
Information Repository Requirements

of the CORDS Multidatabase Service

Neil Coburn and Per-Åke Larson∗

University of Waterloo
Waterloo, Canada
Report CS-93-15
(Version 1.0)

March 23, 1993

Abstract

A multidatabase is a virtual database. As such, it requires support for the storage and retrieval of
its operational data. That is, is requires the equivalent of the data dictionary or catalogue found in
traditional relational databases.

The CORDS project is a collaborative effort between several IBM laboratories and several North
American universities. The goal of the CORDS project is to investigate and prototype a distributed
environment which supports the development and operation of distributed applications. The CORDS
Multidatabase project is one component within the CORDS environment. A second component of this
environment is an Information Repository.

We are investigating the viability of using the Information Repository as a means of implementing
the Multidatabase catalogue. This report states the (current) Multidatabase data requirements on the
Information Repository. We have attempted to outline our future requirements as clearly and broadly as
possible. However, since we are creating a research prototype the requirements may change as we gain
experience and understanding.

1 Introduction

The Multidatabase Service (MDBS) and the Information Repository Service are two components within the
CORDS environment. This document specifies the current and expected Information Repository Service re-
quirements of the functional units within the Multidatabase component. This is not a definitive specification:
as the functional units are completed and we gain experience with them the requirements may change.

This section contains a general discussion of information required by clients and servers. It also lists
the functional units within the Multidatabase Service; including a description of the current packaging of
functional units into servers. Each of the remaining sections discusses the repository requirements of one of
the functional units.

1.1 Clients and Servers

The functional units of the Multidatabase Service are implemented as a set of interacting servers; more than
one functional unit may be packaged in a single server. Thus units may be a client in one interaction and

∗This research project is supported by IBM Canada Ltd., Toronto and by the Natural Sciences and Engineering Research

Council of Canada.

1



a server in another interaction. The Multidatabase Service requires the Information Repository to act as a
name server: maintaining location information so that these servers are available to the appropriate clients.

For each server the repository must maintain enough information for a client to be able to communicate
with it. In a general client-server environment a client specifies a desired server by a type (i.e. a generic
name) and requires the location of (at least) one instance of a server of that type and the protocol required
to communicate with it. In our case, we assume that communication is performed by remote procedure calls
(Sun RPC). Thus, we can ignore the protocol information. Also, this means that a server’s type is specified
by it’s program number and version number. Therefore, for each server, the minimal amount of information
required is:

• server program number

• server version number

• server address

The Monitor is another component of the CORDS environment. In order to monitor system performance
other server data must also be maintained; for example, server availability, up/down time. We feel that this
data should be maintained in the information repository. However, as we gain experience with the MDBS
the performance demands may require that the data be stored by the monitor. For the time being we will
include this type of data in the repository requirements.

Each server must be able to register and unregister itself with the Information Repository. The Sun RPC
portmapper maintains a directory service for programs, procedures, and versions; other RPC environments
have similar capabilities. It is not yet settled whether we will continue to use these RPC facilities or maintain
all of this information in the Information Repository instead.

1.2 Functional Units

The following lists the functional units within the Multidatabase Service:

• Schema Integration (constructs MDBS tables from component tables)

• MDBS Client (the client library used by applications)

• Coordinator (coordinates query processing and execution)

• Catalogue (the MDBS “data dictionary”)

• Parser (includes semantic checking)

• View Integration (translates MDBS queries to component queries)

• Optimizer (produces an “optimized” access plan)

• Plan Manager (stores access plans)

• Execution Engine (performs “global” data processing operations)

• MDBS Agent (MDBS unit associated with a component data source)

• Security Manager

• Transaction Manager

• Recovery Manager

2



• Log Manager

• Monitor (monitors system performance)

• System Manager (maintains capabilities and sets parameters)

The MDBS Catalogue is a set of cover routines for the Information Repository. All MDBS access to the
Information Repository is performed via the Catalogue. Thus, the Catalogue has no data requirements of
its own on the repository; it provides routines to service the data requirements of the other functional units.
However, it may have some management or control requirements on the repository.

The MDBS Client runs as part of an application process; it will never be a separate process. Every other
functional unit may be implemented as a separate process. As such we can consider them as potential servers.
The current implementation packages functional units into servers as shown in Figure 1. Each functional

Manager

Manager
Recovery

View
Integration

Integration
Schema

Monitor

Catalogue

Coordinator Manager
Security

Transaction
Manager

Log Manager

OptimizerParser

Engine
ExecutionPlan Manager

Data Source

MDBS Agent

Application

MDBS Client
System

Figure 1: Packaging functional units into servers.

unit is represented as a solid rectangle. A group of functional units which are packaged into a single server
is depicted by a dotted rectangle around the units. This grouping may change in future implementations.

3



In the remaining sections we discuss the information repository requirements of the functional units.
Our implementation is based on (local and remote) procedure calls. We will denote the unit initiating an
interaction as the caller and the unit being asked to perform some service as the callee. For each functional
unit we list those functional units that correspond to callees in an interaction with this unit. If a callee is
within the same server as the caller, then their interaction is achieved via a (local) procedure call. If a callee
is not within the same server as the caller, then their interaction is achieved via a remote procedure call. In
this latter case the caller acts as a client; it requires the repository to store the server information discussed
earlier. Similarly, in each server one of the functional units must act as the server representative; registering
and unregistering with the Information Repository Service.

2 Schema Integration

The Schema Integration unit requires the Information Repository to maintain schema information for the
export schemas and application schemas (see Martin et al. [1]). Since the schemas may change, the Schema
Integration unit must have insert, update, delete, and retrieve capabilities on this information.

• Application Schema

– names of application level objects

– definitions of application level objects

– semantic constraints on application level objects

– MDBS tables

∗ name (local and global)

∗ number of columns

∗ table definition

∗ export tables used to define this table

– MDBS columns

∗ domain

∗ export columns used to populate this column

∗ properties of the column

• Export Schema

– names of export level objects

– definitions of export level objects

– semantic constraints on export level objects

– Export tables

∗ name (global)

∗ number of columns

– Export columns

∗ domain information

∗ properties of the column

The Schema Integration unit calls the Coordinator unit to submit requests to the Catalogue. This unit will
probably be packaged with a windowing interface (i.e. an application) to provide a DBA tool for the MDBS.

4



3 MDBS Client

The MDBS client library calls the Coordinator unit to submit Open Database Connectivity (ODBC) requests
to the MDBS. This unit is always packaged with an application.

4 Coordinator

A Coordinator acts as an MDBS server. It calls the following units:

• Catalogue

• Parser

• View Integration

• Optimizer

• Plan Manager

• Execution Engine

• Transaction Manager

• Recovery Manager

• Security Manager

• Monitor

As previously mentioned, in the current implementation the first four units are packaged with the Coordinator
in the MDBS server. However, in future implementations they may be distinct servers.

5 Parser

The Parser requires information about application schema in order to perform parsing and semantic checking
on the MDBS requests. The type of information it requires is the same as that outlined in the Schema
Integration section. The only unit called by the Parser is the Catalogue.

6 View Integration

The View Integration unit takes a parsed MDBS request expressed in terms of an application schema and
transforms it into a semantically equivalent set of requests where each request is expressed in terms of one
of the export schemas. Thus, this unit requires the same information about application schemas and export
schemas as that outlined in the Schema Integration section. The only unit called by the View Integration
unit is the Catalogue.

5



7 Query Optimizer

The only unit called by the Query Optimizer is the Catalogue. The Optimizer requires data for two purposes:
making optimization decisions and storing intermediate decisions during optimization.

In the latter case the Optimizer requires a “black box” field in which it can place any type of intermediate
result it requires. It needs the ability to store, retrieve, and delete according to result identifiers. The
identifiers will probably be generated by the Repository. For standard query optimization the retrieve and
delete operations possibly may be combined into a single operation. If the Optimizer supports multiple
query optimization then an intermediate result may be retrieved several times before being deleted.

In order to make optimization decisions the Optimizer needs data about component data sources and
about the network links. This information is of two types: structural and performance. As discussed, the
performance information will be stored in the Repository by a Monitor. The structural information will be
stored in the Repository by the System Manager unit. Although the performance and the components of
the distributed environment will change over time, the Optimizer requires only a retrieve capability for this
information. The following is a list of the structural information required:

• Component Characteristics - Data Sources

– source type - e.g. relational database, network database, file system

– source product - e.g. Oracle version 5.0

– storage capabilities

∗ define temporary relations

∗ build indices

– processing capabilities

∗ perform remote join

∗ perform semi-join

∗ perform max aggregation

∗ perform min aggregation

∗ perform sum aggregation

∗ perform avg aggregation

∗ perform count aggregation

∗ perform sort

∗ perform groupby

∗ list of available indices

· index name

· index type

– list of semantic constraints

∗ schema

∗ table

∗ constraint type

∗ constraint description

• Component Characteristics - Processors

– number of processors

– processor product - e.g. Intel 486, R/S 6000

6



– processor capabilities/parameters

∗ processor speed

∗ cache size

– operating system product - e.g. AIX version 3.2

– operating system capabilities/parameters

∗ description of optional software installed

• Network Characteristics - Protocols

– protocol product - e.g. TCP/IP

– protocol capabilities/parameters

∗ connection-based

• Network Characteristics - Links

– link product - e.g. Ethernet

– link capabilities

∗ specified transmission rate

– communication parameters

∗ usage fee rates

∗ connection costs

These are the performance characteristics required:

• Component Characteristics - Data Sources

– system estimates

∗ number of users

– processing estimates

∗ number of tuples per table

∗ average tuple size per table

∗ minimum value in a column

∗ maximum value in a column

∗ number of distinct values in a column

∗ distribution of values in a column - e.g. uniform, normal

∗ list of available indices

· index name

· number of entries

· selectivity

• Component Characteristics - Processors

– storage device capabilities/parameters

∗ retrieval rate

∗ device capacity

• Network Characteristics - Links

7



– communication estimates

∗ effective transmission rate

∗ failure rate

∗ load

Due to the autonomy of the Component Data Sources, some of this data may not be available for some
sources. Thus, a null value may occur as a valid data value. Because the performance data is used as the
basis for making optimization decisions, we need to know how up-to-date it is. Therefore, each piece of this
data has an associated timestamp.

The performance data needs to be specified and collected on a per-query basis; we cannot a priori specify
all the database/table statistics that we would like to monitor. Thus, the Query Optimizer will include with
an access plan a specification of the statistics to be collected when the access plan is executed. It is not clear
at this time how this collection will be done. One possibility is that the Coordinator or Execution Engine
passes the data collection specification to the Monitor when it is about to execute an access plan.

8 Access Plan Manager

The Access Plan Manager unit requires information about access plans and export schemas. The export
schema information has been discussed in previous sections. The access plan information is of two principal
types; the plan itself and information regarding the dependence of the plan on particular export schemas.
Both types of information may have supplementary information associated with it. In both cases the plan
or dependencies (and supplementary information) will be accessed as a single unit. To make storage and
retrieval simpler the plans and dependencies will each be store as a single encoded field. The following lists
the additional data required by the Access Plan Manager:

• Access Plans

– plan identifier

– timestamp

– schema dependencies

– size of plan

– access plan

• Export Schema

– schema identifier

– timestamp

The export schema timestamp must reflect the latest modification time of any change to the schema;
including changes to columns, tables, and indexes.

The Plan Manager is implemented as a server. The only unit called by the Plan Manager is the Cata-
logue.

9 Execution Engine

The MDBS will probably contain multiple instances of an Execution Engine; each will be implemented as a
server. An Execution Engine calls the following units:

• Plan Manager

8



• Transaction Manager

• another Execution Engine (server)

• MDBS Agent

10 MDBS Agent

An MDBS Agent is implemented as a server; it acts as the server for a component data source. The Agent
calls the Recovery Manager unit to facilitate recovery procedures in the event of a system crash at the
component site.

11 Security Manager

Multidatabase security has not been seriously considered to date and is not included in our research plans.
Thus, we cannot state what the Information Repository Service requirements will be. It is anticipated that
a Security Manager will be implemented as a server. The Security Manager may require the Catalogue to
store some information but the type of data and the frequency of requests are completely unknown at the
present.

12 Transaction Manager

The Transaction Manager will probably be implemented as a server. This unit calls the following MDBS
units:

• MDBS Agent

• another Transaction Manager (server)

• Log Manager

• Monitor

The following is a list of the additional data required for transaction management:

• Log Manager

– attributes

∗ interface description

∗ log capacity

• Monitor

– monitor type - i.e. transaction processing environment

Before we know the requirements this places on the Information Repository Service, we need to determine
what data can be stored at the Transaction Manager site and at the Monitor site.

9



13 Recovery Manager

The Recovery Manager will probably be implemented as a server. This unit calls the following MDBS units:

• MDBS Agent

• another Recovery Manager (server)

• Log Manager

• Monitor

The additional data required for recovery management is the same as that required for transaction manage-
ment. As mentioned previously, the requirements this unit places on the Information Repository Services
depends on what statistical, attribute, and location data is stored at the Recovery Manager site and at the
Monitor site.

14 Log Manager

A Log Manager may be implemented as a server or it may be packaged with a Transaction or Recovery
Manager. The Log Manager will probably not call any other MDBS units.

15 Monitor

We have had only preliminary discussions on the Monitor unit; it will probably be implemented as a server.
As discussed previously, we assume that the Monitor will store data in the Information Repository Service.
Thus it will call the Catalogue unit but is unlikely to call any other MDBS unit.

At present, the only information that the Monitor will be required to collect is the performance informa-
tion required by the Query Optimizer. Since the system’s performance will change over time, the Monitor
requires insert, update, and delete capabilities for this information. The performance characteristics required
by the Query Optimizer were specified previously. They are included here for convenience:

• Component Characteristics - Data Sources

– system estimates

∗ number of users

– processing estimates

∗ number of tuples per table (*)

∗ average tuple size per table (*)

∗ minimum value in a column (*)

∗ maximum value in a column (*)

∗ number of distinct values in a column (*)

∗ distribution of values in a column (*) - e.g. uniform, normal

∗ list of available indices

· index name

· number of entries (*)

· selectivity (*)

• Component Characteristics - Processors

10



– storage device capabilities/parameters

∗ retrieval rate

∗ device capacity

• Network Characteristics - Links

– communication estimates

∗ effective transmission rate

∗ load

Some of this information is (relatively) static and some will probably be monitored continuously. The rest
(marked with an *) needs to be collected on a per-query basis. It is not clear how this will be accomplished;
the Coordinator or Execution Engine may pass a specification to the Monitor when it executes an access
plan.

16 System Manager

The System Manager unit is a tool of the MDBS DBA. It is used by the DBA to specify characteristics of
component systems and to set the parameter values for instances of MDBS functional units.

The structural information required by the Query Optimize will be stored in the Repository by the
System Manager unit. Since the components of the distributed environment will change over time, the
System Manager requires insert, delete, and update capabilities for this information. The following is a list
of the structural information required:

• Component Characteristics - Data Sources

– source type - e.g. relational database, network database, file system

– source product - e.g. Oracle version 5.0

– storage capabilities

∗ define temporary relations

∗ build indices

– processing capabilities

∗ perform remote join

∗ perform semi-join

∗ perform max aggregation

∗ perform min aggregation

∗ perform sum aggregation

∗ perform avg aggregation

∗ perform count aggregation

∗ perform sort

∗ perform groupby

∗ list of available indices

· index name

· index type

• Component Characteristics - Processors

11



– number of processors

– processor product - e.g. Intel 486, R/S 6000

– processor capabilities/parameters

∗ processor speed

∗ cache size

– operating system product - e.g. AIX version 3.2

– operating system capabilities/parameters

∗ description of optional software installed

• Network Characteristics - Protocols

– protocol product - e.g. TCP/IP

– protocol capabilities/parameters

∗ connection-based

• Network Characteristics - Links

– link product - e.g. Ethernet

– link capabilities/parameters

∗ transmission rate

– communication parameters

∗ usage fee rates

∗ connection costs

Due to the autonomy of the Component Data Sources, some of this data may not be available for some
sources. Thus, a null value may occur as a valid data value.

The System Manager unit calls the Coordinator unit to submit requests to the Catalogue. It may interface
with other functional units (or their servers) in order to control MDBS performance by setting parameters in
these units. This unit will probably be packaged with a windowing interface (i.e. an application) to provide
a DBA tool for the MDBS.

17 Catalogue

The catalogue calls no other MDBS functional units. As discussed earlier, the catalogue provides a set of
cover routines for the Information Repository Service. Therefore, it has no requirements for data storage in
the Information Repository Service but rather it must provide facilities to meet the data storage requirements
of all the other MDBS functional units. In brief, it must maintain information about MDBS schema, tables,
and columns; export schema, tables, and columns; domains; users; applications; servers; component data
sources; sites and communication links. All of these requirements appear in the section(s) for the relevant
unit(s). The following relational schema for the catalogue is presented as a summary of the requirements we
have discussed.

/*

* Relational Schema for MDBS Catalogue (revised version)

* Prepared by James W. Hong (Dec. 2, 1992)

* - after meeting Pat Martin and Mike Bauer at CAS on Dec. 1, 1992

* Modified by Neil Coburn (Mar. 3, 1993)

12



* - after discussions with Mike Bauer, James W. Hong and Pat Martin

*

*/

table: applicationUses /* key(applicationId, cdsId) */

applicationId integer Not Null /* foreign key for application.applicationId */

cdsId integer Not Null /* foreign key for componentDataSource.cdsId */

table: column /* key(columnId) */

columnName char (40,1)

columnId integer Not Null

columnType char (10,1) /* values: view, table, export */

domainId integer /* foreign key for domain.domainId */

nullValuesFlag integer

primaryKeyFlag integer

foreignKeyFlag integer

description text (20,20,20,3)

table: exportColumn /* key(columnId) */

/* This table contains a subset of the tuples in the column table.

*/

columnName char (40,1)

columnId integer Not Null /* foreign key for column.columnid */

noOfIndexes integer

minValue integer

minValueTimestamp date

maxValue integer

maxValueTimestamp date

noDistinctValues integer

distinctValuesTimestamp date

valueDistribution char (40,1)

description text (20,20,20,3)

table: exportColumnIndexes /* key(columnId, indexid) */

columnId integer Not Null /* foreign key for column.columnid */

indexId integer Not Null /* foreign key for index.indexId */

table: columnUses /* key(resultColumnId, sourceColumnId) */

resultColumnId integer Not Null /* foreign key for column.columnid */

sourceColumnId integer Not Null /* foreign key for column.columnid */

table: componentDataSource /* key(cdsId), key(cdsName) */

cdsName char (40,1) Not Null

cdsId integer Not Null

siteId integer Not Null /* foreign key for site.siteId */

exportSchemaId integer Not Null /* foreign key for schema.schemaId */

description text (20,20,20,3)

type char (40,1) /* values: relation, network, file, etc. */

product char (40,1) /* values: Oracle 5.0, Vax DBMS, IMS, etc. */

13



tempStorageFlag integer

buildIndexesFlag integer

remoteJoinFlag integer

semiJoinFlag integer

maxFlag integer

minFlag integer

sumFlag integer

avgFlag integer

countFlag integer

sortFlag integer

groupFlag integer

noOfUsers integer

noOfUsersTimestamp date

table: constraint /* key(constraintId) */

constraintId integer Not Null

description text (20,20,20,3)

table: domain /* key(domainId), key(domainName) */

domainName char (40,1) Not Null

domainId integer Not Null

domainType char (10,1)

domainUnits char (10,1)

domainMinValue integer

domainMaxValue integer

description text (20,20,20,3)

table: entityConstraint /* key(entityId, entityType, constraintId) */

entityId integer Not Null /* foreign key for column.columnId,

* exportTable.tableId, mdbsTable.tableId

* or schema.schemaId

*/

entityType char (10,1) Not Null /* values: column, export, mdbs, schema */

constraintId integer Not Null /* foreign key for constraint.constraintId */

table: exportTable /* key(tableId) */

tableName char (40,1)

tableId integer Not Null

noOfIndexes integer

noOfTuples integer

noOfTuplesTimestamp date

avgTupleSize integer

avgTupleSizeTimestamp date

description text (20,20,20,3)

table: hasAccessTo /* key(userId, schemaId) */

userId integer Not Null

schemaId integer Not Null /* foreign key for schema.schemaId */

ownFlag integer

14



readFlag integer

updateFlag integer

insertFlag integer

deleteFlag integer

table: index /* key(indexId) */

indexId integer Not Null

indexType char (40,1)

tableId integer Not Null /* foreign key for exportTable.tableId */

noOfColumns integer

indexSize integer

indexSizeTimestamp date

selectivity char (10,1)

selectivityTimestamp date

table: linkedTo /* key(siteId1, siteId2) */

siteId1 integer Not Null /* foreign key for site.siteId */

siteId2 integer Not Null /* foreign key for site.siteId */

linkProduct char (40,1)

protocol char (40,1)

protocolType char (40,1)

linkLoad integer

linkLoadTimestamp date

startUpCost integer

unitCost integer

specTransmission integer

effTransmission integer

effTransmissionTimestamp date

table: domainMapping /* key(domainMapId) */

domainMapName char (40,1)

domainMapId integer Not Null

inputdomainNameList char (200,1)

outputdomainNameList char (200,1)

description text (20,20,20,3)

table: application /* key(applicationId) */

applicationName char (40,1)

applicationId integer Not Null

schemaName char (40,1) /* foreign key for schema.schemaName */

description text (20,20,20,3)

table: mdbsTable /* key(tableId), key(tableName) */

tableName char (40,1) Not Null

tableId integer Not Null

tableDefinition char (40,1)

parseTree bulk (20,10000,10000,10)

description text (20,20,20,3)

15



table: tableColumns /* key(tableId, tableType, columnId) */

tableId integer Not Null /* foreign key for mdbsTable.tableId

* and exportTable.tableId

*/

tableType char (10,1) /* values: mdbs, export */

columnId integer Not Null /* foreign key for column.columnId */

table: schema /* key(schemaId), key(schemaName) */

schemaName char (40,1) Not Null

schemaId integer Not Null

schemaType char (40,1)

cdsId integer /* foreign key for componentDataSource.cdsId

* For an export schema this indicates the

* corresponding component data source;

* otherwise, Null.

*/

description text (20,20,20,3)

timestamp date /* time of latest modification to this schema */

table: schemaTables /* key(schemaId, tableId, tableType) */

schemaId integer Not Null /* foreign key for schema.schemaId */

tableId integer Not Null /* foreign key for mdbsTable.tableId

* and exportTable.tableId

*/

tableType char (10,1) /* values: mdbs, export */

table: site /* key(siteId), key(siteAddress) */

siteAddress char (40,1)

siteId integer Not Null

processorType char (40,1)

processorProduct char (40,1)

noOfProcessors integer

processorSpeed integer

memorySize integer

cacheSize integer

avgDeviceRetrievalRate integer

avgDeviceRetrievalRateTimestamp date

availableDeviceCapacity integer

availableDeviceCapacityTimestamp date

operatingSystem char (40,1)

OSDescription text (20,20,20,3) /* Optional software */

login char (40,1) /* Require secure access to each site;

* needs further investigation.

*/

avgLoad integer

avgLoadTimestamp date

siteDescription text (20,20,20,3)

table: tableUses /* key(mdbsTableId, exportTableId) */

16



mdbsTableId integer Not Null /* foreign key for mdbsTable.tableId */

exportTableId integer Not Null /* foreign key for exportTable.tableId */

table: user /* key(userId) OR key(userId, siteId) */

/* This table contains information maintained to provide authorized access to the MDBS.

* The exact requirements are not known at this time.

*/

userName char (40,1)

userId integer Not Null

siteId integer Not Null /* foreign key for site.siteId */

accessPriviledges integer

description text (20,20,20,3)

table: accessPlan /* key(planId) */

planId integer Not Null

timestamp date /* time of access plan creation */

sizeAccessPlan integer

accessPlan text (20,20,20,3)

table: accessPlanSchemas /* key(planId, schemaId) */

planId integer Not Null /* foreign key for accessPlan.planId */

schemaId integer Not Null /* foreign key for schema.schemaId */

table: intermediateResult /* key(resultId) */

resultId integer Not Null

resultDescription text (20,20,20,3)

table: rpcServer /* key(serverName),

* key(programNumber, versionNumber, siteId)

* key(siteId, portNumber)

*/

serverName char (40,1) Not Null

programNumber integer Not Null

versionNumber integer Not Null

siteId integer Not Null /* foreign key for site.siteId */

portNumber integer

table: serverInfo /* key(serverName) */

/* This table contains data for non-RPC servers.

*/

serverName char (40,1) Not Null

serverType char (40,1) /* values: log manager, monitor, database, etc. */

interface char (40,1)

description text (20,20,20,3)

References

[1] P. Martin, M. Bauer, N. Coburn, P. Larson, G. Neufeld, J. Pachl, and J. Slonim. Directory Requirements

17



for a Multidatabase Service. In Proceedings of the 1992 CAS Conference, volume II, pages 339–350,
November 1992.

18


