
On Object Layout for Multiple Inheritance �

William Pugh

Department of Computer Science

University of Maryland� College Park

pugh�cs�umd�edu

Grant E� Weddell

Department of Computer Science

University of Waterloo

Waterloo� Ontario� Canada� N�L �G�

gweddell�watdragon�uwaterloo�edu

�This research was supported in part by NSF grant CCR��������� the Natural Sciences and Engineering Research

Council of Canada� by Bell�Northern Research Ltd�� and by the Information Technology Research Center� The Flavors

data was extracted from equipment supported by NSF research equipment grant CDA�������	�

�

� Pugh and Weddell

Abstract

We consider the problem of encoding objects for object�oriented programming languages that

allow subtyping and multiple inheritance among class de�nitions� This is an important problem

since a choice of encoding will determine the implementation for a number of common operations�

extracting a property value from an object� comparing two object references for equality� and

expression retyping�

We expand on earlier work in ��� in which we proposed a new algorithm for obtaining an object

encoding that assigns a �xed o	set to each property� This allows property values to be extracted

with the same e
ciency as in systems that do not provide multiple inheritance� We present both

analytic and experimental evidence that suggests that this is an important performance issue and

that our method works well in practice�

Index Terms� object�oriented programming languages� object encoding� compilation�

On Object Layout for Multiple Inheritance �

�� Introduction

Recently developed type systems for polymorphic programming languages allow a user to organize

a description of objects in terms of a generalization taxonomy of class types� In this paper� we

expand on earlier work in ��	 that proposed a new algorithm for obtaining an object layout in cases

where multiple inheritance occurs in the taxonomy� We propose a new algorithm that generalizes

earlier approaches based on the idea of conversion to single inheritance ���	� of table lookup ��	 and

a two�directional algorithm in ��	�

The choice of object encoding is important since it determines

� how property values are extracted from objects�

� how object references are compared for equality� and

� how to retype expressions at runtime�

Determining a choice of behavior for an object reduces to the problem of extracting property values

from an associated class object� so procedures for obtaining an object encoding may also be used to

implement method dispatch�

We begin in the next section with a simple example to help motivate the results of this paper�

Section � that follows is a survey of previous work on the problem of �nding an object encoding�

This includes a review of the procedures used to implement multiple inheritance in Smalltalk and

in C��� We base our review on a simple type de�nition language introduced at the start of the

section in which both class and record types may be de�ned� Instances of the former constitute a

logical or conceptual view of a collection of objects while instances of the latter specify how objects

are actually encoded in memory�

Our main results follow in Section
 in which we present a new algorithm for obtaining an object

encoding� The algorithm incorporates a generalized version of Algorithm B in ��	� and can produce

an object encoding in which each property is assigned a �xed o�set� We demonstrate that the main

advantage of this is that property value access can proceed with the same e�ciency as in systems

that do not provide multiple inheritance� Our analytic and experimental results further con�rm that

the method works well in practice� and that the e�ciency of the method itself will not be a problem

for cases involving class types likely to occur in practice�

In our summary comments in Section �� we discuss a number of remaining issues and suggest

some future directions of research� Part of discussion focuses on the issue of interactive use and

separate compilation�

We stated above that the object encoding problem is an important performance issue� In

support of this claim� we refer the reader to ���	 which outlines an experiment performed on a C

compiler� The results of the experiment indicate that the means of property value extraction alone

can signi�cantly a�ect overall performance of the compiler� This suggests that the object layout

problem is an important performance issue for software systems with components that require the

extensive manipulation of memory�resident data� Note that this is not the case if the data resides

 Pugh and Weddell

TYPE OFFSET

� � � �

student Name Advisor

teacher Name � Salary

tutor Name Advisor Salary Boss

�a� One�directional �xed o�sets�

TYPE OFFSET

�� � � �

student Name Advisor

teacher Salary Name

tutor Salary Name Advisor Boss

�b� Two�directional �xed o�sets�

Figure �
 Object layouts for the university types�

mainly on mass store� that is� when the cost of �nding a property value given an �object identi�er�

must include the time to read a block in which the object is encoded from mass store��

�� A Motivating Example

Consider a simple university application with object types student� teacher and tutor with respective

informal speci�cations given as follows�

� A student has a name and an advisor who is a teacher�

� A teacher has a name and a salary�

� A tutor is both a student and a teacher� and therefore has a name� an advisor and a salary�

In addition� a tutor has a boss who is a teacher�

Suppose also that the university application has a function Rich�T � that returns true if T �s salary

is more than �������� Clearly� it should be possible to call this function with either a teacher or a

tutor object as an argument �even if the result in the latter case is almost certainly false��

What code should a compiler produce to extract the salary of T� This code must work in cases

where T refers to either a teacher or tutor object� and therefore will depend on the representation

chosen for teacher and tutor types� One way to represent objects is simply by a list of their properties

�e�g�� LISP property lists�� This allows us to extract an attribute of an object by scanning down

the list until we �nd the property we are looking for� Unfortunately� this approach is clearly very

expensive� even if objects have only a few properties�

In languages without multiple inheritance� we can just assign a �xed o�set to each property�

With multiple inheritance� we can still assign �xed o�sets� although doing so may cause us to waste

space� as in Figure ��a�� �Teacher objects waste the space at o�set ���

However� if we allow objects to be placed at negative o�sets� then we can layout this type

structure without any wasted space� as shown in Figure ��b�� Placing properties at both positive

�It has been previously established for this case that the time implied by almost any choice of search strategy within

this representation will be insigni
cant by comparison ����

On Object Layout for Multiple Inheritance �

and negative o�sets is termed a �two�directional record layout� in ��	� Using a two�directional record

layout does not always allow us to avoid wasted space� However� in practice� we can substantially

reduce the amount of wasted space over a one�directional layout� as we show in this paper� Finding

a layout that wastes the minimal amount of space� for either a one or two directional layout� is an

NP�hard problem� However� we present a heuristic algorithm that we have found to work well in

practice�

�� De�nitions and Review

Almost all existing approaches to encoding objects in the presence of multiple inheritance either

require a more complicated �eld extraction process or require performing runtime manipulation of

pointer values to perform retyping directives �called coercions�� To the best of our knowledge� the

only published exception is a two�directional scheme outlined in a preliminary version of this paper

��	� In this section� we review three of the earlier methods in detail� Borning and Ingalls proposed the

�rst method as a way of implementing multiple inheritance for Smalltalk��� ��	� and is representative

of techniques involving a table lookup when extracting �eld values� Bjarne Stroustrup ���	 proposed

the second method� which is used by most C�� compilers� This method is an extension of an earlier

approach by Stein Krogdahl ��	 that allows �elds to be loaded from �xed o�sets� The extension

overcame a problem with the earlier approach which worked only for class structures in which no

class could inherit a �eld by more than one path to a superclass� Both approaches may impose

runtime overhead for coercions� One of the authors proposed the third method in his thesis ���	� and

was the �rst based on the idea of introducing unused store in records in order to align their �elds�

To focus on the essential ideas� we de�ne a simple type de�nition language in which both class

and record types may be de�ned� The former are a straightforward elaboration of type extensions

proposed in ���	�

De�nition �� A type schema S consists of a set of class or record de�nitions with the respective

forms

C � � VIRTUAL 	 CLASS �C�� � � �� Cm� P�
 type�� � � � Pn
 typen� END �����

and

R � RECORD F�
 type�� � � � Fn
 typen� END� �����

The possible types for property P or �eld F are given by the following grammar�

type

� POINTER TO C j POINTER TO R j R j INT j STRING�n�

We assume �elds of type INT or POINTER will be allocated a single unit of store� To avoid name

overloading and more complex type inference issues which are beyond the scope of this paper� we

also assume any given property name P occurs at most once in a given type schema� and denote the

associated type as Type�P �� �Any given �eld name� however� may occur in any number of di�erent

record type de�nitions�� A type schema consisting solely of class de�nitions �resp� record de�nitions�

is called a class schema �resp� record schema�� �

� Pugh and Weddell

Our intention is that the de�nition of class C in ����� serves only to associate a set of properties

with C objects� and therefore constitutes a logical or conceptual view of these objects� Following

standard practice� we view C objects to also be Ci objects� and to have a value for property P only

when P � Pi� for some � � i � n� or when Ci objects have a value for property P � �In the latter

case� P is usually called an inherited property�� Also following standard practice� we assume that all

objects are created with respect to a single non�virtual class�that the set of non�virtual classes in a

type schema is an exhaustive enumeration of the kinds of objects that can exist at runtime� �A class

is non�virtual if the keyword �VIRTUAL� is not mentioned is its de�nition��

In contrast� the de�nition of record R in ����� is intended to suggest the actual layout in memory

of a sequence of �elds� We use record types in this paper to indicate how objects and their property

values are actually encoded in memory� The presumed relationship to class types is straightforward

a �eld name which is the same as a property name encodes values for the property� while a record

name which is the same as a class name speci�es the internal encoding of objects created from the

class�

A formal speci�cation of the university object types of the previous section is given by the

class schema in Table � �we refer to this as the �university schema� in the remainder of the paper��

Observe that an additional virtual class Person is introduced as an immediate superclass of Student

and Teacher in order to factor the common Name property� Note that� since class Person is virtual� a

person object must also be �at least� a student or teacher object� The student and teacher classes are

themselves declared as immediate superclasses of the class Tutor� Consequently� each tutor object

will have the required four property values
 a Boss since the de�nition of the tutor class mentions

this property� an Advisor and Salary since the tutor class inherits these properties from its immediate

superclasses� and a �single� Name since class Tutor inherits this property from class Person indirectly�

Table �
 The university class schema�

Person � VIRTUAL CLASS �� Name
 STRING����� END

Student � CLASS �Person� Advisor
 POINTER TO Teacher� END

Teacher � CLASS �Person� Salary
 INT� END

Tutor � CLASS �Student� Teacher� Boss
 POINTER TO Teacher� END

Recall our earlier comments that a choice of object encoding determines how property values

are extracted from an object� how object references are compared for equality� and how coercion

operations are implemented at runtime� A simple expression language comprised of these operations

On Object Layout for Multiple Inheritance �

which will su�ce for our illustrative purposes is given as follows�

exp

� c �denotes a C object�

j exp� P �property value access�

j exp � exp �object equality�

j exp AS C �type coercion�

For an example relating to the university schema� assume that a student object student has a tutor

object as the value of its advisor property� The expression

��student � Advisor� AS Student� � Advisor � Name �����

evaluates to the �name of the advisor of the advisor of student� in the following manner� First�

the advisor property value for the initial student object is retrieved� Since type analysis of the

university schema can only determine that the result is a teacher object� a coercion operation to

the Student class is necessary before the advisor property value for the tutor object is retrieved��

Finally� a character string that is the name of the advisor of this tutor object is returned� For another

example� the expression

�student � Advisor� � �tutor � Advisor� ���
�

determines if a given student object student and tutor object tutor have the same advisor�

��� Multiple Inheritance in Smalltalk���

In Smalltalk���� an internal identi�er is maintained for each object that is essentially the address of

a record in memory encoding the object�s property values �properties are called instance variables

in Smalltalk����� A �eld is added at the start of each record to record the internal identi�er� also an

address� of each object�s class object� A class object stores the compiled functions� called methods�

peculiar to objects of that class together with the address of at most one immediate superclass� Any

compiled method accessing the value of a property assumes that the value can always be found at a

particular o�set within the record for any object for which the property is de�ned� This is easy to

ensure when multiple inheritance is not permitted by always locating the �elds for properties de�ned

on a class prior to those for properties de�ned on its subclasses�

The mechanism proposed in ��	 to support multiple inheritance uses this same scheme whenever

the �eld o�sets of any properties accessed by a method are not ambiguous� If this is not the case for

some method �if the object layout for two di�erent classes locates �elds for some property accessed

by the method at di�erent o�sets�� then a separate copy of the method is compiled and stored with

each class object for which the method is de�ned�

The location of a property within a record type depends on the order in which immediate

superclasses are mentioned in the de�nition of a class� Properties inherited from the �rst immediate

superclass are followed by those of the class itself� and then by those inherited from the remaining

immediate superclasses not already present� According to this scheme� record types specifying the

layout of objects for the university schema would appear as in Table ��� Observe in the case of

�As in ��
�� we would like to support coercion operations that cannot be guaranteed safe at compile time�
�This is not quite true in Smalltalk��� for two reasons� instance variables are not typed� and strings must usually

� Pugh and Weddell

Table �
 Object layout in Smalltalk����

Person � RECORD Teacher � RECORD

Tag
 POINTER TO MethodTable� Tag
 POINTER TO MethodTable�

Name
 STRING����� Name
 STRING�����

END Salary
 INT�

END

Student � RECORD Tutor � RECORD

Tag
 POINTER TO MethodTable� Tag
 POINTER TO MethodTable�

Name
 STRING����� Name
 STRING�����

Advisor
 POINTER TO Teacher� Advisor
 POINTER TO Teacher�

END Boss
 POINTER TO Teacher�

Salary
 INT�

END

the Tutor record that the Advisor �eld occurs prior to the Salary �eld since the Student class is

the �rst immediate superclass mentioned in the de�nition of the Tutor class� As a consequence�

any method de�ned for the Teacher class that accesses Salary values must have separate compiled

versions attached to the Teacher and Tutor class objects�

Another way of understanding this is to consider that there are two ways of compiling operations

accessing property values� The �rst is an optimal indexed load that may be employed whenever the

o�set of the �eld encoding the property is unambiguous� A simple indexed load� for example� can

be used for all ��� operators in expressions ����� and ���
� above� or in the expression

tutor � Salary�

The second is a more costly table lookup that uses a �tag� �eld value at the start of a record that

identi�es the record type� together with an indication of the property itself� to �nd the actual �eld

location for the property in some suitably organized table� This would be necessary for the ���

operator in the expression

teacher � Salary

since� at runtime� teacher might refer to either a Teacher object or Tutor object�

With this approach to object layout� object identi�ers can correspond uniformly to the address

of the start of the record encoding the object� Consequently� both ��� and �AS� operators have

be encoded as separate objects with their own �arrayed� instance variable�

On Object Layout for Multiple Inheritance �

optimal overhead at runtime
 comparing two pointer values in the �rst case� and doing nothing at

all in the second�

Note that the Smalltalk arbitration procedure for choosing the ordering of �elds within records

is based on the order in which immediate superclasses occur in class types� Since this determines

which of the ��� operators will require a more expensive table lookup at runtime� a preferable

means of arbitration might be based on the relative frequency of execution of these operators�

��	 Multiple Inheritance in C

In C��� the internal identitier of an object is also the address of a record encoding the object�s

property values �properties in this case are called members�� However� unlike the Smalltalk scheme�

the mechanism proposed in ���	 to support multiple inheritance allows an optimal indexed load to

be used for all operations accessing property values� This is accomplished at the cost of additional

overhead for some coercion operations at runtime� In particular� it might be necessary to add a

�possibly negative� constant o�set to a pointer value� or to obtain another pointer value to a di�erent

location within the same record by accessing the contents of a special �eld within the record�

The kind of overhead that will be necessary for a given �AS� operator depends indirectly on

the declaration of virtual superclasses by the user� In particular� a superclass C mentioned in the

de�nition of class C� should be declared as a virtual superclass of C� by the user if ��� C� has a

subclass C�� for which a subclass path exists from C that does not pass through C�� and ��� if a

single copy of C�s properties are to be inherited by C��� For example� since there are two subclass

paths to Tutor from Person �one via Student and the other via Teacher�� the class Person in Table �

should be declared as a virtual superclass in the de�nitions of classes Student and Teacher to ensure

that objects in the Tutor class have a single Name property value�

Record types specifying an object layout for the non�virtual classes in the university schema

that correspond to the layout determined by the procedures in ���	 are given in Table �� Observe

that an additional �CTemplate� record type exists for each class C� Like the Smalltalk��� approach�

the format of CTemplate depends on the order in which immediate superclasses are mentioned in

the de�nition of C� In particular� a �eld named �CiPart� for each immediate superclass Ci of C is

allocated in this order� followed by �elds encoding the uninherited properties of C� The type of �eld

�CiPart� is either �CiTemplate�� if Ci is not declared as a virtual superclass of C� or �POINTER

TO CiTemplate� otherwise� The latter circumstance creates what we referred to as a special �eld

above� Record type C for a non�virtual class C is then assigned a �CTemplate� �eld followed

by �C�Template� �elds for each superclass C� of C for which there exists another �not necessarily

distinct� superclass C�� of C declaring C� as a virtual superclass� For example� the Tutor record type

has a PersonStore �eld following a TutorStore �eld since class Student� for example� is a superclass

of Tutor declaring Person as a virtual superclass�

This approach to object layout requires each �POINTER TO CjTemplate� �eld occurring in

the record type for a new C record to be initialized with the address of the �CjStore� �eld in the C

record� To help clarify this� Figure � illustrates an instance of each C record type for the university

class schema� The property values indicate� for example� that Mary is the advisor of both Jane and

�� Pugh and Weddell

Table �
 Object layout in C���

Student � RECORD StudentTemplate � RECORD

StudentStore
 StudentTemplate� PersonPart
 POINTER TO PersonTemplate�

PersonStore
 PersonTemplate� Advisor
 POINTER TO Teacher�

END END

Teacher � RECORD TeacherTemplate � RECORD

TeacherStore
 TeacherTemplate� PersonPart
 POINTER TO PersonTemplate�

PersonStore
 PersonTemplate� Salary
 INT�

END END

Tutor � RECORD TutorTemplate � RECORD

TutorStore
 TutorTemplate� StudentPart
 StudentTemplate�

PersonStore
 PersonTemplate� TeacherPart
 TeacherTemplate�

END Boss
 POINTER TO Teacher�

END

PersonTemplate � RECORD

Name
 STRING�����

END

On Object Layout for Multiple Inheritance ��

�� � �� ����� � �Jane�

��
���� �Mary�

�� � �Fred�

Tutor

Teacher

Student

�

�

�

�

�

�

Figure �
 Example object layout in C���

Fred� and that Jane �who is a tutor� is her own boss� The special �elds needed for this case are

marked with an asterisk�

Assume compile time type analysis can determine that expression exp must evaluate to a C

object� If class C inherits property P from a proper superclass C�� then the C�� approach to

object encoding requires that a compiler �rst transforms any expression of the form �exp � P�

by introducing additional coercion operators to C�� This is also true for expressions of the form

�exp� � exp�� if the types of the argument expressions di�er� For example� the expressions

tutor � Salary

�tutor � Advisor� � student

would require the addition of four coercion operators as follows

�tutor AS� Teacher� � Salary

���tutor AS� Student� � Advisor� AS� Person� � �student AS� Person��

Operators AS� and AS� are added in order to access the Salary and Advisor property values of the

Tutor object� Operators AS� and AS� are added to convert the arguments of the equality operator

to a common type�

The compiler must then replace each AS operator by either no code at all� code that adds a

�possibly negative� constant o�set to a pointer value� or code that loads the value of a special �eld�

An example of the �rst case is AS� above� since the expression tutor will evaluate to something that

already �looks� like a Student object� An example of the second case is AS� in which a constant

equal to the size of a StudentTemplate record must be added to �the result of evaluating� tutor in

order to produce an address of something that looks like a Teacher object� Finally� operators AS�

and AS� above are examples of the last case in which code to load the value of a PersonPart �eld is

generated�

�� Pugh and Weddell

In addition to its complexity� a main limitation of this approach to object layout is that it does

not directly support a casting operation through virtual superclass links� For example� if a Person

object person is also �at least� a Student object� and we wish the value of the expression

�person AS Student� � Advisor�

then we must relocate the start of the Student record by some other means since we cannot determine

in general where a PersonTemplate �eld occurs in a record�

��� Object Layout by Conversion to Single Inheritance

The C�� approach to object layout may require allocating additional store for special �elds to

enable navigating within an object encoding� This is necessary to ensure that �elds can be loaded

from a �xed o�set� Another approach explored by one of the authors in his thesis ���	 also allocates

additional store to align �elds� In this case� however� navigating within an object is never necessary�

This earlier work considered how to convert a class hierarchy with multiple inheritance into

a class hierarchy with single inheritance in a manner that would result in a minimal number of

super uous inherited property values� The conversion procedure essentially involved a depth��rst�

search of the class hierarchy� starting from the most general classes� Based on object count and

property size estimates� disjoint superclass paths are merged to produce an alternative hierarchy

with single inheritance� This is done in such a way as to preserve any superclass relationships in the

original hierarchy� For example� if these estimates imply that there are more Student objects than

Teacher objects� then Table
 lists the new class types that would be output by this procedure when

applied to the university schema� Observe that the important change made to the original schema in

Table � was to replace the immediate superclass Person in the de�nition of Teacher by class Student�

The net e�ect of this will be that new Teacher objects will be allocated space for an unnecessary

Advisor property value�

Table

 Object layout by conversion to single inheritance�

Person � VIRTUAL CLASS �� Name
 STRING����� END

Student � CLASS �Person� Advisor
 POINTER TO Teacher� END

Teacher � CLASS �Student� Salary
 INT� END

Tutor � CLASS �Teacher� Boss
 POINTER TO Teacher� END

Like the Smalltalk��� approach to object layout� object identi�ers can correspond uniformly to

the address of the start of the record encoding the object� and therefore ��� and �AS� operators

On Object Layout for Multiple Inheritance ��

have the same optimal overhead at runtime� However� by admitting the possibility of unused store�

this approach allows all property value access to be implemented as an optimal indexed load� The

main disadvantage with this approach is that it requires additional statistical information beyond

the user de�ned class types as input in order to be e�ective� Also� experiments have revealed that the

percentage of unused store in records can become a signi�cant overhead when multiple inheritance

is used more extensively in a type schema�

�� Multidirectional Record Layout

In this section� we present a new algorithm for obtaining an object encoding that generalizes the

above approaches based on the ideas of conversion to single inheritance and table lookup� as well

as a two�directional approach considered in ��	� The algorithm involves applying a sequence of two

procedures� The �rst of these procedures� a generalized version of Algorithm B in ��	� is responsible

for computing an object layout for a given type schema S� The layout consists of direction and o�set

assignments for each of the properties occurring in S� and is derived by carefully placing properties

in a way that ensures minimal overhead of wasted store in records encoding objects� The second

procedure then generates a set of record types according to the original class de�nitions in S and

the object layout computed by the �rst procedure� The new record types constitute a speci�cation

of the object encoding for the non�virtual classes�

The main reason we give the second procedure is to clarify how our approach can be easily

adapted for use in a preprocessor� For this reason� we do not attempt to prove any results about

the procedure in this paper� Our analysis and our experiments focus instead on evaluating the

performance of the �rst procedure�

In addition to a type schema� this �rst procedure is also supplied with a positive integer n

that speci�es a bound on the number of directions permitted for object layout� The object layout

produced by this procedure for a particular value of n relates to the layout produced by methods

reviewed earlier as follows�

� If n � �� then �elds encoding the properties occur at a �xed positive o�set� This essentially

manifests the conversion to single inheritance approach�

� IF n � �� then �elds encoding the properties also occur at a �xed positive o�set� In this case�

however� it must be possible for pointers to address memory at locations prior to the store

allocated for records� This is a variation of the two�directional method� and requires that the

object language supports pointer arithmetic as well as pointer types�

� If n � �� then a table lookup will be needed when extracting values for �elds encoding properties

placed in a direction greater than � by the �rst procedure �assuming the object language

supports pointer arithmetic�� Fields encoding properties placed in the �rst two directions will

still occur as a �xed positive o�set� This corresponds to a more sophisticated Smalltalk���

approach in which we allow additional overhead for �some of the� ��� operators in order to

avoid any need for wasted store to align �elds�

�
 Pugh and Weddell

A user can therefore e�ect tradeo�s between store costs and execution e�ciency by supplying

di�erent values of n� However� our experiments suggest that this is not an issue in cases where the

object language supports pointer arithmetic� since a bound of � appears to be su�cient to ensure

an acceptable overhead of wasted store for type schema likely to occur in practice� �For this reason�

our second procedure given later in this section for generating record de�nitions does not consider

the case above where n � ���

To illustrate our approach� the �rst �resp� second� column of Table � lists record types specifying

the object encoding for the university schema generated by the second procedure when given an object

layout produced by the �rst procedure for n � � �resp� n � ��� In the �rst column� the �eld SkipO��

is needed to ensure Advisor �elds occur at a �xed o�set� In the second column� the �eld ShiftO�� is

needed to ensure both Name and Salary �elds occur at a �xed o�set �recall that we assume INT and

POINTER �elds are allocated the same amount of store�� However� unlike the previous case� it is

not necessary to allocate store for this �eld since it occurs at the start of the record de�nition� Thus�

a pointer to a new Student record will address memory at a position prior to the store allocated for

the record� �This is why pointer arithmetic is needed when n � ��� To help clarify this latter case�

Figure � illustrates corresponding instances of the records in Figure ��

In general� assume an expression of the form �ALLOCATE�m�� returns a pointer to newly

allocated store of size m units� and that Shift�R� denotes a count of the number of �ShiftO�i� �elds

occurring in the de�nition of record R� An expression allocating store for an R record can have the

form�

ALLOCATE� SIZEOF�R� � Shift�R� � � Shift�R��

If the R record is intended to encode an R object� then the returned address will usually qualify

as an object identi�er for the R object� In this way� �AS� operators will involve no overhead at

run�time and ��� operators simply require comparing two pointer values for equality�

An exception to this happens in cases where two di�erent records have no �elds in common�

For example� if the de�nition of the Student class did not mention class Person as a superclass�

then the student record de�nitions in Table � would not have Name �elds� Consequently� it becomes

possible for the Fred and Mary records in Figure � to overlay one another� and therefore that Student

and Teacher can address the same location in memory �i�e� the Advisor �eld encoding the Advisor

property value for Fred�� However� this is not a problem for most real situations since the record

types specifying representations for classes will usually require a common �Tag� �eld for use in

run�time type checking� for method dispatch� and so on�

With our approach� �elds encoding any pointer or pointer�sized properties are assigned a �xed

o�set and therefore ��� operators can be implemented as an indexed load in most cases� This is

usually true for other properties as well� but there are circumstances in which more lengthy values

�The two�directional method proposed in ��� assumed that
elds values could be extracted from a record at a

negative o�set� Consequently� this earlier method was more di�cult to adapt for use in preprocessors for existing

languages� Cormack ��� suggested the alternative used here in which a constant value is subtracted from the address of

newly allocated object store� This shifts
elds placed in the second direction to a positive o�set�

On Object Layout for Multiple Inheritance ��

Table �
 n�directional object layout�

n � � n � �

Student � RECORD Student � RECORD

Name
 STRING����� Advisor
 POINTER TO Teacher�

SkipO��
 INT� Name
 STRING�����

Advisor
 POINTER TO Teacher� END

END

Teacher � RECORD

Teacher � RECORD ShiftO��
 INT�

Name
 STRING����� Name
 STRING�����

Salary
 INT� Salary
 INT�

END END

Tutor � RECORD Tutor � RECORD

Name
 STRING����� Advisor
 POINTER TO Teacher�

Salary
 INT� Name
 STRING�����

Advisor
 POINTER TO Teacher� Salary
 INT�

Boss
 POINTER TO Teacher� Boss
 POINTER TO Teacher�

END END

for some properties require a level of indirection in their encoding within a record� In these cases�

��� operations will require two indexed loads in order to access the value of a property �we discuss

this point more fully at the end of this section when we present the second procedure��

��� Schema analysis and terminology�

Computing an object layout requires some initial analysis of the class schema� Part of this analysis

is to determine a list of property sets that exhaustively enumerates the various combinations of

properties for which objects may have corresponding values at runtime� In our case� each non�

virtual class in the original type schema should therefore contribute one such property set� A formal

de�nition of property sets� together with some related terminology and notation� are given in the

following�

De�nition 	� A property P is in the property set for class C� denoted Pset�C�� if and only if a

C object must have a value for property P � The property set list for type schema S consists of

a property set for each non�virtual class C de�ned in S� The set of all properties occurring in a

given property set list is denoted props� where the property set list and associated type schema are

�� Pugh and Weddell

� �Jane� ����� �

�Mary�
����

� �Fred�

Tutor

Teacher

Student

�

�

�

Figure �
 Example ��directional object layout�

understood from context� By additional convention� we use x� y and z �possibly subscripted� to

denote instances of props�

For each x � props� the record count for x� written Rcnt�x�� denotes a count of the number

of property sets �determined by context� in which x occurs� For each pair of distinct properties

x� y � props� the join count for x and y� written Jcnt�x� y�� denotes a count of the number of

property sets in which both x and y occur� Note that this latter relationship is symmetric �i�e�

Jcnt�x� y� � Jcnt�y� x��� and that all data� including the property set list� can be easily computed

by scanning a given type schema� �

For example� the property set list for the university schema contains the following three property

sets �one for each of the three non�virtual class de�nitions�

fName� Advisorg� fName� Salaryg and fName� Advisor� Salary� Bossg�

Also� for example� Rcnt�Name� � �� and Jcnt�Name�Advisor� � ��

Lemma �� For any combination of distinct properties x� y and z in props� if Jcnt�x� y� � Rcnt�y�

and Jcnt�x� z� � �� then Jcnt�y� z� � ��

Proof� Assume Jcnt�y� z� �� �� Then there exists a property set S containing properties y and z� If

Jcnt�x� y� � Rcnt�y� then x must occur in any property set in which y occurs� Thus S must contain

x and therefore Jcnt�x� z� �� �� �

De�nition �� An n�directional object layout for type schema S is a pair of total functions

Dir
 props� f�� � � � � ng and O�
 props� f�� �� � � �g�

The layout is legal if and only if� for any pair of distinct properties x and y in props� either Dir �x� ��

Dir�y�� O� �x� �� O� �y� or Jcnt�x� y� � �� The layout is perfect if and only if it is legal and� for

every property set fx�� � � � � xlg in the property set list for S� whenever there exists � � i � l such

that O� �xi� � �� there exists � � j � l such that Dir�xj� � Dir�xi� and O� �xj� � O� �xi�� �� �

On Object Layout for Multiple Inheritance ��

For example� Dir and O� functions de�ning a legal ��directional object layout for the university

schema are given as follows�

Dir �Name� � � Dir �Salary� � � Dir �Advisor� � � Dir�Boss� � �

O� �Name� � � O� �Salary� � � O� �Advisor� � � O� �Boss� �

The layout is not perfect since the property set Pset�Student� � fName� Advisorg has no property

xj such that Dir �xj� � Dir�Advisor� and O� �xj� � O� �Advisor� � � �which implies that records

encoding teacher objects will have wasted store�� A perfect ��directional object layout for the same

schema is given as follows�

Dir �Advisor� � � Dir�Name� � � Dir�Salary� � � Dir�Boss� � �

O� �Advisor� � � O� �Name� � � O� �Salary� � � O� �Boss� � �

�Note that these layouts correspond to the record de�nitions in Table ���

We now de�ne an implication relation over the properties occurring in a given type schema S�

and a con�ict graph in which the properties occur as vertices� This information will largely determine

the order in which properties will be assigned a direction and o�set by a procedure for computing

an object layout�

De�nition �� The implies relation induced by type schema S consists of all ordered pairs �x� y�

of distinct properties in props such that Rcnt�x� � Jcnt�x� y� and either Jcnt�x� y� � Rcnt�y� or y

compares less than x in lexicographical order� We write x � y as shorthand for the condition that

�x� y� is in the implies relation induced by S�

The con�ict graph G � �props� E� induced by S includes each property x in props as a vertex�

and has edge fx� yg in E if and only if Jcnt�x� y� �� � and neither x� y nor y � x is true� We write

x �� y as shorthand for the condition that fx� yg � E� �

Informally� x � y is true if� whenever an x property value exists for an object� a y property

value must also exist for the object� The slight complication in the de�nition of the implies relation

concerning �lexicographical order� is simply to ensure that the graph imposed by the relation is

acyclic �and therefore admits a topological sort�� Also note that the implies relation is transitive� In

the case of the con ict graph� we will see that a perfect object layout will often require properties x

and y to be placed in a di�erent direction if x �� y is true�

��	 Computing an n�directional object layout�

It is straightforward to compute a perfect n�directional object layout for a given type schema S if an

n�coloring for the con ict graph induced by S is already provided� The proof to the following theorem

gives a procedure for doing this which is based on the idea of placing properties in a topological order

of the implies relation induced by S� The procedure we propose for computing an object layout is

based on the same general approach�

Theorem �� If the con ict graph G induced by type schema S is n�colorable� then a perfect n�

directional object layout exists for S�

�� Pugh and Weddell

Proof� Assume an n�coloring exists for the con ict graph G � �props� E� induced by S� In particular�

assume there exists a total function Color
 props � f�� � � � � ng such that Color�x� �� Color�y�

whenever fx� yg � E� and consider an object layout for S computed by the following algorithm�

Algorithm A� In a topological order �x�� x�� � � � � xm� of the implies relation induced

by S �in which later properties imply earlier properties�� place each property xi by �rst

updating Dir�xi� with the value Color�xi� and then assigning O� �xi� the value

minf � � k j �� � j � i�Dir�xj� �� Dir�xi� or O� �xj� �� k or Jcnt�xj� xi� � � g� �
���

AlgorithmA clearly computes a legal n�directional object layout for S� We now prove that the layout

must also be perfect�

Assume� conversely� that the layout is not perfect� Then there must exist a property set

fy�� � � � � ylg in the property set list for S and integer � � i � l such that O� �yi� � � and� for

all � � j � l� O� �yj� �� O� �yi�� � whenever Dir �yj� � Dir �yi�� The computation of the o�set as�

signment for yi �
��� implies that there exists at least one property z placed �chronologically� before

yi for which ��� Dir�z� � Dir�yi�� ��� O� �z� � O� �yi� � � and ��� Jcnt�z� yi� �� �� A consequence

of the �rst two of these conditions is that z �� yj for all � � j � l� Thus� Rcnt�yi� � Jcnt�z� yi�

and therefore yi � z is false� Since z is placed before yi� z occurs earlier in the above�mentioned

topological order� and therefore z � yi is also false� But then condition ��� implies fz� yig � E� and

therefore Color�z� �� Color�yi�� by choice of the function Color � and therefore Dir�z� �� Dir�yi��a

contradiction with condition ���� �

Since a ��coloring exists for an arbitrary graph if and only if the graph contains no edges� and a

��coloring exists if and only if the graph is bipartite� it is straightforward to devise a simple procedure

based on Algorithm A that will compute perfect � or ��directional object layouts in these cases� The

�rst step of this procedure would construct the con ict graph and then n�color the graph in a way

that reduced as much as possible the number of edges connecting properties assigned the same color�

The properties would then be placed according to the above algorithm� leaving wasted space when

necessary� Unfortunately� this procedure does not work very well for many real situations� The

problem is that it does not consider the rami�cations of merging two properties by assigning them

the same direction and o�set� For example� consider a type schema consisting of the following class

de�nitions�

C� � CLASS �� A
 INT� END

C� � CLASS �� B
 INT� END

C� � VIRTUAL CLASS �� C
 INT� END

C
 � CLASS �C�� C�� END

C� � CLASS �C�� C�� END

A perfect ��directional object layout for the schema is given as follows�

Dir �A� � � Dir �B� � � Dir�C� � �

O� �A� � � O� �B� � � O� �C� � �

On Object Layout for Multiple Inheritance ��

However� since the con ict graph induced by this schema contains the two edges fA�Cg and fC�Bg

�and is therefore not ��colorable�� the procedure would fail to �nd this layout if supplied with a value

of n � ��

This illustrates a case in which a perfect ��directional object layout exists for a schema� but

where the con ict graph induced by the schema is not ��colorable� In fact� this circumstance holds

for any value of n�

Theorem 	� For any positive integer n� there exists a class schema S with a perfect ��directional

object layout� but where the con ict graph induced by S is not n�colorable�

Proof� The case for n � � is already given� For n � �� assume G� � �V �� E�� denotes an �n���!clique

�i�e� a graph with n � � vertices and an edge between every pair of vertices�� and let S consist of a

class de�nition for each vertex x in V � with the form

Cx � VIRTUAL CLASS �� x
 INT� END

and for each edge fx� yg in E� with the form

Cxy � CLASS �Cx� Cy� xy�
 INT� � � �� xyn��
 INT� END�

Thus� for every pair of vertices x and y in V �� Jcnt�x� y� � �� and for every vertex x in V �� Rcnt�x� � �

�since there must be at least two edges incident to x in G��� This implies that G� is a subgraph of

the con ict graph G induced by S� and therefore that G is not n�colorable�

A perfect ��directional object layout for S is easily obtained as follows� First� for an arbitrary

permutation �x�� � � � � xn��� of V �� let O� �xi� � i� Now consider the o�set for properties xyk occurring

in the de�nition of the �edge� class Cxy� Since these properties occur in a single property set� they

can be safely assigned any o�set in the range � to n � � not already assigned to x or y� and since

there are n � � of them� every o�set in this range can be assigned a property� �

Consider attempting to compute a ��directional object layout for the type schema consisting of

classes C� to C� above� If properties A and B are assigned o�set �� it becomes safe to place property

C at o�set �� To properly handle such situations� the con ict graph should therefore be colored

only as properties are placed� and when properties are merged �i�e� assigned the same direction and

o�set�� the e�ect this has on the con ict graph should be noted immediately�

We have incorporated this idea in the procedure shown in Figure
� Essentially� the procedure

keeps track of the �rst property x assigned a given direction and o�set� If a later property y is also

assigned the same direction and o�set� the procedure updates the Jcnt function to achieve the e�ect

that would be obtained by replacing all occurrences of y with x in the original property set list for

the input type schema�

Theorem �� Given type schema S and integer n � �� procedure PLACEPROPS computes a valid

n�directional object layout for S�

�� Pugh and Weddell

procedure PLACEPROPS�S� n�

�initialization

for each x � props� ImpliesCount�x�
� jfy � props j x� ygj�

boundary
� fx � props j ImpliesCount�x� � �g�

unplaced
� props�

placed
� 	�

�loop body�terminate when boundary � 	

Step �� �property selection�

frustrated
� fx � boundary j �� � i � n�
y � placed s�t� Dir�y� � i and x �� yg�

desperate
� fx � boundary j
y � placed s�t� x �� yg � frustrated �

if desperate �� 	

then �nd x � desperate s�t� �y � desperate� Rcnt�y� � Rcnt�x�

else if frustrated �� 	

then �nd x � frustrated s�t� �y � frustrated � Rcnt�y� � Rcnt�x�

else �nd x � boundary s�t� �y � boundary � Rcnt�y� � Rcnt�x��

remove x from boundary and unplaced �

for each y � props s�t� y � x�

decrement ImpliesCount�y��

if ImpliesCount�y� � � then add y to boundary �

Step 	� �property placement�

k
� minf � � i j
� � j � n s�t� i � jfy � placed j Dir�y� � j and x �� ygj g�

Dir�x�
� minf � � i � n j k � jfy � placed j Dir�y� � i and x �� ygj g�

O� �x�
� minf � � i j �y � placed �Dir�y� �� Dir�x� or O� �y� �� i or Jcnt�x� y� � �� g�

Step �� �property merging�

if there exists y � placed s�t� Dir�y� � Dir �x� and O� �y� � O� �x�

then for each z � unplaced � Jcnt�z� y�
� Jcnt�y� z�
� Jcnt�y� z� � Jcnt�x� z��

else add x to placed �

Figure

 A procedure for computing an object layout�

On Object Layout for Multiple Inheritance ��

Proof� The procedure uses a simple abstraction of AlgorithmT in ��	 to ensure each property in props

is assigned a direction and o�set according to a topological order of the implies relation induced by

S ��rst placing properties that imply no others�� What remains is to show that the layout is legal�

Since Step � ensures that the set placed includes a property for each combination of Dir and O�

values assigned to previously selected properties� this follows by a simple inspection of Step � and

the correctness of Algorithm A� �

Lemma 	� In the loop body of procedure PLACEPROPS� if �desperate�frustrated � � 	� then there

is no property x � unplaced and property y � placed such that x �� y is true�

Proof� If �desperate � frustrated� � 	� then z �� y does not hold for any properties z � boundary

and y � placed � Assume there exists properties x� � unplaced and y� � placed such that x� �� y� is

true� Since x� � unplaced � there exists z� � boundary such that x� � z� is true� Since x� �� y� is true�

Jcnt�x�� y�� � �� and since x� � z� is true� Jcnt�y�� z�� � � by Lemma �� Thus� since z� �� y� does

not hold and y� � placed � z� � y� must hold� and therefore x� � y� holds by transitivity� But then

x� �� y� cannot hold�a contradiction� �

Theorem �� If the con ict graph induced by schema S is ��colorable� then procedure PLACE�

PROPS �nds a perfect ��directional object layout� Otherwise� if the con ict graph is ��colorable�

then the procedure �nds a perfect ��directional object layout�

Proof� If the con ict graph G induced by S is ��colorable� then there are no edges� and therefore

x �� y does not hold for any pair of properties x and y in props� In this case� Step � must then

assign Dir�x� the value � for all properties x in props� Since the procedure assigns o�sets according

to Algorithm A� it �nds a perfect ��directional object layout by Theorem ��

If the con ict graph is not ��colorable but ��colorable� then we prove by contradiction that

frustrated � 	 for all iterations of the main loop� and therefore that the procedure assigns directions

to properties according to a valid ��coloring of G�

Let x� denote the �rst property chosen for placement in which x� � frustrated � Then there are

�elds x� and y� in placed such that Dir�x�� �� Dir�y�� and both x� �� x� and x� �� y� are true�

Let �x�� x�� � � � � xl� denote a maximal length sequence of properties in placed such that xi �� xi��

holds for all � � i � l� and such that later properties are placed by the procedure before earlier

properties� Let �y�� y�� � � � � ym� denote likewise� If xi � yj � for some � � i � l and � � j � m�

then the con ict graph G must contain an odd cycle �by virtue of the choice of x��� and therefore

would not be ��colorable� contrary to assumptions� Without loss of generality� assume property ym

is placed by the procedure after property xl� Then there exists � � i � l such that property xi is

placed after ym and property xi�� is placed before� Since ym �� z is not true for any z � placed

at the time ym is chosen for placement� ym �� �desperate � frustrated� at this time� and therefore

�desperate � frustrated� � 	� But then xi must occur in unplaced � and then xi �� xi�� cannot hold

by Lemma ��a contradiction� �

�� Pugh and Weddell

Corollary �� If at most one immediate superclass is mentioned in any class de�nition occurring in a

given type schema S� then procedure PLACEPROPS computes a perfect ��directional object layout

for S�

Proof� A property x mentioned in the de�nition of a class C implies all properties mentioned in

the de�nition of any superclasses� and is implied by all properties mentioned in the de�nition of

any subclasses� Since the generalization taxonomy in this case has the shape of a forest of trees�

Jcnt�x� y� � � for any property y occurring in the de�nition of a class that is neither a subclass nor

a superclass of C� Therefore� there are no properties x and y such that x �� y and the con ict graph

for S contains no edges� �

The problem outlined above� in which a type schema may have a perfect � or ��directional object

layout but have a con ict graph that is not ��colorable� relates directly to virtual class de�nitions�

In particular� we show in the following that perfect n�directional object layouts imply n�colorings

when none of the classes de�ned in a given type schema are declared as virtual�

De�nition �� A type schema is simple if and only if there are no virtual class de�nitions�

Theorem �� If a perfect n�directional object layout exists for a simple type schema S� then the

con ict graph G � �props� E� induced by S is n�colorable�

Proof� Assume we are given a perfect n�directional object layout for S� The theorem follows if we

can prove fx� yg �� E for any pair of properties x and y for which Dir�x� � Dir�y�� For any such

pair of properties� there are two cases to consider�

Case �� where O� �x� � O� �y�� In this case� Jcnt�x� y� � � since any perfect layout is also a

legal layout by de�nition� and therefore fx� yg �� E also by de�nition�

Case �� where O� �x� �� O� �y�� Assume without loss of generality that O� �x� � O� �y�� We

prove that either ��� x � y is true � ��� y � x is true� or that ��� Jcnt�x� y� � �� �If any of these

conditions hold� then fx� yg �� E by de�nition� and the theorem follows��

Let C be the unique class mentioning y in its de�nition� Since S is simple by assumption� C

must be non�virtual and must therefore have a property set in the property set list for S� Also� since

we are given a perfect layout� then by a simple induction on O� �y��O� �x�� there exists a property

z in Pset�C� �not necessarily distinct from x� for which Dir �z� � Dir�x� and O� �z� � O� �x��

Therefore� z must occur together with y in any property sets for subclasses of C� that is�

Jcnt�z� y� � Rcnt�y�� �
���

This implies either that z � y is true or that y � z is true� If z � x� then either condition ��� or

condition ��� above holds� Otherwise� if z �� x� Jcnt�x� z� � �� again since any perfect layout is also

a legal layout� But this fact together with �
��� then implies condition ��� above by Lemma �� �

Corollary 	� Procedure PLACEPROPS �nds a perfect � or ��directional object layout for a simple

class schema S if one exists�

Proof� The corollary follows immediately from the correctness of PLACEPROPS �Theorem �� and

from Theorems
 and � above� �

On Object Layout for Multiple Inheritance ��

��� Some empirical results�

We conducted a number of experiments with procedure PLACEPROPS together with the C�� and

the conversion to single inheritance methods reviewed earlier� In the �rst set of experiments� we used

these approaches to derive object layouts for class schema for a C�� graphics spline library and for

a Lisp Flavors system� The results of these experiments are reported in Table � �the �conversion

to single inheritance� method is referred to as the �tree method� in the �gure�� The data indicates

the percentage of wasted store� that is� the percentage of store allocated to objects that is not used

for encoding property values� In calculating this data for both sets of experiments� we assumed a

uniform distribution of objects to classes� and also that all properties are pointer sized� �The latter is

true in the case of the Flavors data and is nearly true in the case of the spline library�� The result of

an independent experiment using procedure PLACEPROPS with n � � on a CLOS class hierarchy

��	 is also included in the table�

Table �
 Experiments on Real Class Schemas�

" of " of PLACEPROPS C�� TREE

classes properties n � � METHOD METHOD

Graphics Spline Library ��� ��� �# �# ��#

Lisp Flavors System ��
 ��
� �# ��# ��#

CLOS Class Hierarchy ���� ����� �# �n$a� �n$a�

In the second set of experiments� we evaluated the performance of these approaches on a number

of random class schema� A triplet of numbers describes each test scenario
 levels
count
extra� We

assume each class includes a single property is its de�nition� The �rst component of a given scenario�

level� speci�es the number of levels occurring in the class hierarchy� The second component� count�

speci�es the number of class de�nitions generated for each level in the hierarchy� For all levels i

greater than �� each class inherits from a random class at level i � �� In addition� extra random

inheritance links are added from level i to level i� ��

Figure � illustrates one of the randomly generated class schemas for the scenario �

 � that

was used in this second set of experiments� In this �gure� each vertex represents a class de�nition

with the class property and superclasses given by the vertex label and outgoing arcs respectively�

Thus� a new object for the class de�ning property j would have additional values for properties c

and h� Figure � illustrates the layouts produced for this schema by most of the methods mentioned

in Table � below� A location in an object layout that is labeled ��� indicates wasted store� Thus�

procedure PLACEPROPS found a perfect ��directional layout and obtained a ��directional layout

with three units of wasted store� Four units of wasted store were required by the tree method� For

the C�� method� a total of � units of extra store were required to ensure that class l would have a

single copy of property c�

The results of this second set of experiments are reported in Table �� All data given in the

�
 Pugh and Weddell

�
�

�
�b
�
�

�
�c
�
�

�
�d
�
�

�
�a

�
�

�
�g
�
�

�
�h
�
�

�
�f
�
�

�
�e

�
�

�
�j
�
�

�
�l
�
�

�
�i
�
�

�
�k

� � �

�
�
�
��I

�
�
�
��I

�
�
�
����

�
�
�
���

�
�
�
����

Figure �
 A randomly generated class schema �scenario �
�
	

a

b

c

� d

e d

c d � f

b g

c � h

e d i

c j h

e d k

c d h f l

a

b

c

d

d e

f d c

b g

c h

d e i

c h j

d e k

f d c h l

a

b

� c

d

d e

d c � f

b g

� c h

d e i

� c h j

d e k

d c h f l

a

b

c

d

d e

� d f c

b g

� h c

d e i

� h j c

d e k

� d f � h l c

�

�

�

�

a

b

c

d

e

f

g

h

i

j

k

l

PLACEPROPS

n � �
�Dir � ���

n � �
� �Dir � �� �Dir � ���

TREE METHOD C�� METHOD

Figure �
 Layouts produced by various methods for Figure ��

On Object Layout for Multiple Inheritance ��

table is an average over �ve schemas generated according to the indicated scenario� All data outside

of parentheses indicates a percentage of wasted store� The data given in parentheses for the case of

procedure PLACEPROPS invoked with n � � indicates the percentage of properties that must be

placed in a direction greater than � in order to ensure that there is no wasted store� Thus� with the

scenario �
 ��
 � for example� the data indicates that extracting values for
of all properties

would require a more expensive table lookup�

Table �
 Experiments on Randomly Generated Class Schemas�

PLACEPROPS

scenario n � � n � � n � � C�� METHOD TREE METHOD

�

 � ��# �# ��#� �# ��#

 �
 � ��# ��# ��#� ��# ��#

 �
 � ��# ��# ���#� ��# ��#

�
 ��
 � ��# �# ��#� �# ��#

�
 ��
 � ��# �# �
#� �# �
#

�
 ��
 � ��# ��# ��#� �#
�#

�
 ��

�# ��# ���#� �# ��#

In these experiments� the only circumstances in which the ��directional layouts obtained by

procedure PLACEPROPS were not one of the best overall occurred in the case of randomly generated

class schema for the scenarios �
 ��
 � and �
 ��

� In these cases� the C�� approach required

between a third and a half of the store overhead of the ��directional layouts on average� However� the

reverse was true for two of the non�random class schemas based on real data% Overall� the experiments

indicate that feasible ��directional layouts are likely to be obtained by procedure PLACEPROPS for

class schema occurring in practice� and that one can expect the percentage of wasted store required

for such layouts to be less than for layouts obtained by existing methods�

One of our implementations in C of procedure PLACEPROPS can obtain a ��directional layout

at the rate of ���� properties every � seconds when running on a Decstation ����� As written� the

worst case running time for this implementation is O�jpropsj��� This can be reduced to O�jpropsj��

by re�ning the implementation with techniques such as incrementally maintaining the desperate and

frustrated sets� as opposed to recomputing the sets from scratch after each �eld is placed �although

the details of this are beyond the scope of this paper�� However� in view of the performance of this

straightforward implementation� such optimizations do not appear to be necessary in practice�

��� On the di�culty of optimal n�directional object layouts�

Note that Theorem
 and Corollary � do not prove any results about the ability of procedure

PLACEPROPS to perform merging well� that is� to minimize the need for wasted store in cases

where the con ict graph induced by a given schema is not ��colorable �although our experimental

evidence suggests that the procedure works very well in practice�� Indeed� in this subsection� we prove

�� Pugh and Weddell

that it would be pointless to search for an optimal n�directional layout algorithm� In particular� we

prove that determining if an arbitrary type schema has a perfect n�directional object layout is NP�

complete for n � �� and that this remains true for simple type schema for n � �� Since an algorithm

that �nds an optimal layout could decide if a perfect layout existed� �nding optimal n�directional

object layouts is NP�hard�

Theorem �� The problem of determining whether or not a simple type schema has a perfect n�

directional object layout is NP�complete for n � ��

Proof� For an arbitrary graph G� � �V �� E��� we can construct a simple type schema S inducing

a con ict graph G � �props� E� isomorphic to G� as follows
 for each vertex x � V � add the class

de�nition

Cx � CLASS �� x
 INT� END�

and for each edge fx� yg � E� add the �edge� class de�nition

Cxy � CLASS �Cx� Cy� END�

Clearly� x � props if and only if and x � V �� If fx� yg � E�� then Jcnt�x� y� � � and both Rcnt�x�

and Rcnt�y� exceed �� Thus� neither x� y nor y � x is true and therefore fx� yg � E� Conversely�

if fx� yg � E� then Jcnt�x� y� � � and there exists an edge class de�nition of the form above� which

implies fx� yg � E�� Thus� G must be isomorphic to G� and therefore� by Theorem � and Theorem ��

S has a perfect n�directional layout if and only if G� is n�colorable� The theorem follows since we

can easily check a layout to see if it is perfect� and since the problem of determining if an arbitrary

graph is n�colorable is NP�complete for n � � ��	� �

Theorem �� The problem of determining whether or not an arbitrary type schema has a perfect

n�directional object layout is NP�complete for n � ��

Proof� The case for n � � follows from Theorem �� Our proof of the remaining cases is again by

reduction of the graph coloring problem� and is based on our proofs of Theorem � and Theorem ��

First consider where n � �� Given an arbitrary graph G� � �V �� E�� and integer k� construct a

type schema S as follows
 for each vertex x � V � add the class de�nition

Cx � VIRTUAL CLASS �� x
 INT� END�

and for each edge fx� yg � E� add the class de�nition

Cxy � CLASS �Cx� Cy� xy�
 INT� � � �� xyk
 INT� END�

Thus� the property set list for S consists of a property set for each edge fx� yg � G� of the form

fx� y� xy�� � � � � xykg� If G� is k�colorable� then a perfect ��directional object layout is obtained as

outlined in the prove to Theorem �� Conversely� if we are given a perfect ��directional object layout

for S� then this layout gives a k�coloring for G�
 if vertex x in V � is assigned o�set i� then assign x

On Object Layout for Multiple Inheritance ��

the color i� otherwise� if vertex x is not assigned an o�set� then it has no incident edges and therefore

assign it the color ��

Now consider where n � �� For an arbitrary graph G� � �V �� E�� and integer k� construct a

type schema S as follows
 �rst� initialize S with the following pair of �boundary� classes

BlockLeft � VIRTUAL CLASS �� bl
 INT� END� and

BlockRight � VIRTUAL CLASS �� br
 INT� END�

Now add vertex classes to S as in the case for n � � above� and for each edge fx� yg � G� add four

class de�nitions of the form

Cxy � VIRTUAL CLASS �Cx� Cy� xy�
 INT� � � �� xyk
 INT� END�

Cbl
xy � CLASS �BlockLeft� Cxy� END�

Cbr
xy � CLASS �Cxy� BlockRight� END and

Cblr
xy � CLASS �Cbl

xy� C
br
xy� END�

In this case� each edge fx� yg � G� contributes the three property sets

Pset�Cbl
xy� � fbl� x� y� xy�� � � �xykg�

Pset�Cbr
xy� � fx� y� xy�� � � �xyk� brg and

Pset�Cblr
xy � � fbl� x� y� xy�� � � �xyk� brg

to the property set list for S� In any legal ��directional layout� either Pset�Cbl
xy� or Pset�C

br
xy� must

have a �hole� occurring either for property br or property bl respectively� Thus� a perfect layout

must be at least ��directional with bl and br assigned di�erent directions� Assume� without loss of

generality� that Dir�br� � � and that Dir �bl� � �� If the layout is perfect� then br must be assigned

the maximum o�set of all properties assigned direction � �otherwise� Pset�Cbl
xy� would again have a

hole�� This holds analogously for property bl with respect to Pset�Cbr
xy�� But then Pset�Cblr

xy � implies

that the remaining k properties must be assigned all remaining o�sets prior to those assigned bl and

br� This gives a k�coloring for G�
 if vertex x in V � is assigned direction �� then assign x the color

O� �x�� if vertex x is assigned direction �� then assign x the color O� �x��O� �br�� �� otherwise� if

vertex x is not assigned a direction� then it has no incident edges and therefore assign it the color ��

Similarly� if there is a k�coloring for G�� then a perfect ��directional object layout is again obtained

as outlined in the prove to Theorem �� �

��� Generating record de�nitions�

After computing a � or ��directional object layout for a given type schema S� generating a record

type in our particular type language that speci�es an object encoding for a non�virtual class C in S

is straightforward� A procedure for doing this is given in Figure �� In this case� �elds encoding the

values for any properties in Pset�C� placed in the second direction will occur in the record type for

C in descending order of their o�set� and are followed by �elds encoding values for any remaining

properties placed in the �rst direction in ascending order of their o�set� Note that the location of

�elds in record types for distinct classes that encode values for the same property in props remains

constant� In particular� let k denote the maximum o�set of all properties in props placed in the

�� Pugh and Weddell

second direction� and assume the ith �eld in the record type for C encodes values for property x in

Pset�C�� Then either Dir �x� � � and i � k � O� �x� � �� or Dir�x� � � and i � k � O� �x��

This ith �eld can directly encode values for x if x quali�es as an inline property� otherwise�

the �eld must point indirectly to such values� For our particular type language� the circumstances

in which this level of indirection is not needed are as follows

�� whenever x is of type INT or POINTER �i�e� of unit size�� or

�� whenever x is placed in the �rst direction and there does not exist another property y in

Pset�C� that con icts with x and is placed in the same direction as x but at a greater o�set�

For type languages that allow one to reason more extensively about the actual internal encoding of

record types� the second of these conditions can be generalized by removing the restriction that x is

placed in the �rst direction� In our case� we have assumed only two things
 that INTs are allocated

the same amount of store as POINTERs� and that space for �elds is allocated in the order in which

the �elds occur in a record type�

For an example of a case where property indirection is needed� consider the university schema

with the de�nition of class Teacher given instead by

Teacher � CLASS �Person� Address
 STRING�
��� END�

Also assume procedure PLACEPROPS has computed the following ��directional property layout for

the new schema�

Dir�Name� � � Dir�Address� � � Dir�Advisor� � � Dir �Boss� � �

O� �Name� � � O� �Address� � � O� �Advisor� � � O� �Boss� �

The object encoding computed by procedure GENRECDEFS for this case is listed in Table �� Note

that� since the Address property fails to satisfy either of the above two conditions� a level of indirection

in its encoding is needed within the record types for classes Teacher and Tutor� To further clarify

this� Figure � illustrates corresponding instances of the records in Figure � �but with values for the

Address property replacing values for the Salary property��

�� Summary and Discussion

We have presented a new algorithm for obtaining an object encoding for object�oriented programming

languages that allow subtyping and multiple inheritance among class de�nitions� The new algorithm

incorporates a re�ned version of AlgorithmB in ��	 and may be easily adapted for use in a preprocessor

for existing languages� Our experiments indicate that� for class schema occurring in practice� the

algorithm is able to produce an object encoding with minimal store overhead in which property value

access for pointer�sized properties can proceed with the same e�ciency as in systems that do not

provide multiple inheritance� For some of the properties that require a larger amount of store� a

single level of indirection is needed in the worst case� With our algorithm� a simple comparison can

always be used to check for equality among object references� and no overhead whatever is needed

On Object Layout for Multiple Inheritance ��

procedure GENRECDEFS�S� Dir � O� �

�initialization

k
� max�f�g � f � � j j
x � props s�t� Dir�x� � � and O� �x� � j g��

for each x � props�

Loc�x�
� ��Dir�x�� �� � �k� O� �x� � ��� � ����Dir �x�� � �k� O� �x����

inline
� f x � props j x is declared of type INT or POINTER in S g�

inline
� inline � f x � props j Dir �x� � � and �y � props�

�Dir�y� � � or O� �y� � O� �x� or y � x or Jcnt�y� x� � �� g �

for each x � �props� inline�� generate �xTemplate � RECORD x
 Type�x�� END��

�loop body�do for each non�virtual class C in S

generate �C � RECORD��

for i
� � to �k �max�f�g � f � � j j
x � Pset�C� s�t� Dir �x� � � and O� �x� � j g���

if there exists x � Pset�C� s�t� Loc�x� � i

then if x � inline

then generate �x
 Type�x����

else generate �x
 POINTER TO xTemplate���

else if there exists y � Pset�C� s�t� Loc�y� � i

then generate �SkipO�i
 INT���

else generate �ShiftO�i
 INT���

for each x � Pset�C�� inline� generate �xStore
 xTemplate���

generate �END��

Figure �
 A procedure for generating an object encoding�

�Jane� � � � �
�� Maple�

�Mary� � ���� Ashby�

�Fred� � �

Tutor

Teacher

Student

�

�

�

��

Figure �
 Example 	�directional object layout with field indirection�

�� Pugh and Weddell

Table �
 	�directional object layout with field indirection�

AddressTemplate � RECORD Address
 STRING�
��� END

Student � RECORD

Name
 STRING�����

SkipO��
 INT�

Advisor
 POINTER TO Teacher�

END

Teacher � RECORD

Name
 STRING�����

Address
 POINTER TO AddressTemplate�

AddressStore
 AddressTemplate�

END

Tutor � RECORD

Name
 STRING�����

Address
 POINTER TO AddressTemplate�

Advisor
 POINTER TO Teacher�

Boss
 POINTER TO Teacher�

AddressStore
 AddressTemplate�

END

for type coercions �including coercions that cannot be guaranteed safe at compile time�� Also� the

algorithm can be used to implement method dispatch when applied to the problem of �nding an

object encoding for class objects� �In this case� property values correspond to function addresses��

However� our algorithm leaves open a number of issues� In the remainder of this section� we

comment on several of these issues� and in the process suggest a number of directions for future

research�

��� Non�uniform object distributions�

Our procedure for computing an object layout and our experimental evaluation of this procedure

assume that objects are distributed uniformly among classes�that objects will be created in di�erent

classes at about the same rate� However� in some situations� we might have object count estimates

available that give a more accurate model of the actual distribution of objects among classes at run

time� For example� in the case of the university schema� a more accurate model would indicate that

On Object Layout for Multiple Inheritance ��

the number of Student objects will typically be much greater than the number of either Teacher or

Tutor objects� If object count estimates are supplied in the form of a weight attached to each class

type in the input schema� then it is straightforward to incorporate such estimates in our Rcnt and

Jcnt data computed during the initial schema analysis phase� In this new de�nition� Rcnt�x�� for

example� should be computed as the sum of the weights attached to the classes that can have objects

with values for property x� �Our uniformity assumptions are then a special case of this more general

setting� in which a weight of � is assumed for virtual classes and a weight of � for non�virtual classes��

A number of preliminary experiments have been conducted on the tree method for random

schema that made use of object count estimates ���	� The experiments considered the e�ect of

increasing the relative number of objects occurring in classes lower in the class hierarchy� and the

e�ect of non�uniform �two�step� object distributions among classes at the same level in this hierarchy�

In both circumstances� the performance of the tree method improved considerably� We believe this

will also be the case for our multidirectional algorithm when class weights are factored into the

computation of Rcnt and Jcnt data in the manner suggested� Note that� in contrast� the �rst

circumstance will clearly decrease the performance of the C�� method since objects in classes lower

in the taxonomy are more likely to require additional store for what we referred to as �special �elds�

in our review section�

��	 On varying sized �elds�

As presented� our algorithm works best for cases in which all properties are pointer�sized� This is

usually true for polymorphic programming languages� since in such languages each value is either a

pointer or a pointer�sized integer� We believe that the single level of indirection that may be needed

for properties which require a larger amount of store �e�g� properties that are arrays or strings� will

not signi�cantly impact performance� The reason is that the cost of this indirection will be amortized

over what is likely to be a much greater amount of computation on the value itself�

Some re�nements to the algorithm are necessary� however� to properly handle cases in which

properties are less than pointer�sized �e�g� properties that are Boolean valued�� A simple approach

might be to preprocess a given type schema to �bin pack� groups of such properties into pointer�sized

blocks� These blocks would then be placed as a unit by procedure PLACEPROPS� However� further

experimentation with this approach requires a larger collection of real�world class schemas than is

presently available to us� Clearly� the problem of handling varying sized �elds merits some further

study�

��� On interactive use and separate compilation�

If our algorithm is used in a preprocessor for an existing language� then it may become necessary to

recompile a large part of a software system when certain kinds of changes are made to a global type

schema� In particular� adding a new class type that multiply inherits from existing class types or

modifying the de�nition of an existing class type may have this e�ect� This is because such changes

may con ict with previous decisions about which �elds to merge� However� this is not true in general�

It is straightforward to derive an incremental version of our algorithm that does not require us to

�� Pugh and Weddell

forego separate compilation when adding new properties to the de�nition of existing classes� or when

adding new class types that do not multiply inherit from existing class types�

Another more ambitious approach is to apply our algorithm at the time a set of object code �les

are linked to produce an executable �le� This approach will require store to be allocated in object

code �les for ��� operators� and then loaded with appropriate machine code at link time� Since the

running time of our algorithm on a global schema is likely to not be worse than the time to compile�

say� a new module containing a few hundreds lines of source code� such an approach seems feasible�

The situation with current methods is not much better� With the C�� method� one can

dynamically add new class types without restriction only if superclasses are always declared virtual�

This adds signi�cantly to the storage overhead for special �elds �at least a ��# overhead in the

case of both the graphics spline library and Lisp Flavors system�� and also adds to the overhead of

accessing the values of inherited properties� Another approach used by Cardelli in his Quest language

��	 is to introduce a second class type that does not allow multiple inheritance� But this seems to

encourage the writing of programs that do not have class types allowing multiple inheritance for

e�ciency reasons� creating libraries that cannot be easily adapted to multiple inheritance later�

��� Inline classes�

Consider a simple modi�cation to our type de�nition language to allow inline classes� that is� to allow

a property to be declared of type �C� �instead of �POINTER TO C��� The reasons for allowing this

relate to performance� For example� replacing the de�nition of the Student class in the university

schema with the de�nition

Student � CLASS �Person� Advisor
 Teacher� END

would have the e�ect of duplicating Teacher property values in Student records� This would enable

both��� operators in the expression

student � Advisor � Name

to be compiled as a single machine�level indexed load instruction�

This particular case should perhaps not be allowed because of the possibility of a cycle �we may

have two tutors who advise each other�� However� the idea of inline classes still seems worthwhile

for cases in which a cycle is not a possibility� Note that no revisions are necessary to our algorithm

to handle non�cyclic cases� and that the above optimization on a sequence of ��� operators can

be applied whenever indirection is not needed for any of the properties mentioned in the sequence�

However� it can be argued that an object encoding that disallows any such optimizations violates the

intentions of the programmer� Removing the need for property indirection by our algorithm would

overcome this problem� and is a topic for future research�

On Object Layout for Multiple Inheritance ��

References

��	 K� A� Barret� ����� Personal communication�

��	 A� H� Borning and D� H� H� Ingalls� Multiple inheritance in Smalltalk���� In Proc� AAAI

National Conference on Arti�cial Intelligence� pages ��
!���� �����

��	 L� Cardelli� Typeful programming� Technical Report
�� DEC SRC� May �����

�
	 G� V� Cormack� ����� Personal communication�

��	 M� R� Garey� D� S� Johnson� and L� Stockmeyer� Some simpli�ed NP!complete graph problems�

Theoretical Computer Science� �
���!���� �����

��	 D� E� Knuth� The Art of Computer Programming� Volume �� Addison�Wesley� �����

��	 S� Krogdahl� Multiple inheritance in Simula�like languages� BIT� ��
���!���� �����

��	 S� T� March� Techniques for structuring database records� ACM Computing Surveys� �����

�!

��� March �����

��	 W� Pugh and G� E� Weddell� Two�directional record layout for multiple inheritance� In Proc�

ACM SIGPLAN Conf� on Programming Language Design and Implementation� pages ��!���

June �����

���	 B� Stroustrup� Multiple inheritance in C��� In Proc� EUUG Conference� pages �!��� May

�����

���	 G� E� Weddell� Physical design and query compilation for a semantic data model �assuming

memory residence�� Technical Report CSRI����� Computer Systems Research Insitute� Univer�

sity of Toronto� April �����

���	 G� E� Weddell� E�cient property access in memory�resident object oriented databases� Research

Report CS����
�� Department of Computer Science� University of Waterloo� �����

���	 N� Wirth� Type extensions� ACM Transactions on Programming Languages and Systems�

�����
���!��
� April �����

