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Abstract

This paper introduces a new visual formalism, called ADVcharts, for specifying the behavior of inter-
active systems (including multi-modal interactive systems) using a state-machine-based approach. AD-
Vcharts combine concepts from Abstract Data Views (ADVs), with notations from Objectcharts, Statecharts,
and Petri-nets. ADVcharts are part of the ADV specification approach. In this paper, we abbreviate the
“ADV specification approach” term to ADVspec. The ADVspec allows the designer to express visually
both the relationship among the user-interface objects and the flow of control of an interactive system using
a single integrated approach. It is intended that the ADVspec will serve as a foundation for a future design
methodology for interactive systems.

In particular, we show some aspects of design specific to interactive systems, such as the association
of input and output events with particular Abstract Data Views, the concurrency of the components of a
user interface, and the representation of various modes (input and output) in the design of an interactive
system.

The semantics of ADVcharts are presented through the specification of some examples, and we demon-
strate that ADVcharts can be used as a visual specification language to represent highly interactive systems
from the perspective of the user interface.

We conclude this paper by demonstrating that VDM-like specifications can be derived directly from
ADVcharts, thus providing the ADV concept with complementary visual and textual formalisms.

1 Introduction

A number of authors including [38, 16, 15, 25, 36, 33, 24, 26] have studied the concept of dialog inde-
pendence, where interactive systems are designed and implemented with the goal of providing a clear
separation between the user interface and the application. These authors and others have discussed the
many advantages of dialog independence including ease of maintenance of the existing system, support of
alternative visualizations of an application data structure, and design and implementation reuse.

�L.M.F. Carneiro-Coffin holds a doctoral fellowship from CAPES (the Brazilian Research Council)
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Recent papers by Cowan et al [9, 7] present a new design concept called Abstract Data Views (ADVs).
ADVs clearly express the separation of the application and the user interface at the design level. The
concept of ADVs has been applied to interactive systems, where the user-interface part of the system is
represented as an ADV, and the non-user-interface part (the application) is represented as an Abstract Data
Type (ADT) [43]. The ADV concept allows the association of different user-interface objects with the same
ADT, and the composition of user-interface objects through nesting. By allowing various ADVs to view the
same ADT, the designer of the ADT can ignore the question of which class of interfaces will be used for
the visualization of the ADT. This notion provides strong support to the designer in the creation of general
reusable applications.

A design concept, such as Abstract Data Views, is only useful if it can eventually be implemented
through some form of reification� that maps the design into an operational program. ADVs have been
thoroughly tested in this regard as they have been used to design and implement user interfaces for many
different software systems. For example, the chess and checkers games used in [7] and a graph editor
[8] were designed using the ADV concept and were later implemented in Smalltalk. In addition, a user-
interface design system (UIDS) called GUIIZER [34] that was used to create graphical user interfaces for
applications in geophysics, was designed using the ADV concept and was implemented in C++. In each
case, a systematicapproach was used to map the design based on ADVs into an operational software system.

Although the ADV concept appears to be promising, there are several issues that still need to be
addressed. Specifically, we need to create an associated formal design model, which ensures that any
design incorporating the ADV concept is developed correctly and systematically. Visual formalisms [19] are
particularly appealing, since designers often use various graphics to assist in producing a specific design.

We have created a new visual formalism for specifying interactive systems, based on state-machines,
called ADVcharts. ADVcharts are part of the ADVspec (ADV specification approach). ADVcharts were
developed to create design tools based on the ADV concept, and to serve as the foundation for a future
design methodology. This notation has a number of advantages over other visual formalisms for specifying
interactive systems, since it deals with problems specific to these type of systems.

Our work on ADVcharts was inspired by earlier research on visual formalisms. Two design methods
of particular assistance were Statecharts [18] and Objectcharts [6]. Both design models use a state-machine
approach for specifying complex systems. Statecharts are an extension of statemachines and statediagrams;
their purpose is to specify and to design complex reactive systems [21]. Objectcharts are an extension of
Statecharts and are used to characterize the behavior of a class for object-oriented systems as state-machines.

In this paper, we present the ADV concept, justify the need for another visual formalism for interactive
systems, demonstrate the ADVspec through some examples using the same style as appears in [18] and [6],
and illustrate how VDM-like specification can be derived from the ADVcharts. We also describe Statecharts
and Objectcharts as they provide similar visual notations for complex systems.

2 The Abstract Data View Concept

Abstract Data Views (ADVs) [9, 7] are Abstract Data Types (ADTs) [43] that have been modified to support
the design of user interfaces. The ADV concept cleanly separates the application from the user interface
and is intended to promote design reuse. An initial formal semantics of the ADV concept have been given
in [7], using an extension of the VDM specification language [30].

A typical system that is based on the ADV concept consists of a collection of Abstract Data Types
(ADTs) [27] that manage the data structures and the state of the application—the non-user-interface part of
the system—, a collection of ADVs that comprise the perceivable behavior—the user-interface part of the
system—, and a mapping from ADVs to ADTs [5]. The independence of the ADTs and ADVs guarantees
the property of a clean separation of the application from the user interface.

�The Concise Oxford Dictionary defines the verb ‘reify’ as ‘convert (person, abstract concept) into thing, materialize’
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In this paper, we view an ADT as an object in the object-oriented sense of program design because we
view an ADT as being defined by a private state and a public interface. The public interface comprises
services provided by the ADT and attributes (variables and their corresponding values) of the ADT that
can be modified by an ADV or another ADT. Only the public interface of an ADT is accessible to external
sources. The term ADT is used because we are mostly interested in its properties as a type. Moreover,
the ADT is completely independent of the user interface and, in fact, does not have access to any input or
output events.

The ADV handles all the input functions, provides all output functions, and fully controls its associated
ADT. The ADV implements all decisions concerned with the information exchanged between the user and
the user-interface application, and among other ADVs. Figure 1 shows the ADV, ADT, and the mapping
from an ADV to an ADT (the mapping is represented as an arrow connecting the ADV to the ADT). The
mapping associates the public interface of the ADT with its corresponding ADV. More specifically, the
mapping between an ADV and an ADT is represented by a variable in the ADV that we call owner ( because
an ADV is associated with an ADT, we say that the ADT is the owner of the ADV), and therefore the variable
owner represents the channel between the user-interface part of the application and the non-user-interface
part. The variable owner provides a notation for binding the ADV to a specific ADT at the design level.
Thus, any change in the variable owner in the ADV will be reflected in its associated ADT, and vice versa.
The strategy used to ensure the consistency of the variable owner with the attributes of the associated ADT
is not specified by the ADV concept. Several different approaches for implementing the owner variable
have been studied, but we do not discuss them in this paper. Details of one implementation can be found
in [34].

The concept of the owner variable can be formalized as:

� Let A = set of elements available in the ADT public interface;

� Let B = set of elements of the owner variable;

� B � A (by definition of the owner variable);

� For all elements of B, there is a corresponding element in A (call this element x). We refer to this
element as owner.x. Formally:

�x � B � �y � A � x � y

A user interface can provide many different views of the data stored in an application. For example,
an integer—a very simple ADT—could be displayed as a number, a position on a dial, or a position of a
slider. For this reason, the ADV concept allows the association of several ADVs with a single ADT, where
each ADV can provide a different view of the ADT or a different control functionality. Since an ADT has
no knowledge of input or output, it does not need to refer to any ADV. As a consequence, there is not a
symmetrical arrangement between an ADT and an ADV, that is, the ADV needs to know about its associated
ADT, but the ADT does not need to know about its corresponding ADVs—at least at the design level. Since
an ADV is associated with one and only one ADT, while an ADT can be associated with several ADVs,
there is the property that an ADT can be viewed in different ways, but the different views represented by
the multiple ADVs must be consistent with the ADT they represent.

We believe that user interfaces are built by composing behavior, structure, and form. The behavior of a
user interface when a user initiates an action can be viewed as the composition of simpler behaviors in just
the same way a complex routine is composed of a number of simpler routines. For example, every window
under the Microsoft Windows operating system can behave, roughly speaking, in two ways: iconized or
expanded. We can usually associate different states with each of these behaviors. Similarly, a user interface
can be composed of a number of visual objects. For example, a dialogue box may be composed of a text-
field, an editable text-field, radio buttons, check boxes, and a list box. Finally, the different forms of the
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ADV ADT

user input sensor

publicowner

Display output

Figure 1: The ADV Architectural Model

objects depicted in a user interface can be classified into groups of related abstractions. For example, human
beings can be classified into two groups of related abstractions: men and women. A user interface that
displays men behaves in almost the same way as a user interface that displays women, but there are some
differences (for example, displaying different faces for men and women). The form of decomposition where
the behavior or structure of an object is decomposed into simpler behaviors or structures we call behavioral
and structural nesting, respectively. The form of decomposition where objects are classified into groups
of related abstractions with common ancestry we call decomposition by form [3, 14]. The ADV concept, as
described in [9, 7], supports behavioral and structural nesting. We extended the ADV concept to support
decomposition by form [4].

Both ADVs and ADTs can be viewed as objects. In this paper, we concentrate on the specification
of the ADV objects. ADVs can be composed of other ADVs—structural nesting—, and also can contain
attributes that are shared by their components. This aspect of composition differs from the standard object-
oriented paradigm in that objects only contain attributes. We extend this object-oriented view by supporting
structural nesting. However, we do not enforce in the ADV concept any implementation-biased approach
for implementing the ADV and ADT objects and the nesting mechanism.

In systems based on the ADV concept, the control originates in the user-interface part of the application
rather than in the non-user-interface part. We believe that this placement of control avoids the callback
spaghetti problem [37] and is appropriate, since in highly interactive systems the flow of control is de-
termined primarily by the user of the system through the user interface. Also, in systems based on the
ADV concept, each component of the user interface can be associated with a single ADV because the ADV
concept supports structural nesting. Thus, the user interface can be composed of multiple ADVs. The use
of multiple ADVs makes the flow of control of each ADV quite simple: each ADV responds to a relatively
small number of user-generated events, and examines and manipulates one and only one ADT.

In the ADV concept, ADVs and ADTs often need to be logically related. However, this relationship does
not imply anything about the implementation strategy. For example, we might need to specify invariants
governing relationships between an ADV and an ADT, but this specification does not imply that the two
components—the ADV and the ADT—should reside in the same machine.
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In the next section, we briefly discuss Statecharts and Objectcharts.

3 Statecharts and Objectcharts

Statecharts [18] and Objectcharts [6] are visual formalisms for describing the behavior of complex systems.
Statecharts are an extension of finite state machines, and have been formulated to avoid many of the
disadvantages of a finite state machine representation, such as state explosion and lack of structure [20].
Objectcharts extend Statecharts to allow the specification of object-oriented systems.

Finite state machines are described by an input alphabet, an output alphabet, a set of states (including
start and final states), and a set of state transitions [29]. Statecharts extend the finite state machine notation
by adding hierarchy, concurrency, and broadcast communication. Hierarchy allows common transitions to be
clustered and adds structure to the chart. Hierarchy is shown in Figure 2.a, where state A is composed
of two other states, B and C. The system can be in state B or C, but not in both states at the same time.
Concurrency is represented by an AND decomposition of states and is an attempt to avoid state explosion.
For example, in Figure 2.b, the state D consists of components E AND F. The system can be in states E and
F simultaneously. The transitions in the states E and F may be fired synchronously, or independently from
each other. In the case the system is in the state � e�� f� �, and an event x occurs, the system goes to the
state � e�� f� �. However, if the system is in the state � e�� f� �, and an event y occurs, the system goes to
the state� e�� f� �, which means that no transition of the E component is fired.

The communication mechanism used in Statecharts is called broadcast communication. Broadcast
communication is the ability to propagate the occurrence of an event through all AND components, and
fire simultaneously all transitions caused by the event .

x x
z y

D

E F

A

B

C

(a) (b)

e

e

f

f

11

2 2

Figure 2: Hierarchy in Statecharts and Concurrency in Statecharts

Objectchart notation, which is a visual formalism for the specification of object-oriented systems, uses
two types of diagrams. The instances of objects and the communication among these objects are captured by
means of a configuration diagram; the class behavior is described by means of Objectcharts. A configuration
diagram for the ADVspec is shown in Figure 3 and the one for an Objectchart is similar. The services
provided by and required by a class are shown in the diagram.

Objectcharts characterize the behavior of a class as a state machine, with an input and output alphabet
comprising the operations provided and required by the class. To differentiate a required serviced from
a provided service, the prefix “/” is used whenever a provided service is referenced in a transition. Ob-
jectcharts do not use broadcast communication; instead, they consider service request and complete service
execution as a single atomic event.
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ADV ADT

Names

Required Services

Provided Services

Provided Services

Figure 3: Configuration Diagram for ADV

Objectcharts augment states with attributes (variables and their corresponding values) and observers. The
effect of state transitions on the attributes are specified. Observers allow a provided service to report on the
value of attributes without changing the state of an object.

In order to complete the Objectchart, the transitions need to be specified. A transition specification
comprises the initial and final state names of the transition, the service name for the transition, the firing
condition, and a post-condition. The firing condition is a predicate describing the restrictions over attributes
and observers for the transition; the post-condition is a predicate over attributes and observers describing
the effect of the transition. We can also add to Objectcharts invariant specifications, comprising a state name
and the relation that needs to hold in the state that we are describing.

Every finite-state machine has a start state which is its default state. This state is distinguished from the
other states, in Statecharts and Objectcharts, by annotating it with a small arrow without an initial state. We
use the same representation in ADVcharts.

4 ADVcharts

ADVcharts are part of the ADVspec. ADVcharts provide a visual schema for specifying interactive systems
that are based on the ADV concept. ADVcharts are based on finite-state machines and are an extension of
both Statecharts [18] and Objectcharts [6]. ADVcharts also use notations from Petri-nets [41].

The ADVspec is composed of four components: a configuration diagram, ADVcharts, transition speci-
fications, and invariant specifications. The transition and invariant specifications use notations from VDM
[32, 11, 1].

As observed by Marshall [35], interaction between a user and a system may be viewed as a flow of control
between operations. The ADV concept, as presented in [7], allows only the specification of the operations
and the decomposition by structure of the user-interface components. The ADVspec complements the ADV
concept by also allowing the specification of the flow of control between operations and the decomposition
by form of the user-interface components.

As mentioned in the previous section, the input and output alphabets for Objectcharts are the set of
provided and required services. As ADVcharts are based on finite-state machines, we need to specify
the input and output alphabets. External (user-initiated) events are modeled as provided services by the
ADV, because the ADV provides services to the user that generates the event. ADV-initiated events, such
as display, are also modeled as provided services, because ADVs provide services to some media that
accepts the event. ADT invocations comprise the required services. In addition, we have noticed a need
to associate transitions with the state of the system rather than only to associate them with required and
provided services. Therefore, we have associated conditions on attributes (variables and their values)
with transitions. In this way, we can specify that a transition fires because the state of the ADV changes,
without having to introduce an artificial event for this purpose. Consequently, the input alphabet for
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ADVcharts consists of the services provided and required by an ADV, and conditions on attributes of the
ADV. The output alphabet for ADVcharts consists of the services provided and required by an ADV and
other functions specified inside the ADVs.

Multi-modal interfaces [2] can be specified using ADVcharts by modeling the actions generated by the
user from the various media (input modes such as keyboard, mouse, and footpedal) as provided services
of an ADV as explained above. The output (ADV-initiated) events (such as sound and display) can be
modeled as ADV provided services.

As we mentioned in section 2, the ADV concept supports behavioral and structural nesting, and de-
composition by form. Behavioral nesting is represented in ADVcharts through the nesting of states, and is
also supported by Statecharts and Objectcharts. Structural nesting is represented in ADVcharts through the
nesting of ADVs, in the same style of nesting of states. Structural nesting is not represented in Statecharts
and Objectcharts. Decomposition by form is represented in the ADVspec through the inheritance tree (in
the same style as Objectcharts) in the configuration diagram, and by shading the ADVcharts.

ADVcharts generalize Statecharts and Objectcharts to handle aspects of design specific to interactive
systems, such as using pointing devices to associate events with particular ADVs, and the inherent con-
currency between the ADVs that compose the user interface. Structural nesting supports specifying focus
of control as part of the design since the components of an object are clearly indicated. Because of the
inherent concurrency of ADVs, a mechanism for synchronization of ADVs is needed, as we are specifying
user interfaces by means of a collection of independent ADVs. For that purpose, we have introduced some
notation from Petri-nets into ADVcharts to represent the synchronization.

As presented in the previous section, ADVs provide services to the user, and require services from
ADTs. We assume that ADTs only provide services to simplify the problem (this assumption is reasonable
because we can always encapsulate ADTs in such a way that the final ADT will only provide services).
The relationship between ADVs and ADTs is shown using a configuration diagram in the same style as the
configuration diagram used in Objectcharts. The purpose of the configuration diagram is to specify, and
clarify the interface between the ADV and its associated ADT, and to represent the concept of decomposition
by form, by representing the ADV inheritance tree. In the configuration diagram we specify the services
provided and required by an ADV, show which ADT provides the services required by the ADV, and show
the hierarchy tree representing the inheritance of ADVs.

In the next section, we present the symbols and some rules used in the ADVspec.

5 Symbols and Rules used in the ADVspec

An ADVchart is composed basically of ADVs, states, attributes, and transitions. An ADV is represented in
the ADVcharts by a rectangle with the name of the ADV on top of the rectangle, as depicted in Figure 4.
A state, shown in Figure 5, is represented by a rounded rectangle containing the name of the state. ADVs
must contain one or more states to describe their behavior, and can contain other ADVs to describe their
decomposition by structure. A state can stand alone, can enclose a cluster of states or ADVs, or both.

Attributes can be defined in an ADV, or in a state. The scope of an attribute defined in an ADV is the
ADV itself; that is, all states and ADVs defined inside this ADV view the attribute. The scope of an attribute
defined in a state is the state itself; that is, all states defined inside this state, including states internal to
ADVs that are defined inside this state. However, we believe that if we want to define reusable ADVs we
should restrict access to attributes of a specific ADV to the ADV itself and the states that are inside the ADV,
and not consider the attributes visible by ADVs defined inside this specific ADV.

States are linked with each other by transitions. Transitions are represented by arrows from one state to
another state, as depicted in Figure 6. A transition from an ADV to a state, a state to an ADV, or from an
ADV to another ADV is not allowed. A transition can be annotated with provided or required services, and
conditions on the attributes of the ADV. The format of a transition is similar to the one used in Statecharts.
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ADV Name ADV Name

(a)

(b)

Figure 4: The ADV Representation

State Name State Name

Figure 5: The State Representation

Once the ADVchart is represented, we need to define for each transition in the ADVchart its pre-
condition, the event that cause the transition to be fired, and the post-condition. The language used for the
specification of the transitions is VDM. Finally, it is also possible to specify invariants over the attributes of
the ADVs and states. The specification language used to define the invariants is also VDM.

In the next sections, we present informally the semantics of the ADVcharts through some examples.

6 The First Example

In this section, we illustrate the ADVspec by presenting a solution to the Logon problem. This problem with
a solution using VDM and a visual notation based on state-machines (also called statecharts, but different
from Harel’s work) are presented in [35]. The user interface for the Logon problem consists of a screen
composed of two visual objects, as depicted in Figure 7. The system displays the user interface and waits
for the user to type a user name into the field with the label Login: . Once the user name is provided, the
application (ADT) validates the user name by checking whether the user belongs to the set of allowable
users. If the user belongs to the set of allowable users, the screen disappears (this assumption is just to
simplify the example); otherwise the message “Invalid User” is displayed on the screen, and the system
waits for a new user name.

Given the statement of the Logon problem, we can associate the objects that appear on the user interface
with ADVs, and specify the configuration diagram. As shown in Figure 8, the whole screen is associated
with the ADV Logon, the field where the user will input a user name is associated with the ADV Prompt,
and the field where the error message will be displayed is associated with the ADV Error.

In the statement of the problem, we can also identify the services provided and required by the ADV
Logon. The two services provided are keyboard entry and displaying of the Logon screen itself; the service
required by the ADV Logon is related to the validation of the user name, which is called Valid User Name.

State Name State Name
Transition

Figure 6: The Transition Representation
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Login: 

Figure 7: Logon screen

Login: 

ADV Logon

ADV Prompt

ADV Error

Figure 8: Logon screen with the associated ADVs

ADV
Logon

ADT
UserLogon

Display

Keyboard

ValidUserName

Figure 9: Configuration Diagram for the Simple Logon Example
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The configuration diagram is shown in Figure 9.

1. Keyboard (focus & keyboard_input not equal CR) 

2. 

3. 

Display Off

Logon Input Input Error

Prompt

Logon

Display on

Display

Error
1

Keyboard (focus & keyboard_input = CR & \Owner.ValidUserName)

2

3

Keyboard (focus & keyboard_input = CR & not \Owner.ValidUserName)

1

1

name: Name

Figure 10: ADVchart for the Simple Logon Example

As shown in Figure 8, the ADV Logon is composed of two other ADVs: the ADV Prompt, and the
ADV Error. The property of allowing an ADV to be composed of two other ADVs is referred to as the
ADV structural nesting property, as explained in section 2. In an ADVchart, this property is made visually
explicit by showing ADVs drawn inside ADVs as depicted in Figure 10.

The next step is to describe each transition of the ADVchart. We use a VDM-like style to specify the pre-
conditions, the post-conditions, and the events used to annotate each transition. This approach is similar
to the one used in Objectcharts, but we adopt an approach that is more textual and closer to VDM. The
transitions for the ADV Logon are described in Figure 11.

As shown in Figure 11, a transition specification is composed of four fields: the transition, the pre-
condition, the event, and the post-condition. The transition is described by means of the name of a state, an
arrow, and the name of the next state. For example, the transition from the state “Display off” to the state
“Display on” is written as “Displayoff � Display on”. In the case of a transition in which the first state is
the start state, we do not mention the first state. An example is the transition “� Display off”.

In the pre-condition field, we specify the conditions that must be true in order to fire the transition. In
the event field, we specify the events that must occur in order to fire the transition. In the post-condition
field, we specify the conditions that must be true once the transition is fired.

We use the function focus in Figure 11. This function can be specified in several ways. One possible
approach to define focus is to have a variable called focus associated with each ADV, and to set this variable
on or off, depending whether the ADV is selected. In this case, we need to specify a function that sets and
unsets the variable focus. Using this approach, focus(advName) would be equivalent to advName.focus, and
we postpone the problem of specifying how this variable will be set and unset. Another possibility is to have
a cursor-based approach. Informally, in this case, the focus function returns true if the cursor—the focus—is
inside the ADV that was given as a parameter. Formally, the function focus is described in Figure 12. In
the formal description, we are assuming the existence of two state variables: sm and cursor. The variable
sm is a mapping from location to ADV, where a location is a set of positions on the screen. We use the
function CursorPos to describe the function focus. The function CursorPos returns true if the cursor position
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Transitions Logon
� � Display off �

event :
pre-condition : ftrueg
post-condition : fscreen � emptyg

� Display off � Display on �
event : Display
pre-condition : ftrueg
post-condition : fscreen �����screen � �Login��g

� Logon Input � Input �
event : ADV Prompt�Keyboard
pre-condition : ffocus�Prompt�g
post-condition : fname � GetUserName���

screen � ����screen � nameg
� Input � Error �

event :
pre-condition : f�nowner �ValidUserName�name�g
post-condition : fscreen �����screen � �Invalid User�g

� Input � Display Off �
event :
pre-condition : fnowner �ValidUserName�name�g
post-condition : fscreen � emptyg

� Error � Input �
event : ADV Prompt�Keyboard
pre-condition : ffocus�Prompt�g
post-condition : fname � GetUserName���

screen � ����screen � nameg

Figure 11: Transition Specification for ADV Logon
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is inside the ADV that was given as a parameter, and returns false if the cursor position is inside another
ADV. The function CursorPos is also described in Figure 12. However, we will not enforce any approach to
the specification of the focus in the ADV concept, but the designer needs to be aware that, eventually, the
function focus needs to be specified.

ScreenMap � Location
m

�� ADV

Location � Position�set

Position :: x : f� � �g
y : f� � �g

State :: sm : ScreenMap

cursor : Position
� � �

focus �ADV � B

focus�adv� �

if CursorPos�adv � sm�
then true

else false

CursorPos �ADV 	 ScreenMap � B

CursorPos�adv � smap� �

let i � smap in
if cursor � dom i

then adv 
 rng i
else smap� � dom i �C����smap

CursorPos�adv � smap�

Figure 12: A possible formal description of the function Focus and CursorPos

In the next section, we present other examples using the ADVspec. More specifically, we use AND
decomposition and decomposition by form (inheritance).

7 Other Examples

7.1 Example of “And” Decomposition

In this section, we present a solution for an extension of the Logon problem, which was originally described
in section 6. We call this problem the Other Logon Problem. In this example, we show how to use the
ADVspec to specify a user interface composed of ADVs that operate independently from each other, and
how to specify a collection of ADVs that have the same behavior without knowing beforehand how many
of these ADVs are present in the user interface. We call the latter ADV an ADV-collection.

The Other Logon problem consists of allowing two users to login, but each user is assigned different
login fields. The description of the user interface for the Other Logon problem consists of a screen composed
of several visual objects, as depicted in Figure 13. The problem consists of displaying the user interface with
the two login fields, and the system waiting for the two users to input their user names. The user name
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can also be selected from a menu that is made available for the user by clicking the mouse button inside
the login field (as you see, we are not concerned with security problems !). The list of allowable users is
provided by the application (ADT). In the case where the user name is provided by the user, the application
will validate the user name for each user by checking whether the user belongs to the set of allowable users.
If the user belongs to the set of allowable users, the screen disappears; otherwise the message “Invalid User
1”or “Invalid User 2” is displayed on the screen and the system will wait until one or two users provide
new user names.

Users Allowed

Users Allowed

User 1

User 2

Figure 13: The Other Logon Interface

ADV User 2

ADV Logon

aaa

bbb

ccc

ddd

eee

ADV User 1 ADV Menu Item

ADV Menu

ADV Error

User 1:

User 2:

Figure 14: The Other Logon Interface with the Associated ADVs

Given the statementof the Other Logon problem, we can identify several ADVs, as depicted in Figure 14.
The whole screen is associated with the ADV Logon, the field where user1 and user 2 input their user names
is associated with the ADV User 1 and ADV User 2, respectively; the menu is associated with the ADV
Menu, each item of the menu is associated with Menu Item, and the field for the error message is associated
with the ADV Error.

In the statement of the problem, we can also identify the existence of three services provided by the ADV
Logon (keyboard entry, display of the Logon screen, and mouse click), and the two services required by the
ADV Logon (Valid User Name and Get User Names). The configuration diagram is shown in Figure 15.

The ADVchart for the Other Logon Problem is presented in Figure 16 and the annotations for the
transitions are presented in Figure 17. In the ADVchart, we can observe three differences with respect
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Display

Keyboard Logon

ValidUserName

MouseClick

GetUserNames

ADV ADT 

User

Information

Figure 15: Configuration Diagram for Other Logon

to the previous example: the AND decomposition of the states, the synchronization transition, and the
ADV-collection. The AND decomposition is used to model the concurrent aspect of the ADVs User1 and
User2. The style of the AND decomposition is the same as the one used in Statecharts [18].

The synchronization transitions are represented by the two different transitions (input � Display off
and init � Display off) shown in Figure 16, which represents the fact that the Logon screen disappears
because User 1 and User 2 have input (or chosen from the menu) correct user names. We express the
synchronization transition using a notation adopted from Petri-nets: a bar with two or more inputs, and
one output. The semantics of this bar notation are an AND of the input transitions, that is, the output will
be fired if and only if all the inputs are true, but whenever they are true. A possible representation for
the synchronization transition using Statecharts is depicted in Figure 18. The synchronization transition
notation is an attempt to save states�. In ADVcharts, we assume the interleaving model for the events.

The ADV-collection is used in this example to represent a menu that is composed of several menu items,
but we do not know in advance how many items the menu contains. The * operator is used with the
ADV MenuItem, in Figure 16, to indicate the collection of ADVs with similar behavior. The function for
the creation of the ADV components (the ADV MenuItems in this case) is given in the ADVchart and it is
specified using the “function:” field. In our example, the creation function is called CREATE. The CREATE
function is referenced in Figure 16 and is described in Figure 19. In the description of the function we use
the operator mk-ADV, which has four parameters: the owner of the ADV, the parent of the ADV, the name
of the ADV, and an identifier for the ADV—just its number, for instance.

The semantics for the ADV-collection chart of this example, using Statecharts, are depicted in Figure 20.
Further discussion of ADV-collection is postponed until Section 8.

The next step is to specify the transitionsof the ADVcharts of the Other Logon Problem. These transitions
are partially described in Figures 21 to 25. Transitions for the ADV User2 are omitted as they are similar
to the transitions for the ADV User1. In Figure 23, we introduce the “ � ” symbol as a notation for the
synchronization transition. The synchronization transition is represented as a single transition with two
start states and one final state, that is, the system goes from both states Input in ADV User 1 and ADV
User 2 to the state “Display Off” in ADV Logon. However, when specifying pre-conditions, and/or post-
conditions, we may need to have information about a particular ADV involved in the transition. In our
example, we need to specify a pre-condition establishing that the user names are valid in both ADVs User 1
and User 2. The predicate expressions for both transition specifications have the same format, but the scope
of the parameter name used in the services is different for each ADV. Therefore, the “ � ” notation differs
from a simple AND in that it conveys a correspondence between the arguments in the pre-condition and
the state names in the transition. In other words, in the pre-condition predicates, the first predicate refers
to the ADV User 1 and the second predicate refers to the ADV User 2.

We note in the solution of the problem, more specifically in Figure 16, that the specification of User 1 and

�Observe that in Figure 18 we have two additional states: User 1 Wait and User 2 Wait
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User 1

Logon

User 2

InputInput

Display on

1

2

3 3

2
2

Display Off

5

5
5

5

[nameList: Name_List]

U1 Error
U2 Error

4
4

2

[name: Name]
[name : Name]

Menu
Menu

function: Create()

Init
Init

Menu Items*

Menu Item i
Menu Items*

Menu Item i

Error
Error

[nameList: Name_List]
function: Create()

Figure 16: ADVchart for the Other Logon Problem

1. Display

2. Keyboard (keyboard input �� CR 
 focus)

3. Keyboard (keyboard input � CR 
 focus 
 nowner �ValidUserName)

4. Keyboard (keyboard input � CR 
 focus 
 �nowner �ValidUserName)

5. MouseClick (focus)

Figure 17: Transitions for the ADVchart of the Other Logon Problem
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..

.
..
.

Display Off

Input Input

Display On

User 1 User 2

User  1 Wait User 2 Wait

User 1 done
(not(in User 2 Wait)

User 2 done

(not(in User 1 Wait)

User 2 done User 1 done

Figure 18: A Possible representation of the Synchronization Transition using Statecharts

Function Create ��
external: wr screen
post-condition: name list � nowner �GetUserNames �

�i � name list �mk �ADV �owner �Menu�MenuItem� i�

Figure 19: The Create Function

Init Init Init

. . . . . . . . . . . . 

MouseClick (focus)

Mouse Click  (focus)

menuitems

Figure 20: A Possible Representation for the ADV MenuItems using Statecharts
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Transitions Logon
� � Display off �

event :
pre-condition : ftrueg
post-condition : fscreen � emptyg

� Display off � Display on �
event : Display
pre-condition : ftrueg
post-condition : ftrueg

Figure 21: Transition Description for ADV Other Logon

TransitionsADV User 	
� � Input �

event :
pre-condition : ftrueg
post-condition : fscreen �����screen � �User 	�� �

name � nilg
� Input � Input �

event : Keyboard
pre-condition : ffocus�User��g
post-condition : fname � ����name � keyboard input �

screen � ����screen � keyboard inputg
� Input � U1 Error �

event : Keyboard
pre-condition : ffocus�User��� keyboard input � CR � �nowner �ValidUserName�name�g

post-condition : fscreen �����screen � �Invalid User 	� �
screen � ����screen � name �
name � nilg

� Input � Init �
event : MouseClick
pre-condition : ffocus�User��g
post-condition : fname list � nowner �GetUserNames �

�i � name list �mk �ADV �owner �Menu� i�g

Figure 22: Transitions for ADV User 1

TransitionsADV User 	�Menu�MenuItemi
� User 1.Menu.MenuItemi.Init 	 User 2.Menu.MenuItemi.Init � Display off �

event : MouseClick 	 Mouseclick
pre-condition : ffocus�MenuItemi� 	 focus�MenuItemi�g
post-condition : fscreen � emptyg

Figure 23: Transitions for Menu Item
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TransitionsADV Error
� U1 Error � User 1.Input �

event : Keyboard
pre-condition : fkeyboard input 
� CR � focus�User��g

post-condition : fscreen �����screen � keyboard input �

name � ����name � keyboard inputg
� U2 Error � User 2.Input �

event : Keyboard
pre-condition : fkeyboard input 
� CR � focus�User��g

post-condition : fscreen �����screen � keyboard input �

name � ����name � keyboard inputg

Figure 24: Transitions for ADV Error

TransitionsADV User 	 and ADV User 

� User 1.Input 	 User 2.Input � Display off �

event : Keyboard 	 Keyboard
pre-condition : ffocus�User��� keyboard input � CR � nowner �ValidUserName�name� 	

focus�User��� keyboard input � CR � nowner �ValidUserName�name�g
post-condition : fscreen � emptyg

Figure 25: Transitions for ADVs User 1 and User 2
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User 2 are identical. Therefore, we could treat them as an ADV-collection and use the * operator for their
specification. If we use the * operator, we need to specify two elements of the set (call it Useri and Userj) to
show the synchronization problem. The specification of Users using the * operator is more general as we
allow any number of users to logon.

A modification of the Other Logon problem would be more useful and more realistic. Suppose that
instead of having two user fields on the same screen, they are on different screens. For example, in order to
run a certain program (such as a chess game), the two users (or players) need to give their names. In this
new example, the ADV Logon becomes a virtual ADV and, therefore, the specification of the user interface
of the logon screen of this new problem is similar to the one presented in this section.

7.2 Modeling Inheritance in ADVcharts

In this section, we demonstrate the semantics and the modeling capability of ADVcharts by presenting a
solution to the “Human Identification” problem—HumanId problem, for short. In this example, inheritance
and nesting properties are used to illustrate the combination of the two design strategies. The reasons for
both kinds of decomposition (form and structure) are discussed in [3, 14]. We use the same semantics for
inheritance as the one used in [6].

The HumanId problem consists of displaying a person, given his/her name, and displaying the infor-
mation about the person’s family. Depending on the sex of the person, we need to display a different type
of face, that is, a woman or a man’s face. The person’s family information will be obtained by positioning
the cursor on the different parts of the person’s body, and clicking the mouse. If we click the mouse on the
head, the system displays the names of the person’s parents; if we click the mouse on an arm, the system
displays the names of the person’s siblings; if we click the mouse on the body, the system displays the name
of the person’s partner; and, finally, if we click the mouse on a leg, the system displays the names of the
person’s children.

We have divided humans into two classes: men and women. In other words, Man Is-a human and
Woman Is-a human. The Is-a relation is represented by using decomposition by form (inheritance). Humans
are Composed-of legs, arms, body, and head. The Composed-of relation is represented by using the nesting
property.

Men and women, in our problem, differ from each other only in that they have a different type of face.
Therefore, most information can be shared by men and women, and we want to represent and make this
fact explicit at the design level.

By analyzing the statementof the problem, we find we need an ADT that manipulates a data structure for
a genealogy tree and that provides the following services: getPerson, getParents, getSiblings, getChildren, and
getPartner. All the functions have the name of the person as a parameter. The function getPerson locates the
person in the genealogy tree, and returns the person’s sex; the functions getParents, getSiblings, getChildren,
and getPartner traverse the genealogy tree and return the names of the person’s parents, siblings, children,
and partner, respectively.

The Configuration diagram for the HumanId problem is shown in Figure 26. The ADV Human provides
the following services: MouseClick and Display. The ADV Man and ADV Woman modify the service Display
and inherit the service MouseClick from the ADV Human. The ADV Human requires the following services:
GetPerson, GetParents, GetPartner, GetSiblings, and GetChildren. These services are provided by the ADT
Genealogy.

The ADVchart of the ADV Human is shown in Figure 27. We notice in Figure 27 that the ADVs Leg,
Body, Arm, and Head are independent. This fact is shown using the AND decomposition notation in the
same style presented in [18]. In the initial state, which is the “Display off” state, the screen is blank. When a
Display event occurs, given the name of the person we want to display, the system displays the leg, the arm,
the body, and the head of a person. The head is displayed according to the sex of the person. Therefore,
after the Display event occurs, the system must be in different states and the initial state for the ADV Head
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Figure 26: Configuration Diagram for the Human Problem

must be different for the ADV Woman and Man. This difference is shown in Figure 28 for the ADV Woman.
In Figure 28, we note that we have shaded some states and some ADVs. This visual effect is chosen

to show that there are differences between the subtypes of the ADV Human and which states and ADVs
are inherited. In the ADV Woman, we added one more state, to reflect the fact that the face of a woman is
different from the face of a Man. The same approach is used for the ADV Man.

Some of the transition specifications for the HumanId problem are shown in Figures 29 and 30.
We observe in this example that decomposition by form, AND decomposition, and structural nesting

are useful when specifying even a simple user interface. We believe that the “AND” decomposition and
structural nesting simplify the specification of individual components of the user interface as they will
be usually represented by small Statecharts. We also believe that decomposition by form simplifies the
specification of the user interface as we can reuse part of a specification already defined.

In the next section, we discuss the semantics of the ADV-collection operator used in the ADVcharts.

8 ADV-Collection

The ADV-collection notation, using the * operator, can be used to represent two different situations: all the
components of an ADV have the same behavior and operate independently or all the components of the
ADV have the same behavior but do not operate independently. We call these two different situations case
1 and case 2, respectively.

Case 1 is the situation of the example in section 7.1—the Other Logon problem—where all the components
of the Menu have the same behavior and operate independently.

Case 2 is used when we need to represent some relation (usually sequencing) among the components.
One situation that illustrates this case is a menu problem (more realistic than the one presented in the Other
Logon problem, in section 7.1), where we are allowed to move up and down through the menu items (either
using the keyboard or using the mouse). To simplify the problem, we will leave out the first and the last
items of the menu. A possible ADVchart for this problem is depicted in Figure 31. When the down event
happens, we go from one state of the item that has the focus to one state of the next item of the menu, which
will now have the focus. If the up event happens, the reverse operation occurs. So, there is a relation among
the components of the menu and, therefore, the components are not independent. The semantics for this
case, using Statecharts, are depicted in Figure 32.

We can conclude that the * operator can have different semantics and the semantics are connected to the
type of relationship among the components that form the ADV-collection.
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Figure 27: ADV Human
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Figure 28: ADV Woman

TransitionsHuman
� � Display off �

event :
pre-condition : ftrueg
post-condition : fscreen � emptyg

� Display off � Display on �
event : Display�name�
pre-condition : ftrueg
post-condition : fperson � nowner �getPerson�name�g

Figure 29: Transitions for ADV Human
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TransitionsWoman

TransitionsHead
� � Display �

event :
pre-condition : fperson�sex � �woman�g
post-condition : fscreen �����screen � �woman head�g

� Display � Parent �
event : MouseClick
pre-condition : ftrueg
post-condition : fnames � nowner �getParent�name��

screen � ����screen � namesg

Figure 30: Transitions for ADV Woman

state 1 state 1state 2 state 2 state 1state 2

state 3 state 4 state 3
state 3

state 4state 4 state 4

down

up

down

up

{MenuItem} i-1 {MenuItem} i {MenuItem} i+1

Figure 31: ADVchart for the a Menu

state 1 state 1state 2state 2

state 3 state 4 state 3 state 4state 4

.................

state 4

state 2 state 1

state 3

MenuItem 1 MenuItem 2 MenuItem n

down

up

down down down down

up up up

Figure 32: Statechart for a Menu
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9 Mapping ADVcharts to a VDM-like specification

In this section we show that using some informal rules and ADVcharts and by proceeding in an incremental
fashion, we can directly generate a VDM-like specification of ADVs in the same style presented in [7]. We
use the example discussed in section 6 for purposes of illustration.

ADV Logon For ADT UserLogon

Declaration: screen�Screen
���
ADV Prompt

Declaration: name�Name

EVENT KeyBoard �p�Point�
���

End Prompt
ADV Error

���

End Error
EVENT Display ��

End Logon

Figure 33: First Phase of the VDM for ADV Logon

The specification of ADVs, as discussed in this paper, is composed of a configuration diagram, AD-
Vcharts, specification of invariants over states, and specification of transitions. The first step in producing
a VDM-like specification consists of transforming the configuration diagram, and the ADVcharts, into a
template for the VDM specification. The template contains general information, such as ADV names, their
associated ADTs, the event names (services provided), and the attribute names. From the configuration di-
agram, we get the information related to the associated ADT (the For ADT field); and from the ADVcharts,
we get the nesting composition of the ADVs and the event names.

By examining the ADVcharts for the Logon example (Figure 10), we see that the ADV Logon is composed
of two other ADVs: ADV Prompt and ADV Error. The events are taken from the services provided by the
ADV specified in the configuration diagram and from the transitions in the ADVcharts. In this example, we
see in the configuration diagram of Figure 9 that the ADV provides two services: Keyboard and Display.
From the ADVcharts of the ADV Logon (Figure 10), we locate the position of these events (services). The
event Display must be described in the ADV Logon, since it is an event assigned to a transition that ends in
a state that belongs to the ADV Logon, namely the “Display on” state. Similarly, the event Keyboard must
be described in the ADV Prompt, since it is an event assigned to a transition that ends in a state that belongs
to the ADV Prompt.

The information in the declaration field of the VDM-like specification is taken from the ADVcharts, using
the attributes declared inside the ADV boxes. The attribute “screen” is defined inside the ADV Logon box,
and the attribute “name” is defined inside the ADV Prompt box. A template generated from analyzing the
configuration diagram and the ADVcharts of the Logon problem is shown in Figure 33.

The second step is to specify the events, and to determine if there are any functions that need to be
described in the ADVs. This information is in the transition specification. In the transition specification,
we look at the event field to find the event we want to describe. The description of the event is in the pre-
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ADV Logon For ADT UserLogon

Declaration: screen�Screen

ADV Prompt

Declaration: name�Name

EVENT KeyBoard �p�Point�
external: wr screen
pre-condition:

focus�Prompt�
post-condition:

name � GetUserName���

screen � addstr�����screen� name�

End Prompt
ADV Error

Function Display ��
external: wr screen
post-condition: screen � addstr�����screen��User Invalid��

End Error
EVENT Display ��
external: wr screen
post-condition: screen � addstr�����screen��Login� ��
Function Initialize ��
external: wr screen
post-condition: screen � empty

End Logon

Figure 34: Second Phase ADV Logon
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and post-condition fields of the transition specification. In our example, the event Display is assigned to
the transition “Display off � Display on”. We copy the pre- and post-condition fields of the transition
specification of the event to the pre- and post-condition fields of the VDM-like specification, respectively.
The same procedure is used for the event Keyboard. Functions are created for transitions that do not have
events assigned to them. In our example, we have three transitions that belong to this category, and two
of them have the same predicates defined in the post-condition. Therefore, we only need to define two
functions, which we call Initialize and Display. The function Initialize corresponds to the two transitions
that have the same post-condition, namely the transitions “� Display off”, and “Input � Display off”,
and it will be defined in the ADV Logon, since these transitions end in states that belong to the ADV Logon.
The function Display corresponds to the transition “Input � Error”, which ends in a state that belongs to
the ADV Error. The post-conditions of these functions are simply a copy of the post-condition field of the
transition specifications. The result of this second and last phase is shown in Figure 34.

Finally, we need to describe the flow of control. The flow of control can be specified using Statecharts,
which already have a precise semantics [28, 22, 40]. We will also need some transformation rules to adapt
the ADVcharts to pure Statecharts. Some of these rules were discussed in previous sections, such as the
description of the synchronization transition in section 7.1, and the ADV-collection in sections 7.1 and 8.
However, we still need rules to abstract the ADV from the ADVcharts in order to generate only states.

1. Keyboard (focus & keyboard_input not equal CR) 

2. 

3. 

Display Off

Logon Input Input Error

Logon

Display on

Display

Keyboard (focus & keyboard_input = CR & \Owner.ValidUserName)

2

3

Keyboard (focus & keyboard_input = CR & not \Owner.ValidUserName)

1

1

name: Name

1

Prompt Error

Figure 35: Statechart of Logon screen

We assume for the specification of the flow of control that an ADV is a clustering of states, and each
transition is associated with a condition that connects the transition to a particular component of the user
interface. The result of the application of this rule is shown in Figure 35.

The rules applied for the transformation of ADVcharts into a VDM specification and into pure Statecharts
are quite simple. Thus, they guarantee the consistency of the specification of the operations and the flow of
control with the ADVspec.

26



10 Conclusions

In this paper, we have introduced the ADVspec, which provides a visual formalization of the ADV concept
and a notation for specifying the flow of control between the operations in the ADV. We expect the ADVspec
to be used as the foundation for a future design methodology based on ADVs.

We showed some design issues that are important to interactive systems, such as the composition and
concurrent operation of the components of the user interface. Furthermore, we showed that these aspects
of design can be specified directly in ADVcharts using decomposition by structure, decomposition by form,
and AND decomposition. We believe that other state machine based models for specifying user interfaces
[39, 17, 35, 45, 42, 12, 44, 13, 31, 23] do not address all these design issues.

The semantics of ADVcharts have been presented through a set of examples in a style similar to the one
used in [18] and [6].

We show how to represent similar components of a user interface, that is, to represent a collection of
ADVs. Usually, we do not know how many components will be in the user interface. We presented the
semantics associated with this kind of representation using Statecharts and also some examples to indicate
the importance of this representation.

We also show how ADVcharts can be directly converted using simple informal rules to a VDM-like
specification and to “pure” Statecharts. The VDM specification provides semantics for the operations and
the Statechart specification provides semantics for the flow of control between operations.

There are a number of issues associated with ADVcharts that we will be examining in our future research.
An important issue is the representation of recursion to allow ADV-based designs in situations such as the
Graph Editor discussed in [8].

The ADVspec is being used to design interactive systems with complex user interface. For example, the
structured editor Rita [10] is being re-designed using the ADVspec.
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