
University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

Technical Report Series

CS-93-16

Program Design � Implementation With Abstract Data Views

by

A�B� Potengy C�J�P� Lucena D�D� Cowan R� Ierusalimschy

March, 1993

Program Design � Implementation With Abstract Data Views

A�B� Potengy��� C�J�P� Lucena� D�D� Cowan� R� Ierusalimschy�

�Depto� de Inform�atica

Pontif��cia Universidade Cat�olica

Rio de Janeiro� �����	
��� RJ� Brazil

�lucena�roberto��inf�puc�rio�br

�Computer Science Department

University of Waterloo

Waterloo� Ontario� Canada N�L �G�

dcowan�csg�uwaterloo�ca

�Instituto de Matem�atica Pura e Aplicada

Estrada Dona Castorina ���� Rio de Janeiro

���
�� RJ� Brazil

potengy�visgraf�impa�br

March �

�

Abstract

Creating new applications by integrating user interface and application components is a
relatively new idea which is currently of wide interest� A signi�cant part of this problem is clearly
de�ning the separation between user interface and application components� This paper uses
simple examples to illustrate a new design and implementation approach based on the concept
of an abstract data view �ADV�� a structuring method which cleanly de�nes this separation�

Categories and Subject Descriptors� D���� 	Software
� Programming Techniques � Object�
oriented Programming � D�
�
 	Software
� Software Engineering � Tools and Techniques �
D�
��� 	Software
� Software Engineering � Design� D�
�m 	Software
� Software Engineering
� Miscellaneous �

General Terms� Abstract Data Types� Interactive Applications� Programming� User Interfaces

� Introduction

Composing new applications by integrating user interface and application components is a rela�
tively new idea which is currently of topical interest� and various aspects of this problem have
been described in the literature ��SG��� Nye��� Mye��� BBG���� Fol��� KF��� KP��� Har��	
� A

�

signi
cant part of this problem is clearly de
ning the separation between the user interface and the
application components so that both of them can be reused in a broad range of applications�

Current improvements in software development techniques such as the Object Oriented Model
�Takahashi��� RBL��� Mullin��	� are generalizing the concept of reusability through abstract oper�
ations such as aggregation�decomposition and generalization�specialization� A design methodology
which clearly addresses these aspects of reuse has the potential to lead to a disciplined approach to
application development� A key component of one such methodology is the notion of an abstract
data view �ADV
 �CILS��� CILS��b	� a general design paradigm for the user interface component�
which allows reuse of Abstract Data Types and their Graphical User Interfaces� Extensive experi�
ments with ADVs have shown that in general they can be mapped into working e�cient programs�
Besides the examples in this paper� ADVs have been used to interconnect modules in a user inter�
face design system �UIDS
� to support concurrency in a cooperative drawing tool� and to design a
ray tracer which was then implemented in a distributed environment� This last program operates
in a client�server con
guration�

This article discusses a design approach using Abstract Data Views �ADVs
 that permits the
reuse of user interface objects by clearly separating them from their corresponding application
objects� The generality of the ADV approach is illustrated through the design and implementation
of a number of examples� including an editor for linear graphs�

� The ADV concept

All the systems mentioned in the previous section have two fundamental ideas in common� the
separation of application objects from their graphical user interfaces� and the presence of some
kind of object�view pairs� These ideas are combined in the ADV Model�

An Abstract Data View �ADV
 �CILS��	 might be called a visual realization of an abstract data
type �ADT
 because it has many of the properties of the latter� However� views are restricted to
the user interface aspects of applications� An ADV is essentially a �visual object�� that is� an object
which has a graphical representation in a window� an entity with which a user can interact through
devices such as the mouse and the keyboard� A visual object represents graphically an object of
an application which� otherwise� has no �external representation�� Thus� an ADV separates the
application objects from their graphical user interfaces in terms of object�view pairs�

Moreover� abstract data views can be nested� The nesting capability shows itself on the screen�
where each view is drawn inside its parent region� This feature is a generalization of the concept
of subwindow� since views are form�free� that is� they do not necessarily have the conventional
rectangular shape�

Nesting also allows for an external ADV �associated with a di�erent application
 to be used
as a component of another ADV� This allows� for instance� the insertion of images generated by a
draw�package inside text being manipulated in a text editor� allowing the user to interact with the
images �CILS��b	�

ADVs can also be specialized� An existing view for an object can be used as a basis for de
ning
other views for object or other ADT subclasses� ADVs should support inheritance abstractions
for this kind of composition� This characteristic allows the programmer to apply to the ADVs the
same abstract composition operations applied to the application ADTs�

�

An ADV is similar to an ADT in that an ADV also possesses an internal state and a set of
operations� The set of operations of an ADV are the ones found in general�purpose GUIs� operations
to manage input events such as mouse movements and clicks� and to perform output activities such
as drawing� resizing and scrolling� The ADV approach assumes that the application ADTs never
include operations related to user interface aspects of the applications� The ADVs represents all
user interface aspects of ADTs�

Each view may or may not be connected to an object of an application� The correspondence is
specially useful in WYSIWYG interfaces� because it allows the user to see and manipulate every
individual object inside a program� ADTs also may be disconnected from a view� Figure � illustrates
the ADV x ADT relation and a clear separation between visual and application objects�

ADV range

ADT range

ADV

ADV

ADV

ADVADV

ADt

ADt
ADt

ADt ADt

ADt

ADt

1

1

2

2

3

4

5

5.a

5.b

6

7

6.7

Figure �� ADV X ADT

� A GUI Toolkit Library for ADVs

This section describes the structure of a GUI toolkit library designed to support the ADV concept�
Most objects in the toolkit are based on the Open Look �Kannegaard��	 standard� These objects
inherited their basic functionality from the ones already available in the XView toolkit �HDN�
Jones��	� Some additional features were added to make the new objects suitable for composition
mechanisms such as inheritance and aggregation� This library is composed of a set of objects that
constitute the user interface� Inheritance mechanisms are used to provide extensions� Figure �
shows the inheritance tree for some relevant objects� An example of how to use this library is
shown in the next section� The objects used in the example shown in Figure � are�

GUI Objects� The highest level class in the GUI system is GUIObject� There are no instances of
pure GUIObjects� since it is an abstract class� Every class with the purpose of establishing
graphics interaction between users and applications will be called a GUIObject� For example�
ADVs as well as Menus� are GUIObjects

Window Objects� WindowObjects are objects which can be placed in Windows� These objects
are listed in the WindowBody� Every WindowObject is associated with a Window� i�e��

�

Abstract
Data
View

MenuItem

MenuObject

CommandItem

WindowItem

Panel

Setting

NonExclusiveSetting CheckBox

ExclusiveSetting NumField

TextFieldSlider

Window

TextWindow

CommandWindow

PaintWindow

Button

MenuButton

WindowButton

Canvas

TextSubWindow

WindowObject

GUIObjectGUIObjectApplication
ADVs

Menu

Figure �� GUI Objects Inheritance Structure

belongs to a WindowBody set of elements� Every Window has a WindowBody� and when a
WindowObject is created it is included in a Window�

Buttons� A Button is a WindowObject associated with an �action�� it performs an operation
corresponding to an event� When the user �clicks� a Button� a notify procedure or action is
called�

Settings� There is a whole class ofWindowObjects called Settings that are associated with object
attributes� Typically� a Setting such as the NumField� the TextField and the Slider have an
associated value� this value is directly supplied by the user�

��� ADV Objects

The ADV�model related classes are simple abstract classes that application programmers can use
by plugging one class into another �here plugging A into B means making A a subclass of B
�
Each Abstract Data Type �ADT
 class� which is supposed to communicate with the user via
ADVs inherits the properties of the general Interactive class� Thus� we say that an instance of
an ADT class which communicates with a user is also an Interactive object� The ADV subclass
is speci
ed re�ecting the Interactive subclass structure� and providing access only to its public
members� Figure � illustrates the concept�

�

Speci�cation ADV
Subtype of GUIObject

declaration main window �Window
intobj � Interactive

Constructor CreateADV �iobj � Interactive

Operation UpDate �

post �� ADV subclass dependent procedure

End ADV

Speci�cation Interactive

declaration class name�Char�

avds �ADV �

Constructor CreateInteractive �name�Char�

Operation UpDate �

post for i � � to len advs

do advs �i 	�UpDate�

end

End Interactive

Figure �� The speci
cations of the ADV and Interactive classes

The ADV class in Figure � contains at least a reference to a default enclosing Window and a
reference to an Interactive object� The ADV is a free form enclosed interface object� Each instance
of an ADV is related only to one Interactive object at a time� but many ADV objects can be related
to the same Interactive object at the same time� For example� in Figure �� the A ADV instance
A ADV� is associated with the instance A� of A� The instance B ADV� sometimes is linked to
B� and sometimes to B�� There are also two instances of C ADV class associated with the same
instance C� of C � Of course there must be a mechanism to tell the ADV to which instance it is
related� However� because the way instances are stored is application dependent� the application
designer will be in charge of specifying the association mechanism� The speci
cations in Figure �
describe the ADV and Interactive classes in a VDM�like notation �Ier��a	 similar to a programming
language� so no familiarity with VDM should be required of the reader�

There is an ADV method that updates the GUIObjects contained in the corresponding ADV
object on request� When an Interactive object is changed by an ADV� by itself� or by any object
internal to the application� it will send a message to all associated ADVs� requesting that they
update themselves� To do this� the Interactive class contains a list of references to ADV objects�

�

Our experience also tells us that ADVs should be able to send messages to each other� This only
makes sense with ADVs that are related to the same object �directly or indirectly
� so that the best
object to manage the message tra�c is the Interactive object� An ADV subclass that is as general
as its associated class provides reusability possibilities by applying to ADVs the same abstract
operations as are applied on ADTs� For example� in Figure �� class D is a subclass of B and C �
since its corresponding ADV is built in the same way� the class D ADV is a subclass of B ADV
and C ADV �

� Writing ADV�Based Applications

In this section we illustrate the basic methods of constructing ADVs by mimicking the structure
of ADTs and the operations of aggregation� multiple inheritance and composition� These methods
are then used in a generic graph package for constructing and visualizing linear graphs�

��� The Basic Construction Approach

ADV class

B_ADV class
C_ADV class

D_ADV
class

Interactive class

B class
C class

D class
A class

A1

A2
A3

A_ADV
class

A_ADV1

A_ADV2

A_ADV3

1D_ADV
1.1C_ADV

1.2C_ADVB_ADV1

1C1D2B1B

B3

1

E_ADV class

E_ADV

E class

Figure �� ADV x ADT revised

This section presents a simple example using the ADV objects described in Figure �� Figure �
illustrates a view of a trivial class called A� The class A is an interactive subclass and is composed of
a single integer component called Aattr�� The only method for this class is Print � The speci
cation
for the class A is shown in Figure ��

�

Figure �� An ADV based example

Figure �� An A ADV instance

This speci
cation in Figure � can be easily implemented in C�� �Stroustrup��	 by using inher�
itance� Once class A is de
ned as an Interactive subclass� the invariant properties of the latter are
preserved� The operation Print can be implemented as an A method� Doing this� the Print method
does not need to receive arguments because it is already associated with an instance of class A�

The Abstract Data View for class A is composed of a Slider subclass �for A�s integer attribute

and a Button subclass �for A�s Print method
� These two GUIObject subclasses are de
ned as
members of A ADV� The operations on these classes are very simple� since they inherited the
GUIObject�s functionality� If we were using a programming language without inheritance and
polymorphism� interface coding would be necessary to simulate these mechanisms� In fact the
Slider is an ADV for a �class Integer� and the Button is an ADV for a �class Method�� These two
ADVs �not Windows
 are aggregated to form the ADV for class A� both being enclosed in a single
Window with label �A� as described in the speci
cation in Figure ��

Figure � shows a view of another trivial class called B � B and its visual representation �B ADV

shown in Figure �� were implemented by mimicking the de
nition of A and A ADV �

Having de
ned the two trivial classes A and B and their corresponding ADVs� we are able to
perform many kinds of composition experiments� The speci
cation for C as an aggregate with com�
ponents A and B � is shown in Figure ��� Its Abstract Data View �C ADV
 where the speci
cation
is shown in Figure ��� is also de
ned as an aggregate with components A ADV and B ADV � A

�

Speci�cation A
Subtype of Interactive

declaration Aattr�� Integer

Constructor CreateA �attr � Integer

post Aattr� � attr � CreateInteractive��A�

Operation Print �

pre true

post Send description of instance to std output

End A

Figure �� The speci
cation of the subtype A

visual representation of an instance of �C ADV
 is shown in Figure ���
Note from Figure �� that to de
ne the ADV for class C we are not concerned with the

contents of A ADV and B ADV� The de
nition of C ADV is a simple composition just like C �
Again� the basic structure of the abstract data type is preserved in its graphical representation �or
abstract data view
� Another interesting fact is that C�� provides a nice syntax tool to implement
ADVs� Once we de
ned the class C ADV it was trivial to create a new visual representation for
class C by just de
ning a C ADV subclass with a di�erent visual implementation as shown in
Figure ���

Now consider a multiple inheritance composition of A and B to build a class called D � and
with one more attribute Dattr� and another method Print � The class D ADV is implemented the
same way� by inheriting A ADV and B ADV � Figure �� shows the resulting ADV� This is another
powerful tool the ADV concept provides� Almost no additional code is needed to implement an
inherited ADV� The speci
cations for the design of class D and its ADV is described in Figure ���

The main idea is to show that programming within the ADV model may be considered as a
two�step activity� First� de
ne application objects without paying attention to their GUIs� Once
there is a well de
ned environment model we can build its visual representation� If the model
is composed of a set of composite abstract data types� its visual representation will be a set of
composite abstract data views consistent with the underlying model�

��� A Generic Graph Package

The research project on abstract data views is examining many interactive applications in order
to determine the generality of this design approach� One such application� a generic linear�graph
package which supports a graphical user interface for editing graphs and allows the implementation
of many di�erent graph algorithms� was chosen to test the concepts thoroughly� This graph package
must also permit nesting of graphs� since many applications such as data��ow diagrams and
nite�

�That is� each node can be decomposed and presented as a subgraph�

�

Speci�cation A ADV
Subtype of ADV

rede�ne UpDate

declaration as �Aattr�Slider
ab�APrintButton
owner �A

Speci�cation Aattr�Slider
Subtype of Slider

rede�ne SaveValue

Operation CreateAattr�Slider �

ext rd main window

wr owner
post CreateSlider�main window � �Aattr�� �
�Value � owner �Aattr� �

min � �� �max � ��

Operation SaveValue �

ext wr owner
post owner �Aattr� � Value

End Aattr�Slider

Speci�cation APrintButton
Subtype of Button

rede�ne Action

Operation CreateAPrintButton �

ext rd main window

wr owner
post CreateButton�main window � �print�

Operation Action �

ext rd owner
post owner �Print�

End APrintButton

Constructor CreateA ADV �a�A

post owner � a � CreateADV �a
 �

as � CreateAattr�Slider�
� ab � CreateAPrintButton�

Operation UpDate �

post as �SetValue�Aattr�

End A ADV

Figure �� The speci
cation of the ADV for class A

�

Figure �� A B ADV instance

state machines could use this nesting facility�
Graphs are used to represent many di�erent types of structures and each application area often

has a speci
c way of viewing a graph� For example� electric circuits� process diagrams� maps
and Petri nets represent four di�erent methods for viewing graphs� Moreover� some views require
quite complex �viewing� algorithms in order to avoid problems such as the intersection of arcs�
Thus� the generic graph package and its user interface should be easily separated so that di�erent
application�dependent user�interfaces can be used with the same package�

The generic graph package used an object�oriented design and the nodes and arcs were imple�
mented as objects� The initial design tried to follow the Smalltalk Model�View�Controller �MVC

paradigm �KP��	 by creating a �graph viewer� that would concentrate all algorithms and data
structures related to graphical presentation in the View� and place the algorithms relating to the
graph structure in the Model� As the design progressed some disadvantages of the MVC model
became evident� Ideally the �view� only needs information about the view or screen positions of
individual nodes and arcs� all other information about relationships among the nodes and arcs can
be held in the model data structure� However� a direct application of the MVC model needs to
store large tables with information for all graph elements in the view� and to link each piece of
visual information with its associated object�

To solve the problem of duplicating information in the view and to maintain the separation
between interface and application� the object model was used not only inside the application� but
inside the interface manager as well� Instead of a monolithic �graph viewer�� �node viewers� and
�arc viewers� were created� where a node viewer is an object that only stores information and
algorithms about presentation of and interaction with a node� Therefore� a node viewer does not
have data about adjacent arcs or nodes� or anything related to the graph topology� That information
belongs to the application� and is stored in the original node and arc objects� The viewer objects
are Abstract Data Views �ADVs
�

Even though the interface does not store the graph topology� access is often required to this
information� To allow this connection� each viewer object has a special variable� called �owner��
that refers to the corresponding object in the application�

The design still had to handle nesting� since that feature was required by the initial problem
speci
cation� which allowed nodes to be decomposed into subgraphs� Actually� the system already
had a restricted form of nesting� ADVs for arcs and nodes can not exist by themselves� �oating on
the screen� There must be an encapsulation� a visual margin to delimit them� With the nesting

��

Speci�cation B
Subtype of Interactive

declaration Battr�� Integer

Constructor CreateB �attr � Integer

Operation Print �

End B

Speci�cation B ADV
Subtype of ADV

rede�ne UpDate

declaration bs �Battr�Slider
bb�BPrintButton
owner �B

Speci�cation Battr�Slider
Subtype of Slider

rede�ne SaveValue

Operation CreateBattr�Slider �

Operation SaveValue �

End Battr�Slider

Speci�cation BPrintButton
Subtype of Button

rede�ne Action

Operation CreateBPrintButton �

Operation Action �

End BPrintButton

Constructor CreateB ADV �b�B

Operation UpDate �

End B ADV

Figure ��� The speci
cation of the ADV for class B

��

Figure ��� A C ADV instance

Figure ��� A C ADV subclass instance

capability� this external frame was promoted to the status of an ADV� whose owner is the graph�
The fact that the ADVs for nodes and arcs are nested inside this �frame� ADV� implies that they
can only be displayed inside this area� Moreover� their position is always interpreted as relative to
their external ADV� Any movement or scrolling of the graph is accompanied by movement of the
nested ADVs�

From the previous description� it is clear that there is a strong similarity between the concept
of nested ADVs and the concept of subwindows in window systems� However� there are also several
di�erences� Subwindows are always rectangular areas� while ADVs have their own display methods�
and so can have any shape �e�g� the shape of an arc
� Subwindows have their position de
ned
relative to the external window� When that is scrolled� they do not scroll together� Finally� there is
a di�erence in the way they are used� ADVs are intended to be created and destroyed much more
frequently than subwindows �like nodes and arcs during an editing session
� and therefore need a
di�erent implementation��

�Based on that analogy� ADVs are often called light windows � A good comparison is with processes in Unix

��

Speci�cation C
Subtype of Interactive

declaration Cattr�� Integer
a�A
b�B

Constructor CreateC �attr � Integer

Operation Print �

End C

Figure ��� The speci
cation of class C

��� The Design

This section presents an informal speci
cation of the linear�graph package called GraphEditor and a
corresponding user interface called VisualGraphEditor� and illustrates the clean separation between
them�

The design of the graph editor follows the ADV approach and clearly separates the nodes and
arcs and their visual representation� Nodes and arcs are represented by the types Node and Arc�
respectively� Another type called GraphEditor contains the de
nition of the types Node and Arc
and the collections of those elements in two sets NODES and ARCS� These sets are initially empty�

A Node contains the name of the node� and an Arc contains references to the two nodes to which
it is connected� There are four basic functions which manipulate elements of the types Node and
Arc� CreateNode� RemoveNode� CreateArc� and RemoveArc� The function CreateNode receives as
argument the name of the node to be created� and returns the newly created node� The function
RemoveNode receives as argument the name of the node to be removed� The function CreateArc
receives as arguments the names of the nodes to which the new arc should be connected� and returns
the newly created arc� The function RemoveArc receives as arguments the names of the nodes to
which the arc to be removed is connected� An outline of the GraphEditor with the four function
prototypes is described in Figure ��� The four functions used in the GraphEditor are de
ned by
an informal statement of their pre� and post�conditions in Figure ���

The visual representation of the nodes and arcs are represented by the types ADVNode and
ADVArc� and their corresponding elements are stored in the sets ADV NODES and ADV ARCS�
Both the types ADVNode and ADVArc and the sets ADV NODES and ADV ARCS belong to
the type VisualGraphEditor� This type also contains the interface aspects of the application� such
as the element and action menus and the speci
cation of these elements is shown in Figure ���
The type VisualGraphEditor appears in the speci
cation in Figure ��� and shows the nested types
ADVNode and ADVArc and their corresponding function prototypes�

systems� Because they are somehow �heavy�� many systems implement internal processes� usually called threads or

light processes �

��

Speci�cation C ADV
Subtype of ADV

rede�ne UpDate

declaration cs �Cattr�Slider
cb�CPrintButton
a adv �A ADV
b adv �B ADV
owner �C

Speci�cation Cattr�Slider
Subtype of Slider

rede�ne SaveValue

Constructor CreateCattr�Slider �

Operation SaveValue �

End Cattr�Slider

Speci�cation CPrintButton
Subtype of Button

rede�ne Action

Constructor CreateCPrintButton �

Operation Action �

End CPrintButton

Constructor CreateC ADV �c�C

post owner � c � CreateADV �c
 �

cs � CreateCattr�Slider�
� cb � CreateCPrintButton�
�
a adv � CreateA ADV �c�a
 � b adv � CreateB ADV �c�b

Operation UpDate �

post cs �SetValue�Cattr�
� a adv �UpDate�
 � b adv �UpDate�

End C ADV

Figure ��� The speci
cation of the ADV for class C

��

Figure ��� A D ADV instance

Speci�cation D
Subtype of A�B

declaration Dattr�� Integer

Constructor CreateD �attr � Integer

Operation Print �

End D

Figure ��� The speci
cation of class D

Each element of type ADVNode contains the position of the node and its owner �the correspond�
ing Node
� and similarly each element of type ADVArc contains the position of the arc and its owner
�the corresponding Arc
� The ADV NODES and ADV ARCS collections can be represented by
sets� and are initially empty�

There are four basic functions which manipulate the ADV elements� CreateADVNode� Re�
moveADVNode� CreateADVArc� and RemoveADVArc� There is also an auxiliary function called
RemoveRelatedArcs� which removes any arcs connected to a node which is to be removed� The
function CreateADVNode receives as arguments the position and the name of the node to be cre�
ated� The function RemoveADVNode receives as arguments the position of the node to be removed�
The function RemoveRelatedArcs receives as argument the name of the node that is going to be
removed� The function CreateADVArc receives as arguments the position and the names of the
source and target nodes of the arc to be created� The function RemoveADVArc receives as ar�
gument the position of the arc to be removed� To remove a visual representation of an arc� the
selected position must correspond to an arc� The actual arc �Arc
 is removed
rst� and then its
visual representation is removed from the collection ARCS� The speci
cation for the four functions

��

Speci�cation D ADV
Subtype of ADV

rede�ne UpDate
Subtype of A ADV

rename UpDate as AUpDate
Subtype of B ADV

rename UpDate as BUpDate

declaration ds �Dattr�Slider
db�DPrintButton
owner �D

Speci�cation Dattr�Slider
Subtype of Slider

rede�ne SaveValue

Constructor CreateDattr�Slider �

Operation SaveValue �

End Dattr�Slider

Speci�cation DPrintButton
Subtype of Dutton

rede�ne Action

Constructor CreateDPrintButton �

Operation Action �

End DPrintButton

Constructor CreateD ADV �d �D

post owner � d � CreateA ADV �d
� CreateB ADV �d

End D ADV

Operation UpDate �

post ds �SetValue�Dattr�
� AUpDate�
 � BUpDate�

Figure ��� The speci
cation of the ADV for class D

��

Speci�cation GraphEditor
Subtype of Interactive

declaration NODES �Node�set
ARCS �Arc�set

init mk�GraphEditor�NODES�ARCS
 �

NODES � f g � ARCS � f g

Speci�cation Node
Subtype of Interactive

declaration node name�Name

Constructor CreateNode �node�Name

Destructor RemoveNode �node� name

End Node

Speci�cation Arc
Subtype of Interactive

declaration from node�Name
to node�Name

Constructor CreateArc �from� to�Name

Destructor RemoveArc �from� to�Name

End Arc

End GraphEditor

Figure ��� The speci
cation of the Graph Editor

��

Constructor CreateNode �node�Name

ext wr NODES
pre There is no node with this name in the NODES set
post Create and include node in the NODES set

Destructor RemoveNode �node� name

ext wr NODES
pre There is one node with this name in the NODES set
post Remove the node from the NODES set

Constructor CreateArc �from� to�Name

ext wr ARCS
pre There is no arc between the from node and the to node

and these nodes are not identical
post Create an arc between the from node and the to node

and include it in the ARCS set

Destructor RemoveArc �from� to�Name

ext wr ARCS
pre There is an arc between these nodes
post Remove the node between the nodes and from the ARCS set

Figure ��� The speci
cation of the four functions for the Graph Editor

Event Type � ���

Window ID � ���

Position �� pos x � f�� ���� ���g
pos y � f�� ���� ���g

Event �� type � Event Type
window � Window ID
position � Position

Action Type � CREATE or REMOVE

GraphElement Type � NODE or ARC

Figure ��� The speci
cation of the element and action menus in the ADV for the Graph Editor

��

Speci�cation VisualGraphEditor
Subtype of ADV

declaration Action�Action Type
GraphElement �GraphElement Type
vge owner �GraphEditor

init mk�GraphEditor�Action� GraphElement
 � Action � CREATE � GraphElement � NODE

Speci�cation ADVNode
Subtype of ADV

declaration position�Position
owner �Node
ADV NODES �ADVNode�set
ADV ARCS �ADVArc�set

init mk�Graph�ADV NODES
 � ADV NODES � f g � ADV ARCS � f g

Constructor CreateADVNode �p�Position� n�Name

Destructor RemoveADVNode �p�Position

Operation RemoveRelatedArcs �n�Name

End ADVNode

Speci�cation ADVArc
Subtype of ADV

declaration position�Position
owner �Arc

Constructor CreateADVArc �p�Position� from� to�Name

Destructor RemoveADVArc �p�Position

End ADVArc

DispatchEvent �event �Event � name�� name��Name
 �

End VisualGraphEditor

Figure ��� The speci
cation of the ADV for the Graph Editor

��

with informal statements about their pre� and post�conditions are described in Figure ���

��� The Implementation

The graph editor was implemented using Smalltalk� The subclasses which involve the concepts of
ADVs and ADTs are� VisualGraphEditor� ADVNode� ADVArc� GraphEditor� Node� and Arc�

The subclass VisualGraphEditor is responsible for the graph editor interface� for the visual
representations of the graph elements �the ADVNodes and ADVArcs
� and for the operations upon
these visual representations� This subclass also supports the element �node�arc
 and the action
�create�remove
 selection menus� When the user changes the selection on the two menus� the state
of both menus is altered� When the user selects a point within the workspace area� the appropriate
action is taken� nodes and arcs are either created or removed�

The visual representations of the graph elements �nodes and arcs
 consist of the ADVNode
and ADVArc classes� The VisualGraphEditor contains collections of those elements stored in
Smalltalk dictionaries labeled advNodeDic and advArcDic� The VisualGraphEditor also contains
the functions that manipulate these elements �C���	�

As described previously� ADVNode contains the node position in the working window� and the
owner corresponding to that position� namely a reference to the Node it represents� Similarly the
ADVArc contains the arc position and its owner� a reference to its corresponding Arc�

The GraphEditor manipulates the graph elements� namely the Node and Arc classes� It contains
the collections of those elements� in two dictionaries adtNodeDic and adtArcDic� and the functions
which manipulate the nodes and arcs� Node contains the node label� and the Arc contains the
labels of the two nodes to which it is connected�

Figure �� represents how two nodes and one arc that connects the two nodes� are represented
in the Smalltalk implementation� In Figure ��� each dictionary entry has a reference to the corre�
sponding element and the arrows in the Figure indicate that access is from the ADV World to the
ADT World�

The reader should notice that there is a clear separation between the ADT World and the ADV
World� Moreover� the ADTs have no knowledge whatsoever of the existing ADVs� However� the
ADVs must have knowledge of the ADTs they represent and so each one contains a reference to
the respective ADT by means of the owner variable� This separation makes it possible to create
di�erent types of ADVs� thus allowing for the creation of di�erent visual representations for a single
collection of ADTs�

Figure �� also illustrates that there is a visual representation on the screen associated with each
ADV� An ADVNode is represented by a circle� and an ADVArc is represented on the screen by a
line connecting two nodes�

� Conclusions

This paper has illustrated by examples� a design method based on Abstract Data Views �ADVs
�
which clearly separates the application components from the user interface� Thus� di�erent repre�
sentations of an application component can be presented by connecting them to a di�erent user
interface through the owner variable� Hence� this design approach allows both the application
components and user interfaces to be reused easily in a wide variety of interactive applications�

��

Constructor CreateADVNode �p�Position� n�Name

ext wr ADV NODES
pre There is no node at this position and with this name
post Insert the node in the ADV NODES set and draw the node

and ask CreateNode to add the node

Destructor RemoveADVNode �p�Position

ext wr ADV NODES
pre There is a node at this position
post Remove it from the ADV NODES set and call RemoveRelatedArcs Function

and remove the node from the screen and so ask the RemoveNode

to remove the Node

Operation RemoveRelatedArcs �n�Name

ext rd ADV ARCS
pre true

post For all arcs do�
If the arc contains the node as a to node or a from node
ask the RemoveADVArc Function to remove it

Constructor CreateADVArc �p�Position� from� to�Name

ext wr ADV ARCS
pre There is not any arc at this position
post Include it in the ADV ARCS set and draw it on the screen

and ask CreateArc to add the arc

Destructor RemoveADVArc �p�Position

ext wr ADV ARCS
pre There is an arc at this position
post Remove it from the ADV ARCS set and remove it from the screen and

ask the RemoveArc Function to remove the Arc

Figure ��� The speci
cation for the four ADV functions

��

adtNodeDic:

adtArcDic:

GraphEditor

ADTNode:

label:’B’

ADTNode:

label:’A’

ADTArc:

from_node:

to_node:

The ADT World

VisualGraphEditor

ADVNode:

position:5@2

owner: ADTNode

ADVNode:

owner: ADTNode

position:1@3

ADVArc:

position:6@4

owner:ADTArc

advArcDic:

advNodeDic:

The ADV World

A

B

Figure ��� Nodes and Arc

The feasibility of the Abstract Data View approach has also been demonstrated through actual
implementations in Smalltalk and C��� Although this paper has shown the e�cacy of the ADV
approach there is still substantial research to be accomplished� Work on formal speci
cation of the
concept and programming language constructs and programming environments are three areas of
signi
cant interest in our current research program�

The ADV model was presented as a standard way of building user interfaces by intensive use
of compositions� Such operations �like aggregation and inheritance
 o�er reusability� keeping the
GUI structure consistent with the associated application objects�

The examples presented here made use of very simple classes� This approach is appropriate for
studying composition possibilities� Now suppose there is a very large system containing thousands
of complex classes without consistent graphical user interfaces� How much e�ort would be spent in
developing non�trivial user friendly applications� In the ADV model� when a class is constructed�
so is its GUI� After having combined the classes in the application� one can build the application
GUI using the same combinations we used for the ADTs�

Two other important results from the use of ADVs are GUI compatibility and encapsula�
tion� Within this programming process� large systems �including their GUIs
 can be combined
using abstract operations without worrying about their internal structures� We believe that an

��

ADV�GUIDE is an appropriate tool for programmers whose goal is the fast development of reusable
user�friendly object�oriented applications�

Extensive experimentation with the ADV concept for the design of man�machine interfaces led
us to believe that the concept could be generalized and extended to model internal module or object
interconnection interfaces� Thus� we are examining ADVs in this context� Further experimentation
with generalized ADVs has illustrated its use in the design of concurrent and distributed software
systems as well as sequential systems�

References

�BBG���	 S� J� Boies� Wm� E� Bennett� J� D� Gould� S� L� Greene� and C� Wiecha� The Interac�
tive Transaction System �ITS�� Tools for Application Development� Computer Science
RC ����� ������
� IBM Research Division� T� J� Watson Research Center� Yorktown
Heights� New York� September �����

�C���	 D� D� Cowan et al� Program Design Using Abstract Data Views�An Illustrative Exam�
ple� Technical Report ������ Computer Science Department� University of Waterloo�
Waterloo� Ontario� Canada� December �����

�CCLP��	 M� Co�n� D� D� Cowan� C� J� P� Lucena� and A� B� Potengy� Distributed Abstract
Data Views� Design and Implementation� Technical Report ������ Computer Science
Department� University of Waterloo� Waterloo� Ontario� Canada� November �����

�CILS��	 D� D� Cowan� R� Ierusalimschy� C� J� P� Lucena� and T� M� Stepien� Abstract Data
Views� Structured Programming� ����
������ January �����

�CILS��b	 D� D� Cowan� R� Ierusalimschy� C� J� P� Lucena� and T� M� Stepien� Application Inte�
gration� Constructing Composite Applications from Interactive Components� Software
Practice and Experience� ����
��������� March �����

�Fol��	 James Foley� De�ning Interfaces at a High Level of Abstraction� IEEE Software� ���
����
��� January �����

�Har��	 Rex Hartson� User�Interface Management Control and Communication� IEEE Software�
����
������� January �����

�HDN	 Heller� Dougherty and Nyr� Overview of XView Programming� O�Reilly Associates
Inc��

�Ier��a	 Roberto Ierusalimschy� A Method for Object�Oriented Speci
cations with VDM� Tech�
nical report� Monogra
as em Ci!encia da Computa"c#ao� PUC�Rio� February �����

�Jones��	 O� Jones� Introduction to the X Window System� Prentice�Hall International Editions�
�����

�Kannegaard��	 J� Kannegaard� Open Look Industry � Outlook � Overview� Sun Technology� pp
������ Autumn �����

��

�KF��	 Won Chul Kim and James D� Foley� DON� User Interface Presentation Design Assis�
tant� In UIST ��	 Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software and Technology� pages ������ Snowbird� Utah� USA� October ����� ACMPress�

�KP��	 Glenn E� Krasner and Stephen T� Pope� A Cookbook for Using the Model�View�
Controller User Interface Paradigm in Smalltalk�
	� JOOP� pages ������ August
September �����

�Mullin��	 M� Mullin� Object Oriented Program Design With Examples in C��� Addison�Wesley
�����

�Mye��	 Brad A� Myers� �editor
� The Garnet Compendium� Collected Papers�
�
��
��	� Tech�
nical Report CMU�CS�������� School of Computer Science� Carnegie Mellon University�
Pittsburgh� Pennsylvania� August �����

�Nye��	 Adrian Nye� Xlib Reference Manual� O�Reilly Associates� �����

�RBL��	 R� Wirfs�Brock� B� Wilkerson and L� Wiener Designing Object�Oriented Software� Pren�
tice Hall� New Jersey� �����

�SG��	 Robert W� Schei�er and Jim Gettys� The X Window System� ACM Transactions on
Graphics� ���
�������� April �����

�Stroustrup��	 B� Stroustrup and M� Ellis� The Annotated C�� Reference Manual� Addison�
Wesley� �����

�Takahashi��	 T� Takahashi and H� K� E� Liesenberg� Programa�c�ao Orientada a Objetos� VII
Escola de Computa�c�ao� S#ao Paulo� �����

��

