) ={z,y,2ys,...2yx,br} and
Pset(C;’Z) ={bl,z,y,2ys,...2y;, br}

to the property set list for S. In any legal 1-directional layout, either Pset(C;’L) or Pset(C;’;) must
have a “hole” occurring either for property br or property bl respectively. Thus, a perfect layout
must be at least 2-directional with bl and br assigned different directions. Assume, without loss of
generality, that Dir(br) = 1 and that Dir(bl) = 2. If the layout is perfect, then br must be assigned
the maximum offset of all properties assigned direction 1 (otherwise, Pset(CZ) would again have a
hole). This holds analogously for property bl with respect to Pset(Clr). But then Pset(Cl) implies
that the remaining k properties must be assigned all remaining offsets prior to those assigned bl and
br. This gives a k-coloring for G': if vertex z in V' is assigned direction 1, then assign « the color
Off (¢); if vertex @ is assigned direction 2, then assign # the color Off (z) + Off (br) — 1; otherwise, if
vertex z is not assigned a direction, then it has no incident edges and therefore assign it the color 1.
Similarly, if there is a k-coloring for G’, then a perfect 2-directional object layout is again obtained

as outlined in the prove to Theorem 2. a

4.5 Generating record definitions.

After computing a 1 or 2-directional object layout for a given type schema S, generating a record
type in our particular type language that specifies an object encoding for a non-virtual class C' in S
is straightforward. A procedure for doing this is given in Figure 7. In this case, fields encoding the
values for any properties in Pset(C) placed in the second direction will occur in the record type for
C' in descending order of their offset, and are followed by fields encoding values for any remaining
properties placed in the first direction in ascending order of their offset. Note that the location of
fields in record types for distinct classes that encode values for the same property in props remains

constant. In particular, let k£ denote the maximum offset of all properties in props placed in the

28 Pugh and Weddell

second direction, and assume the ith field in the record type for C' encodes values for property z in
Pset(C). Then either Dir(z) =2 and ¢ = k — Off () + 1, or Dir(z) =1 and ¢ = k + Off ().

This 7th field can directly encode values for @ if # qualifies as an inline property; otherwise,
the field must point indirectly to such values. For our particular type language, the circumstances

in which this level of indirection is not needed are as follows:
1. whenever z is of type INT or POINTER (i.e. of unit size), or

2. whenever z is placed in the first direction and there does not exist another property y in

Pset(C') that conflicts with « and is placed in the same direction as # but at a greater offset.

For type languages that allow one to reason more extensively about the actual internal encoding of
record types, the second of these conditions can be generalized by removing the restriction that z is
placed in the first direction. In our case, we have assumed only two things: that INTs are allocated
the same amount of store as POINTERs, and that space for fields is allocated in the order in which
the fields occur in a record type.

For an example of a case where property indirection is needed, consider the university schema

with the definition of class Teacher given instead by
Teacher = CLASS (Person) Address: STRING(40); END.

Also assume procedure PLACEPROPS has computed the following 1-directional property layout for

the new schema.

Dir(Name) = 1 Dir(Address) =1 Dir(Advisor) =1 Dir(Boss) =1
Off(Name) =1 Off(Address) =2 Off(Advisor) =3 Off (Boss) = 4

The object encoding computed by procedure GENRECDEFS for this case is listed in Table 8. Note
that, since the Address property fails to satisfy either of the above two conditions, a level of indirection
in its encoding is needed within the record types for classes Teacher and Tutor. To further clarify
this, Figure 8 illustrates corresponding instances of the records in Figure 2 (but with values for the

Address property replacing values for the Salary property).

5. Summary and Discussion

We have presented a new algorithm for obtaining an object encoding for object-oriented programming
languages that allow subtyping and multiple inheritance among class definitions. The new algorithm
incorporates a refined version of Algorithm B in [9] and may be easily adapted for use in a preprocessor
for existing languages. Our experiments indicate that, for class schema occurring in practice, the
algorithm is able to produce an object encoding with minimal store overhead in which property value
access for pointer-sized properties can proceed with the same efficiency as in systems that do not
provide multiple inheritance. For some of the properties that require a larger amount of store, a
single level of indirection is needed in the worst case. With our algorithm, a simple comparison can

always be used to check for equality among object references, and no overhead whatever is needed

On Object Layout for Multiple Inheritance

procedure GENRECDEFS(S, Dir, Off)
(initialization)

k:=max({0}U{1<j|3Jz € propss.t. Dir(z)=2and Off(z) = j });
for each = € props,
Loc(z) i= ((Dir(x) — 1) (k- Off(2) + 1)) + (2 - Dir(2)) - (k + OFf(2)));
inline := { @ € props | z is declared of type INT or POINTER in S };
inline := inline U { = € props | Dir(z) = 1 and Yy € props,
(Dir(y) = 2 or Off(y) < Off(z) or y = x or Jent(y,z) =0) } ;
for each z € (props — inline), generate “zTemplate = RECORD z: Type(z); END”;

(loop body—do for each non-virtual class C' in S)

generate “C = RECORD”;
fori:=1to (k+max({0}U{1<j| 3z e Pset(C) s.t. Dir(z) =1and Off(z) =7 })),
if there exists # € Pset(C) s.t. Loc(z) =1
then if z € inline
then generate “z: Type(z);”;
else generate “z: POINTER TO zTemplate;”;
else if there exists y € Pset(C) s.t. Loc(y) < %
then generate “SkipOffi: INT;”;
else generate “ShiftOffi: INT;”;
for each z € Pset(C') — inline, generate “zStore: zTemplate;”;

generate “END”;

Figure 7: A PROCEDURE FOR GENERATING AN OBJECT ENCODING.

Student | “Fred” I * I * |
—
Teacher “Mary”l . “123 Ashby” |
|
Tutor | “Jane” . I J I L) “456 Maple”

Figure 8: EXAMPLE 1-DIRECTIONAL OBJECT LAYOUT WITH FIELD INDIRECTION.

29

30 Pugh and Weddell

Table 8: 1-DIRECTIONAL OBJECT LAYOUT WITH FIELD INDIRECTION.

AddressTemplate = RECORD Address: STRING(40); END

Student = RECORD
Name: STRING(20);

SkipOff2: INT;
Advisor: POINTER TO Teacher;
END

Teacher = RECORD
Name: STRING(20);
Address: POINTER TO AddressTemplate;
AddressStore: AddressTemplate;

END

Tutor = RECORD
Name: STRING(20);
Address: POINTER TO AddressTemplate;
Advisor: POINTER TO Teacher;
Boss: POINTER TO Teacher;
AddressStore: AddressTemplate;

END

for type coercions (including coercions that cannot be guaranteed safe at compile time). Also, the
algorithm can be used to implement method dispatch when applied to the problem of finding an
object encoding for class objects. (In this case, property values correspond to function addresses.)
However, our algorithm leaves open a number of issues. In the remainder of this section, we
comment on several of these issues, and in the process suggest a number of directions for future

research.

5.1 Non-uniform object distributions.

Our procedure for computing an object layout and our experimental evaluation of this procedure
assume that objects are distributed uniformly among classes—that objects will be created in different
classes at about the same rate. However, in some situations, we might have object count estimates
available that give a more accurate model of the actual distribution of objects among classes at run

time. For example, in the case of the university schema, a more accurate model would indicate that

On Object Layout for Multiple Inheritance 31

the number of Student objects will typically be much greater than the number of either Teacher or
Tutor objects. If object count estimates are supplied in the form of a weight attached to each class
type in the input schema, then it is straightforward to incorporate such estimates in our Rent and
Jent data computed during the initial schema analysis phase. In this new definition, Rent(z), for
example, should be computed as the sum of the weights attached to the classes that can have objects
with values for property z. (Our uniformity assumptions are then a special case of this more general
setting, in which a weight of 0 is assumed for virtual classes and a weight of 1 for non-virtual classes.)

A number of preliminary experiments have been conducted on the tree method for random
schema that made use of object count estimates [11]. The experiments considered the effect of
increasing the relative number of objects occurring in classes lower in the class hierarchy, and the
effect of non-uniform “two-step” object distributions among classes at the same level in this hierarchy.
In both circumstances, the performance of the tree method improved considerably. We believe this
will also be the case for our multidirectional algorithm when class weights are factored into the
computation of Rent and Jent data in the manner suggested. Note that, in contrast, the first
circumstance will clearly decrease the performance of the C++ method since objects in classes lower
in the taxonomy are more likely to require additional store for what we referred to as “special fields”

in our review section.

5.2 On varying sized fields.

As presented, our algorithm works best for cases in which all properties are pointer-sized. This is
usually true for polymorphic programming languages, since in such languages each value is either a
pointer or a pointer-sized integer. We believe that the single level of indirection that may be needed
for properties which require a larger amount of store (e.g. properties that are arrays or strings) will
not significantly impact performance. The reason is that the cost of this indirection will be amortized
over what is likely to be a much greater amount of computation on the value itself.

Some refinements to the algorithm are necessary, however, to properly handle cases in which
properties are less than pointer-sized (e.g. properties that are Boolean valued). A simple approach
might be to preprocess a given type schema to “bin pack” groups of such properties into pointer-sized
blocks. These blocks would then be placed as a unit by procedure PLACEPROPS. However, further
experimentation with this approach requires a larger collection of real-world class schemas than is
presently available to us. Clearly, the problem of handling varying sized fields merits some further

study.

5.3 On interactive use and separate compilation.

If our algorithm is used in a preprocessor for an existing language, then it may become necessary to
recompile a large part of a software system when certain kinds of changes are made to a global type
schema. In particular, adding a new class type that multiply inherits from existing class types or
modifying the definition of an existing class type may have this effect. This is because such changes
may conflict with previous decisions about which fields to merge. However, this is not true in general.

It is straightforward to derive an incremental version of our algorithm that does not require us to

32 Pugh and Weddell

forego separate compilation when adding new properties to the definition of existing classes, or when
adding new class types that do not multiply inherit from existing class types.

Another more ambitious approach is to apply our algorithm at the time a set of object code files
are linked to produce an executable file. This approach will require store to be allocated in object
code files for “—” operators, and then loaded with appropriate machine code at link time. Since the
running time of our algorithm on a global schema is likely to not be worse than the time to compile,
say, a new module containing a few hundreds lines of source code, such an approach seems feasible.

The situation with current methods is not much better. With the C++4+ method, one can
dynamically add new class types without restriction only if superclasses are always declared virtual.
This adds significantly to the storage overhead for special fields (at least a 21% overhead in the
case of both the graphics spline library and Lisp Flavors system), and also adds to the overhead of
accessing the values of inherited properties. Another approach used by Cardelli in his Quest language
[3] is to introduce a second class type that does not allow multiple inheritance. But this seems to
encourage the writing of programs that do not have class types allowing multiple inheritance for

efficiency reasons, creating libraries that cannot be easily adapted to multiple inheritance later.

5.4 Inline classes.

Consider a simple modification to our type definition language to allow inline classes; that is, to allow
a property to be declared of type “C” (instead of “POINTER TO C”). The reasons for allowing this
relate to performance. For example, replacing the definition of the Student class in the university

schema with the definition
Student = CLASS (Person) Advisor: Teacher; END

would have the effect of duplicating Teacher property values in Student records. This would enable

both“—” operators in the expression
student — Advisor — Name

to be compiled as a single machine-level indexed load instruction.

This particular case should perhaps not be allowed because of the possibility of a cycle (we may
have two tutors who advise each other). However, the idea of inline classes still seems worthwhile
for cases in which a cycle is not a possibility. Note that no revisions are necessary to our algorithm
to handle non-cyclic cases, and that the above optimization on a sequence of “—” operators can
be applied whenever indirection is not needed for any of the properties mentioned in the sequence.
However, it can be argued that an object encoding that disallows any such optimizations violates the
intentions of the programmer. Removing the need for property indirection by our algorithm would

overcome this problem, and is a topic for future research.

On Object Layout for Multiple Inheritance 33

[1]
[2]

[3]
[4]
[5]

[10]

[11]

[12]

[13]

References

K. A. Barret, 1990. Personal communication.

A. H. Borning and D. H. H. Ingalls. Multiple inheritance in Smalltalk-80. In Proc. AAAI
National Conference on Artificial Intelligence, pages 234—238, 1982.

L. Cardelli. Typeful programming. Technical Report 46, DEC SRC, May 1989.
G. V. Cormack, 1990. Personal communication.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP—complete graph problems.
Theoretical Computer Science, 1:237-267, 1976.

D. E. Knuth. The Art of Computer Programming; Volume 1. Addison-Wesley, 1968.
S. Krogdahl. Multiple inheritance in Simula-like languages. BIT, 25:318-326, 1985.

S. T. March. Techniques for structuring database records. ACM Computing Surveys, 15(1):45—
79, March 1983.

W. Pugh and G. E. Weddell. Two-directional record layout for multiple inheritance. In Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation, pages 85-91,
June 1990.

B. Stroustrup. Multiple inheritance in C++. In Proc. EUUG Conference, pages 1-17, May
1987.

G. E. Weddell. Physical design and query compilation for a semantic data model (assuming
memory residence). Technical Report CSRI-198, Computer Systems Research Insitute, Univer-
sity of Toronto, April 1987.

G. E. Weddell. Efficient property access in memory-resident object oriented databases. Research
Report CS5-89-49, Department of Computer Science, University of Waterloo, 1989.

N. Wirth. Type extensions. ACM Transactions on Programming Languages and Systems,
10(2):202-214, April 1988.

