
University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

Technical Report Series

CS-93-17

Towards CAAI� Computer Assisted Application Integration

by

D�D� Cowan C�J�P� Lucena R�G� Veitch

October, 1993

Towards CAAI� Computer Assisted Application Integration

D�D� Cowan R�G� Veitch
Computer Science Department � Computer Systems Group

University of Waterloo
Waterloo� Ontario

Canada
N�L �G�

dcowan�watcsg�uwaterloo�ca

C�J�P� Lucena
Departamento de Inform�atica

Pontif�	cia Universidade Cat�olica
Rio de Janeiro� ��
���
��� RJ�

Brazil

lucena�inf�puc�rio�br

October �� �

�

Abstract

As the manipulation and use of information forms the base of our economic structure� knowl�

edge workers will become software application integrators� That is� knowledge workers who are

experts in their speci�c domain and its related software� will need to �glue� together databases�

analysis� simulation� modelling and visualization tools in order to produce timely information

for their organization� In order to perform application integration easily we �rst need to de�ne

a coherent supporting architecture and a programming model� This paper outline this architec�

ture and the programming model and indicates that many of the components to implement this

model are available� Unfortunately� the design of many of these components is not consistent�

thus� making it di�cult for a knowledge worker to integrate applications without a large amount

of �inside� technical information� Through the de�nition of these models we have highlighted

the problems that need to be resolved� The architecture and programming model described

in this paper are based on a large number of experimental systems developed as part of our

research program�

� Introduction

As we move more closely to an information and symbolic economy� most of the population will be
primarily knowledge workers manipulating and using information� and only a small percentage will
be employed directly in the production of manufactured goods and agricultural products �Tof����
These knowledge workers who will be experts in their own speci�c application domains� will re�

�

quire computer systems with access to databases� and various analysis� simulation� modelling and
visualization tools in order to produce the type of timely information which will be essential to
the successful corporation� government and public or private interest group� Part of the knowl�
edge worker	s or domain expert	s toolkit will be the ability to use novel and timely approaches in
the manipulation of information to provide a speci�c group with a competitive advantage� Such
methods will often require new ways of viewing and processing information� Thus� some knowledge
workers will become application integrators in that they will use their understanding of soft�
ware and programming in their speci�c domain of expertise to create domain�speci�c applications�
These approaches will require that software components be combined in ways that could not be
anticipated when the components were designed� Successful knowledge workers will require access
to
instant� software which will be developed by the application integrator as a speci�c need is
perceived� There will not be time to wait for the lengthy design and implementation cycle prevalent
in many organizations� rather a prototype cycle �B���� will be followed as the software system will
in all probability be constantly evolving�

The need for
instant� software imposes certain constraints on application integrators and on
the underlying software system they use to support their software building activities� Application
integrators must have access to a repository of prede�ned domain�speci�c large software compo�
nents which can be combined together in new con�gurations� They will not create these prede�ned
components themselves� since in general such components will require specialized knowledge of
both their application programming interface
API� design and internal structure� The repository
must contain graphical user interface
GUI� components which will allow the application integrator
to interact easily with software components and to display results of computer processing� In the
extreme� such displays could be in an interactive multimedia format� The application integrator
must have access to software environments and technologies which will allow the prede�ned com�
ponents to be combined easily into new software systems� In this paper we call these software
technologies
glue� technologies� because they are primarily used to glue or bind together reusable
application and user interface components� These various components must be supported by a soft�
ware development environment suitable for application integration� a computer assisted application
integration
CAAI� workbench�

Many of the modern concepts in programming which involve� abstract data types
ADTs��
object�oriented programming� graphical user interfaces
GUIs�� event driven programming� servers
such as databases and their corresponding clients� and script and macro languages� can be used
by application integrators in implementing applications� Before these can be combined� a generic
framework or applications architecture is required to provide a disciplined approach to this type of
software engineering�

Smalltalk �Kay��� GR��� was one of the �rst attempts to provide a software technology to allow
the creation of powerful personal information systems� Smalltalk has not been broadly accepted
by groups such as application integrators� at least partly because of the overhead in mastering its
complexity� However� Smalltalk has made signi�cant contributions to many of the programming
concepts which could make widespread application integration feasible�

�The term databases will be used in this paper to describe any collection containing entities such as structured

data� text� knowledge� pictures� graphics and sound�

�

Current glue technologies are usually based on a programming language� and range from the
shell languages prevalent on Unix systems to many of the new micro�based
object�oriented� sys�
tems such as Hypercard �Goo���� Toolbook �Asy���� Visual Basic �Cor���� VX�REXX �VRe���� or
ARexx �Haw��� ZS���� The micro�based technologies often allow the use of applications and the
construction of user interfaces� Future glue may be based on more visual systems such as those
represented by VX�REXX �VRe���� NeXTstep on the NeXT computer �NeX���� or as shown in the
work on demonstrational interfaces �Mye���� We expect that the glue technologies will be based
on the programming language paradigm for quite a length of time as we make progress toward
a more friendly method of combining software components� E�ective application integrators will
have to become programmers for the foreseeable future because they will combine reusable soft�
ware components using methods based rather loosely on a programming language approach� In
previous papers �CIS��� LCP��� CILS��a� CILS��b� we have described design and implementation
models for factoring user interfaces which we believe makes them more reusable� In this paper we
examine an underlying architecture� language structures and environment required to support the
construction of a wide range of applications�

� Sample Applications

The requirements for an architecture are normally de�ned by the classes of applications to be
supported� This section describes two applications which might be considered typical and which
provide the background for subsequent discussion about the architecture� These speci�c examples
are representative of classes of applications which have been identi�ed through a substantial amount
of observation and experimentation�

��� A Database Application

The government of a city has databases containing information about the location of toxic sub�
stances which are stored by various companies� schools and other organizations within the city
boundaries� The databases contain information about location� and attribute information about
types of substance� and parameters about the conditions of storage� A new environmental law has
been passed which requires the storage of toxic substances to meet certain minimum requirements�
The city is required to determine which organizations do not comply with this new law and notify
them of the legal requirements within �� days� Failure to comply by the city or the organization
storing the substance within �� days could lead to �nes or other penalties� Obviously an application
that determines violators of the new law and noti�es them must be created in a timely fashion� The
application is outlined in the next few paragraphs and a pictorial description of the components and
their relationship is presented in Figure �� Working applications similar to the one described here
have been created in our laboratory by one or two
application integrators� within time periods of
a few hours to a week�

The location of the toxic substance is stored in a geographic information system
GIS� while
a corresponding relational database contains attributes such as the address of the corresponding

�We use the term programming language with the more traditional meaning of a text to be interpreted or compiled�

�

GIS

SQL

Control
Map

Model Spreadsheet

Memo
+

Mailing
Label

Figure �� A Sample Database Application

property� the name of the occupant� and the toxic substance storage conditions� The location of
each toxic substance is displayed on a map and accessed through a map interface� A modelling
program uses the storage conditions to show how the toxic substance will disperse in the soil if
the substance is spilled and is used to determine if the legal requirements are being met� The
spreadsheet is used to display the data produced by the modelling program to the city engineer so
that cases which are close to violating the law can be examined more carefully� The spreadsheet is
con�gured to mark any data where there are any doubts about the answers on dispersion� Finally
the word processor is used to produce letters from the database which are addressed to the legal
occupant of the property� A control program with an appropriate user interface performs the
following functions�

� links the map interface to the GIS database�

� uses the property number from the GIS database to �nd the owner of the property and the
soil type in the relational database

� directs the soil type to the modelling program

� directs the output of the modelling program to the spreadsheet

� directs the name and address of the occupant to the word processor

� directs the data from the spreadsheet to the word processor

In this case the complete application consists of a number of components which are transferring
information and�or commands among themselves� The entire process is coordinated by a control
program� The components can be categorized into three di�erent forms�

� a component which manages data and data structures but which is not normally considered
to have any input�output functions� The GIS and relational database fall into this category�
In subsequent presentation such a component is called a
server��

�

Figure �� An Application with Embedded Documents

� a component which is a graphical user interface or GUI and does not normally store and
manage data� The map interface would be in this category� This component is called an

abstract data view� or
ADV� and has been described in detail in �CILS��a� CILS��b��

� a component which combines both the previous categories� it stores and manages data and also
has a graphical user interface which allows direct manipulation of the data� This combined
component is called an
application��

��� A Document Application

Some applications require that documents be embedded inside each other� For example� a chart
showing sales �gures might be contained in a report� Most systems support cut�and�paste methods
whereby a static copy of the chart is copied into the report� Opening a window in the document
which would contain the chart displaying the data would be more appropriate� The window would
close and open with the enclosing document� and resizing the enclosing document or the enclosed
window would cause automatic recon�guration of both windows� Also the chart would always be
current since it would represent the real data� A printed version of the report would contain the
latest static copy of the chart� Such an application is illustrated in Figure ��

This particular application could be viewed as an interaction between a word processor and a
spreadsheet with a chart drawing capability� The data structure supported by the word processor
must contain information about the location of the chart in the document� but the primary in�
teraction is between the user interfaces or ADVs of the two applications� The implication is that
there should be some communication between the two ADVs� so that they can synchronize their
interaction� Such a structure is described in �CILS��b��

� Software Architecture

The sample applications presented in the Section � can be viewed as being decomposed into a
number of interacting elementary components� The components transfer data among themselves
and control may reside in one or more components at any one time� There may be a master

�

Script
Bus

Control

Graphical
User

Interfaces
Servers

Application
Packages

Script Bus Mechanism

Figure �� The Proposed Software Architecture

control such as the single component labelled
Control� in Figure � or control may be distributed
among components as described for the example in Figure �� If there is a con�ict for control then
some form of arbitration may be required to resolve the issue� The con�guration of the elemental
components and the data transfer and control are illustrated in Figure �� Transfer of data and
control are depicted by the
Script Bus Mechanism� and control of the entire application is shown
by the box labelled
Script Bus Control�� Although control is depicted explicitly in this diagram�
it may be distributed over the components� Details of the other components are provided in the
next few paragraphs�

There are two basic components� graphical user interface
GUI� elements such as the map
interface� and data structure managers such as databases� The GUI elements are just input�output
mechanisms� they display data stored in some data structures such as a database and they also allow
the user to interact with this data� The data structure managers which are called servers in the rest
of this paper� do not have any input�output mechanisms although they provide an interface which
allows external agents to query and�or change their state� A server may also provide a noti�cation
mechanism so that an external agent may determine that the server	s state has changed� The GUI
component is linked to one or more servers to implement the input�output functions for a speci�c
application� The method used to achieve the clean separation of a user interface from a server is
explained in Section ��

Application packages such as word processors and spreadsheets are usually integrated combina�
tions of servers and user interfaces� These packages contain both data structures and user interfaces
and are con�gured for a speci�c class of applications� Quite often the design of an application pack�
age allows the user to modify or specialize its behavior through an accompanying macro or script
language� such techniques are used in both Word for Windows �Mic��b� and Excel �Mic��a��

Each of the elements described in the previous paragraphs is shown attached to the script bus
mechanism in Figure ��

� Servers

�

Mapping

Output

ADV
(User Interface)

ADT
(Server)

{
Operations

State

User

Input
Message

Message

Figure �� The Structure of a Server and its User Interface

A server is a black box which can have its state queried or changed through an interface� A server
may also provide a noti�cation mechanism so that an external agent may determine that its state
has changed� The user of the server should know nothing about its internal structure� only the
de�nition provided by the interface� A server can be viewed as a program which manages data
structures and responds to commands presented at the interface� From this viewpoint a server can
be viewed as an abstract data type
ADT� �Hoa���� An abstract data type
ADT� is an object
in the object�oriented sense of program design� We use the term ADT because we are mostly
interested in its properties as a type� An example of an ADT as a server with an accompanying
user interface is illustrated in Figure �� The arrows labelled
mapping� depict the operations to
query and change the state of the ADT and to provide an external noti�cation of a change in state�

There are several excellent examples of servers with well�de�ned interfaces� SQL databases�
name servers such as the X���� directory� communication servers� user agents and mail agents as
in the X���� mail service and X�Windows servers� These types of servers as well as being an ADT
have one other overriding characteristic� they do not have a user interface to allow the external
user to interact with the ADT interface�

Many potential servers still have a closely integrated graphical user interface
GUI� which
makes it di�cult to intervene to access the data� Ideally the server should be able to connect
to di�erent GUIs� the type of GUI should usually depend on the user	s view of the application�
Is such clean separation between the server and the GUI possible� Although we have mentioned
examples of servers with well�de�ned interfaces� it should be possible to build all applications in
the form of server ADTs� Numerous experiments in our research laboratory in which we have
implemented applications such as graph editors� cooperative drawing tools� distributed ray tracers
and applications similar to the one in Figure � have convinced us that such clean separation is
possible� The approach is outlined in Section ��

� Graphical User Interfaces � Abstract Data Views �ADV�

Constructing graphical user interfaces
GUIs� that can be used for a broad range of applications and
thus are reusable should be possible� For example� the same interface might be used for a drawing

�

program� or a package to draw graphs� linear graphs or maps� since all the images are constructed
from basic syntactic primitives such as rectangles� straight lines and circles� The semantics of the
image is a function of the method of drawing the images� the database or server containing the
images and their relationships� and the user	s interpretation of those images�

A GUI is a sophisticated input�output mechanism in that it allows the user to interact with
the data contained in a set of data structures and display the results of manipulating that data� Is
it possible to separate the user interface from the server portion or ADT part of an application�
In this way we could design classes of reusable user interface components in much the same way
that we currently are designing reusable servers� Several GUI architectures which are reviewed in
�CCCL��� have been proposed where clean separation is one of the goals� However� in most software
designs the GUI becomes strongly connected to the ADT or server and then a clean separation is
di�cult to achieve� For this purpose we have created a general concept of a GUI that we call an
Abstract Data View or ADV �CILS��a� CILS��b��

Abstract data views
ADVs� are ADTs which have been modi�ed to support the design and
implementation of general user interfaces and to achieve a separation of concerns by providing a
clear separation at the design level between the application as represented by an ADT� and the
user interface or ADV�

ADVs are objects in that they have a state� and a functional interface� they have also been
extended to support nesting� ADVs are active objects and can be viewed as processes which are
activated by external agents� Also an ADV is not an independent object� it must be associated
with one or more ADTs� ADVs support a mapping which allows the ADV to query the state of
an associated ADT and to change the state of that ADT through its functional interface� This
mapping approach illustrated by the labelled arrows in Figure � allows controlled access to the
state of the ADT� thus preserving the hiding principle �Par����

In the ADV model� several ADVs can be associated with a single ADT and through a mapping
each ADV can provide di�erent control functionality or a di�erent view of the ADT� Since an ADT
has no knowledge of input or output� it does not need to refer to any ADV� As a consequence� there
is not a symmetrical arrangement with the ADT� In the ADV model� the mapping between an ADV
and an ADT is represented by the variable owner� An ADV instantiation is associated with one
and only one ADT instantiation� namely the ADV	s owner� The opposite is not true� Because the
association relationship comes from the ADV� and not the other way around� the owner variable
can be in the ADV for implementation purposes�

The functional interface is not invoked through the usual procedure or function calls but by
input messages� Input messages can be triggered by external operations such as input events caused
by a keyboard or a mouse� ADVs can produce output messages that use the mapping to query
the values of the variables in an accompanying ADT� An output message is sent every time the
ADT operations change the state of the ADT� Output messages in terms of a user interface are
the display commands which paint various views on the screen� Of course output messages do not
change the state of the associated ADT� Figure � illustrates these concepts�

In the context of user interfaces and other transformations from one medium to another the
input and output messages can be viewed as medium transformers� For example� the input message
or event takes a user action and transforms that action into a sequence of ADV operations� The
output message or display takes a sequence of ADV operations and transforms them into a viewable

�

Figure �� An Illustration of Composition of ADVs

or tactile phenomenon� Roughly speaking� an ADV observes and manipulates the ADT which is
its owner� from the point of view of the ADT� the observations are invisible and the manipulations
are anonymous�

We should note that some ADVs require such a simple ADT that it would just duplicate internal
data structures supported by the ADV� For example� a paint program might be such an ADV�

��� Communication Between ADVs and ADTs

Communication between an ADV and an ADT occurs when the ADV executes synchronous invo�
cations such as procedure or function calls� to the ADT �CCCL���� An ADT never generates events
that must be handled asynchronously by the associated ADV� This approach contrasts with other
user interface models� where a component must handle both synchronous and asynchronous invo�
cations from other components� Handling asynchronous invocations is considerably more complex
than handling synchronous invocations since it requires error�prone mechanisms such as signals�
interrupts� or callbacks� With an explicit mapping we enforce a one�way communication� and� as
a consequence� have fewer interconnections� thus� ensuring that the role and scope of the interface
are de�ned unambiguously� Asynchrony is needed in other models because the
o�cial� locus of
control is in the non�user�interface portion of the application� This approach is consistent with

slightly�interactive� programs� which mostly compute but occasionally prompt the user for input�
In highly interactive applications� however� the actual locus of control is associated with the user�
The tension between these two loci of control is the source of the complexity� The ADV model
avoids this tension by placing the main locus of control in the ADV� Fundamentally� the ADV
model is based on the program waiting for the user rather than the user waiting for the program�

��� Composition of Abstract Data Views

Applications such as the chess and checkers game illustrated in Figure � are often formed by
composition� That is the game is composed of a board and playing pieces and we would expect the
corresponding ADT to be composed in the same manner� Since ADVs represent the state of an
ADT they should also be formed by composition� In this example the ADV is built from two types

�

Application
(ADT)

{Operations
State

Macro
Control
Program

UI
Control
for
Application
(ADV)

Operating
Environment

Interface

Figure �� The Structure of Applications

of components� an �X� board and playing pieces� The board can be used for any game which uses
an �X� grid and only needs to be modi�ed by the speci�c pieces which are required� Hence we have
developed the concept of embedding ADVs within other ADVs� For the chess game illustrated we
would require the �� ADVs for the playing pieces to be embedded inside the board ADV� Each of
these embedded ADVs can be connected to its owner ADT as well�

��� Embedding Abstract Data Views

Embedded documents require that each ADV be connected to its owner ADT and also that com�
munication exist between enclosed ADV
s� and enclosing ADV
s�� This communication between
ADVs must exist in order to relate behavior� For example� if the inner ADV in Figure � is resized
the enclosing ADV must cause a recon�guration of the text� This means that each ADV must have
an accompanying script which supports communication among ADVs�

Of course we should also note that when the inner ADV is �rst opened there must be some
way within the system to connect to its application� We could either o�er a menu of legal ADV
types or once the ADV is open a menus of legal applications� These methods of connecting user
interfaces or ADVs together so that they can in�uence each other	s behavior are described in detail
in �CILS��b��

	 Application Packages

Most applications can be viewed as two components� namely a server or ADT which manages the
underlying storage and data structures for the application data and a user interface or ADV which
allows the user to see the data and modify it by direct interaction� Some applications such as an
SQL database only have a server component� Of course the user interface and the server must
interact with each other and the surrounding operating environment�

As was already indicated in the example in Figure �� we often want to con�gure these general�
purpose applications into a specialized application� In order to perform this specialization we need
to be able to query and change the state of both the server portion and the user interface of the
application� We will also need to make decisions based on the current values of the state� What

��

is needed is a programming language which can perform these tasks� Early applications such as
Lotus ����� had a record facility which would capture and store user interactions� These could then
be stored and played back� Current software such as the word processor Word for Windows� the
spreadsheet Excel and the databaseWat�le �CGMW��� contain programming languages often called
script or macro languages which can query and change the state of both the server and the user
interface� These languages provide a high degree of �exibility� Each of these di�erent programming
languages is embedded in the software application and contains all the standard programming
language constructs� Also each software system is able to receive and process commands provided
through a program interface� This means it is possible for an external program to control the
application by providing a programming script� This concept is illustrated in Figure � where the
lines leading from the di�erent sections of the application indicate possible communication paths
with other components�

A more appropriate model would be to build the software with all the interfaces to both the user
interface and the server accessible outside the application� In this way a language which supported
some form of linking
preferably dynamic� would be able to control the software� This would have
one other advantage� only one language would be needed and the application integrator con�guring
these applications would �nd the task much less arduous� Although an interface would have to
be learned with each piece of software� knowledge of only one programming language would be
required� This approach of providing access to all aspects of the application is used in applications
such as PMEdit �IBM��� which are built for OS�� and use REXX as the macro language�

The interface speci�cations and their use could be supplied as help hypertext with the applica�
tion� In this way the application integrator would have appropriate on�line help as they developed
their specialized application� Such an approach has been implemented in VX�REXX �VRe����

 The Script Bus Mechanism

The
script bus mechanism� shown in Figure � consists of
script� programs and standard inter�
faces to allow communication and control among the programs� Control of the application may
reside in the script bus or in one of the components� In other words it may be possible to have
several operational threads of control� The
script bus control� is a special user interface or user
console which allows the operator of the application to start the application and to set parameters
for the various scripts� The standard interfaces are the communication capabilities and the event
control�

The communication interface supports full asynchronous communication which could be im�
plemented as blocking send� blocking receive and non�blocking reply or some other suitable set
of primitives� The event mechanism allows input events initiated through the various stand�alone
or application�based user interfaces to trigger actions of the script bus mechanism� For example�
initiation of the
save� command in the spreadsheet might cause the database to save some data�
Some current attempts at standard interfaces are DDE� OLE and similar mechanisms in Windows
and OS��� and Apple Events and Tooltalk �Hel����

The communication and event handling which might be considered part of the operating system
are accessible through the script bus mechanism� the other aspects of the operating system such as
utilities and the �le system are just clients or servers�

��

select x�y from datatable where x � maximum

select count�x� from datatable

select max�y� from datatable

plot�range�maximum�

plot�domain�max�y��

i �� �

while i � count�x�

select x�y from database

plot�point�x�y�

move to next x�y in database

endwhile

Figure �� A Simple Data�type Transformer

Script programs often act as data�type transformers between two or more software systems�
For example� consider an script program which extracts data from an SQL database and then
produces a graph or chart� The script program would have a user interface which would allow the
user to specify the domain of the independent variable and the name of the database� Access to
the database and presentation of the graph would probably involve a type conversion between the
data structures supported by the SQL database and those handled by the plotting package� The
commands to the database will be in SQL and the results will be a table� while the commands to the
plotting package could be in the form of drawing commands with the data represented as a sequence
of strings� Currently� a script program would copy the data from the database� transform the data
into its new format� and then pass the data to the plotting program� Such an approach could have
a signi�cant impact on performance in both space and time� since at some point in the computation
three copies of the data exist� and all the data has been transformed twice� In order to minimize the
copying of an entire data structure� the interface to the plotting package should contain functions
which would allow speci�cation of the range and domain of the plot and would pass the package
the y�coordinate for a given x�coordinate� The script program would transform these functions into
equivalent database retrieval commands� This mechanism is outlined in Figure ��

Both the SQL database and the plotting package are prede�ned components and each compo�
nent would be compiled and linked� Implementing the code for the example in Figure � requires
that the function invocations in the script program be dynamically linked to the function bodies de�
�ned in the reusable components� One implementation of the dynamic linking concept is embodied
in the Dynamic Link Library
DLL� of Windows ��� �Pet����

Although the performance penalty in the previous example may not be too high� consider
a further example where the database contains a map stored as a large graph and you wish to
operate on the graph with a graph package containing a graphical user interface and various graph
algorithms� The graph package is independent of the access mechanism for the graphs� all the
package requires are nodes� arcs and cost functions associated with the arcs� The graph package
will display a portion of a map and allow operations such as selecting two points in order to compute
the shortest path� This example introduces further complications� First� the graph package uses

��

		 Initialization

bind graph�origin to origin

bind graph�destination to destination

bind graph�arcs to arcs

bind graph�cost to cost

		 Transformer Functions

function origin �x � arc�

select x from arc
table

y �� arc
origin�x�

return �y � node�

endfunction

function destination �x � arc�

select x from arc
table

y �� arc
destination�x�

return �y � node�

endfunction

function arcs �x � node�

select x from node
table

for all arcs

append arc to arc
list

return �y � arc
list�

endfunction

function cost �x � arc�

select x from arc
table

return �arc
cost � integer�

endfunction

Figure �� A Transformer Using Dynamic Binding

a portion of the graph for display purposes and a di�erent portion of the graph to compute the
shortest path� in both cases the entire map may not be necessary� Second� the entire application is
operated from the user interface of the graph package rather than from the script program�

In the map example illustrated in Figure �� functions would be a much better way to pass
portions of the graph� since the portions can be requested on demand� This means that the
graph package should have a functional interface which allows requests for nodes and arcs and cost
functions� The script program will contain transformation functions which will change the requests
for nodes and arcs into suitable database retrieval requests� Since the script program and the graph
package will be connected after the graph package is compiled and linked� there must be a method
of dynamic binding� which will connect the transformation functions to the function interface of

�Dynamic binding is also often called late binding�

��

the graph package� Dynamic binding requires more than dynamic linking� An outline of the code
for this example is included in Figure ��

In later sections we provide a description of a programming language and its associated pro�
gramming environment which support application integration
CAAI��

� Characteristics of Programming for Application Integration

Section � provides an informal description of the type of applications likely encountered by an
application integrator� Based on this description� the script bus mechanism in Section �� and
various application integration experiments some of which are presented in �CIS��� CILS��b�� we can
now describe the main characteristics of programming for application integrators� In this description
we emphasize the di�erences between this paradigm and the more conventional programmingmodel�
We call this type of programming� application�integration programming or AIP�

Certainly� the main distinguishing feature of AIP� as opposed to more conventional program�
ming� is the fact that the programmer and one of the major users of the application software are
the same person� The application integrator will not be creating software with the intention of
distributing it to a large group of clientele� This software will be created� maintained� modi�ed
and informally distributed by the application integrator� For this reason� this type of software will
not go through the usual software engineering and development life�cycle� in fact these should be
completely eliminated� otherwise we will defeat the entire raison d	etre for AIP�

Since the application integrator and the end�user of the software are closely related� there can be
a di�erent approach to program design and development� The programmer can create experimental
prototypes with the results being throwaway or disposable code� since there should be minimal
impact on other users� There is no need for intermediate documentation between requisite analysis
and program code� On the other hand� the disposable nature of this kind of software means that
the prototype is the �nal product� In fact the program probably is always a prototype� as we expect
most users in consultation with the application integrator will modify the code extensively to add
new functionality�

Programming languages� at least for the foreseeable future� will be an integral part of AIP�
What is their current status and how are they likely to evolve� The class of non�programmers
which obviously includes many application integrators are often wary of programming languages
�ACL����� Methods of programming without languages such as exempli�ed by visual programming
�Cha��� Gli��� will continue to be investigated and progress will be made� However� currently such
systems still do not have enough �exibility to be a generic software development tool�

An intermediate approach which has met with considerable success is in the area of end�user
interfaces� These interfaces are composed of such elements as buttons� dialog boxes� list boxes� and
selection mechanisms which allow the user to interact with other software� Although programming
user interfaces of this type is usually complex� a level of abstraction can be introduced which
simpli�es this task immensely and can transform constructing user interfaces into a form of visual
programming� There appear to be two reasons for this ability to simplify� �rst� user interfaces are
composed of a small number of di�erent objects� and second� user interfaces are primarily visual
in nature� Thus� AIP can be visual while supporting basic tasks such as building user interfaces�
and yet retain the more traditional programming model for the tasks which do not currently lend

��

themselves to automatic program generation� It is the authors	 expectation that the traditional
programming model will always be part of AIP� but that it will be used less and less as we discover
how to modify the programming paradigm for various components of AIP tasks�

Examples of systems which use this intermediate approach are Hypercard� ToolBook� Visual
Basic and VX�REXX� all these systems uses some aspects of the ADV model� particularly the
locus of control� A common characteristic of all these systems is that many facets of the end�user
interface can be constructed without programming� However� only the most basic functionality can
be achieved this way� anything a little more complex still needs some form of programming�

Application integrators do not develop applications� rather they use the existing general�purpose
applications and features of the operating system to develop software tailored to a speci�c set of
tasks� An attractive approach� already introduced in Sections � and �� to reusing these various
software components is through a glue language
also called command or script language�� The
application integrator would write a program in the glue language to pass data among components
and send them commands� Many of these applications� which are a form of prede�ned component�
have a well�de�ned programming interface or port� and�or their own scripting language� Thus� an
application can often be fully operated both through the normal user interface and also with a set
of language�based commands passed to the port� Unfortunately� because each application often has
its own version of a script language the application integrator	s programming task becomes even
more di�cult� Developing a standard script language would alleviate some of this problem��

� Characteristics of a Programming Language for Application In

tegration

Section � of this paper provided a description of the type of programming likely encountered by
an application integrator� In this section we use these observations to motivate the features which
should be available in a programming language designed for this class of programmers�

Most programs produced by application�integrators will be short initially� although they may
grow to several hundred lines as they evolve� Application�integrators will be
amateur� program�
mers in every sense of the word and are not likely to have the disciplined training in software
engineering that we should expect from so�called professionals� We can not expect application
integrators to use anything resembling a formal design cycle or other notions of programming such
as encapsulation or inheritance� Amateurs may have learned their programming from a single class
or by experimenting with a few examples in the manual� Ideally application�integrators will only
program for their own particular use or the use of close colleagues� However� we know that within
a group such as an o�ce� programs are frequently circulated� Because of this amateur status
and the fact that application�integrators are unlikely to receive much more substantive training
in programming and software design� we should protect application�integrators from many of the
common programming and design mistakes� This
protection� can be built into the language and
the environment in which that language is implemented� We discuss the language in this section�
the programming environment is described in Section ���

�Visual Basic and VX�REXX are two such attempts at creating a standard script language for a range of software

applications�

��

Although application�integrators are not professional programmers� they often operate in a
procedural domain� since instructions for operating computer software� appliances and machinery
are primarily procedural in nature� The procedural model is one which has evolved through the
experience and seems to be natural to most users� This argument is used to justify choosing an
application�integration programming language
AIPL� which is primarily procedural rather than
functional�

��� Control and Communication Constructs

An AIPL should contain standard control constructs such as sequence� loop and choice� An AIPL
should also support an event�driven model� since programs will be activated by external programs
such as those in a user interface or a device driver which needs attention at random intervals�

Since programs written in an AIPL will be gluing together prede�ned components� the programs
must be able to communicate with these components in a reasonable manner� The language should
be able to support both synchronous and asynchronous communication� The ability to handle
asynchronous events can be extended to any type of communication not just user interface input
events�

The language should contain some form of procedure so that common code can be encapsulated
into a more meaningful operation� Procedures of course allow some form of reuse within a program�

Some function invocations in prede�ned components may be related to function code in a
program� Thus� the language and its environment must be able to support some form of dynamic
binding so that reusable components may be connected to a program�

There are many languages which implement many of the features just described� particularly
in the Unix environment� These languages� often called shell languages� include the C�Shell� Korn�
Shell �Par���� Perl �Wal���� and Expect �Lib��� all Unix�based languages� Visual Basic for Windows
�Cor���� and REXX �Cow��� for VM �Cha���� MVS�Joh���� DOS �Mic��a�� Windows �Mic��b��
Windows NT �Far��� and OS�� �IBM���� However� most of these languages have de�ciencies� Typ�
ically they lack user interfaces� some form of event support or allow only simplex communication�
The last two items in this list are related�

The languages themselves do not have to be complex� For example� the fundamental constructs
of Visual Basic or VX�REXX are quite similar to standard sequential programming languages such
as Pascal� However� they do look somewhat di�erent because they also support events and com�
munication as well as the standard control constructs of sequence� loops� choice� and function and
procedure calls� The language will likely be interpreted since interpretation o�ers more �exibility in
implementation and error handling� Compilation may be available although the e�ciency o�ered
by compiled program will not be necessary since most of the computational time will be spent in
the clients and servers rather than on the script bus mechanism�

��� Types

The types of variables are often redundantly speci�ed in declaration statements to assist with
compile�time veri�cation or static type�checking� and performance improvement� Since application
integrators should be in intimate contact with their programs and are present during program
operation to correct errors� the need to �nd errors at compile�time is signi�cantly reduced� Also

��

the program is usually not in control during most of a computation and hence performance should
not be an issue� Since introducing this redundancy adds complexity to the programming process
with little or no gain in either compile�time or run�time performance� explicit declaration of types
should be avoided in an AIPL�

Many programming languages use the concept of primitive types and then use them in di�erent
ways to create more complex type structures� The primitive types must be chosen carefully to
be highly readable to the application integrator� Moreover they must be completely abstracted
from the underlying implementation� For example� an integer type which allows the manipulation
of its constituent bits or over�ows without warning� is not an appropriate representation� In the
same vein the application integrator should not be concerned with mundane issues such as memory
allocation�

More complex notions such as abstract data types� classes and inheritance do not need to be
accessible to the application integrator� The authors do not see any way that notions common
to object�oriented programming can be easily incorporated into the AIPL� The concepts of inheri�
tance and data encapsulation are motivated by software engineering arguments which are currently
beyond the experience of most application integrators� Motivating these concepts seems to be dif�
�cult� although a rationale may be discovered which can present these concepts in familiar terms�
Obviously� types provided in a language can be abstract data types� but requiring the application
integrator to produce code which requires such facilities is not appropriate�

Class inheritance also should not be a necessary part of the AIPL� Systems such as Hypercard
and ToolBook provide a form of dynamic inheritance� Procedures are attached to speci�c structures
such as a card� background or stack in Hypercard� or objects� groups� pages� background� book or
system in ToolBook in a manner which might be considered a weak form of inheritance� These
structures are arranged in a hierarchy so that if a procedure is not de�ned at one level of the
hierarchy� the underlying implementation will look for an equivalent routine at a higher level� This
concept provides a form of inheritance as the lower�level data objects can use procedures attached
to objects higher in the hierarchy� If a procedure is not encountered in the hierarchy then an error
message is produced� This form of inheritance is not explicit� but rather implicitly available as part
of the implementation��

��� Safety

The AIPL should be safe� It should be impossible to combine types and produce a nonsense result�
Some forms of both compile�time and run�time type checking should be part of the implementation�
It also should not be possible for the program to leave the thread of control� For example� creating
an unde�ned pointer� which could create havoc in a program should not be allowed�

�This type of inheritance although useful can be very confusing� Even in a modest size application it becomes

quite di�cult for a programmer to trace the thread of control by following the static program text�

�We are assuming here� that the reusable components are �correct� and do not create unde�ned pointer problems�

��

�� Application Development Environments

Application integrators will not in general create large programs� they are programming to make
the environment in which they perform their current set of tasks more productive� In some sense
the application integrators will want to automate their access to computer tools they already use�
Also from a programming point of view� the user and the programmer are identical� and so the
distinction between compile�time and run�time becomes blurred� For example� both a compile�time
and a run�time error are really forms of output� unlike a production system� where a run�time error
is unacceptable�

���� Compile�time and Run�time Environment

Amateurs are more likely to make errors and wish to experiment with various programming con�
structs� in e�ect they are almost always in a learning and debugging mode� Timely feedback is
important and the programming environment should support a fast edit�compile�run cycle for ease
of experimentation� Thus� compile�and�link performance is as important as run�time performance�

Clear error diagnostics at both compile and run�time are obviously essential characteristics� the
error should be described in a normal language and its location should be determined as accurately
as possible� A source�level debugger to allow tracing� and setting breakpoints would be another
essential part of the environment�

However run�time errors should only be generated by the application integrator	s code� not
by prede�ned components� Errors in prede�ned components can not be traced by application
integrators since they had no control over the construction of such a component� Error conditions
of this type are discussed more in Section ����

���� Reusable Components and Object Libraries

Most of the code in a program will be concerned with connecting together various software tools�
user interface objects� and device drivers� since the application integrator will want to automate
access to computer tools already being used� Extensive libraries of tools and objects will have to
be available with well�de�ned interfaces and command languages� Each component in a library will
have to have extensive associated help �les which can be accessed by the application integrator� so
that it is clear how the object can be activated or used� In some cases the access to the components
will be through some set of tools which will use a paradigm such as visual programming�

Prede�ned components will have to be encapsulated so that they have an interface which can be
operated through function calls� Some of these functions will be bound to the program at compile
or run�time� In general� prede�ned components should support dynamic binding�

Each prede�ned component or object should be able to describe its own interface and how it
might be used in applications so that the domain expert can easily �nd help� Also the domain
expert should be able to augment this information as more experience is gained� Some form of
hypertext help mechanism might be available to manage this help text�

�The term object used in this paper is the usual English word and is not necessarily used in the sense of object�

oriented programming�

��

���� Communication and Communication Safety

Access to software tools� user interface objects and device drivers through the AIPL� implies that the
AIPL and the underlying environment must support two�way communication with other software
systems� Such communication with other software systems should be safe� since lack of response is
often a di�cult error to trace�

There are at least three possible conditions which have to be considered to ensure safe delivery
from the program viewpoint� Was the message delivered�� Was the message correct�� Was the
message executed� The reusable software component or the underlying system should send a
response indicating the outcome of the communication�

The underlying system must also provide support for synchronous and asynchronous commu�
nication� The system must provide support for synchronous communications� any timing critical
problems should be handled by the prede�ned components rather than the program�

���	 Code Management and Presentation
 A CAAI Environment

The application integrator will need to be presented with a programming environment to support
this type of programming activity which we have called CAAI� Computer Assisted Application
Integration� Our goal in creating this CAAI tool is to make application integration and the man�
agement of the resulting programs as simple as possible� For example� many of the current script
or glue programming languages do not support modularity and information hiding easily� Early
version of CAAI tools will have to assist with these problems by hiding some of the
ugly� facets
of these languages� The environment provided with VX�REXX �VRe��� provides some of these
facilities�

A CAAI environment must be �exible and be easily programmable by the application integrator�
As the knowledge of the application integrator grows the CAAI environment should be able to
change appropriately� Being able to change the user interface� incorporate new tools into the
environment or add help text are three examples of the type of �exibility required� In this way
we will gradually create an application development environment which will become more
user�
friendly� for the individual over time�

�� Conclusions

The paper has described an architecture for implementing applications which uses prede�ned large
objects� The architecture uses reusable interface objects� and application objects connected together
through a scripting language which forms a script bus mechanism� The control of this mechanism
is implemented as a set of programs written in a scripting language�

Since the programming required to
build� these applications is primarily concerned with control
rather than constructing sophisticated objects it should be possible to teach the programming skills
required in a short period� Thus a domain expert should be able to build applications rather than
becoming reliant on a programming
team��

Many of the tasks outlined in the paper such as� building user interfaces� tailoring applications
to speci�c tasks no longer have an apparent programming component� They can either be performed
graphically or by tracking user behavior through a record function�

��

Finally any application development environment that supports application integrators in build�
ing applications must be simple to use and must produce safe code� That is� the script must report
to the application integrator when some computation or communication has failed�

Many experiments have been conducted to prove out the concepts described in this paper� since
an architecture must have some hope of realization if it is ever to be used� The ADV concept which
allows the construction of reusable user interface has been implemented in several systems and is
described in �LCP��� CCLP��� C����� Speci�cally ADVS have been used in a graphics editor� a
GUI development environment and in several distributed client server graphics applications� The
concept of distributed scripts or holes has been implemented in Smalltalk and is described in
�CILS��b�� Also the GUI components in VX�REXX �VRe��� and their interaction with the REXX
language closely follow the ADV model� Finally a number of application systems similar to the
one shown in Figure � have been implemented using VX�REXX� various databases� spreadsheets�
word processors and editors�

References

�ACL���� D� Allen� D� Crabb� L� Loeb� R� Malloy� W� Nance� B� Rash� K� Sheldon� and
P� Wayner� What is a Programming Language� BYTE� pages �������� August �����

�Asy��� Asymetrix Corporation� Bellevue� WA� Using Toolbook� a Guide to Building and
Working with Books� �����

�B���� R� Budde et al� Prototyping� An Approach to Evolutionary System Development�
Springer�Verlag� �����

�C���� D� D� Cowan et al� Program Design Using Abstract Data Views�An Illustrative Exam�
ple� Technical Report ������ Computer Science Department� University of Waterloo�
Waterloo� Ontario� Canada� December �����

�CCCL��� L� M� F� Carneiro� M� H� Co�n� D� D� Cowan� and C� J� P� Lucena� User Interface High�
Order Architectural Models� Technical Report ������ Computer Science Department�
University of Waterloo� Waterloo� Ontario� Canada� �����

�CCLP��� M� Co�n� D� D� Cowan� C� J� P� Lucena� and A� B� Potengy� Distributed Abstract
Data Views� Design and Implementation� Technical Report ������ Computer Science
Department� University of Waterloo� Waterloo� Ontario� Canada� �����

�CGMW��� D� D� Cowan� T� G� Galvin� S� G� McDowell� and T� A� Wilkinson� WATFILE�Plus�
WATCOM Publications� �����

�Cha��� Paul Chase� VM�CMS� a user� s guide� John Wiley� ����� QA������O��C����

�Cha��� Shi�Kuo Chang� editor� Principles of Visual Programming Systems� Prentice�Hall�
�����

�CILS��a� D� D� Cowan� R� Ierusalimschy� C� J� P� Lucena� and T� M� Stepien� Abstract Data
Views� Structured Programming� ��
�������� January �����

��

�CILS��b� D� D� Cowan� R� Ierusalimschy� C� J� P� Lucena� and T� M� Stepien� Application Inte�
gration� Constructing Composite Applications from Interactive Components� Software
Practice and Experience� ��
����������� March �����

�CIS��� D� D� Cowan� R� Ierusalimschy� and T� M� Stepien� Programming Environments for
End�Users� In Proceedings of IFIP ��� Volume III� pages ������ �����

�Cor��� Microsoft Corporation� Microsoft Visual Basic Programmier�s Guide� Microsoft Cor�
poration� �����

�Cow��� M� F� Cowlishaw� The REXX Language� A Practical Approach to Programming�
Prentice�Hall� �nd edition� �����

�Far��� Rik Farrow� Understanding Windows NT� UNIX�World� ��
������ �����

�Gli��� E� P� Glinert� editor� Visual Programming Environments� IEEE Computer Society
Press� �����

�Goo��� Danny Goodman� The Complete HyperCard ��� Handbook� BantamBooks� �rd edition�
August �����

�GR��� Adele Goldberg and David Robson� Smalltalk	
�� the Language and its Implementa	

tion� Addison�Wesley� Palo Alto� CA� January �����

�Haw��� William S� Hawes� ARexx User�s Reference Manual� The REXX Language for the

Amiga� Commodore�Amiga� Inc�� Maynard� MA� version ��� edition� �����

�Hel��� Martin Heller� Future Documents� Byte� ��
����������� May �����

�Hoa��� C� A� R� Hoare� Proof of Correctness of Data Representations� In Essays in Computer
Science� pages �������� Prentice�Hall� �����

�IBM��� IBM� Using the Operating System OS�� 	 Version ���� �����

�Joh��� Robert H� Johnson� MVS� concepts and facilities� McGraw�Hill� ����� QA�����J�����

�Kay��� Alan C� Kay� The Reactive Engine� PhD thesis� University of Utah� Salt Lake City�
Utah� USA� August �����

�LCP��� C� J� P� Lucena� D� D� Cowan� and A� B� Potengy� A Programming Model for User
Interface Compositions� In Anais do V Simp�osio Brasileiro de Computa�c
ao Gr�a�ca e

Processamento de Imagens� SIBGRAPI���� Aguas de Lind�oia� SP� Brazil� November
�����

�Lib��� Donald Libes� expect� Curing Those Uncontrollable Fits of Interactivity� In Proceedings
of the Summer ���� USENIX Conference� Anaheim� California� Gaithersburg� MD
������ June ����� National Institute of Standards and Technology�

�Mic��a� Microsoft Corporation� Microsoft MS	DOS Operating System Version ��� 	 User�s
Guide and Reference� �����

��

�Mic��b� Microsoft Corporation� Microsoft Word Version ���� �����

�Mic��a� Microsoft Corporation� Microsoft Excel Version ���� �����

�Mic��b� Microsoft Corporation� Microsoft Windows Version ��� 	 User�s Guide� �����

�Mye��� Brad A� Myers� Demonstrational Interfaces� A Step Beyond Direct Manipulation�
In Dan Diaper and Nick Hammond� editors� People and Computers VI� pages ������
Cambridge� England� Cambridge University Press� �����

�NeX��� NeXT Computer� Inc� The NeXTstep Advantage� Application Development with

NeXTstep� �����

�Par��� D�L� Parnas� On the Criteria to be Used in Decomposing Systems into Modules�
CACM� ��
���� December �����

�Par��� Tim Parker� Shells for UNIX� A Basic Programming Choice� Computer Language�
�
������ �����

�Pet��� Charles Petzold� Programming Windows� Microsoft Press� �nd edition� �����

�Tof��� Alvin To�er� Powershift� Bantam Books� December �����

�VRe��� WATCOM VX�REXX for OS�� Programmer�s Guide and Reference� Waterloo� On�
tario� Canada� �����

�Wal��� Larry Wall� Programming perl� O	Reilly Associates� ����� QA������P���W��x�

�ZS��� Chris Zamara and Nick Sullivan� Using ARexx on the Amiga� Abacus� Grand Rapids�
MI� �����

��

