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Abstract

Finite element modelling of three dimensional elasticity problems gives rise to large
sparse matrices. Various preconditioning methods are developed for use in precon-
ditioned conjugate gradient iterative solution techniques. Incomplete factorizations
based on levels of fill, drop tolerance, and a two level hierarchical basis are developed.
Various techniques for ensuring that the incomplete factors have positive pivots are
presented. Computational tests are carried out for problems generated using unstruc-
tured tetrahedral meshes. Quadratic basis functions are used. The performance of the
iterative methods is compared to a standard direct sparse matrix solver. Problems with
up to 70,000 degrees of freedom, and small (< 1) element aspect ratio are considered.
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1 Introduction

Three dimensional finite element stress analysis gives rise to large, sparse matrices. In most
cases, the cost of the finite element analysis is dominated by the cost of solution of the
resulting large sparse system. In many fields, such as computational fluid dynamics [1, 2,
3], petroleum reservoir simulation [4, 5] and semiconductor device simulation [6], iterative
methods are typically used for solution of three dimensional problems. However, for elasticity
problems, direct methods are commonly used.

Of course, for direct methods, the cost of solution and storage requirements increase
dramatically for three dimensional problems, as compared to two dimensions. Consequently,
there has been a recent upsurge of interest in applications of iterative methods for three
dimensional elasticity problems [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In some cases,
iterative methods have been quite successful, in comparison to direct solvers. However,
there are other situations where the performance of iterative methods is quite poor [16].
This generally seems to occur for problems where the elements have a small (< 1) aspect
ratio [10, 16], which produces matrices having a large condition number. Although it is
advisable, from a finite element error standpoint, to produce meshes which result in well
shaped elements, in practice, this may not always be possible. Also, many problems which
were traditionally modelled using two-dimensional plate and shell elements, are now being
modelled using quasi-three-dimensional elements. This is particularly useful for analysing
laminated composite materials [18, 16]. In this case, any practical finite element mesh will
be composed of small aspect ratio elements.

The objective of this article is to develop robust iterative methods for three-dimensional
stress analysis, which can be applied to problems with unstructured, tetrahedral meshes.
We will attempt to ascertain which iterative techniques can reliably outperform a direct
solver. As a model problem, we will consider solution of the linear elasticity equations
for three-dimensional objects using quadratic basis functions defined on tetrahedra. This
gives rise to a symmetric positive definite problem for the displacements. Preconditioned
conjugate gradient (PCG) methods will be used. Although multi-grid methods have also
been suggested for stress analysis [14, 17], application of multi-grid methods to unstructured
grid problems is a non-trivial task. Consequently, in this work, attention will be restricted
to PCG methods.

The convergence of a PCG method is strongly influenced by the type of preconditioning.
Level based [4, 5, 19, 20] and drop tolerance based [21, 22, 23, 20, 24] incomplete LU factor-
ization (ILU) preconditioning will be used. In addition, the ILU methods will be combined
with two level hierarchical basis functions [25, 26, 27, 28, 29, 30, 31, 32]. Storage limitations
permitting, these PCG methods will be compared with direct solution times.

The above methods have been tested on a variety of test problems. The selected problems
range from simple model problems (a cube with varying aspect ratio) to fairly realistic
complex three-dimensional objects. These problems have from 1,000 to 70,000 degrees of
freedom. All results are obtained on a workstation.
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2 Formulation

The three-dimensional linear elasticity problem for an isotropic material is given (in terms
of the displacement vector u) by

pVu+ A+ p)VV-u = 0 (1)

with the boundary conditions u specified, surface tractions specified, or natural boundary
conditions. In the above, u is the vector of displacements in the three co-ordinate directions,
and
E
2(1+v)
Ev
(1+v)(1—2v)
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where F is Young’s modulus, and v is Poisson’s ratio.

Using the usual quadratic Lagrange polynomial basis functions defined on tetrahedra (the
ten node tetrahedra), a standard finite element procedure applied to equation (1) results in
the symmetric positive definite stiffness matrix A

Au = b (2)

where u is the vector of the nodal displacements, and b is the right hand side vector. Within
each tetrahedra, let ¢; be the basis function at node i (vertex or midside), then

i=10
u = Z u;¢; (3)

i=1

where the ¢; are the usual nodal basis functions.

Alternatively, we can use another set of basis functions to derive an equivalent stiffness
matrix. Let ¢; be the new basis functions defined on each tetrahedra. Let i = {1,2,3,4} be
the vertex nodes of the tetrahedra, and i = {5,6,7,8,9,10} be the midside nodes. Then let
¢fi,i =1,..,4 be the trilinear functions

~

¢; = 1 at node1
= Oatnodesj,j#1
(i,j)=1,..,4

Let ¢fi,z’ =5,..,10, be the quadratic functions where

~

¢; = 1 at node ¢
= Oatnodesj,j#i
1=5,..,10; j=1,...,10
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In other words, gﬁi,i = 1,..,4 are the usual linear basis, and éi,i = 5,...,10 are the usual
quadratic basis, i.e.

b = ¢i i=5,...,10

Note that gzgl-,i = 1,..,4 do not vanish at neighbouring midside nodes. This basis is known
as a hierarchical basis [25, 33, 26, 10, 29, 12, 14]. The analogue of equation (3) is

u = Z 0;0;
ui:ﬁi 221,,4
N ﬁvl + ﬁv2 .
ui:ui—l—T i =25,..,10 (4)
where v1,v2 are the neighbouring vertex nodes to a midside node.

Since the usual quadratic basis can be written as linear combination of the hierarchi-
cal basis, it is possible to simply transform equation (2) into a new stiffness matrix [34].
Alternatively, the stiffness matrix in the new basis may be constructed directly.

If the vector of unknowns « in the hierarchical basis is partitioned into vertex unknowns
1, and midside unknowns ,,, then the stiffness matrix in the hierarchical basis A¥ can be

written R
A A U b
H mm mu m . m

v () )= () @

where we have ordered the midside unknowns first, and the vertex unknowns last. The block
element A,, in equation (5) is simply the usual stiffness matrix for a linear basis function
solution to equation (1).

It is possible to define various other new basis functions [34, 15, 27, 31]. Depending
on the type of preconditioning used, some of these other techniques may be superior to
a hierarchical basis if many hierarchical levels are used and a very simple preconditioning
method is employed [31]. However, for a suitable preconditioning method, is is possible to
obtain good results for a hierarchical basis in three-dimensions, even for a large number of
hierarchical bases [27, 30].

In this work, since we are dealing with a quadratic basis for an unstructured tetrahedral
mesh, we will restrict attention to a two level p-version of the hierarchical basis [12]. It
would appear to be a non-trivial task to use a large number of h-version hierarchical basis
functions for an unstructured mesh, with possible discontinuous material properties.

It is of course possible to use more p-levels in the basis, i.e. linear, quadratic, cubic, and
so on. This idea has been considered in [14], but we will not pursue this idea in this work.
The idea of using a two-level method is similar to the technique used in [9], in the context
of a multi-grid-like method.
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3 Preconditioning Methods

ILU preconditioning is a widely used, robust method. However, there are many different
issues which arise in ILU preconditioning. For example, an ILU can be based on the graph
of the matrix (levels of fill) [5, 19], a drop tolerance [21, 22|, or both [20]. The ordering of
the unknowns can also strongly effect the convergence rate [35, 19]. As well, stress analysis
problems typically do not result in M-matrices. Consequently, an incomplete LU factoriza-
tion (ILU) of a symmetric positive definite matrix may produce negative pivots [36]. If a
two level hierarchical basis is used, there are also several ways to approximate the block ILU
factorization.

In the following, the notation I LU (level,€) will be used to denote an incomplete factor-
ization, with level level, and drop tolerance e. For example

[LU (0, .01)
would refer to a pure drop tolerance ILU (drop tolerance = .01), while
ILU(3,0.0)

would refer to a pure level based (level = 3) ILU. For a given ordering of the unknowns,
there is a standard definition of a level based ILU [19]. On the other hand, there are various
ways to define a drop tolerance ILU [21, 22, 20]. For a given pivot sequence, let A®) be
the submatrix in the incomplete factorization which remains after eliminating the first £k — 1
variables (columns 1, ..,k — 1 have been eliminated). Note that

AY = A
k ()
{A( )}ij = @
In this work, if a drop tolerance ILU is selected, then if
k k
|az(j)| < € az(i)
1>k j>i (6)
then the element agf) is dropped from the ILU, otherwise it is kept. Note that since A
is symmetric, we need only consider the upper triangular factor. We have experimented
with various criteria, and, in accordance with previous work [21, 23], we have found that the
quality of the ILU seems to be fairly insensitive to the precise form of the drop tolerance, but
it is, of course, sensitive to drop parameter €. Criteria (6) happens to be easy to implement
efficiently in our software. The precise choice of the best drop tolerance criterion is still an
open question. More discussion of this may be found in [21, 22, 23, 20].
As mentioned previously, an incomplete factorization of a symmetric positive definite

matrix which is not an M-matrix, may result in a negative diagonal, i.e. a,(flz) < 0. This
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problem is well known, but in the past was not regarded as too serious. In many codes, if a
negative pivot is encountered, the pivot is simply replaced by the a suitably chosen positive
number, and the factorization proceeds [22, 36]. In our experience, this approach works well
in many fluid dynamics applications, but is very poor for stress analysis problems, possibly
because stiffness matrices may have off-diagonals which are several orders of magnitude larger
(in absolute value) than the diagonals.

Another possibility is to add suitable multiples of the absolute value of any dropped fill
terms (for either a drop tolerance or level of fill ILU) to the diagonal of the ILU. It can be
shown that the resulting ILU matrix is positive definite [21]. However, the addition of the
dropped terms to the diagonal may produce a poor ILU, and can result in slow convergence.
It is clear that this approach overestimates the amount that must be added to the diagonal in
order to preserve positive definiteness. To see this, consider an ILU of a symmetric positive
definite, diagonally dominant M-matrix. It is well known that a ILU of such a matrix will
be positive definite, without addition of any terms to the diagonal. However, the approach
described above [21, 22, 23] would unnecessarily increase the size of the diagonal of the
ILU, and hence slow convergence. Nevertheless, this method is completely reliable, in that
a successful ILU factorization is always guaranteed. In the following, we will refer to this
approach as J&M Add. Assuming that the original diagonals of the stiffness matrix have
been scaled to one, then the following implementation of the method [23] is used in this
work. If az(f) is a term which is dropped from the ILU (for either level or drop tolerance),
then,

aif) = af +laf)|

k k k

aff = aff +laj]
1>k jg>i (7)

In equation (7) it is assumed that only the upper triangular part of A is being processed.
The negative pivot problem can also be avoided in the following way. The diagonal a,(jg)
is monitored. If

agz) < 7 Rk

Ry, = max (|aj,) (8)

Then the ILU factorization is aborted, and a new ILU is attempted on the perturbed
system|7]

(@) = (+a)al ; ¥i (9)

If equation (8) is violated again, then « is increased, and the ILU is repeated, until equation
(8) is satisfied for all k. Typically, we use

v = 0.0
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a = (p—1)n
n = 107° (10)
where p is the number of the current attempt to ILU factor the matrix.
It is possible to simply precondition the stiffness matrix A resulting from the standard

Lagrange quadratic basis, using an ILU factorization. In other words, we incompletely factor
A in equation (2) as

PO=LL' ~A (11)

Henceforth, this preconditioning will be referred to as PO.
If the hierarchical basis is used, then we will consider two approximate block factorizations
of the hierarchical stiffness matrix (5). The simplest preconditioning [25, 10], which will

referred to as P1, is
Ln.Lt 0 Amm Ao
P1= ( 0 Lt ) = < Ay Auy ) (12)

where L,,, L, are (possibly) approximate factors of the block diagonals

Ln,Ll, =~ A,
LI ~ A, (13)

l

A more accurate preconditioning, which will be referred to as P2 attempts to take into
account some of the vertex-midside coupling terms A,,,, Aym [25, 29].

( LnLi, 0 I (LpLt) ™" A, Avim Ao
Pz‘( Ao Lthv)(o ] | A An (14)

If h is the mesh size parameter, then the spectral condition number of A,, is O(h™2),
since A,, is the usual stiffness matrix for a linear basis function discretization of equation (1).
It can be shown that the condition number of A,,,, is independent of i [25, 10]. An intuitive
explanation for this is simply that A,,,, represents the stiffness matrix of a discretization of
equation (1) with all vertex (v) nodes fixed [9].

Since A,,,, has condition number independent of h, then, at least in theory, a very simple
preconditioning of A,,,, can be used. Various authors have proposed a P1 preconditioning
of the form [25, 10]

LiyLy, = diag (Appn)
L,I\ = ILU(c0,0.0) (15)

(i.e. an exact factorization of A,,, and diagonal scaling of A,,,). Consider a sequence of
discretizations of equation (1), with different mesh sizes h, then if z, is a vector in the finite
element solution space for a given mesh size h, V},, then, for P1 as in equation (15)

Cl(l‘h,PthL’h> < (l’h,AhHIh) < Cg(xh,PthL’h) ; Vxh S Vh , Vh (16)
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where ¢y, ¢y are independent of h [10]. In other words, P1 and A¥ are spectrally equivalent,
which implies that the number of iterations required to solve the stiffness matrix using a PCG
method is independent of mesh size. It is also known that if L,L! is an exact factorization
of A,, and L,,L! is any approximate factorization which is spectrally equivalent to A,
then P2 and A are also spectrally equivalent [29].

Of course, this assumes that L,L! is an exact factorization of A,,. This matrix is about
1/8 the size of A for typical three-dimensional triangulations, and is much more sparse than
A (linear basis functions as opposed to quadratic). Hence the cost of exactly factoring
Ay, 18 small compared to the cost of exactly factoring A. However, it is possible to use
more hierarchical levels, and to use a recursive form of the P2 preconditioner, to develop a
preconditioner which is spectrally equivalent to A, but does not require an exact factorization,
except on the coarsest level [27, 30]. Note that in this case the preconditioner [27, 30] is not
simply based on diagonal scaling of high levels, but uses an accurate approximation to the
Schur complement at each level.

However, use of more than two levels requires definition of “coarse grid” linear basis
functions, which is a non-trivial task for unstructured tetrahedral meshes. Consequently, we
will not consider more than two levels in this work. As mentioned above, the computational
work for an exact factorization of A,, is small compared to a direct solve of the original
problem, and if this is the price to be paid for a robust iterative method, so be it.

Unfortunately, the situation is not as rosy as it might appear. Although the constants
c1, o are independent of h for suitable L,,, L,, these constants are functions of Poisson’s ratio
v and the element aspect ratio [10]. In fact, if the P1 preconditioner with L,, defined as
in equation (15) is used, the condition number of the preconditioned system (cqo/c;) may be
very large for bad (< 1) element aspect ratios [10]. Consequently, it will often be necessary
to use a fairly accurate ILU factorization of A,,,,, even though A,,,, has condition number
independent of h. Note that in reference [9], use of an exact factorization of A, was
advocated.

As mentioned previously, ordering of the unknowns can have a significant effect on the
convergence of PCG methods [19]. In this work, a Reverse Cuthill McGee (RCM) ordering
will be used [37] for an ILU factored submatrix. The RCM ordering is based on the nodal
graph of the finite element mesh. This nodal ordering is then converted to a degree of freedom
ordering by ordering all the displacements at each node consecutively. In other words, this
is a block RCM ordering, with all displacements at a single node contained in each block. If
an exact factorization of a submatrix is used, then minimum degree ordering [37] is used to
minimize work and fill.

Note that these preconditionings all require some operation like

-1
A, (17)
which is approximated by

~ (LyLy) "'z, pe{m,uv} (18)
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where x is some vector. Instead of simply approximating the inverse in equation (18) by the
ILU LPLZ, it is possible to determine the solution to equation (17) to any degree of precision
by using a PCG method, with LpL; as a preconditioner to solve equation (17). This gives
rise to nested levels of a PCG iteration. Each outer PCG iteration, requires several inner
PCG iterations to solve equation (17).

4 Test Problems
The convergence tolerance for all tests was

[ 12

170112

< 107° (19)

where [|r°||2 is the initial l; norm of the residual, and ||r*||5 is the norm of the residual after
k iterations. After symmetrically scaling the matrix (and consequently the solution vector
and right hand side), the zero vector was used as the initial guess. Note that in some cases
we will be comparing results for an ILU of the original stiffness matrix A and the hierarchical
basis A”, in which case the residual, and hence the convergence criteria, are not precisely
the same. However, we have computed the difference between the usual residual and the
hierarchical basis residual (at convergence) in all our runs. The maximum difference in the
norms of these two residuals (at convergence) was about 20%, indicating that if a nodal
residual was used in the convergence test for the hierarchical basis, or vice versa, the number
of iterations would change by one or two, which would not have any appreciable impact on
our results.

Where storage limitations permit, we have also solved the test problems using the Yale
Sparse Matrix Package (YSMP), which is a direct solver [38]. Minimum degree ordering was
used for the direct solve.

A summary of test problem data for each problem is given in Table 1. For general
tetrahedral meshes, it is useful to have a well defined measure of element aspect ratio. A
common measure [39] is three times the ratio of the radius of the circumsphere to the radius
of the inscribed sphere for each tetrahedra. Table 1 shows the element aspect ratio for each
test problem. The test problems are described in detail below.

4.1 Cube Problem

This problem consists of a cube-like solid, with physical dimensions [ x [ x [z. This solid is
first gridded using an n x n x n rectangular grid, which results in (n —1) x (n —1) x (n—1)
bricks. Each brick is then further subdivided into six tetrahedra.

The solid is constrained at the four bottom corners, and has a specified deflection at one
top corner. By varying the thickness [z, the effect of varying element aspect ratio can be
observed. This problem was solved using a 4 x 4 x 4 and 10 x 10 x 10 mesh.
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Table 1: Summary of Test Problem Data

Problem Descriptions Degrees of | Nonzeros | Element Aspect Ratios Material
Freedom | in U(A) | Minimum Average | Properties v

4x4x4 (l/lz=1) 1029 34377 0.717 0.717 0.400
Cube (1/l1z = 10) 0.190 0.190

(I/1z = 100) 0.020 0.020
10 x 10 x 10 (I/lz=1) 20577 816081 0.717 0.717 0.400
Cube (I/1z = 10) 0.190 0.190

(1/1z = 100) 0.020 0.020
Balljoint 21411 847719 | 1.6 x 1074 0.779 0.266
Block Containing 19479 757050 | 1.2 x 10~* 0.784 Block 0.300
Prism Prism 0.450
Bushing 49896 | 2001024 0.451 0.595 0.346
Multi-material 50637 | 1998375 | 1.0 x 10~* 0.783 | Supports 0.450
Bracket Base 0.200
Corroded Pipe 73191 | 2646231 0.184 0.356 0.301

4.2 Balljoint Problem

The balljoint problem is a quarter model of a balljoint. The ball has a radius of 0.01 m and
the shaft extending from it has a radius of 0.008 m and a length of 0.016 m from the center
of the ball. The back of the ball has been cut off perpendicular to the axis of the shaft at a
distance of 0.006 m from the center of the ball. A depiction of the surface mesh is shown in
Figure 1. The tetrahedral mesh was generated by the I-DEAS VI: Mesh Generation Package
[40].

For boundary conditions, the end of the shaft has been deflected along and across the
direction of the shaft axis. The ball surface was fixed in a slanted band near where the shaft
connects to the ball.

4.3 Block Containing Prism Problem

This problem consists of a block of one material with a prism of another material through
the length of the block. The block has a width of 0.07 m, a height of 0.1 m and a length of
0.4 m. The cross section of the triangular prism is defined by the three points ( 0.02, 0.05),
( 0.05, 0.02) and ( 0.05, 0.08). The tetrahedral meshes were generated by the - DEAS VI:
Mesh Generation Package [40]. Refer to Figures 2 & 3 to see the surface mesh of the two
separated components.

Boundary conditions are created by first fixing the position of all the nodes on one of the
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exposed ends of the prism and then applying a uniform, skewed force over the entire surface
area of the other end of the block.

4.4 Bushing Problem

The bushing problem is a model of thick washer made from a soft material. The bushing
has an outer radius of 0.04 m, an inner radius of 0.01 m, and a thickness of 0.01 m. A view
of the surface mesh for the bushing can be found in Figure 4.

The boundary conditions are designed to simulate the use of the bushing to protect a
block of material from direct contact with a C—clamp being applied right on the edge of the
block. Thus the bushing is being bent over the lip of the block by a skew load. The position
of all nodes on the bottom surface of the bushing to the right of 0.03 m are fixed and every
surface triangle on the top of the bushing is subjected to a skew load.

4.5 Multi-material Bracket Problem

The bracket problem is another multi-material test problem. The base and face plates are
made of the same material and the supports are made of a different material. The base and
face plates are 0.03 m deep/thick, the two triangular plate supports are also 0.03 m thick,
and the supports are 0.1 m apart. In total the bracket/brace is 0.13 m deep, 0.13 m high
and 0.16 m wide. Figure 5 depicts the surface mesh for the base and face plates combined
and Figure 6 depicts the surface mesh for the supports. The tetrahedral mesh was generated
by the I-DEAS VI: Mesh Generation Package [40].

For boundary conditions the base of the plate is fixed, and the face plate nodes are
displaced perpendicular to the plate’s surface as a function of displacement from the base
plate (i.e. 0.001 x z coordinate). This effectively slants the face plate as if heavily loaded.

4.6 Corroded Pipe Problem

The mesh for the pipe problem was contributed by B. Chouchaoui [41] who is studying the
impact of corrosion on pipe strengths. Only the mesh representing half the arc of the pipe
was used. The boundary conditions were a simplified version of the original experimental
data. The pipe segment is 350.0 mm long with an inner and outer radius of 155.46 and
161.86 mm respectively. The corrosion pit is centered on the pipe segment and is marked
by a finer grid. For our analysis, each hexahedral element was divided into six tetrahedral
elements. Figure 7 shows the surface mesh from the hexahedral discretization.

For boundary conditions, the pipe experiences tension along its length caused by fixing
the nodes of one end and applying a normal force to all surface triangles on the other end.
To avoid rotation around the pipe’s axis, the positions of the nodes along one lengthwise
edge are fixed so no motion is allowed out of the cut plane, while allowing displacements
within the cut plane.
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5 Results

There are a very large number of possible combinations of preconditionings, as discussed in
Section 3. In the following, we will give some detailed results for a representative sample
of tests. Space does not permit an exhaustive catalogue of all the results. We have carried
out many more tests than will be reported in detail, and we will indicate qualitatively the
trends in these test cases as well.

In the following tables the notation ILU(..,..) will refer to an ILU factorization of the
original nodal basis, while ILU,(..,..), ILUy(..,..) will refer to the ILU of A,,, and A, ,
as in equation (5).

Unless otherwise indicated, the method of equations (8, 9) will be used to ensure a
positive definite ILU factor. The parameters are those in equations (10). If a negative pivot
is encountered on the fifth attempt at ILU factoring (p = 5 in equation (10) ), the ILU is
aborted.

All results are given in terms of total CPU time and number of iterations. The total
CPU time includes all the time required to symbolically and numerically ILU factor the
matrix (these steps are combined when a drop tolerance ILU is used), and the iteration cost
(forward and back solve, acceleration work). In addition, the total CPU time includes all
the time required for repeated attempts to perform the ILU factorization (equations (8, 9))
to ensure positive pivots. The CPU time does not include the time required for construction
of the stiffness matrix. CPU times are reported for a SUN 670/MP.

Most tests were done initially on the Cube problem because of the ease with which both
the material properties of the Cube and the mesh size being used could be changed. The
test results for the Cube will thus be presented first followed by the experimental results for
problems with more complex geometries.

5.1 Cube Results

Some representative results for the Cube problem are given in Tables (2, 3, 4, 5). In both
Tables (2, 3), the line J & M Add refers to the procedure used in [21, 22, 23] applied to
the preconditioning method listed in the line above. Table 2 clearly shows that for PO
preconditioning (equation (11)), the number of iterations increases drastically as the Cube’s
aspect ratio decreases. Similar behaviour has been noted by others [10, 16].

Tables 3 and 4 indicate that P2 preconditioning (equation(14)) requires about one half
(on average) the iterations as a similar P1 preconditioning. However, since each P2 precon-
ditioning iteration requires more than twice the work of a P1 preconditioning iteration, the
P2 method always requires more total CPU time than an equivalent P1 technique. Conse-
quently, there does not appear to be any advantage to using a P2 preconditioning, even for
problems with poor aspect ratios (I/lz > 1).

Table 3 shows that for problems with aspect ratios near unity, a diagonal scaling precon-
ditioning I LU,, = diag(Amm) is quite effective. However, the performance of this method
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Table 2: PO Preconditioning for Cube 4x4x4

CPU seconds (iterations)
Preconditioning | [/lz=1.0| [/lz=10| [/lz= 100
ILU(1,0.0) 848 (18) | 24.9 (38) | 124.26 (649)
J & M add 16.23 (52) | 44.64 (217) *
ILU(2,0.0) 13.17 (14) | 19.8 (40) | 112.2 (469)
J & M Add 18.34 (27) | 33.9 (101) | 115.7 (485)
ILU(00,10°°) | 1651 (3)| 1598 (6) | 63.75 (271)
J & M Add 20.59 (8) | 29.1(35) | 76.5 (312)

xDid not converge in 1000 iterations

degrades severely as [/lz increases. Note that the very accurate ILU factorizations of A,
ILU,,(0,0.0), ILU,,(0c0,107?) are more robust (fewer iterations) and require less CPU time
than the less accurate ILU factorizations of A, as [/lz increases.

Tables (2, 3) also indicate that the J & M Add technique [21] becomes slower as the aspect
ratio deteriorates (becomes smaller) for relatively inaccurate factorizations. For inaccurate
ILU factorizations, the discarded fill terms are fairly large, so that the amount added to the
diagonal is also quite large. This tends to cause an iterative method which uses J & M Add
to slow down. However, as the ILU becomes more accurate (higher level or smaller drop
tolerance), the amount added to the diagonal is smaller, and hence this technique becomes
more competitive.

Representative computations for the 10 x 10 x 10 Cube problem are given in Table 5. The
level based ILU PO methods are competitive with P1 preconditionings for [/lz small, but
are poor for [/lz > 1. As for the smaller version of the Cube problem, the preconditioners
ILU,, = diag(Amm), I LU,,(0,0.0) are poor as the aspect ratio becomes more extreme (< 1).
More accurate factorizations of A, are required as [/lz increases. Table 5 also shows an
interesting phenomenon. The very small drop tolerance ILU factorizations of A,,,, require
more CPU time for cubes having aspect ratio near unity compared to problems with poor
aspect ratios (I/lz > 1). This is because for a given (small) drop tolerance, more fill is
generated for [/lz = 1 than for [/lz > 1. For anisotropic M-matrix problems, this effect
has been noted previously [20], however, it was noted in [20] that this effect is strongly
dependent on then ordering of the unknowns. It would appear that for problems with small
(< 1) aspect ratios, a small drop tolerance ILU is more effective than for problems with
aspect ratios ~ 1.

Table 6 repeats many of the tests given in Table 5, except that the J & M Add method
was used to prevent negative pivots (instead of adding an a priori number to the diagonal
(equations (8, 9)). Generally, the J & M Add method was slower than the method of
equations (8, 9), even if the ILU was attempted several times before no negative pivots were
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Table 3: P1 Preconditioning for Cube 4x4x4

CPU seconds (iterations)
Preconditioning [/lz=1.0| [/lz==10 ] [/lz =100
ILU ,(00,0.0) 5.78 (58) | 38.62 (431) *
ILU,, = diag(Amm)
ILU ,(00,0.0) 6.9 (38) 9.69 (54) | 47.24 (346)
ILU,,(1,0.0)
J & M Add 7.6 (40) | 15.2 (99) | 114.4 (870)
1LU,(0,0.0) 8.6 (36) | 9.71 (43) | 52.8 (329)
ILU,,(2,0.0)
J & M Add 0.63 (38) | 13.2 (62) | 77.2 (493)
ILU,(00,0.0) 17.22 (34) | 16.25 (37) | 29.10 (105)
ILU,,(00,0.0)
LU (o0, 0.0) 1259 (35) | 11.199 (40) | 40.72 (285)
[LU (00,1074
J & M Add 15.6 (37) | 14.7 (52) | 58.0 (421)
ILU, (o0, 0.0) 17.22 (34) | 14.96 (38) | 27.44 (152)
ILU ;,(00,1079)
J & M Add 20.7 (36) | 18.77 (43) | 43.9 (262)

x Failure to converge after 1000 iterations.

Table 4: P2 Preconditioning for Cube 4x4x4

CPU seconds (iterations)

Preconditioning | [/lz=1.0| [/lz=10 | 1/1z = 100
ILU (0, 0.0) 7.0 (21) | 15.02 (46) | 71 (251)
ILU,,(1,0.0)

ILU (0, 0.0) 0.7 (20 | 10.95 (24) | 72.8 (211)
LU, (2,0.0)

ILU,(c0,0.0) | 16.6 (17) | 17.46 (19) | 32.55 (54)
ILU,,(0,0.0)

ILU,(c0,0.0) | 14.3 (19) | 12.38 (21) | 56.1 (190)
[LU (00,1074)

ILU,(c0,0.0) | 10.27 (18) | 16.5 (20) | 49.8 (135)
[LU (00,1079

14
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Table 5: PO, P1 Preconditioning for Cube 10x10x10

CPU seconds (iterations)

ILU (00, 1075)

Preconditioning [/lz=1.0] 1/lz=10] 1/lz = 100
| PO

ILU(0,0.0) 557 (153) o o
ILU(1,0.0) 513 (67) | 2033 (394) ok
ILU(2,0.0) 964 (43) | 1954 (187) *
ILU (00,107 T) 540 (154) o o
ILU(o0,1072) 391 (84) o HF
ILU(00,107%) 521 (44) | 1869 (344)
ILU(00,107%) 539 (154) | 1856 (127)
ILU(00,107%) 539 (154) | 3756 (112)

| P1

ILU ,(00,0.0) K FFK ook
ILU ,(c0,0.0)

ILU (00, 0.0) 421 (58) | 1172 (323) HAE
ILU,, = diag(Amm)

ILU ,(c0,0.0) 662 (42) | 825 (36) o
ILU,,(0,0.0)

ILU ,(c0,0.0) 457 (39) | 512 (49) | 1316 (248)
ILU,,(1,0.0)

ILU ,(c0,0.0) 584 (39) | 563 (36) | 1632 (244)
ILU,,(2,0.0)

ILU ,(c0,0.0) 298 (41) ** ok
ILU ,,(00,1071)

ILU ,(00,0.0) 312 (39) Hx o
ILU ,,(00,1072)

ILU ,(c0,0.0) 427 (39) | 437 (48) | 1404 (315)
ILU ,,(00,107%)

ILU ,(00,0.0) 847 (38) | 633 (35) | 1378 (240)
ILU (00,1074

ILU,(00,0.0) 2182 (38) | 1243 (35) | 1676 (240)
ILU ,,(00,107)

ILU ,(00,0.0) #RE 12650 (34) | 1311 (92)

xFailure to converge after 1000 iterations.
sk Failed due to negative pivot in ILU (five attempts).
x x xCPU time limit (4000 seconds) exceeded.

15
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Table 6: P1 Preconditioning for Cube 10x10x10 with J & M Add

CPU seconds (iterations)
Preconditioning | {/lz =1.0 | [/lz =10 | 1/lz = 100
TLU,(c0,0.0) 406 (43) | 867 (179) ®

ILU,,(0,0.0)

ILU,(c0,0.0) 475 (40) | 617 (79) ¥
ILU,,(1,0.0)

ILU,(c0,0.0) 635 (39) | 697 (52) | 3476 (626)
ILU,,(2,0.0)

ILU,(c0,0.0) 316 (43) | 696 (146) ¥
ILU (00,1071

ILU,(c0,0.0) 333 (42) | 567 (112) ¥

ILU,,(c0,1072)
ILU,(0,0.0) 440 (39) | 524 (68) | 3549 (924)
ILU,,(c0,1073)
ILU,(0,0.0) 1071 (39) | 774 (40) | 2168 (441)
ILU,,(00,107%)
ILU,(>0,0.0) 3331 (39) | 1763 (35) | 1618 (214)
ILU,,(00,107°)
ILU,(0,0.0) ok 1 3734 (35) | 1796 (118)
ILU,,(00,107°)
x Failure to converge after 1000 iterations.
s« x x CPU time limit (4000 seconds) exceeded.

encountered.
In summary, it seems that a robust method for various aspect ratios uses a P1 precon-
ditioning with

ILU,,(1,0.0) , ILU,,(2,0.0)
ILU,,(00,107%) |, ILU,,(c0,107%)

preconditionings for A,,,,, and an exact factorization of A,,. If it is known that the aspect
ratio is near unity, then P1 with ILU,, = diag(A,.m) is effective, as are PO methods.

Further tests were carried out to determine the effect of having a nonconstant Young’s
modulus (F) within the Cube. A problem with [/lz = 10, and P1 preconditioning with
ILU,,(2,0.0), ILU,(00,0.0) was used. Even if E had large jump discontinuities of several
orders of magnitude, there was very little effect on convergence.

A similar test was carried out to determine the effect of varying Poisson’s ratio. v was kept
constant in the Cube, but different values of v were used in different tests. The performance
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Table 7: PO Preconditioning for Complex Geometry Problems
CPU seconds (iterations)

Preconditioning | Balljoint | Block & Bushing | Multi-Material Corroded

Prism Bracket Pipe
ILU(00,107Y) | 435 (109) 4135 (511) ok ok
J & M Add 830 (219) | 896 (281) | 7845 (994) 6686 (845) *
ILU(c0,107%) | 300 (57) | 294 (64) | 2151 (222) 1979 (190) ¥
J & M Add 790 (192) | 747 (210) | 7406 (853) 5575 (659) *
ILU(00,1073) 448 (33) | 395 (32) | 2173 (114) 1478 (69) | 11684 (789)
J & M Add 892 (120) | 894 (146) | 6782 (530) 4868 (375) *
ILU(o0,107%) | 1283 (19) | 1018 (16) 4162 (59) 2929 (32) | 7178 (319)
J & M Add 1703 (64) | 1510 (76) | 8064 (281) 6225 (202) *
ILU(00,107°) 4951 (9) | 2535 (6) | 19516 (48) 13328 (29) | 10790 (311)
J & M Add 5299 (33) 3401 (33) | 15941 (131) 11995 (92) 13567 (504)
I1LU(0,0.0) 3707 (451) ok
J & M Add 805 (220) | 819 (253) * 6818 (851) *
ILU(2,0.0) 489 (47) | 411 (49) | 2730 (193) 2077 (125) ok
J & M Add 856 (103) | 822 (124) | 6106 (482) 5479 (399) *
ILU(2,0.0) 1041 (28) | 801 (27) | 4175 (118) 3257 (68) ok
J & M Add 1583 (56) | 1245 (61) | 7062 (248) 6596 (215) *

x Failure to converge after 1000 iterations.
s« Failed due to negative pivot in ILU (five attempts).

of the iterative methods was highly dependent on v as expected [10]. For example, the
problem with v = 0.49999 required about 15 times the number of iterations as for the same
problem with v = 0.40 .

5.2 Results from more Geometrically Complex Problems

The test results from the problems having more complex geometries basically confirm the
conclusions developed in the previous section. Tables (7, 8, 9) contain some representative
results.

A comparison of Table 7 (PO preconditioning) and Table 8 (P1 preconditioning with
direct solve of A,,) clearly shows that using a hierarchical basis provides generally better
computation times. For one choice of preconditioning parameters the PO preconditioning
method does give slightly better performance for the two smaller problems, Balljoint and
Block € Prism. However, this performance gain was not repeated for any of the larger test
problems. In particular, PO was an extremely poor technique for application to the Corroded
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Pipe problem (poorer aspect ratio).

The best preconditioners seem to be based on using an exact factorization for A,, and
ILU,, (00,1071, ILU,,(00,107%), or ILU,,(0c0,107?) for A,,,,. Smaller drop tolerances were
required for worse (smaller) aspect ratios (see Table 1), as would be expected [10]. As the
complex geometry problems do not have as extreme aspect ratios as were used in the Cube
problems, the recommended drop tolerance is larger. In general, the most robust method in
these tests was found to be preconditioning by ILU,,(c0,1073) (and exact factorization of
A).

Unlike the results from the previous section, it is not clear that a level based drop tol-
erance would provide good results. The tests indicate that a level based preconditioning
technique is almost always out-performed by the suggested drop tolerance technique (P1,
ILU,,(00,1073), ILU,(00,0.0) ) and that the level based preconditioning provides less con-
sistent results across the tested range of aspect ratios.

Given more information about the equations to be solved, it is possible to improve on
these techniques. As discussed earlier, experimentation demonstrates two dominant factors
that affect the rate of convergence of the iterative techniques. They are the average aspect
ratio of the elements in the mesh and the value of v. However, the value of v seems to
have a uniform affect on all iterative techniques leaving only the element aspect ratios to be
considered.

For the test case meshes generated by the [-DEAS VI: Mesh Generation Package [40],
it is noted that the average aspect ratio was always approximately 0.77. With these aspect
ratios, the maximum rate of convergence using a preconditioner with an exact factorization
of A,, was attained by using a coarse drop tolerance of ILU,,(co,1071) or, for fast results
and minimum space requirements, using a I LU,, = diag(A.,»). However, even these rapid
convergence rates can be improved upon.

Table 9 shows results from incomplete factorization of both A,, and A,,,. Examina-
tion of these results shows that for average aspect ratios of 0.59 or more, very fast con-
vergence can be attained by a P1 preconditioning with ILU,(c0,107") or ILU, (00, 1072),
and I LU,,(c0,1073) or ILU,,(c0,10~%). This technique was not effective for worse (smaller)
aspect ratios.

Extensive testing of the J & M Add [21] method was also done. Table 8 shows the results
for a P1 preconditioning with direct solve of A,, with and without using the J & M Add
technique. This technique demonstrates several positive features. It usually only resulted
in a small increase in convergence times for the complex geometry problems. For the three
cases where attempts to avoid a negative pivot by adding an a priori number to the diagonal
failed, the J & M Add technique did succeed. In several cases, faster convergence times
were observed for specific tests of the Corroded Pipe and Multi-Material Bracket problems.
However, the J & M Add method was never faster than the recommended P1 technique
(direct solve of A,,, ILU,(c0,107%)) alone (Table 8).

In general, there is little reason to use the J & M Add method for problems with average
aspect ratios of 0.59 and better or 0.02 (Cube with [/lz = 100) and worse. For problems
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Table 8: P1 Preconditioning with Direct Solve of A,, for Complex Geometry Problems

19

CPU seconds (iterations)

Preconditioning Balljoint | Block & Bushing | Multi-Material | Corroded
Prism Bracket Pipe

ILU,(c0,0.0) 371 (68) | 354 (96) | 1436 (57) 1355 (87) ok

ILU,,(00,1071)

J & M Add 390 (69) | 356 (89) | 1706 (70) 1237 (74) | 4159 (321)

ILU,(c0,0.0) 381 (66) | 349 (86) | 1469 (55) 1236 (71) | 7063 (554)

ILU,,(00,1072%)

J & M Add 402 (68) | 380 (90) | 1615 (57) 1255 (72) | 2550 (168)

ILU,(00,0.0) 496 (66) | 465 (85) | 1726 (52) 1521 (71) | 1889 (105)

ILU,,(00,1073)

J & M Add 542 (67) | 497 (88) | 1888 (53) 1565 (71) | 2068 (111)

ILU,(c0,0.0) 818 (65) | 746 (79) | 2656 (52) 2373 (70) | 2103 (102)

ILU,,(00,107%)

J & M Add 1017 (66) | 936 (86) | 3400 (53) 2591 (70) | 2268 (106)

ILU,(c0,0.0) 1653 (65) | 1383 (79) | 5024 (52) 4018 (70) | 2508 (100)

ILU,,(00,107%)

J & M Add 2320 (65) | 2013 (86) | 6762 (52) 5119 (71) | 2714 (104)

ILU,(c0,0.0) 466 (69) | 384 (96) | 2099 (58) ok ok

I1LU,,(0,0.0)

J & M Add 462 (69) | 389 (89) | 2468 (79) 1593 (75) | 5257 (409)

ILU,(00,0.0) 542 (66) | 444 (88) | 2211 (54) 1733 (71) | 6393 (438)

ILU,,(1,0.0)

J & M Add 554 (67) | 483 (87) | 2271 (53) 1788 (71) | 2261 (111)

ILU,(c0,0.0) 740 (65) | 597 (81) | 2620 (53) 2170 (71) | 2574 (112)

I1LU,,(2,0.0)

J & M Add 799 (66) | 705 (86) | 2833 (53) 2312 (70) | 2678 (109)

ILU,(c0,0.0) 403 (98) | 422 (153) | 1883 (121) 1374 (116) | 6900 (731)

ILU,, = diag(Amm)

sk Failed due to negative pivot in ILU (five attempts).
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Table 9: P1 Preconditioning with ILU Factoring of Both Domains for Complex Geometry

Problems
CPU seconds (iterations)

Preconditioning Block & Bushing | Multi-Material | Corroded

Prism Bracket Pipe
ILU (00,1071, ILU (00, 1071) | 294 (114) | 1423 (204) ok ok
ILU,(00,1072), ILU ,(00,107%) | 263 (99) | 1686 (222) ok oK
ILU,(00,1073), ILU ,(00,1071) | 277 (96) | 876 (107) 723 (87) ok
ILU (00,107, ILU ,(00,1071) | 310 (96) | 1039 (81) 775 (87) o
ILU, (00,107 1), TLU, (00, 1072) | 315 (112) | 1510 (202) oF =
ILU,(00,1072),ILU,,(00,107%) | 270 (92) | 1845 (223) ok ok
ILU,(00,1073), ILU ,(00,107%) | 282 (89) | 929 (105) 698 (73) ok
ILU (00,1074, ILU ,(00,107%) | 305 (86) | 1089 (78) 705 (71) | 5669 (543)
ILU (00,107 1), ILU (00, 10-%) | 445 (110) | 2044 (193) woF F
ILU,(00,1072), ILU ,(00,1073) | 385 (90) | 2695 (219) ok ok
ILU,(00,107%), ILU (00, 1073) | 398 (88) | 1238 (101) 1224 (72) ¥
ILU,(00,107%), ILU,,(00,1073) | 414 (83) | 1541 (75) 1021 (70) | 3226 (247)
ILU (00,1071, ILU ,(00,107%) | 787 (109) | 3692 (191) ok ok
ILU,(00,1072), ILU ,(00,107%) | 703 (90) | 5976 (219) ok ok
ILU,(00,1073), ILU ,(00,107%) | 709 (87) | 2398 (101) 2410 (72) ok
ILU (00,107, ILU (00, 107%) | 732 (85) | 3282 (75) 1776 (71) | 3675 (246)
ILU,(0,0.0), 1LU,,(0,0.0) #1404 (211) oF o
I1LU,(1,0.0),ILU,,(0,0.0) 273 (101) | 1094 (157) ok ok
I1LU,(2,0.0),ILU,,(0,0.0) 283 (98) | 980 (126) ok ok
ILU,(0,0.0), ILU,,(1,0.0) 1674 (201) ¥ o
ILU,(1,0.0),ILU,,(1,0.0) 335 (94) | 1294 (147) 1112 (112) ok
I1LU,(2,0.0),ILU,,(1,0.0) 339 (90) | 1128 (117) 1007 (86) | 5560 (494)
1LU,(0,0.0), ILU,,(2,0.0) k12380 (200) ok ok
ILU,(1,0.0),1LU,,(2,0.0) 495 (92) | 1864 (145) 1682 (111) o
I1LU,(2,0.0),ILU,,(2,0.0) 505 (90) | 1644 (116) 1592 (84) | 4750 (330)

sk Failed due to negative pivot in ILU (five attempts).
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inbetween these extremes (Multi-Material Bracket & Corroded Pipe) the results seem to
indicate that the method may provide reasonable computation times with more stability
than the recommended P1 technique alone (Table 8). No firm conclusion could be drawn
from just these test results.

When the J & M Add method was combined with a P1 approach with ILU precondi-
tioning for both A,, and A,,,,, convergence would generally take twice as long or more,
depending on the average element aspect ratio. This was also found to be true when the J &
M Add method was used with a PO preconditioning technique. There is some evidence the J
& M Add method improved the robustness of the both the PO (Table 7) and P1 technique,
but only for non-recommended ILU’s (i.e. ILU(0,0.0), ILU(c0,1071)).

Some experiments were also carried out using a iterative method to carry out the op-
eration in equation (17), for the midpoint block (A,.,), and an ILU preconditioner. This
performed very poorly compared with simply using an ILU of A,,,,, and hence no results
will be given.

In summary, a P1 preconditioning with an exact factorization of A,,, and a drop tolerance
of I LU,,(00,1072) or ILU,,(00,1073) appears to be a generally robust method for a range of
average element aspect ratios. A smaller drop tolerance should be favoured as the aspect ratio
becomes worse. When the element aspect ratio is known to be above 0.58, even better results
can be had by using incomplete factorization for both A,, and A,,,,. In this case having
ILU,(00,107Y) or ILU,(00,1072), and ILU,,(c0,1073) or ILU,,(c0,107%) is recommended.

Note that the above remarks are concerned solely with average element aspect ratio. The
minimum aspect ratios for the Balljoint and Block € Prism problems were much smaller than
the minimum (which was also the average in this case) aspect ratio for the Cube problem
with [/lz = 100, but clearly the Cube problem was much more difficult to solve than the
former two problems.

5.3 Direct Solve Results

A direct solve was attempted for the 10 x 10 x 10 Cube (I/lz = 10) and for each of the five
complex geometry problems using the Yale Sparse Matrix Package [38]. Minimum degree
ordering was used for each of the direct solves. Due to memory constraints (maximum of 128
Meg available), only three of the five complex geometry test problems could be completed
(Table 10).

For the Balljoint, Multi-Material Bracket, and Cube problems, the direct solve cost from
six to seventeen times the CPU time to complete compared to the recommended iterative
technique (direct solve of A,,, ILU,(cc,1073)). The direct solve of the Block € Prism
required only three times the CPU time compared to the iterative technique because of a
very small amount of fill which occurred. The remaining two problems (Bushing and Pipe)
required too much memory for a direct solve to be performed.

The solutions for each problem from both the direct and the iterative approaches were
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Table 10: Direct Solve vs. Suggested P1 Technique
CPU seconds (iterations)

Preconditioning | 10 x 10 x 10 | Balljoint | Block & | Bushing | Multi-Material | Corroded

Cube Prism Bracket Pipe
ILU ,(00,0.0) 437 (48) | 496 (66) | 465 (85) | 1726 (52) 1521 (71) | 1889 (105)
ILU,,(c0,1073)
Direct [38] 7771 3091 1361 * 14170 *
Solve

x Insufficient memory available to complete a direct solve.

compared. This comparison was done by calculating:

||Xdi7"ect - Xiterative”oo ||Yvdi7“ect - Y;terativeHoo ||Zdi7"ect - Ziterative”oo

) Y
||‘)(777»(l55||Oo ||Yma$||00 ||Zma$||00

where:

e X Y and Z are vectors of the calculated z, y, and z displacements for each node

e subscripts direct and iterative refer to method used to calculate displacement and

e subscript max means the maximum displacement from both the iterative and direct
solution.

For all problems, the maximum disagreement between solutions was less than 0.001 (or
0.1%) and was often as small as 0.01%. Thus the iterative solution can be expected to have
roughly three or more significant digits of the direct solution, with the applied tolerance
(19).

It can be concluded that the recommended iterative solver will provide a large CPU cost
savings, while requiring less memory.

6 Conclusions

The performance of PCG iterative methods for linear elasticity is highly dependent on the
average element aspect ratio. For aspect ratio near unity, many preconditioning methods will
be successful. However, as the aspect ratio becomes small, the iterative methods encounter
difficulty unless powerful preconditioning methods are used. The test problems used in this
study had average tetrahedral aspect ratios varying between 0.78 and 0.02.

For unstructured grids with quadratic tetrahedral elements, a robust iterative method
for a wide range of aspect ratios uses a hierarchical basis block preconditioner (P1), and
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a direct solve of the vertex block (ILU,(c0,0.0)), coupled with a drop tolerance incom-
plete factorization (ILU,,(co,1073)) of the midpoint block. This method can be fine-tuned
by using a coarser or finer drop tolerance for situations where the average aspect ratio is
known /expected to be be better or worse than 0.50 respectively. Level based ILU methods
were not generally competitive with the drop tolerance ILU techniques.

With this type of preconditioning, the iterative methods outperformed direct solution
methods by a factor of between three and seventeen times in terms of CPU cost. For
the larger problems, direct solutions could not be obtained due to the excessive memory
requirements (> 128 Meg) for the direct solver. In those cases where direct solution methods
succeeded, the iterative and direct solutions for the displacements agreed to three figures.

The hierarchical basis P1 block preconditioner with ILU,(co,0.0),ILU,,(c0,1073) gen-
erally outperformed a level based or drop tolerance based incomplete factorization precon-
ditioning (P0) of the nodal basis stiffness matrix. Also, there did not appear to be any
advantage to using the more accurate block preconditioner (P2) with the hierarchical basis.

Faster convergence rates can be achieved for meshes with average aspect ratios above
0.58 by using an incomplete factorization for both A,, and A,,,, regions. ILU,(co,1071) or
ILU,(00,1072), and ILU,,(00,1073) or ILU,,(00,107*) seem to be the best combinations.

There are two standard methods for ensuring that the incomplete factorization of a
symmetric positive definite matrix produces positive diagonal pivots. The J & M Add method
[23] adds the dropped terms in the incomplete factorization to the diagonal. This method
is guaranteed to produce positive pivots, but overestimates the amount necessary to add
to the diagonal, and hence may produce a poor preconditioner. The alternative, is to keep
adding a small relative amount to the diagonal until the incomplete factorization succeeds
(see equation (8)) [7]. The situation regarding these two methods is not altogether clear.
For a hierarchical basis block preconditioner (P1), with a small drop tolerance for the ILU
of the midpoint block (I LU,,,,) the method of equation (8) was generally superior to the J
¢ Add method. However, if a larger drop tolerance (or low level) is used for the ILU of the
midpoint blocks, then there are some cases where the J & M Add method does succeed, while
the technique of equation (8) fails due to an excessive number of attempts to incompletely
factor the midpoint block.

For fully three-dimensional objects, available mesh generators appear to be capable of
producing tetrahedral meshes with average element aspect ratios greater than 0.50, in which
case we can expect good performance from a block hierarchical basis preconditioner compared
to a direct solver. However, even for extreme element aspect ratios (=~ .02), the block
hierarchical basis preconditioner will also outperform a direct solver if a small drop tolerance
is used for the midpoint preconditioner. Such extreme aspect ratios may arise in full three-
dimensional modelling of plates and shells constructed of composite materials.
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Figure 1: Surface Mesh of the Balljoint
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Figure 2: Surface Mesh of the Outer Block with Hole for Prism
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Figure 3: Surface Mesh of the Prism
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Figure 4: Surface Mesh of the Bushing
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Figure 5: Surface Mesh of the Bracket Face and Base Plates
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Figure 6: Surface Mesh of the Bracket Supports
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Figure 7: Surface Mesh of the Corroded Pipe
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