BIBLIOGRAPHY 92

[OSSAT78] Uniz Programmer’s Manual, Chapter Nroff/troff, Bell Laboratories,
1978.

[PURT86] Purtilo, James M.; Applications of a Software Interconnection System in
Mathematical Problem Solving Environments, In Proceedings of the 1986
Symposium on Symbolic and Algebraic Computation, ACM, July 1986, pp.
16-23.

[QUINS83] Quint, Vincent; An Interactive System for Mathematical Text Process-
ing, Technology and Science of Informatics, 2(3), 1983, pp. 169-179.

[SAMMG66] Sammet, Jean E.; Survey of Formula Manipulation, Communications

of the ACM, 9(8), August 1966, pp. 555-569.

[SLAG63] Slagle, J.R.; A Heuristic Program that Solves Symbolic Integration Prob-
lems in Freshman Calculus, Journal of the ACM, 10(4), October 1963, pp.
507-520.

[SMIT86] Smith, Carolyn; Soiffer, Neil; MathScribe: A User Interface for Com-
puter Algebra Systems, In Proceedings of the 1986 Symposium on Symbolic
and Algebraic Computation, ACM, July 1986, pp. 7-12.

[SOIF91] Soiffer, Neil Morrell; The Design of a User Interface for Computer Algebra
Systems, Doctoral Dissertation Report No. UCB/CSD 91/626, Computer

Science Division, University of California at Berkeley, April 1991.

[WORDY1] Microsoft Word for Windows Users Guide, Microsoft Corporation, One
Microsoft Way, Redmond, WA, 1991.

BIBLIOGRAPHY 91

[KNUT81] Knuth, Donald E.; Plass, Michael F.; Breaking Paragraphs into Lines,
Software — Practice and Ezperience, 11(11), November 1981, pp. 1119-
1184.

[KNUT84| Knuth, Donald E.; The TgXbook, Addison-Wesley, 1984.

[KRAS88] Krasnet, G.E.; Pope, S.T.; A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 System, Journal of Object-
Oriented Programming, 1(3), August 1988, pp. 26-49.

[LELE85] A Graphical Interface for Reduce, ACM SIGSAM Bulletin, 19(3), August
1985, pp. 17-23.

[LEON86] Leong, B.L.; Iris: Design of a User Interface Program for Symbolic
Algebra, In Proceedings of the 1986 Symposium on Symbolic and Algebraic
Computation, ACM, July 1986, pp. 1-6.

[MACS83] MACSYMA Reference Manual, Laboratory for Computer Science, MIT,
January 1983.

[MART71] Martin, William A; Computer Input/Output of Mathematical Expres-
sions, In Proceedings of the Second Symposium on Symbolic and Algebraic

Manipulation, ACM, March 1971, pp. 78-89.

[MATHS89] MathStation Version 1.0, MathSoft Inc., One Kendall Square, Cam-
bridge, MA, April 1989.

[MOTI89] OSF/Motif Programmer’s Reference Manual Revision 1.0, Open Soft-
ware Foundation, Eleven Cambridge Center, Cambridge, MA, 1989.

[NOLA53] Nolan, J.; Analytical Differentiation on a Digital Computer, Master’s
Thesis, MIT, May 1953.

BIBLIOGRAPHY 90

[DAVES6] Davenport, James H.; Roth, C.E.; Powermath — A System for the Mac-
Intosh, In Proceedings of the 1986 Symposium on Symbolic and Algebraic
Computation, ACM, July 1986, pp. 13-15.

[EGMO89] van Egmond, S.; Heeman, F.C.; van Vliet, J.C.; INFORM: An Interac-
tive Syntax-Directed Formulae Editor, Journal of Systems and Software,

9, 1989, pp. 169-182.

[FATE87] Fateman, Richard J.; TEX Output from MACSYMA-like Systems, ACM
SIGSAM Bulletin, 21(4), November 1987, pp. 1-5.

[FOST84] Foster, Gregg; DREAMS: Display Representation for Algebraic Manipu-
lation Systems. Technical Report UCB/CSD 84/193, UC Berkeley, April,
1984.

[FRAMS89| Frame Maker Reference Manual, Version 2.0, Frame Technology Cor-
poration, San Jose, CA, 1989.

[FUMAS86| Fumas, George W.; Generalized Fisheye Views, In Proceedings, CHI
’86, ACM, April 1986, pp. 16-23.

[HART89] Hartson, R.; User-Interface Management Control and Communication,
IEEE Software, January 1989, pp. 71-77.

[JOHNT78] Johnson, S.C.; Uniz Programmer’s Manual, Chapter Yacc: Yet Another
Compiler-Compiler, Bell Laboratories, Second Edition, 1978.

[KAHRA53] Kahrimanian, H.G.; Analytical Differentiation by a Digital Computer,
Master’s Thesis, Temple U., May 1953.

Bibliography

[ANTWS89] Antweiler, Werner; Strotmann, Andreas; Winkelmann, Volker; A TEX-
REDUCE Interface, ACM SIGSAM Bulletin, 23(2), April 1989, pp. 26-33.

[AVIT88] Milo User’s Guide, Paracomp, 123 Townsend St. Suite 310, San Fran-
cisco, CA 1988.

[BONA87| Bonadio, Allan; Warren, Erik; Theorist Reference Manual, Prescience
Corporation, 814 Castro St., San Francisco, CA 1987.

[CHARY1] Char, Bruce W.; Geddes, Keith O.; Gonnet, Gaston H.; Leong, Benton
L.; Monagan, Michael B.; Watt, Stephen M.; Maple V Language Reference
Manual, Springer-Verlag, New York, 1991.

[CLAP63] Clapp, Lewis C.; Kain, Richard Y.; A Computer Aid for Symbolic Math-
ematics, In Proceedings, AFIPS Fall Joint Computer Conference Volume
24, AFIPS Press, 1963, pp- 509-517.

[COWA90] Cowan, W.B.; Wein, M.; State Versus History in User Interfaces,
Human-Computer Interaction — INTERACT ’90 pp. 555-560.

89

CHAPTER 6. CONCLUSIONS 88

The increased availability and capabilities of inexpensive bitmapped display
devices, along with their accompanying GUI application software, has made the
limitations of traditional CAS interface software very clear. It is hoped that this
and related work will help serve as a basis for exploiting the full potential of CAS

interfaces that take advantage of contemporary workstation equipment.

CHAPTER 6. CONCLUSIONS 87

The major stumbling block in implementing this sort of functionality is that the
interface requires substantial knowledge of the semantics of the expressions being
manipulated. For example, although the CAS itself may possess the information
about whether or not two subexpressions can be commuted, this fact is not usually
available to the interface, which has to make the decision to allow or disallow the
manipulation. Another issue that might arise is the question of how to handle mul-
tiple solutions arising from a manipulation that isolates a term in an equation. As
of this writing, only the Milo [AVIT88] and Theorist [BONAS8T] interfaces provide
basic direct manipulation capabilities, through the virtue of of their built-in algebra

engines.

To date, no CAS interface has attempted to provide alternative views of expres-
sions. Both the fish eye and satellite views described in Section 4.1.3 appear to have
promise. Some preliminary experiments using Maple library functions to limit the
size and content of large expressions have been performed within the Maple user
community, but this approach discards information, and does not permit interactive

manipulation of the view.

6.3 Conclusions

The design and implementation of an effective user interface for a computer algebra
system represents a substantial project, requiring the careful consideration of issues
that range over a wide variety of disciplines: human factors, software engineering,
data structure and algorithm design, and basic typography figure prominently in
the list. It is probable that this diversity of issues has had a negative impact on
the evolutionary rate of CAS interface technology, which has lagged behind that of

the computer algebra engines themselves.

CHAPTER 6. CONCLUSIONS 86

Enhancements are planned to incorporate both a two-dimensional input facility and
interactive editing capabilities in ziris; issues related to this project could easily

form the basis of another thesis.

The worksheet session model employed in ziris also requires further scrutiny. It
is not clear that the current implementation is the best way to serve the various
different types of users’ needs. This model does appear to be headed in a use-
ful direction, namely towards an active document paradigm in which the interface
can provide a document creation environment with mathematical expressions and
graphics that can be dynamically recalculated. However, an effective implementa-
tion of this ideal may require a redesign of the interface between the Maple kernel

and ziris.

On the positive side, ziris provides a solid and largely device independent math-
ematical formatting and rendering engine designed for the efficient handling of the
large expressions that can be generated by Maple. Considerable emphasis has been
placed on formatting and rendering performance, which will well serve the needs
of the planned two-dimensional input and editing facilities. It is probable that
this machinery will form a useful basis for output formatting in future Maple user

interfaces.

6.2 Future Work: CAS Interfaces in General

One of the more interesting capabilities that CAS interfaces have the potential to
provide is the direct manipulation of the mathematical expressions displayed upon
the screen. Examples of such manipulations include the moving of a subexpression
across the equality sign in an equation, or the rearrangement of the terms within a

commutative sum.

CHAPTER 6. CONCLUSIONS 85

generated by computer algebra systems.

o Practical efficiency and implementation issues related to the management of
large results, and techniques for maximizing performance while minimizing

the use of storage.

e A functional description of the ziris interface for Maple, and a presentation

of the highlights of its implementation in light of the earlier discussions.

6.1 Evolutionary Directions for ziris

Although the current implementation of ziris is a useful interface for Maple in its
own right, and provides considerable visualization advantages over earlier Maple
interfaces, there is still much work to be done before it could be considered to be a

complete CAS interface.

One of the major shortcomings in the current ziris implementation is that there
exists no two-dimensional input facility to permit the user to enter expressions in
a visual, “mathematically intuitive” manner; all input must be entered using the
traditional Maple command line interface. This is not a serious disadvantage to the
experienced Maple user, who might be expected to prefer the entry speed advantage
provided by the existing Maple programming language interface, but the omission

hinders the usability of Maple for novice and infrequent users.

Another shortcoming, related to the lack of two-dimensional input capabilities,
is the lack of support in ziris for the interactive editing of formatted mathematical
expressions. This includes the selection, cutting and pasting of all or part of a
formatted expression. Although it is possible to reformat an expression in character

print mode, and then perform character-based selection, this is not an ideal solution.

Chapter 6

Conclusions

This thesis has attempted to present some of the issues inherent in the development
of user interfaces for computer algebra systems, with the emphasis on managing
the (potentially large) output generated by such applications. Where possible, the
practical implementation experiences stemming from the development of a new user

interface for Maple were related.

In summary, considerations based on the following topics were presented and

discussed:

o General user interface considerations, many of which are generic and can be

applied to any type of application.
o Specific user interface considerations for a particular CAS, namely Maple.

o Issues and techniques related to the efficient formatting of mathematical ex-

pressions in an interactive environment.

o Issues and techniques based on aiding the user in the visualization of format-

ted mathematical expressions, with particular attention to the large results

84

CHAPTER 5. THE XIRIS IMPLEMENTATION 83

a path representation in the future. A path representation uses the path from the

root to the selected node to uniquely identify a subexpression.

CHAPTER 5. THE XIRIS IMPLEMENTATION 82

majority of the cases are handled by the £i11_childboxes() routine. In general,
the box-type handlers will make recursive calls back to linebreak() in order to

linebreak any children that are too wide for a line.

Information about whether or not a new line was initialized during each stage of
the process is returned explicitly by the linebreaking routines. This fact is used to
maintain the “deepest common ancestor” of all boxes for each line. This attribute

is not actually required, but it can enhance rendering performance.

Leaf boxes (corresponding to identifiers and numbers) that are too wide for a
line require special attention. Because of their atomic nature, they cannot be split
across multiple lines using the usual sub-box division technique of other forms.
Instead, the line bounding boxes are permitted to intersect the bounding box for
leaf nodes; the rendering phase must be able to identify such cases and draw only

the appropriate portion of the affected leaf box.

5.5 Sharing

As described in Section 4.3.1, ziris will locally share position-independent boxes.
The determination of common formatted expressions is determined by hashing the
CAS representation of the expression, and verifying the correspondence of the font-

sizes.

Selections are represented by a position dependent box pointer, along with the
absolute position of the selection in the full virtual line that represents the entire
expression. The position information is used to identify which occurrence of a
shared subexpression has been selected. This representation has been sufficient for

the experiments performed to date. However, it may prove necessary to switch to

CHAPTER 5. THE XIRIS IMPLEMENTATION

Boolean linebreak(PDbox box, int ox, int oy) {

Boolean newline = FALSE;

if(box fits on the current line AND
box does not require explicit linebreaking)
add box to the current line box;
else switch(box->type)
case LEAF: newline = linebreak_leaf(box, ox, oy); break;
case SUM: newline = linebreak_sum(box, ox, oy); break;

case TABLE: newline = linebreak_table(box, ox, oy); break;

default: newline = £ill_childboxes(box, ox, oy); break;

return(newline);

Boolean fill_childboxes(PDbox box, int ox, int oy) {

Boolean newline = FALSE;

for(each child of box)

if(child fits on current line)
add child to the current line box;

else if(child fits on a new line)
initialize new line;
mark box as root of current line;
continue;

else if(linebreak(child, ox + child->x, oy + child->y))
add child to the current line box;
newline = TRUE;

return(newline);

Figure 5.6: Pseudocode Sketch of the ziris Linebreaking Algorithm

81

CHAPTER 5. THE XIRIS IMPLEMENTATION 80
5.4.2 Implementation

The basic goal of the ziris linebreaking phase is to construct a set of bounding
boxes, called line bozes, that overlay the formatted expression. Each of these line
boxes represents the extent of the expression that appears on a particular line.
The coverage provided by the full set of line boxes is disjoint, while their union

encompasses the entire non-empty area of the expression.

As an optimization for the rendering stage, the linebreaking phase also deter-
mines the deepest node in the format DAG that is an ancestor of all the boxes
or partial boxes that appear on each line. This permits the rendering process to
eliminate quickly from consideration those portions of the format DAG that do not

appear on the line being drawn.

Note that this mechanism does not enforce any particular method for choosing
the line boxes. This facilitates experimentation with different linebreaking policies,
as long as they can coexist with the limitations observed earlier. The method
used by ziris to compute the line boxes is primarily a recursive “first fit” scheme,
with some special case improvements. This scheme is inexpensive, and wastes
relatively little screen space, making it ideal for interactive use. Figure 5.6 provides
a pseudo-code sketch of how it is implemented. The process begins at the root of
the expression, and at each stage, the current bounding box is tested to determine
whether or not it will fit on the current line. If it will fit, then the current line’s
bounding box is expanded to encompass the box under consideration. If it will not
fit, or if the box is flagged (via its ALWAYS_LINEBREAK flag being set) as requiring
specific linebreaking attention, then the box is handed to a routine designed to

handle that specific box type.

In practice, there are relatively few distinct box-type specific handlers: the

CHAPTER 5. THE XIRIS IMPLEMENTATION 79

File Edit View Options Debug Help

File Edit View Options Debug Help

Input m-] Interrupt Pause Input m'] Interrupt Pause

[wd!
LY I/1_, Symbolic Computation Group, University of Waterloo
“ MAPLE / Reszearch Version -—- Wed Jul 23 19:57:52 EDT 1932
<, > Type ? for help,

Rwd!
L4 I41_, Symbolic Computation Group, University of:
Waterloo

“ MAPLE Research Yersion -——— Wed Jul 29 19:57:52

< > Type ? for help,

> (sin()"2"cos() "3 + tan(xy)ly:

SlH(X)z COS (x)3 + tan(x _ y) > (sin(x)"2*cos(x)"3 + tanPey))y:

y

sin(x)? cos(x)® + tan(x -
Y

Figure 5.5: Two-dimensional forms in ziris linebreaking

linebreaking techniques is certainly possible, but would be expensive in terms of
runtime performance. A more general restatement of this limitation is that the form
of the output expression cannot be altered using this linebreaking scheme; the ziris
implementation relies on the layout phase to choose linear forms where required.
This limitation is a problem when the user reduces the window width, as some
two-dimensional forms may now be too wide to display. There are several ways
to handle this situation. The entire expression can be reformatted, or a horizontal
scrolling mechanism can be provided. The ziris implementation takes the approach
that no action need be taken automatically: all that is done is that a visual cue,
(in the form of a vertical occlusion bar at the right margin) is displayed to warn
the user that a portion of the expression is occluded. The user can then either
explicitly request that the expression be reformatted, or simply make the window

wider. Figure 5.5 illustrates this situation, and the ziris solution.

CHAPTER 5. THE XIRIS IMPLEMENTATION 78

gested that an expression formatted for one long virtual line can be broken into
“segments” which do not exceed the window width; each segment is then displayed
on a separate line. Soiffer’s description of his algorithm was directed at line cutting
rather than line breaking, and did not address the issue of hard linebreaks or the

problem of wasted space.

5.4.1 Advantages and Disadvantages

This particular linebreaking scheme provides several valuable benefits. Since the
linebreaking process is considerably cheaper than the formatting phase, it is possible
to recompute linebreak locations automatically when the user changes the window
size, without incurring an excessive delay. This maximizes the amount of infor-
mation visible on the screen, without requiring any extra effort on the part of the
user. The linebreaking controls are also useful for performing a quick determination
of what portion of an expression is currently visible in the window; this enhances
drawing performance by permitting the rendering phase to draw only those lines
that are visible. Finally, this mechanism permits the sharing of subexpressions,
even when breakpoints occur at different locations in distinct instantiations, and

requires very little storage overhead.

There are drawbacks to this linebreaking algorithm, too. In particular, it com-
plicates the rendering process somewhat, as the rendering code must integrate the
information contained in the linebreaking controls with the format DAG structure.
Added complexity also appears in the implementation of selection of the displayed

expressions with a mouse.

A further limitation of the current implementation is that it only supports

surface-level linebreaking (see Section 4.2.3); extending it to support deep-level

CHAPTER 5. THE XIRIS IMPLEMENTATION 7

T :=table([
o= sin(x)

==
B = cos(x)2
y = 1ttan(x)

)

Figure 5.4: Displayed format of a Maple Table structure in zirss

It is occasionally required that a “hard linebreak” be inserted in the displayed
form of the expression. A hard linebreak forces a new line to begin when it is
encountered, regardless of the amount of free space remaining on the current line.
Hard linebreaks are not generally required in traditional mathematical notation,
but are useful in certain special situations. For example, the ziris formatter uses
hard linebreaks to place each entry of a Maple table on a separate line (see Fig-
ure 5.4), regardless of the current line width. Hard linebreaks are not stored as
explicit entities in the formatting DAG. Instead, a flag is set in the appropriate box
to indicate that the box must be considered explicitly by the linebreaking code,
regardless of whether or not the box’s dimensions indicate that it could fit on the
current line. This ALWAYS_LINEBREAK flag is propagated up the format DAG to the

root, where it can be subsequently examined by the linebreaking phase.

5.4 Linebreaking

The ziris linebreaking algorithm is an extensively modified version of an approach

suggested by Soiffer in his doctoral dissertation [SOIF91, pages 103-105]. He sug-

CHAPTER 5. THE XIRIS IMPLEMENTATION 76

Optional Form Description

0 vs. d Notation for differentials.

exp(z) vs. ” Form of the exponential function.
1Vs. J The representation of 1/—1.
Subscript Brackets | Controls the bracketing of subscripts.

Table 5.1: Optional Formatting Forms Provided in zires

The list of the alternative display forms is an ad-hoc one that has evolved over
time, and currently consists of the choices illustrated in Table 5.1. Some items,
like the choice of 0 vs. d for the differential operator, are designed to permit
customizations based on the type of user (for example, first year calculus students
are usually unfamiliar with partial derivatives). Others, like the representation for
v/—1, are aimed at handling the notational differences encountered across various

mathematical disciplines..

5.3.2 Linebreaking Requirements

Recognizing those locations in the expression where the natural two-dimensional
forms cannot be used (see the discussion on Linear Forms in Section 4.2.3) is per-
formed in the layout phase. This recognization requires knowledge of the output
device width; at the beginning of the layout pass, the maximum width for a box
that cannot be linebroken is computed using this information. Two-dimensional
forms that would exceed this width are formatted in their linear format; this en-
sures that the linebreaking phase will not encounter boxes that cannot be broken
across multiple lines. Thus, the result of the layout phase is an expression format-
ted as if it were one long virtual line, but that includes no two-dimensional forms

that cannot be linebroken to the current output device width.

CHAPTER 5. THE XIRIS IMPLEMENTATION 75

ile Edit View Options Debug ile Edit View Options Debug

Input mﬂ Interrupt Pause Input mﬂ Interrupt Pause

7| 7|
L _ 4] 1/1_, Symbolic Computation Group, University of Waterloo L _ 4] 1/1_, Symbolic Computation Group, University of Waterloo
% MAPLE / Research Version ——- Wed Jul 29 19:;57:52 EOT 1992 % MAPLE / Research Version ——- Wed Jul 29 19:;57:52 EOT 1992
> Type 7 for help, > Type 7 for help,
|

> sin(x),Pi.sinxinfinity; > sin(x),Pi.sinxinfinity;

sin(x), Pi, sin, x, infinity sin(x), T, sin, x, o

Figure 5.3: Effects of the Name Translations Mechanism

appears.! The second translation record causes Pi to be printed with the string p

using the symbol font, which produces the 7w glyph.

Currently, all translations are specified using the X11 Resource Manager and
are installed when ziris is initialized; there is not yet a mechanism to permit users
to augment the name translations from within a Maple session, although such a

facility is planned.

Alternative Forms

A pull-down menu permits the user to choose between a limited set of “alterna-
tive forms”. This mechanism permits the user to specify several special format
customizations, according to their taste or level of expertise. As with the name
translation facility, these customizations affect only the display of the appropri-
ate forms in the high-resolution printing mode; the character printing formats are

unaffected.

!By default, names appearing in the context of a function call are displayed using a non-italic

font, while all other occurrences are rendered in italics.

CHAPTER 5. THE XIRIS IMPLEMENTATION 74

complicated problem which might be solved by providing customizable formatting

is the provision of definable notation for a user-defined operator.

The discussion on formatting directives presented several techniques for provid-
ing hooks for fully customizable formatting. While ziris does not yet support fully
user-programmable formatting, it does provide two mechanisms for handling basic

customization tasks.

Name Translations

Name translations permit the user to specify a simple name substitution for Maple
identifiers. This mechanism is used to map names like Pi to their Greek letter
representations, and to display built-in primitive function names in a distinctive

typeface regardless of context.

The necessity for a name translation mechanism arises because of the limited
mathematical knowledge available to ziris. In particular, no semantics are attached
to the Maple identifiers that ziris sees: for example, it does not know that the sine
function is known automatically to Maple, and accordingly, it cannot treat the
Maple name sin any differently than the name x. Figure 5.3 illustrates the effect

that the name translation mechanism can provide.

Name translations can be specified dynamically to ziris via a simple text string,
which specifies the Maple form of the identifier, the translated form of the iden-
tifier, and the font to be used for the translated form. The translation directives
sin normal and Pi symbol p implement the translations observed in Figure 5.3.
The first one does not specify a translation string for sin, so the original name is
used. The specification of “normal” as the font forces ziris to print all occurrences

of the name sin in the non-italic font, regardless of the context in which the name

CHAPTER 5. THE XIRIS IMPLEMENTATION 73

5.3 Formatting

The formatting (or layout) phase employed in ziris is a straightforward procedure-
based one. All of the formatting procedures are encoded in C, the ziris implemen-
tation language. As mentioned in the discussion on sharing (in Section 4.3.1), ziris
shares position-independent boxes, and accordingly, the box structures created dur-
ing the formatting pass are heterogeneous. In order to provide further savings on
memory requirements, even the position-independent boxes are not uniform, but
vary in size according to their type. Although all such boxes contain a common set
of fields reflecting the box type, its width and height, and some flags, leaf boxes also
have string and font identifier fields, while internal boxes have fields to store point-
ers to their children. Figure 4.5 provides a conceptual illustration of the output
generated by the layout phase, although the heterogeneous nature of the position

independent boxes is not shown.

The linebreaking algorithm used in ziris requires that the child boxes of the
internal boxes be stored in an order based on their left to right positions. This
permits the linebreaking mechanism to make use of the spatial coherence properties

of a box’s children to improve runtime efficiency.

5.3.1 Simple Format Customizations

As was noted in Chapter 3, regardless of the number of formats made available by
the output formatting procedures, it is inevitable that there will be mathematical
forms that are not displayed in a manner that is satisfactory to the user. Some of
these cases arise from simple variations in notation between various disciplines: the

use of both 7 and j to represent v/—1 is one example. An example of a slightly more

CHAPTER 5. THE XIRIS IMPLEMENTATION 72

along with information about the current dimensions of the output device, are used
by the linebreaking phase, which constructs a set of linebreaking controls (without
altering the input). Finally, both the format DAG and the linebreaking control
information is used by the rendering phase to display the lines of the expression on

the output device.

This architecture for formatting has several advantages over other implementa-
tions. In particular, the separation of the layout and linebreaking phases simplifies
the implementation and maintenance of the former, while facilitating experimenta-
tion with completely different techniques in the latter. The linebreaking algorithm
currently used in ziris is basically a simple “first-fit” scheme; however, it would be
possible to replace it with a more sophisticated mechanism if desired. Furthermore,
it is the separate linebreaking pass that permits ziris to recompute breakpoints in
outputs automatically when the user changes the size of the application’s main

window.

Figure 5.2 also visually demonstrates the degree of device independence that the
ziris formatting mechanism has achieved. Both the layout and linebreaking phases
require only font metric information and output device dimensions to produce their
outputs; furthermore, although the rendering phase is inherently device dependent,
it requires only a few primitive operations be implemented for a particular device.
The current ziris implementation makes use of this device-independent architec-
ture to image mathematical expressions in both X11 windows and upon Postscript

output devices.

CHAPTER 5. THE XIRIS IMPLEMENTATION 71

| CAS Representation I

Layout

! -
\(’ Formatted Expression |—

[y y
Linebreaking

Linebreaking Controls I

]r y

Rendering

Figure 5.2: Information Flow in the ziris formatting process

The mechanism through which expressions are formatted and rendered on the
display is a three part process. These three parts are the layout phase, the line-
breaking phase, and the rendering phase; the first and last phases are described in
Section 3.1, while the linebreaking phase chooses breakpoints in the fully formatted
expression. Figure 5.2 shows the relationship between these phases, and the inputs

and outputs produced at each stage.

The layout phase takes as input the CAS form of the expression to be for-
matted, and the metrics corresponding to the fonts to be used. It produces a
hierarchical box structure DAG representing the fully formatted expression, with-

out linebreaks, formatted as if for an infinitely large display. This box structure,

CHAPTER 5. THE XIRIS IMPLEMENTATION 70

Maple V Release

File Edit View Options Debug Help | [1onic: Subtopict Subtopic:
General ! isgrt dir
Input mw| Interrupt | Pause | erorime it r
Miscellaneous laplace
> z+22/3+Int(x"2*In(x)* sqri{y).x=-Pi..infinity); Packages latex
1 oo lem
) 2 leooeff
z+37 +J x2 In(x) Jy dx Ldegree
leadterm
- lenzth
> expand((x-1)"32): i:"“—"“dﬁr
<
1+ 456 % - 4960 % + 35960 ¥ - 201376 3 + 906192 1 - 3365855 % + 10518300 o - 32 x - 28048800 1 imit
L.
+ 64512240 10 - 120024480 511 + 225702840 12 - 247373600 £1% + 471435600 514 - ses7207R0 10 et
+ 601080390 x1© - 565722720 517 + 471435600 %18 - 347373600 %12 + 225792840 20 - 120024480 521 };fwt
+ 64512240 22 - 28048800 22 + 10518300 %27 - 3365856 12~ + 906192 20 - 01376 527 + 35960 12 14 1+
Ei B o Sl < 5]
- 4960 29 + 495 9 3051 4 72 —_—
aopsist
> Limit(x"2/sin(x).x=0): Values returned by limit
x2 |
lim ——
x—0 Sin(x) ’

Maple V Help (limit[return])

> toeplitz([z.y.x]);

2y x
yzvy
Xy z FUNCTION: limitlreturn] - valuss returned by limit

CALLING SEQUEMCE:
limit{f, point, dir}

> plot{3*sin};|

PARAMETERS:
- an algebraic expression
point - an equation, x=a, where x is a name and & is the limit point
dir - (optional? direction

File Style Axes Projection Help SYNOPSIS:
— - — — — - The meaning of a returned infinity depends on dir. If dir is conplex,

hen

infinity denotes complex infinity, Otherwise, the result infinity
denotes
3 real positive infinity, and -infinity denotes real negative infinitu,

2 - If limit returns a numeric range it means that the walue of the limiting
\ expression iz known to lie in that range for arguments restricted to

some:
reighborhood of the limit point, It does not necessarily imply that the
im-
5 ‘0 iting expression is known to achieve every value infinitely often in
this

range.,

= If the limit is known to be undefined. or each side of a tuo-sided limit
has
a different value, or for a nulti-dimensional limit the limiting walue
depends on the direction from which the limit is approached, then
undefined

Figure 5.1: A sample ziris session

CHAPTER 5. THE XIRIS IMPLEMENTATION 69

to the current window width using a linebreaking mechanism that is detailed below.

Results are linebroken automatically whenever the window width is altered.

A hierarchical help browser subsystem permits the user to examine the extensive
help information available on the Maple library functions, while pull-down menus
(implemented with OSF’s Motif Toolkit [MOTI89]) are used to control formatting
and display options. The entire session can be formatted for rendering on Postscript

devices.

Figure 5.1 illustrates some of these ziris features, and shows a plot window, the

hierarchical help browser and a help page, in addition to the main window.

5.2 General Architecture

The only ziris implementation at present exists as an X11R4 client, and accordingly
can be compiled and run on any Unix system with X11 and Motif libraries installed.
The Motif Toolkit is used to provide the standard interface components such as the
pull down menus, status information, and the dialogues. All drawing in the main

window is performed via Xlib calls.

Currently, ziris sits on top of the existing Maple Iris implementation. This is not
an ideal arrangement, but practical time constraints precluded a proper bottom-
up rewrite of the current Maple Iris. This layered approach is useful in terms of
practical maintenance issues, since it permits the existing Iris code to continue to
be used for other platforms with very few changes; at the same time, however, this
architecture has hampered the implementation of the desired functionality. The
planned modularization of the Maple Iris, as discussed on page 20 will facilitate

future ziris development.

CHAPTER 5. THE XIRIS IMPLEMENTATION 68

e provide effective visualization of CAS results

e not impair performance to any appreciable extent

e be portable as possible

e be extensible as possible

e have only minimal impact on the existing Maple system

o adhere as much as possible to the principles of interface design discussed in

Chapter 2.

Due to time constraints, no attempt has yet been made to improve the Maple
input facilities, or to provide any sort of two-dimensional editing mechanism. The
design of the current system has attempted to facilitate the addition of such features

in the future.

What the ziris system does provide is a primitive worksheet model, in which the
user’s work session consists of a series of horizontal strips or regions. These regions
have a type attribute, insofar as each region can contain either Maple input, the
results of Maple output, or inert textual comments. The overall interface effect is
very similar to the dialogue style of other Maple interfaces: the user types Maple
statements in the input regions, and the Maple system responds with results which
are formatted using the techniques described in Chapter 3 and displayed in the

output regions.

A vertical scrollbar on the side of the session window permits the user to scroll
back to the beginning of the session and review results, or alter the inputs and

re-execute them. Horizontal scrolling is not provided: large results are linebroken

Chapter 5

The XIRIS Implementation

This chapter provides a functional description of the current incarnation of ziris
and its capabilities, and then discusses some of the implementation details in light
of the considerations of the previous chapters. Readers without particular interest
in the implementation details may wish to pass over this discussion, although the
linebreaking mechanism used by ziris and described here is novel and has some

valuable properties.

5.1 Functional Description

The current incarnation of the ziris interface is but one step on the way to a truly
effective interface for Maple. Rather than attempting to provide an inflexible and
poorly designed interface with an excess of features, the design and implementation
efforts were directed at the construction of a solid base upon which future develop-
ment can occur in a systematic and controlled manner. Accordingly, the existing

ziris implementation was designed with the following goals in mind:

67

CHAPTER 4. HANDLING LARGE EXPRESSIONS 66

valuable when the rendering process cannot keep up with the user’s scrolling re-
quests. Avoiding scrolling altogether when possible can also improve performance:
rather than automatically displaying and scrolling through all lines of large multi-
line expressions, ziris displays only the final screen page of a result, and relies upon

the user to manually scroll back to view the earlier lines.

CHAPTER 4. HANDLING LARGE EXPRESSIONS 65

the structures being allocated to minimize the impact of the hardware restrictions.

4.4 Rendering Performance

Formatting and displaying large expressions can potentially require a substantial
amount of time. While the time required to format and display an expression can
often be hidden in the CAS’s computation time, interface specific operations that
require the reformatting or redisplay of an expression, such as scrolling or redrawing
the main window, must occur quickly in order to convey a feeling of responsiveness

to the user.

Several techniques can help speed up the process of rendering large expressions
on the display. Probably the most obvious one, but also the most effective, is
to avoid drawing those boxes which are not visible. The method of determining
just which boxes are not visible depends on how large expressions are displayed.
Interfaces which use horizontal scrolling can normally discard boxes that fall outside
of the current window very quickly, especially if the boxes are ordered from left to
right; similar techniques can be used on a per-line basis in systems which use line

cutting or breaking.

Speedup techniques that depend upon the output device are also common.
Avoiding frequent font changes, and drawing characters as strings rather than in-
dividually works well when drawing to an X11 window; another useful X11 opti-
mization is to use the faster opaque character drawing operations (which overwrite

their background) rather than their transparent background equivalents.

Jump scrolling can be useful for improving interactive scrolling performance.

Jump scrolling “compresses” multiple scrolling directives into fewer ones, and is

CHAPTER 4. HANDLING LARGE EXPRESSIONS 64
4.3.2 Session Memory

Reducing the storage requirements of the display representation may be only part
of the memory management solution. A CAS interface needs to be able to create
and destroy display representations for what could be very large expressions; if
interactive editing of these expressions is supported, then the memory requirements

of any particular expression may need to grow or shrink by an arbitrary amount.

The current implementation of ziris has not addressed this issue to any great
extent, since neither global sharing nor editing of displayed expressions is supported
yet. The lack of these two features provides a very convenient simplification for
memory management: all storage used to represent any particular expression has
the same persistence. This implies that all the required memory can be allocated
when the expression is formatted; when the expression is destroyed, all memory

can be released at once.

The existing Maple Iris already embodies a memory allocator which supports
the fast allocation and deallocation of memory based on its persistence, and the
ziris implementation makes extensive use of this functionality. The use of this
particular memory management system has pointed out two important considera-
tions, although neither is a CAS interface issue per se. First, the granularity of the
allocations performed by the memory management system is worthy of attention.
If the chunk size is too small, performance suffers as repeated memory allocation
requests are made of the operating system. On the other hand, if the chunk size is
too large, memory is wasted. The second issue concerns address alignment of the
structures being allocated: the underlying hardware architecture may impose align-
ment restrictions on particular data types. Nothing can really be done about this

limitation, although it can be worthwhile to consider the sizes and arrangement of

CHAPTER 4. HANDLING LARGE EXPRESSIONS 63

dimensional notation, as described earlier in the discussion of linebreaking. As in
the case of fontsizes, the format type of the box may need to be maintained. This
prevents the undesirable sharing of boxes when different formatting is required for

the same subexpression that appears in different contexts.

Parentheses can pose a special problem if they are stored as an inherent part
of an expression. This is because a subexpression may require parenthesization in
some contexts, and not in others, as in the case of the expression

(z —1)*
z—1
This problem can be alleviated by storing the parentheses with a distinct parent
node rather than with the expression itself. Although this increases the depth of the
DAG, it permits full box sharing between the parenthesized and non-parenthesized

versions of the expression.

Finally, the mechanism for deciding when boxes can be shared is worthy of
some discussion. If the CAS form of the expression is a DAG, as it is in Maple,
then the form of the DAG itself, coupled with the additional attributes mentioned
above, can be used in a hashing scheme to determine commonality of formatting
boxes. This is the method used in ziris. However, the CAS DAG itself may have
some undesirable sharing within it, at least from the formatting standpoint. An
example of this arises in the Maple form for procedures: parameters and local
variables are represented internally as array references with respect to their parent
procedures, and as such can be shared between different procedures. Although the
local variable or parameter name so referenced will have different names in different
procedures, naive sharing of the formatted forms of these structures will result in
formal parameters from one procedure appearing in what appears to be a totally

unrelated one.

CHAPTER 4. HANDLING LARGE EXPRESSIONS 62

subexpressions tend to be very prevalent between consecutive results. Soiffer’s
results show that global sharing can provide an additional 70%-75% savings over

local sharing.

The principal problem with global sharing within an interactive environment
is one of memory management. Deletion of an expression requires some form of
analysis to determine what portions of the global DAG can be dispensed with, while
a local sharing scheme can safely dispose of the entire structure without additional

consideration.

The current ziris implementation does not utilize global sharing.

Other Sharing Considerations

Several other points are worthy of consideration with respect to the implementation
of a box sharing mechanism. If multiple fonts are available, then a fontsize attribute
must be considered when deciding whether or not two subexpressions are identical
for the purposes of formatting; thus, no sharing is possible in the expressions such
as

sin(z + yZ)"”"'y2

whenever the exponents are to be formatted in a smaller font than their respective
bases. Although it is conceivable that font size information be moved from the
position independent boxes to the position dependent ones to permit sharing in this
cas, such a design requires that the bounding box dimensions be scalable according
to font size. The nature of the fonts used in the X11 ziris makes meeting this

requirement impossible.

A similar problem may arise if the formatter supports context-dependent display

forms. An example of such a form is the linear representation of an inherently two-

CHAPTER 4. HANDLING LARGE EXPRESSIONS 61

There are several variations on the theme of sharing formatting information;
these variants boil down to the question of just how much information should
be shared. Soiffer discusses these issues in some detail in [SOIF91]; sketches are

presented here.

Type of the Shared Boxes

The decision of what exactly should be shared is a fundamental question when
implementing a sharing scheme. Figure 4.5 demonstrates a model in which the
position independent boxes are shared. However, it is equally valid to share position
dependent boxes instead, or even both types simultaneously. Note that even in a
homogeneous sharing environment (in which only boxes of one type are shared),
some implicit sharing of the other box type occurs automatically whenever non-
trivial subexpressions are present. Soiffer reports that sharing both box types
(total sharing) results in the greatest savings in memory usage, although thanks to
implicit sharing of both box types, the savings resulting from sharing only one box

type are not far behind.

The current ziris implementation shares position-independent boxes.

Local or Global Sharing

The scope of the sharing must also be addressed. Global sharing permits boxes
to be shared among all the expressions contained within a session, while local
sharing requires common formatting subexpressions to be contained within the
same expression. Thus, global sharing results in one large DAG spanning the entire
session, while local sharing provides a DAG forest, with one DAG per expression.

The nature of CAS sessions make global sharing very attractive, since common

CHAPTER 4. HANDLING LARGE EXPRESSIONS

| (0,0 I

division

| 3.0 I

function call

sin

| (0.0 I i(ag. 0)|
S

addition

(27, 31)

| (0,0) I

| (36, 0) I

exponentiation

| (0,5) I

y

X

| (12, 0) I

Figure 4.5: A formatting DAG for sin(z+2)

ztx2

CHAPTER 4. HANDLING LARGE EXPRESSIONS 59

4.3.1 Sharing

One of the most effective methods for controlling the growth of memory require-
ments is to share common formatting information. In a sharing scheme, common
subexpressions need only be formatted once, and the hierarchical box structures
representing the formatted expression become nodes in a directed acyclic graph,
or DAG. This technique will frequently provide a substantial payback in storage
savings, since common subexpressions tend to appear with considerable frequency

in mathematical expressions of appreciable size.

To date, only Soiffer’s MathScribe and ziris implement box sharing, although
Maple’s TTY-based Iris takes advantage of common subexpressions to improve for-
matting performance. Since the latter ultimately produces strings of ASCII char-

acters, it does not maintain a formatted representation DAG as the other systems

do.

In order to implement sharing, one important modification is required to the
formatting methods described in Chapter 3: positioning information must be sepa-
rated from the remainder of the bounding box, and maintained in a distinct struc-
ture. This results in two basic data types, which Soiffer calls Boxes and PBoxes.
The former correspond to the bounding box structure outlined on page 32 with-
out the location information; these are also known as position-independent boxes.
PBoxes, or position-dependent boxes, need only consist of the location of, and a
pointer to a position-independent box. An illustration of a DAG structure that

might result from this separation of information is shown in Figure 4.5.

Note that Figure 4.5 utilizes a parent-relative positioning representation for the
location of the position dependent boxes; the (z,y) pair positions the child box’s

origin relative to the parent box.

CHAPTER 4. HANDLING LARGE EXPRESSIONS 58

the results of structured linebreaking.

4.3 Memory Management

The most significant disadvantage of using high resolution formatting techniques
for the display of mathematics in CAS interfaces is the increased amount of storage
required. This section describes why the additional storage is required, and some
techniques for handling the problems associated with this aspect of CAS interface

design.

The additional storage required in a true graphical user interface (GUI) envi-
ronment over a traditional TTY-based one stems from two factors. First, most
existing CAS interfaces use strings of fixed-width ASCII characters to represent
their output; these strings of text require relatively little storage space compared
to the hierarchical box structures described in Chapter 3. The maintenance of these
structures is frequently necessary even after the initial rendering of the expression
has been performed, since most windowing systems require client programs to be
able to reconstruct the contents of their windows upon demand. Furthermore, if
the interface makes the entire history of the session available through some form
of scrolling mechanism, then it becomes necessary to maintain the structures for

arbitrary periods of time.

Second, TTY-based interfaces do not generally support the selection, or “pick-
ing” of displayed expressions with pointing devices (such as a mouse); thus, these
interfaces do not need to store the information required to resolve such references.
To a large extent, this information is already available in the hierarchical box struc-
tures, so maintaining picking information does not require any further storage be-

yond that needed for rendering the expression.

CHAPTER 4. HANDLING LARGE EXPRESSIONS 57

t * (x - x + 1)

32 * gin(x - 1)

(a) One level of linebreaking

(x - x+1)

32

sin(x - 1)
(b) Two levels of linebreaking

Figure 4.4: Results of Structural Linebreaking

the risk of appearing inconsistent, even within the same expression.

Structural linebreaking illustrates some of the problems that can arise from mak-
ing extreme use of indentation. Structured linebreaking splits expressions that are
too wide for a line by placing each subexpression on a separate line, at an increased
level of indentation. The process is then applied recursively to the subexpressions.
Although this linebreaking scheme tends to show the structure of an expression
very well — indeed, Soiffer points out that the visual display resembles a tree — it
wastes considerable amount of vertical display space, and is problematic once the

indentation level exceeds the width of the display. Figure 4.4 shows an example of

CHAPTER 4. HANDLING LARGE EXPRESSIONS 56

during the formatting process, which permits subexpressions to be formatted in the

required form on the first attempt.

Another technique that can avoid the reformatting of subexpressions is a re-use
strategy. In such a scheme, only the notation associated with the two-dimensional
form need be changed, while the subexpressions themselves maintain their original
format forms. As an example, consider the conversion necessary to switch between
the forms in Figure 4.3 — only the relative placement of the numerator and denom-
inator boxes need change, along with the nature of the separating notation. This
re-use technique is not applicable in the general case, however, since it relies upon

the system’s ability to linebreak linear forms without reformatting them.

Indentation

The technique of varying the amount of indentation for broken lines can be a useful
visualization cue. Overuse of indentation can lead to problems, however, and can

actually obscure the form of the expression being linebroken.

Several choices exist for selecting indentation levels for even relatively simple
expressions. Soiffer observes that indentation is not treated consistently in math-
ematical literature, although he does suggest some rules of thumb [SOIF91]. In
particular, the use of at least one level of indentation for a broken line is very
important, as it draws the reader’s attention to the fact that the expression is
continued over more than one line. Indentating an additional level whenever a
subexpression is broken is also a common choice, although this can quickly lead to
excessive indentation in complicated expressions, resulting in wasted display space
and reducing the available width for the expressions themselves. Mechanisms that

avoid this problem by varying further indentation based on the current level run

CHAPTER 4. HANDLING LARGE EXPRESSIONS 95

breakpoints. This implies that an attractive choice early in the expression has the

potential to result in poor ones later.

The linebreaking mechanism used in TEX [KNUTS81] is designed to address this
problem of choosing uniformly good breakpoints over entire expressions. Antweiler,
Strotmann and Winkelmann use this scheme as the basis for linebreaking in their
TEX-REDUCE Interface [ANTW89|, which typesets REDUCE formulas in TgX.
This method makes multiple passes over the full expression, examining all potential
breakpoints and assigning a demerit to each. The sequence of linebreaks that
minimizes the total demerits over the complete expression is deemed to be the best

choice of breaks.

It is apparent that this linebreaking scheme is considerably more complex than
a simple, “first-fit” type of method. Antweiler et al reports in [ANTWS89] that their
linebreaking implementation requires five times the amount of CPU time used to
simply format the result, even with their simplifications to the full TEX linebreaking
model, although they observe that that this time increase is linear in the length of
the expression being broken. Since their implementation is not aimed at handling
the display of expressions interactively, the time penalty for better linebreaking is
not a particularly important problem. In an interactive CAS interface, optimal

linebreaks are not necessary, especially at the cost of increased formatting time.

Further efficiency considerations arise from the need to convert two-dimensional
expressions to their linear forms, if it is deemed that a breakpoint must fall within
them. Since this conversion frequently requires the reformatting of the affected
node’s subexpressions, it is conceivable (although rare) that exponential time (in
the number of subexpressions) could be required to complete the formatting and
linebreaking of the particular node. This growth in formatting time can be con-

trolled to a large extent by making linebreaking decisions between subexpressions

CHAPTER 4. HANDLING LARGE EXPRESSIONS 54

vantages of traditional mathematical notation are lost. As an example, consider a
definite integral in which one of the bounds of integration is extraordinarily wide,
which forces the use of the functional notation used in the input process. In Maple,
this appears as

int(z®,z = 0..very wide upper limit)

The cognitive effort required to recognize the nature of this expression, especially
when it is embedded within a larger expression, is quite high. However, the necessity
of resorting to the linear form can be avoided here if the subexpression causing the

problem is labelled, as described earlier. In Maple, the resulting form would be

%1 ,
/ zédx
0

%1 := very wide upper limit

similar to

which facilitates recognition of the nature of the integral expression, although at
the cost of requiring the user to direct their attention elsewhere to determine the

true nature of the integral’s upper limit.

Choosing Breakpoints

The task of selecting the breakpoint locations within the expression tends to be
difficult from two perspectives. The first of these is a matter of effective visualization

and aesthetics, while the second is primarily one of execution efliciency.

From the visualization perspective, ideal breakpoints should be chosen such that
vertical space is not wasted excessively, and mathematical content is not overly
obscured. Maintaining these criteria over the entire expression can be difficult,

since the location of any particular breakpoint influences the choice of subsequent

CHAPTER 4. HANDLING LARGE EXPRESSIONS 53

very wide numerator

very wide denominator

(very wide numerator)/(very wide denominator)

Figure 4.3: Two-dimensional and linear forms of a quotient

within such forms; Soiffer calls this approach a “surface-level” linebreaking scheme.
Pure surface-level linebreaking methods must handle these wide, unbreakable forms

using another mechanism, such as horizontal scrolling.

In order to linebreak expressions at arbitrary places (a “deep-level” linebreaking
approach), it must be possible to choose breakpoints within two-dimensional forms,
which in turn requires that they possess an equivalent linear form. As an example,
consider the case of quotients. The preferred representation generally shows the
numerator vertically aligned and centered over the denominator, as in Figure 4.3,
but if the width of either the numerator or the denominator exceeds that of the
display, then it is necessary to resort to the obvious linear form, in which both the

numerator and the denominator can be recursively broken over lines as required.

Generally speaking, it is probably best from a consistency point of view if
the linear forms correspond to the notation used to enter the expression; thus,
in Maple, the linear exponentiation form would use a caret between the base and

the exponent.!

The obvious disadvantage of using the input form is that the visualization ad-

'Tt’s worth pointing out that exponentials have a middle ground between requiring a completely
linear format and their ideal two-dimensional representation: as long as a breakpoint is not chosen
between the base and the exponent, it is frequently possible to use the traditional superscript

notation and dispense with the caret entirely.

CHAPTER 4. HANDLING LARGE EXPRESSIONS 52

lines. On the other hand, trimming the unused space from each piece can make
visualization more difficult — consider the case of attempting to distinguish the
trailing portion of a radical from that of a denominator. Covering the top half of
Figure 4.2 and attempting to derive useful information from the bottom half serves

to illustrate the visualization problems that can arise from line cutting.

4.2.3 Linebreaking

Linebreaking is the most natural method for handling large expressions, insofar as
it is the technique that is most often used in traditional pencil and paper mathe-
matics. Asin line cutting, linebreaking breaks the full expression into pieces which
fit on the screen (or page), and places each of the pieces on a new line. However,
while linecutting procedures generally cut the expression into pieces in a naive man-
ner — without regard to the semantics of where the cut points fall — linebreaking
techniques attempt to locate “breakpoints” appropriate to the content of the ex-
pression. Linebreaking has historically been provided by many CAS systems as a

solution for large expressions.

The following discussion on linebreaking is divided into three main sections.
They are concerned with the handling of two-dimensional forms, how to choose

effective breakpoints, and the issue of managing indentation of broken lines.

Linear Forms

Expressions which are represented in an inherently two-dimensional form, such as
quotients and exponents, pose particular problems for linebreaking. It is clear that
choosing a breakpoint within such a form amounts to nothing more than a partic-

ularly naive line cut. One solution to this problem is to simply disallow linebreaks

CHAPTER 4. HANDLING LARGE EXPRESSIONS 51

J1

(x-1+ 2)

+y
Zo(x+ 1)

Figure 4.2: An example of a poor line cut location

permits more of the expression to be viewed at once.

Line cutting retains the natural two-dimensional mathematical form of the
expression, and the advantages of the simplified layout pass. Furthermore, it is

amenable for use with hardcopy output devices.

The principal difficulty with line cutting is choosing cut points in such a way
that visualization is not impaired. Arbitrary cut points have the potential to split
characters across lines, or worse, separate elements which must be juxtaposed to
preserve semantic content; Figure 4.2 shows an example of a potentially misleading
line cut. Soiffer suggests that a “glue” based scheme similar to that employed by
TEX in conjunction with operator precedence information could choose effective line

cuts. No known system has attempted to implement such a mechanism, however.

Another problem with line cutting is that it has the potential to waste vertical
screen space on certain forms of expressions. If each piece of an expression retains
the full height of the overall expression, but only one or two of the pieces actually

use that full height, then excess whitespace is produced on all of the remaining

CHAPTER 4. HANDLING LARGE EXPRESSIONS 50

portions of the expression not visible are clipped by the boundaries of the viewing

window.

Two disadvantages of scrolling are apparent from a visualization standpoint.
First, scrolling does not make effective use of display screen space on a per expres-
sion basis. If an expression is only a few screen widths wide, an alternative scheme
(such as linebreaking) can make the entire result visible at once and alleviate the
need for scrolling entirely. Furthermore, the comprehensibility of larger expressions
tends to benefit from the additional context that is made visible when linebreaking
is used. The second major disadvantage of scrolling is that it does not lend itself

to handling hardcopy output.

The overall effectiveness of horizontal scrolling depends on the scale of the prob-
lem that the underlying CAS is designed to handle. The DERIVE system, which is
intended for modest computations, provides a horizontal scrolling mechanism that
is generally suflicient for the size of the results it is capable of producing. Math-
Scribe also utilizes horizontal scrolling, but as it is designed to interface with algebra
systems that are capable of producing large results, it provides a less satisfactory

solution than other techniques.

4.2.2 Line Cutting

Line cutting preserves some of the simplicity of scrolling and makes better use of
screen display space, at the cost of creating some visualization ambiguities. In
the simplest implementation, line cutting formats an expression naturally (as in
the scrolling mechanism described above) and then cuts the result into screen-
sized widths, displaying each portion on a separate line. This eliminates the need

for horizontal scrolling (but typically incurs the need for vertical scrolling), and

CHAPTER 4. HANDLING LARGE EXPRESSIONS 49
4.2 Displaying Large Expressions

Despite the best efforts to reduce the quantity of information to be presented when
displaying a mathematical expression, expressions must frequently be rendered in
their entirety. If it is the case that the expression will not fit completely on the
workstation screen, some mechanism must exist to provide the user with piecewise

viewing access to the entire result.

Some possible techniques for handling this problem, namely horizontal scrolling,
line cutting and line breaking, are discussed below. It is worth noting that the
majority of mathematical expressions tend to be wide, not tall (matrices are an
obvious exception); the effectiveness of both line breaking and line cutting tend to

depend on this observation.

4.2.1 Scrolling

From a technical standpoint, simple scrolling is the easiest way to provide the user
with full access to large expressions. In such a scheme, the expression can be
formatted “naturally” without regard to display device size limitations; this both
simplifies the layout phase and preserves traditional two-dimensional mathematical
notations. The result is a single line expression over which the user can scroll in
both the vertical and horizontal axes. When the expression is not taller than the
display window (as is frequently the case), the vertical scrolling capability can be

dispensed with.

Neither the rendering phase nor the process of selection is complicated by
scrolling. When a scrolling operation is executed, only the = and y positions of

the expression’s root box need be changed before re-rendering from the root; those

CHAPTER 4. HANDLING LARGE EXPRESSIONS 48

tends to be ineffective for wide, shallow expressions. Another possibility would be
to provide a magnification window which can be moved interactively by the user;

unfortunately, performance constraints may make this approach impractical.

Fish Eye View

A view which has the potential to be more useful than the straightforward zoom
view is the “fish eye” view, originally suggested by Fumas [FUMAS86]. In a fish eye
view, full details are provided at the point upon which the user has focused their
attention, while other details are elided according to a degree of interest, or DOI

function. Fumas suggests the following function for trees
DOlIy;gpeye (tree, foz) = —(d(tree, f,z) + d(tree,root, z))

in which z is a node in the tree with the user’s attention focused upon the particular
node f. The function d(tree,z,y) returns the path length between z and y in tree.
In the function above, the two terms favour nodes that are close to either the focus
or the root of the tree, respectively. Soiffer points out that this DOI function is
not well suited for large mathematical expressions, which tend to be wide and not
deep, and instead suggests that physical distance be used instead of tree distance.
Furthermore, the function should be tuned to increase the weights for the first and
last terms of wide expressions, and discriminate among delimiters according to their

mathematical importance.

An effective fish eye view should permit the user to change the focus quickly
and easily, in order to allow panning over the entire expression; it may be difficult

to obtain adequate interactive performance for this task.

CHAPTER 4. HANDLING LARGE EXPRESSIONS 47

may or may not be desirable from the user’s standpoint.

Iris does not support elision, mainly because it does not provide support for
convenient selection within output expressions. User controlled elision is planned

for ziris, although it has not yet been implemented.

4.1.3 Alternative Views

One of the advantages that CAS interfaces have the potential to provide over tradi-
tional pencil and paper methods is an easy way to look at problems or results from
another angle. No CAS interface to date has made a serious attempt to provide
“visualization views”, although some ideas along these lines have been suggested

before.

Satellite View

A “satellite view” of a mathematical expression is nothing more than a rendering
of the entire expression so that the entire expression is visible at once. For large
expressions, details will not be visible in such a rendering; however, the intention
is that the viewer may be able to extract structural information about the overall

form of the expression from its general shape.

This scheme is probably useful only for expressions that contain notations that
have visually distinctive shapes, such as matrices. Once expressions become too
large, visual cues become too small to be useful, unless a specific attempt is made
to make them stand out. One possibility for improvement might be to display the
mathematical notation (such as operators) associated with the upper n levels of the

expression tree clearly, and omit the details of the operands; however, this scheme

CHAPTER 4. HANDLING LARGE EXPRESSIONS 46

(but not necessarily identical) constructions when the reader can readily deduce the
form of the expressions being elided, as in 22 +2z*+3z%+- - -+nz?". The latter usage
is particularly common when dealing with large or arbitrary sized regular matrices,

since matrices tend to require large amounts of space for their representation.

Unfortunately, CAS interfaces are rarely able to make intelligent guesses about
what portions of expressions are eligible for elision. This is because there are
virtually no heuristics that are generally applicable over a wide range of problem
domains. Early versions of MathScribe provided automatic elision functionality,

but Soiffer reports that users did not find it very valuable.

User-controlled elision is a useful tool in CAS interfaces. Typically the user
must select the subexpressions to be elided in some manner (often with a mouse or
other pointing device), and then request that the interface elide the selection. This
can be inconvenient for subexpressions that do not fit entirely upon the screen,
and requires some care on the part of the user to ensure that they do not deceive
themselves. On the other hand, the elided expressions can be expanded again if

desired, which constitutes an advantage over the paper and pencil method.

Elision need not overly complicate the formatting and display process, although
attention need be given to several details. Obviously all user-initiated elision or
expansion operations require a redisplay operation at the very least, and possi-
bly a partial reformatting as well, depending on the sophistication of the display
representation structures. MathScribe uses Soiffer’s incremental updating meth-
ods [SOIF91, pages 78-81] for maintaining bounding boxes to handle this problem.
Matrices require special attention, especially to handle elision of entire rows or
columns rather than just individual entries. Finally, it is worth noting that if
a DAG structure is used to represent bounding box information, manual elision

within one instance of a common subexpression can affect all occurrences, which

CHAPTER 4. HANDLING LARGE EXPRESSIONS

> inverse(vandermonde([x,y,z,t]));

L yzt t zx tyx y 2 x
[- ——_ - ——_ . mm
[h1 h2 %3 h4
[
[ty+tz+yz xt+zx+tz xt+yx+ty yx+zx+yz
[e . .
[h1 h2 %3 h4
[
L t+y+z x+t+z xt+tt+y x+y+z
[— e
[W1 h2 %3 4
[
L 1 1 1 1
[_— _— - -
[h1 h2 %3 h4
2 2 3 2
ARRE tyx-yzt-x t+tzx-x y+t+yzx+x -x z
2 2 3 2
%2 := - tzx+tyx-xy +tyzx-y t+yzt+y -y z
2 2 3 2
%3 := - tzx+tyx+xz -—-yzx+z t-yzt-z +y2z
2 2 3 2
% := - tyx+yzx+xt -tzx+yt —-yzt-t +2z¢

Figure 4.1: Subexpression Labelling in IRIS

CHAPTER 4. HANDLING LARGE EXPRESSIONS 44

possibility is to use the width and depth characteristics of the tree or DAG repre-
senting the expression as the basis upon which to make labelling decisions. Maple’s
Iris interface uses an estimate of the displayed width of a subexpression, along with
a few other heuristics to decide whether or not a subexpression should be labelled;
in addition, the user controls a subexpression width variable which determines the
degree of labelling. Figure 4.1 shows the results of Iris labelling; ziris provides

identical labelling capabilities.

In addition to selecting the subexpression to be labelled, the CAS interface must
also choose a variable name to represent it. To avoid conflicts with user defined
variables, it is generally desirable to choose such label names from a distinct name
space. Iris (and ziris as well) label expressions with names of the form %number,
reserving all such names as labels. Of course, once the labelling has been performed
by the CAS interface, the user must be permitted to access the subexpression with
its label. Furthermore, the CAS itself need not be informed about the labelling
process at all if the interface handles the task of translating label references in user
input back to the appropriate subexpression; Soiffer [SOIF91] points out that failing
to do so (thus permitting the CAS to generate results in terms of the substituted
name) can lead to subtle errors if functional dependencies become hidden by the

substitution.

4.1.2 Elision

Elision of detail (also known as “collapsing output”) is another technique used by
both mathematicians and CAS interfaces to enhance the visualization process, by
replacing those portions of an expression which are not relevant to the problem at

hand with ellipses. Another common use for this notation is to represent repetitive

CHAPTER 4. HANDLING LARGE EXPRESSIONS 43

implicitly know the resultant form of the expression being manipulated, and can
write the results of the manipulation in a manner which conveys this information

naturally.

When manually performed computations become complicated, mathematicians
generally rely on two similar techniques to enhance the comprehensibility of their
work. The first of these is the labelling of complicated or common subexpressions,
while the second is elision of detail. Both techniques can be used by CAS interfaces
with varying degrees of success. Finally, the interface can provide alternative views

which may be beneficial to the visualization process.

4.1.1 Labelling Subexpressions

Labelling (or renaming) is performed by making a simple substitution of a new
variable for a subexpression in the displayed version of the expression, and then
displaying the relationship between the variable name and its value separately.
Labelling is most effective for large subexpressions occurring more than once within
the overall expression, but can be useful even when a complicated subexpression
occurs only once, since such a substitution can aid in visualizing the overall form

of an expression.

Labelling is not difficult to implement in the CAS interface from a technical
standpoint; a simple symbol table can handle most book-keeping tasks associated
with such substitutions. The more difficult task is choosing the subexpressions that
are to be candidates for labelling. When using paper and pencil, mathematicians
can make effective choices by making use of their additional knowledge of the prob-
lem domain at hand; the CAS interface rarely has this information available, and

must make labelling decisions based upon the form of the expression alone. One

CHAPTER 4. HANDLING LARGE EXPRESSIONS 42

impact excessively upon the size of the problems that can be handled by the CAS.

Displaying large expressions can also impose performance penalties within the
interface, where “performance” is considered to be the user’s perception of the re-
sponsiveness of the interface. Performance can be considered from two standpoints.
First, there is the time required for formatting a result produced by the CAS; from
the user’s perspective, this delay is usually buried in the CAS computation time.
Second, there is the delay time of refreshing the display when the user scrolls the
display to see another portion of an expression, or an earlier result; perceived slug-
gishness in this operation can not be hidden, and must be minimized in order to

reduce user frustration.

This chapter addresses each of these three potential problem areas in turn; the
implementation details of how ziris handles these issues are deferred until Chap-

ter 5.

4.1 Visualization

When discussing the subject of effective visualization of mathematical expressions,
we are talking about the degree to which the user comprehends the mathematical
content of the expression being viewed, generally from a structural standpoint. As
a contrived example, consider the output generated by Maple when given the input
expression expand((x - 1) ~300)*t. While the result expression is a product, this
information is not readily apparent from the displayed output, which the user may
have to inspect with some care to determine this fact. This problem does not occur
when using traditional pencil and paper methods because the user performs and
controls all simplifications and manipulations manually, which implies that they are

unlikely to accidentally perform large expansions unnecessarily. Furthermore, they

Chapter 4

Handling Large Expressions

Large expressions pose problems for the CAS interface from several standpoints.
The most important problem for the user is one of visualization; complicated math-
ematical expressions (and especially wide ones) can be difficult to manage using
traditional means such as pencil and paper, but forms that are generated by a CAS
can be considerably more complex. The user of the pencil and paper has the ad-
vantage of knowing what portions of the expression at hand are of primary interest;
unfortunately, the CAS interface typically does not possess this information, so it
is difficult to make intelligent decisions about how to display large expressions in a

reasonably useful manner.

Other major problems posed by large expressions are primarily technical in
nature. CAS systems themselves tend to be frugal with their memory requirements
for algebraic structures, since this facilitates solving larger problems. However, the
overhead posed by maintaining a complete hierarchical box structure as outlined
in Chapter 3 can easily expand these storage requirements by a factor of three,

making effective memory management a serious issue if the interface is not to

41

CHAPTER 3. FORMATTING CAS OUTPUT 40

handled by testing the integrand to determine if it is itself an integral, and choose
the size of the symbol accordingly, but of course, if the mathematical semantics of
the integrand is not available, this scheme cannot work. The alternative is to use

a single fixed sized symbol of integration, as does TEX in the examples below.

n
=0

Jars s
i=0 1 + 22

t—2

Some special formatting cases cannot be reasonably handled — some because
they cannot be anticipated, and others because they occur infrequently or represent
such inappropriate notation that they are not worth implementing code to handle
them. As an example, consider an excessively complicated expression that is used
as a bound on a definite integral. While perfectly meaningful from a mathematical
standpoint, such expressions are too awkward and confusing to be written as such in
normal practice; instead, the substitution of a dummy variable for the complicated
bound is normally performed. Such a substitution can be made by the CAS interface
(see the discussion on labelling in Chapter 4), but depending on the implementation

cost, it may be more practical to let the user handle these infrequent cases manually.

Expressions which are inherently multi-linein nature may also require some form
of special treatment. Matrices are an example of such an object, in which each row
is placed on a logical line of its own. Small matrices which can be displayed on the
screen in their entirety present no difficulties, but large ones which are either too
wide or too tall have the potential to present difficulties if a linebreaking scheme
is employed to handle wide expressions. Chapter 4 discusses linebreaking and its

ramifications in more detail.

CHAPTER 3. FORMATTING CAS OUTPUT 39

[] > []

J

Figure 3.4: Glyph Creation by combining bitmapped characters

3.2.3 Specialized Formatting Cases

Although carefully designed formatting directives will usually be able to do a good
job laying out most expressions, there are always particular expression forms or
special cases that will cause difficulties. In most cases, these expression forms cases
will result in substandard or aesthetically unpleasant formatting; in the worst case,

the expression may be displayed in an ambiguous or deceiving manner.

Generally, once these exceptional cases are recognized, the only recourse is to
enhance the capabilities of the formatting directives responsible. This may be
impossible if the directives are encoded in a primitive or constraint-based system,
and can be difficult for procedural encoding methodologies as well. As an example,
consider the case of formatting integrals. Many systems that format mathematics
will vary the size of the integral sign according to the size of the integrand, or,
in practical terms, the size of the bounding box of the integrand. In the case of
a double integral, this implies that the outside integral sign will be larger than
the inner one, since the outer one encompasses not only the integrand of the inner

integral, but the integral symbol and the limits as well. This special case can be

CHAPTER 3. FORMATTING CAS OUTPUT 38
3.2.2 Device Independence

Display device independence is relatively easy to achieve when using a formatting
scheme similar to the one discussed above. In particular, almost all device depen-
dencies are isolated to two areas: first, in the encoding of the fonts to be used for
rendering (this information is obtained from the metrics of Table 3.1), and second,

in the detailed knowledge of how to render text at a given position.

Unfortunately, some mathematical notation requires drawing capabilities be-
yond the simple rendering of characters. For example, the fraction bar of a large
quotient can be implemented as a single call to a line drawing graphics primitive,
while a radical sign may be generated through a series of such calls. In general, any
notation that varies with the size of the expression being annotated will usually
require something other than the use of a set of bitmapped fonts. Hence, routines
that render variable sized brackets, integral signs, radical signs and fraction bars

typically require access to other drawing primitives.

Scalable fonts provide an easy way to handle some of these cases, but if they are
not available, bitmapped character composition can be used. Character composi-
tion is a very simple concept: multiple elements of a bitmapped font are combined
in order to create a single glyph which is perceived by the user as one character
unit. Sometimes additional graphics primitives are used in conjunction with the
font elements; as an example, ziris creates variable-sized integral signs by combin-
ing a vertical line segment with two characters from the mathematical symbol. The
two symbol font characters represent the top and bottom portions of the integral
symbol, while the joining line segment can be of whatever length is appropriate to

construct an integral sign of the desired size. Figure 3.4 illustrates this concept.

CHAPTER 3. FORMATTING CAS OUTPUT 37

3.2 QOutput Issues

The techniques and issues discussed in the previous section are generally applicable
to most systems which are capable of formatting mathematics. However, in the case

of formatting the output of CASs, other considerations quickly become apparent.

3.2.1 Large Expressions

One of the greatest strengths of any CAS is the ease with which it can generate and
handle large expressions. With very little input, a user can generate expressions
of virtually unlimited size. As a somewhat contrived example, consider that the
expansion of (z—y+t+v)°® contains more than 23,000 terms, with many coefficients
exceeding 20 digits. Of course, such expansions are rarely of interest; however, by
accident or design, expressions too large to be displayed at once are frequently the

results of CAS computations.

Large expressions pose problems for the CAS interface designer from several
standpoints. On one hand, there are technical issues to be considered; the format-
ting and display of large expressions places heavy demands on the resources of the
system formatting the expression — a straightforward implementation of the format-
ting scheme suggested above requires memory quantities proportional to the size of
the expression being formatted. On the other hand, big expressions pose problems
from a visualization standpoint; the larger an expression, the more difficult it is
to comprehend its general form, and thus identify patterns or other structurally-
based content. Because large expressions pose large problems for the CAS interface,

Chapter 4 is devoted to their discussions.

CHAPTER 3. FORMATTING CAS OUTPUT 36

bounding box structures lends itself well to isolating the device-dependent rendering
routines from the remainder of the system. All that the rendering routines require
is information about what to display, and where to display it, and both are readily

available from the box structures.

When using interactive display devices, such as a workstation screen, it may be
desirable to use tricks such as double buffering to reduce display flicker. Double
buffering is a simple technique in which the image being rendered is constructed in
off-screen memory, and then moved to the display as a unit. Most modern graphical
environments provide primitives for supporting double buffering; if a platform does

not, the degree of functionality required for our purposes is easily simulated.

The majority of the displayed image of the mathematical expression is built up
from strings of characters; indeed, there is surprisingly little mathematical notation
that is not character-based. Hence, virtually all drawing is ultimately performed
by the system-provided text rendering graphics primitives. Their use is generally
straightforward, although a minor consideration is whether or not the characters are
to be rendered with an opaque background. If so, the character cell is filled with the
background colour, and the character drawn on top; the alternative scheme draws
the character directly without the background fill. There may be a performance
penalty associated with one scheme or the other; ziris makes use of the first method,
since it is faster in its implementation environment, X11. Unfortunately, the opaque
background technique complicates rendering text adjacent to slanted characters,
since when used naturally, the bounding boxes of italics overlap. ziris solves this
problem by using a coarse box granularity, which has the benefit of permitting the
strings of italic characters making up a single leaf box (representing an identifier,

for example) to be rendered with one call to the system’s text rendering primitive.

CHAPTER 3. FORMATTING CAS OUTPUT 35

Font Property Description
MIN SPACE The minimum size of an inter-word space.
NORM SPACE The width of a normal space character.

SUPERSCRIPT X Horizontal offset for superscripts.
SUPERSCRIPT Y Vertical offset for superscripts.
SUBSCRIPT X Horizontal offset for subscripts.
SUBSCRIPT Y Vertical offset for subscripts.
UNDERLINE POS Vertical offset for underlining.
UNDERLINE THICK | Thickness of the underline.

Table 3.1: Font Property Information Used by zirs

Table 3.1 contains a list of the font properties used by ziris. Unfortunately, even
the items on this relatively small list are not always defined by the fonts available
under X11; in such cases, approximated values must be assumed for the missing

properties.

3.1.2 The Rendering Pass

The rendering pass walks the data structures created by the layout pass and dis-
plays the contents of the bounding boxes at the appropriate relative locations on
the display. Generally speaking, rendering is fairly simple compared to the lay-
out process, and there are correspondingly fewer issues worthy of consideration.
Complications can arise when dealing with large expressions; these are addressed

in Chapter 4.

The actual process of drawing on the workstation display screen (or other output

device) is, of course, system dependent; however, the recursive traversal of the

CHAPTER 3. FORMATTING CAS OUTPUT 34

the CAS version, code may be required to convert back to the CAS representation.

A design decision required with respect to bounding boxes is the definition of
the degree of granularity to use. One approach is to define individual boxes for
each character in a string; a more efficient technique for output considers strings
to be the primitive unit of construction, rather than characters. A disadvantage of
the latter approach is that it complicates the picking process within the primitive

strings.

Fonts and Font Dimensions

Ultimately, the majority of the rendered expression is displayed with elements of
one or more fonts. The sizes of the bounding boxes for primitives such as variable
names and numeric constants have to be determined based on the sizes of these
font elements. Consider the process of formatting a simple numeric constant; since
the constant will be rendered as a string of digits, the attributes of the bounding
box enclosing the string depend solely upon the characteristics of the font in which

the string is rendered.

In addition to the basic dimension information, other facts about the input
fonts are useful, such as the location of super and subscripts, and the thickness
and location of underlining. Italic fonts and fonts with serifs have additional width
information, such as the degree of slant which has to be considered when juxtaposing
them with upright fonts. TEX makes use of more than 20 font parameters when
handling mathematical fonts; however, most of these parameters are not made
available on the display fonts used by current workstations. The relatively low
resolution of workstation display hardware makes their absence a moot point, unless

some form of sub-pixel text antialiasing is employed.

CHAPTER 3. FORMATTING CAS OUTPUT 33

Height

Box Origin
Baseline \

Width

Figure 3.3: Attributes of a Bounding Box

Alignment The location of the box’s baseline. This value is used for the side-
by-side alignment of boxes, and corresponds to the baseline of plain text

contained within the box.

Children A list of the sub-boxes contained within this box.

Figure 3.3 illustrates the definitions of some of these attributes.

It can be worthwhile to fold the mathematical semantics of the CAS tree node
being represented into the bounding box structure, rather than maintain two totally
disparate data structures. One obvious technique is to place a pointer in each box
that refers back to the appropriate node in the CAS representation; complications
can arise, however, if there exists no direct correspondence between the two forms.
For example, since Maple represents quotients such as 1/z internally as ™', there
is no node corresponding to the formatted numerator in the CAS representation.
Another approach is to simply add an operation field to the box representation that
records the appropriate CAS primitive. This scheme eliminates the need for both

representations, but depending on how faithfully the display expression parallels

CHAPTER 3. FORMATTING CAS OUTPUT 32

CAS interface.

Constraint-based Constraint-based formatting uses predefined relationships be-
tween box attributes to locate specific boxes at execution time. Typically this
involves solving a series of equations in order to satisfy the constraints, which
might incur a significant performance penalty at runtime. The INFORM
formula editor [EGMO89] makes use of this technique; in addition to specify-
ing the structure of expressions with a grammar, information encoded in the
same grammar defines the display layout for the expressions. Specifications
in the grammar define how the children of a particular type of expression are
to be located, and how the dimensions of the resulting bounding box are to
be computed. This scheme is not extensible at run time, however, since the

grammar file has to preprocessed by a parser generator to create source code

that is part of the INFORM system.

Bounding Boxes

The minimal set of information required to be stored as part of a bounding box
typically includes the following attributes, although various implementations will

alter their semantics to some degree:

Location The location of the box, usually represented as the X, Y coordinates
of the box’s origin. The bounding box’s origin is frequently defined as the
intersection of its baseline and its left side. The X, Y coordinates may be
relative to the parent box, a sibling box, or even to the root of the entire

expression.

Dimensions The dimensions of the box (width and height), which determine the

extent of the bounding box.

CHAPTER 3. FORMATTING CAS OUTPUT

layout_Exponential(dag, fontsize, parent)

ALGEB dag; /* CAS form of expression */

int fontsize; /* Current fontsize in effect */

pdbox_p parent; /* Attachment point of formatted expression */
{

pdbox_p base, expon;

/* Allocate storage for a box structure, (two children). */

parent->box = allocBox(IB_EXPON, fontsize, 2);

/* Format the exponent and the base separately. Note that
* the exponent is formatted to be one size smaller. */
layout_expr(dag[1], fontsize,

base = &parent->box->kids[0]);
layout_expr(dag[2], fontsize + 1,

expon = &parent->box->kids[1]);

/* Compute the dimensions of the resultant box, and the
* location of its baseline (copied from the base), and
* locate both the exponent and base boxes within it. */

parent->box->h = expon->box->h + SUPERSCRIPT_Y(fontsize);

parent->box->w = base->box->w + SUPERSCRIPT_X(fontsize)

+ expon->box—>w;

parent->box->c = base->box->c;
base->box->y = h - base->box->h;

base->box->x = 0;

exponent->box->y = 0;

exponent->box->x = base->box->w + SUPERSCRIPT_X(fontsize);

Figure 3.2: Formatting Procedure for Exponentation

31

CHAPTER 3. FORMATTING CAS OUTPUT 30

cannot be described completely satisfactorily. Second, even relatively simple
notations may be difficult to codify with the primitives. Soiffer suggests that
a WYSIWYG construction tool can help alleviate this problem.

Procedure-based The procedure-based approach is probably the most commonly
used technique in current CAS interfaces. MathScribe, MathStation and
Maple all use this method, in which formatting procedures are written with
full control over the underlying box structures. This technique provides con-
siderable flexibility and the most control over the formatting process, but is
not extensible unless the interface’s implementation language supports run-
time loading and linking for user procedures. MathScribe (using Lisp), and
MathStation (PostScript) can thus support user-written formatting proce-
dures, but neither the existing Maple interface, Iris, nor ziris can. An example

of a formatting procedure from ziris is displayed in Figure 3.2.

Macro-based Macro-based formatting is similar to the procedure-based tech-
niques in terms of how the notation format is defined, but are similar to
primitive-based methods insofar as they do not permit direct access to the
underlying box structure. Furthermore, although they are inherently exten-
sible, macro-based techniques require considerably more in terms of runtime
resources, since both memory and execution time requirements are greater

than for their procedural equivalents.

TEX is the best known example of a macro-based formatting system, and
consists of a set of primitives and a macro language that permits user-defined
sequences to be constructed. While TEX is very capable when it comes to
formatting mathematical expressions, it is not clear that a purely macro-

based formatting methodology would perform adequately in an interactive

CHAPTER 3. FORMATTING CAS OUTPUT 29

Formatting Directives

The formatting directives embody exactly how the given expression is to be dis-
played. Typically, these instructions are encoded and executed based on the type
of expression at hand. For example, the process of formatting the expression z?

will exercise the directives for formatting a variable, a constant integer, and finally,

an exponentation operation.

Unfortunately, mathematical notation is not static. Various mathematical dis-
ciplines frequently use differing notational schema, while entirely new notations for
new mathematical objects are often developed. Hence, limiting the formatting di-
rectives to a static set is not desirable; it should be possible to enhance or replace
the functionality represented by the basic body of formatting directives. Soiffer
[SOIF91] classifies four techniques for the codification of extensible formatting di-

rectives; these approaches are summarized below.

Primitive-based A primitive-based technique defines a set of basic formatting
operations (the primitives) and uses them to implement all of the formatting
functionality of the system. Users are able to override or augment existing
formatting capabilities by constructing new directives based on the system-
provided formatting primitives, but direct access to the underlying box struc-
ture is not available. Mathematica provides a basic, character-based version
of this functionality for enhancing notation on ASCII terminals. Soiffer pro-
poses a list of primitives suitable for implementing primitive-based formatting
on a bitmapped display screen, but to date, no CAS interface system appears

to have employed this scheme.

Two shortcomings of this technique are apparent. First, unless the provided

primitives are very comprehensive, there are likely to be notations which

CHAPTER 3. FORMATTING CAS OUTPUT 28

4. A bounding box is created to encompass the arrangement of child bounding

boxes created in the previous step.

The bounding boxes of most leaf nodes and annotations can be determined from
the bounding box of their string representation when rendered in the desired font.
Some objects need to be handled as special cases: for example, the bounding box
of a root sign depends on the dimensions of the bounding box that is to appear

under it.

The Input Expression

The form of the input expression is not of particular importance to the operation
of the layout stage, as long as it has knowledge of the format. Of course, encoding
the knowledge of the internal representation of a CAS expression in the formatting
routines limits the reusability of the code; this is usually a concern only if the
CAS interface is designed for interoperability between different CASs. In [SOIF91],
Soiffer discusses issues related to generalized translations between mathematical
notation and internal CAS formats. For our discussion of output formatting, we
presume that a simple mapping from the internal CAS format to an abstracted

form (upon which the layout phase will operate) will suffice.

In the development of ziris, it was decided to forgo the added complications
imposed by converting Maple’s internal representation of mathematical expressions
to a common abstract form. Instead, the ziris formatting routines operate directly
upon the Maple form of the expression. This has the benefit of increased for-
matting performance — not only is the intermediate translation step omitted, but
additionally, full advantage can be taken of the Maple DAG structure [CHAR9I1]

by formatting common subexpressions only once.

CHAPTER 3. FORMATTING CAS OUTPUT 27

intention to display) the formatted expression structures the rendering phase.

3.1.1 The Layout Phase

The layout phase is responsible for the construction and positioning of the hierar-
chical bounding box structures that represent the expression; it is this pass that
embodies the actual formatting process. Input to this pass consists of three major
items. First, the expression to be formatted is obviously required. Second, some
form of direction as to how particular mathematical forms are to be displayed is
needed. Finally, information about the dimensions of the fonts used to render the
characters and symbols making up the expression is necessary. Asoutput, the phase
produces a data structure (typically a tree or a directed acyclic graph) composed
of bounding box structures which can be used as input to the rendering phase for
final display. The box-structure representation of the expression, which we call a
display expression, is also required for the operation of picking, or determining the

results of tracker-based selection (for example, selections made with a mouse).

Although the details of constructing the display expression vary between imple-
mentations, the basic strategy is a simple one. The input expression tree (or DAG)

is traversed in postfix order, and at each internal node, the following actions occur:

1. Any children of the node are formatted recursively.

2. Bounding boxes are constructed for any annotations required by the node

that are not represented in the input data structure.

3. The bounding boxes of the children and annotations are arranged with respect

to each other.

CHAPTER 3. FORMATTING CAS OUTPUT 26

Figure 3.1: Hierarchical Arrangement of Bounding Boxes.

3.1 Basic Formatting

Mathematical notation is inherently two-dimensional. The traditional representa-
tions of exponents, fractions and matrices all require the juxtaposition of symbols
in two dimensions to convey their meanings. One common scheme used to handle
the task of formatting a mathematical expression uses two passes. The first cre-
ates a bounding boz (or just “box”, for the sake of brevity) for each subexpression,
and then positions the subexpressions’ bounding boxes appropriately. The overall
effect that results is a hierarchy of boxes within boxes, with the outermost box
containing the entire expression, and is illustrated in Figure 3.1. The second pass
then walks the structure embodying the bounding box hierarchy, and renders the
box contents at the appropriate locations. This well-known technique was used
by Martin [MART71] in the late 1960’s, and has been used by many systems that
format mathematics since, including Knuth’s TEX system [KNUT84].

For the purposes of this discussion, we call the construction of the bounding

boxes the layout (or formatting) phase, and the subsequent traversal of (with the

Chapter 3

Formatting CAS Output

This chapter discusses general techniques and issues related to the rendering and
display of the mathematical output generated by CASs, and the approach used in
the implementation of ziris in particular. More specific details of the formatting

methodology used in ziris are discussed in Chapter 5.

The primary goal of the output formatting process is to show the results of CAS
computations to the user in a manner that facilitates easy comprehension. This im-
plies presenting results using the basic notation traditionally used in mathematical
publications, in order to reduce the cognitive load imposed by displaying results in
a non-standard format. Unfortunately, mathematical notation is not particularly

standardized, making some level of user control over notation desirable.

Many of the difficulties encountered in formatting CAS output stem from the
fact that the generated output can be arbitrarily large. Large expressions pose
technical problems for the implementor, and visualization problems for the user.

These issues are addressed at length in Chapter 4.

25

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 24

into the standard Maple interface.

Other CAS Interface Features Other CAS interfaces have distinct and useful

features that may be worth incorporating into the Maple interface.

Affecting Existing Users It is often undesirable to implement sweeping changes
in the interface that require existing users to completely relearn the program,

or require substantial changes to the algebra engine.

The last point is particularly important when the new interface is intended as
a replacement for an existing one. Maple, as a relatively mature program that is
available on a wide variety of platforms, is no exception, insofar as a fairly diverse set
of interfaces already exist to support Maple versions running on Unix, VAX/VMS,
MS-DOS, and the Macintosh, to name a few.

On the other hand, the practical advantages of a single, portable interface across
many platforms are readily apparent. Users need learn the capabilities of a single
model, while documentation costs can be drastically reduced. Hence, the benefits of
a common interface over multiple platforms outweighs the requirements that users

learn a new, consistent interface.

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 23

present more kernel state information to the user. An effective implementation of
this solution is hampered by the degree of kernel/interface separation that exists
in Maple, described earlier. A second solution would be to make the interface
function in the manner of a “spreadsheet” program, in which any and all commands
occurring after (or depending upon) the current one in the session are re-executed
in order, thus bringing the session log “up to date.” The main problem with this
solution is that such automatic recomputation of all the subsequent commands
could require excessive amounts of computation time, much of which is probably
unnecessary. Unfortunately, it is very difficult to determine which results require

recomputation and which do not when an arbitrary line of input is changed.

The problem of providing adequate state information to the user in worksheet-

based Maple interfaces has not yet been solved.

2.3.3 Environmental Considerations

Environmental considerations take into account the constraints imposed by the
real world. Many of these considerations are based on tangible issues such as
implementation cost, while others are less concrete. Software engineering decisions

tend to be driven largely by these considerations.

Commonality It is desirable to have a common Maple interface that runs on as

many platforms as possible.

Portability Related to commonality, the interface should be as portable as possi-

ble, in order to facilitate code reuse over multiple platforms.

Maple Features Since very diverse Maple interfaces already exist on various plat-

forms, it is desirable to incorporate the good ideas from these implementations

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 22

exacerbates the problem. Techniques such as using shared memory instead of Unix
pipes could alleviate this problem, although byte-stream I1/O will likely be required

for any heterogeneous kernel-Iris execution combinations.

The Worksheet Interface Model

Interest has been expressed by members of the Maple user community in the no-
tion of a “worksheet” based interface model for Maple. Such an interface acts as a
combination of a rudimentary word processor and medium for “scratch pad” math-
ematical calculations; indeed, the Maple implementation for the Macintosh already
embodies a modest amount of this functionality. Some attention must be paid to

the details of implementing such an interface model, however.

Cowan and Wein [COWA90] observe that many graphical user interfaces present
application state information to the user, but do not make the session history avail-
able; on the other hand, command line interfaces generally provide the history, but
without the state feedback. The line-oriented, sequential programming language
model used by Maple falls into the second category, and its traditional glass TTY
interface displays the commands and their results sequentially upon the display.
When the user is given the ability to edit and re-enter computations at arbitrary
locations in the session, it becomes easy to create a worksheet that can “lie” to
the unwary observer. This comes about when the sequence of inputs to the Maple
kernel (and the kernel’s subsequent state, such as which names are assigned) can-
not be deduced from the sequential examination of the interface’s session log: the

visible “history” may not correspond with the kernel’s state.

Two potential solutions to this problem come to mind, although neither one

is completely satisfactory from the Maple standpoint. First, the interface could

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 21

direct use by most applications, it fits the distinct Maple kernel and Iris design
very well. Accordingly, the Maple design permits considerable flexibility in the

interchange of interfaces, both of different types and over different platforms.

This separation is not without its disadvantages, particularly in the case in
which the kernel and the interface run as distinct processes. Indeed, the problems
outlined below need not occur on platforms in which the computation engine and

the interface components are compiled into the same address space.

One obvious weakness in the current design stems from the necessity of com-
municating state information from the kernel to the interface. Currently there is
no way for the Iris to query the kernel’s state — for example, to determine which

function names are loaded in order to provide name completion.

A related problem (again based on the fact that the kernel has a state distinct
from that of the interface) is the difficulty of saving a Maple “session”. In order
to fully recreate a work session, both the interface state and the kernel state need
to be saved; in this context, the complete kernel state must be transmitted to the
Iris. Similarly, the Iris needs to be able to restore the kernel’s state when loading

a saved session.

Finally, the process-based separation technique raises some efficiency consid-
erations. Computational results generated by the kernel can be very large; these
results must be transmitted to the interface for presentation to the user over a
byte-stream communications channel. In environments in which the kernel and the
interface execute on the same machine, two copies of the structure are created,
one in each process. Displaying plots is even worse — current interfaces simply
copy the data structures representing the plot to a third process, which actually
performs the rendering. The fact that plot data structures tend to be large only

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 20

established word processors available: implementation of yet another one, albeit
with sophisticated symbolic computation features, is probably not the best way to
serve the user community. A better approach would be to provide rudimentary out-
lining and text manipulation capabilities in a Maple interface, along with flexible

mechanisms for exporting results to established full-functioned word processors.

Perhaps the only effective solution to addressing the major uses of Maple out-
lined here is multiple, special purpose interfaces. The division of the Maple kernel
and the user interface facilitates this approach; furthermore, if the existing Maple
Iris were to be broken down into smaller and more autonomous functional units,
then these components could be “mixed and matched” to provide multiple inter-
faces while minimizing programming efforts. For example, it is easy to imagine
replacing the existing parser which accepts the full Maple language with one that
accepts only single-statement Maple expressions, and accordingly does not require

the trailing semicolon.

Kernel /Interface Separation

As was mentioned earlier, current implementations of Maple that run on Unix-
based systems separate the Maple kernel and the interface into two distinct pro-
cesses which communicate via pipes. This design facilitates (and indeed, enforces)

complete interface and application separation.

The notion of separating the application and the interface is a well-known UI
design principle based loosely on the Smalltalk Model-View-Controller paradigm
[KRAS88]. This idea is the basis of Hartson’s discussion on runtime architecture
design [HART89], in which the application is divided into a computation component

and a dialogue component. Although Hartson’s model tends to be too general for

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 19

Uses of Maple

One of the most important considerations in Ul design is to be cognizant of the
purpose or uses of the application. In some cases, this is a fairly straightforward
issue — the application may have a narrow but well-defined scope, or a very small
user community with specific needs. Interactive “tool” applications can be more

difficult to pin down, and to a large degree, Maple falls into this second category.

In essence, Maple is nothing more than an interactive, interpreted programming
language for symbolic computation. The interpreted nature of the language facili-
tates its use as an interactive symbolic calculator, however, and many users never
use Maple for anything more sophisticated than that. Current Maple interfaces
make no attempt to address this dichotomy of use; rather, they force the user to
either recognize the fact that a programming language is being used for even the
most simple interactive calculation, or condemn users to a perpetual distrust of the
system. As an example, consider the following transaction, typical of any user’s
first interaction with Maple: the user types 2 + 3 and presses the Enter key; Maple
responds with another prompt, but with no sign of the expected result. That the
programming language requires a semicolon at the end of statements, and that
newlines are permitted within statements are the facts that the user needs in order

to understand just what has happened here, and why no result has appeared.

Maple is used by researchers from many disciplines, and embedding the results
of Maple computations in scientific papers being prepared for publication is a fre-
quently performed (but rather awkward) task for this type of user. This fact, and
the feedback from a rudimentary “notebook” style Maple interface available on the
Apple Macintosh has demonstrated that some users want to use Maple as a “math-

ematical word processor”. One danger here is that there are already a myriad of

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 18

name ambiguties. Such a mechanism can be useful in CASs that provide a
programming language interface, or a large set of system-defined functions.
The Maple system in particular meets these criteria; providing name comple-
tion for the 2000 or so functions in the Maple library would facilitate the use
of longer, more descriptive function names, which in turn helps the current

problem of naming inconsistencies and overloading in Maple.

The desirability of providing keyboard command sequences to accomplish
all interaction tasks is a generally accepted interface principle. This per-
mits experienced users to perform tasks without moving their hand from the
keyboard to a pointing device, which can be a time-consuming operation. Al-
though some operations are usually faster and easier to perform with a mouse,
a keyboard interface can provide more control and precision in delicate oper-
ations, such as the selection of a small displayed object. Most user interface

toolkits provide a standard interface paradigm for mimicing mouse use with

the keyboard.

2.3.2 Application Specific Considerations

It goes without saying that the nature of the application itself drives many interface
design decisions. This section describes some of the important attributes of the
Maple system that have influenced the design of ziris. Some of these factors are
generally applicable to most CAS interfaces, while others are concerns that stem

from the architecture of Maple itself.

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 17

Multiple Command Paths One technique for handling the problem of address-
ing the needs of different types of users is to provide more than one way to
accomplish tasks. This permits novice users to be “single-stepped” through
a complicated task, while experienced users can take advantage of a faster

method with minimal prompting.

Although this can be an effective strategy, it is not without its drawbacks:
implementation and documentation costs are increased, while the interaction
of multiple methods can confuse users. Furthermore, the burden on the user
is increased, since although the user is free to use whichever method they
prefer, they have to learn both methods before being able to make use of this
flexibility.

Command Accelerators One simple but effective technique for addressing the
needs of both the novice and the experienced user is the menu accelerator.
Menu accelerators are commonly available in most window system toolkits,
and permit the user to make menu selections using a single keystroke or
keystroke combination without actually displaying the menu. For example,
the Apple Macintosh uses the Option key to accomplish this task. Menu
accelerators avoid many of the problems of multiple command paths, and

work well for commonly used commands that appear on menus.

Command name completion can be a useful accelerator mechanism, although
its utility is dependent upon the nature of the application. To invoke name
completion, the user types the first few characters of the name, and then
presses a “completion” key: if the prefix entered by the user uniquely iden-
tifies a name known to the system, the remaining characters are filled in

automatically. Additional prompts for the user can be provided to resolve

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 16

Support for Advanced Users

Although the point was made earlier that all user types must have their needs
addressed, the subject of facilitating the use of the application by advanced users is
brought up here again. As with many of these interface design considerations, there
are a myriad of possible techniques for providing customization and shortcuts, and
their effectiveness is often determined by the nature of the underlying application.
Some ideas that appear to be relevant to CAS interfaces and the Maple system in

particular are presented below.

Configurability Frequent users that have achieved a reasonable level of familiar-
ity with an application and its interface will typically want to exercise some
control over interface customization in order to facilitate the completion of
regularly performed tasks. One well-known and inexpensive method for pro-
viding basic interface programmability is the notion of assignable keyboard
commands. Such a scheme permits the user to bind frequently used com-
mands or command sequences to single keystrokes (often in conjunction with
a modifier such as the Control key); more sophisticated interfaces allow the
creation of keyboard macros in which any command or data input action can

be recorded and subsequently played back.

One problem with this form of configurability is that once a user has cus-
tomized their interface to any appreciable degree, it becomes virtually unus-
able by anybody else. Macros (or other interface sub-programs) tend to be
difficult to construct; their effectiveness depends on both the imagination of
the user and the quantity of repetitive actions they need to perform. How-
ever, once such customizations have been put into place, they can improve

usability on a personal basis by a considerable amount.

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 15

actions, and the best way to make them accessible to the user is highly depen-
dent upon the nature of the application, and the way in which the application

is being used.

In most CAS interfaces, it is desirable to place emphasis on making navigation
between results easy, and to facilitate viewing of results that may be too
large to display at once. As CAS interfaces become more sophisticated, the
direct manipulation of expressions displayed on the screen will likely make
up a large part of the common interactions performed by the user; designing
the semantics and bindings of direct manipulation actions requires careful

attention to be effective.

Visualization of Results The mental assimilation of the results produced and
displayed by the interface of an application frequently places considerable
cognitive demands upon the user. The amount of mental processing required
by a user to comprehend any particular result depends both upon the nature
of the result itself, and the manner in which the interface presents it. Thus,
representing results as “naturally” as possible can greatly facilitate usability,
both by reducing the workload on the user, and by decreasing the possibility

of user errors in interpreting results.

Virtually all CAS interfaces tend to be weak in the area of visualization of
mathematical expressions themselves, although considerable effort has been
expended in the area of rendering mathematical plots effectively. Improving
visualization is one of the themes of this thesis, and is discussed in detail in

Chapter 4.

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 14

Layering of functionality is present at the application level in the Maple sys-
tem via the Maple package concept, which permits the loading of a set of

related mathematical functions by user request.

Consistency The benefits of providing a high degree of consistency in user in-
terfaces is one which has received considerable attention from the software
industry over the past six or seven years. Inter-application consistency has
been promoted by development toolkits and runtime environments on both
microcomputers and workstations alike, with a reduced learning curve and

increased user confidence being cited as two of the prime benefits.

An effective user interface must maintain internal consistency as well. This
implies that the commands and their resulting behaviours should be as consis-
tent as reasonably possible; this permits users to effectively predict the form
and results of new and unfamiliar commands based on the knowledge gained

from earlier experiences with the interface.

In addition to being consistent, choices for command names and menu se-
lections should share several other properties. Ideally, they should tend to
favour infrequently used words or phrases, with specific meanings, that aid
discrimination between included and excluded operands. As an example, for
file manipulation commands, “duplicate” would be preferable to “copy”, and

“rename” to “move”.

Naming conventions in the Maple library could stand improvement from the

standpoint of consistency.

Facilitate Common Actions Although it almost goes without saying, making
common actions and commands easily accessible is very important in reduc-

ing user stress levels. The identification of common command or manipulation

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 13

The problem facing the user interface designer is to facilitate the use of the
application by users in all three categories, while at the same time maintaining a
sufficient degree of consistency so that users can “switch categories” smoothly as

their proficiency level increases.

Imposed Cognitive Load

Whenever users interact with an application, some portion of their mental energy
is expended on the interaction tasks necessary to achieve the results they desire.
Thus, an important part of making an application “easy to use” is minimizing the
cognitive load imposed by using its interface. To a large extent, the way in which
this may be accomplished is highly dependent upon the nature of the application

itself; nevertheless, there are several basic principles that serve the general case.

Layered Functionality Users (and especially novices) are easily overwhelmed
when presented with big menus, long lists of commands, or large numbers
of buttons: the meaning or effects of their underlying functionality are easily
lost in the shuffle of visual complexity. One way of handling this problem is to
remove or split off the superfluous functionality: although not everyone will
agree, we would assert that multiple programs (with consistent interfaces) are

superior to a single monolithic program embodying the same capabilities.

For inherently complicated applications, layering their functionality can work
well. This technique makes less frequently used commands available at a
lower level in a hierarchical command structure, rather than clustering all
commands at a single level. Careful organization of the hierarchy is required,

in order to facilitate the location of infrequently used commands.

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 12

principal goal is clear: maximizing the value of the user’s time spent using the

application.

Addressing Different Types of Users

The fact that no two users are identical tends to complicate interface design de-
cisions. One possible approach to handling this problem of addressing the needs
of users with different skill levels is to classify the spectrum of users into three

categories.

Novices Novices are those users who have little to no experience with the applica-
tion itself, although it is usually presumed that they have some knowledge of

1

the subject matter manipulated by the application." They may or may not

have experience with other (possibly unrelated) applications.

Infrequent Users Infrequent users are well versed with the capabilities of the
application, but do not use it on a regular basis. Such users typically know
what they want to accomplish within the context of the application, but do

not necessarily remember the exact steps required to achieve their goals.

Frequent Users Frequent users are not only familiar with the application and
its limitations, but use the program with sufficient frequency that they do
not require appreciable guidance from the system as they work. These users
are the so-called “power users”, although even the most sophisticated user
may occasionally require some assistance when performing rare or unusual

operations in a large application.

!Educational applications are one obvious exception.

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 11

in the representation of the expression given in (2.1). For the sake of comparison,

the ziris rendering of the same expression is visible in Figure 5.1.

2.3 Interface Design Considerations

The overall design of any user interface is typically governed by a host of consider-
ations, which can be loosely divided into three sets. The first of these are general
interface considerations, and can be thought of as those guidelines which embody
“good interface design principles.” The second set, application specific consider-
ations, consists of application dependent interface factors — considerations which
are driven by the nature of the application for which the interface is being devel-
oped. Finally, the third set contains practical factors that are completely external
to the application and its interface. These environmental considerations generally
take the form of real-world constraints, such as imposed implementation deadlines

or portability requirements.

The principal design considerations encountered when designing ziris are dis-
cussed below, and are classified according to category. As in most interface designs,
conflicts between these considerations exist, especially between those in different

categories.

2.3.1 General Interface Considerations

A considerable body of literature exists on the subject of principles of user interface
design; only a few highlights are presented here. It is interesting to observe that

some design conflicts arise even within these general considerations, although the

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 10

z+1/3%z*%*2+Int (x**2%1n(x) *y**(1/2) ,x = -Pi .. infinity)

infinity
/
2 | 2 1/2
z +1/3 z + [x 1In(x) y dx
|
/
- Pi

Figure 2.1: Character-based Output Forms in Maple

and ASCII character-based two dimensional output. Input is parsed by an LALR(1)
parser compiled from a YACC grammar [JOHNT78], and while common operators
are handled naturally, most mathematical semantics are expressed with a function
call-based notation, in which normal infix operators can be embedded more or less

naturally. As an example, the expression

2)
z + % —I—/ z? In(z)\/y dz (2.1)

is entered with the following Maple command line (the spaces are optional):
z + z72/3 + Int(x"2*1n(x)*sqrt(y),x=-Pi..infinity);

Two formats for output are provided. The first displays results in a “lineprinted”
form, which is analogous to the input format accepted by the Iris parser. This for-
mat is useful for feeding the output back into Maple. The second output format is
an ASCII character-based two-dimensional form, in which traditional mathemat-
ical notation is approximated as closely as possible within the limits imposed by

standard glass TTY terminals. Figure 2.1 demonstrates both of these output forms

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 9

existing library functions and adding completely new functionality. At the same
time, it limits the computational resources required by the Maple system to the
minimum needed to handle the algebraic problems at hand — a valuable feature on

microcomputer systems with limited memory.

2.2 The Existing Maple Interface

The benefits of the separation of the CAS functionality from the interface compo-
nents was recognized early on in the development of the Maple system. A design
plan for a conceptually distinct interface for Maple [LEON86| was presented at the
1986 Symposium on Symbolic and Algebraic Computation; the emphasis of this
report falls on the advantages and practical considerations of a complete and clean
separation of the interface and the algebra engine. The existing Maple interface,

known as Iris, implements a subset of this design.

The greatest advantage to this complete functional separation of the user in-
terface from the underlying algebra engine is the flexibility that it affords. Not
only can new interfaces be developed with total independence from changes in the
CAS, but multiple interfaces targeted at different types of users can be provided,
each using the same algebra engine. Where practical, the Maple kernel and Iris
can run as separate processes connected via a system-dependent communications
channel (as an example, Unix implementations use pipes for this purpose); this can
be easily extended to permit the kernel to run on one machine, and the interface
to run on another, with the two communicating over a network communications
channel. Such an arrangement permits the two processes to run in environments

appropriate to their respective tasks.

The user interface presented by Iris is a basic one based on command line input

CHAPTER 2. MAPLE INTERFACE DESIGN CONSIDERATIONS 8

2.1 Maple

Maple remains an on-going research project of the Symbolic Computation Group
at the University of Waterloo. The design and implementation effort was initiated
in mid-1980; the goal was to capitalize on experiences gained from earlier CAS
systems, such as Reduce and MACSYMA, while at the same time taking advantage
of advances in software engineering to construct an effective and portable system.
The result is a relatively small kernel which interprets the Maple mathematical
manipulation language; the majority of the algebraic knowledge represented by the
Maple system is embodied in a large set of library functions written in the high-level

Maple language.

Until recently, Maple’s primitive data structures and the basic operations per-
formed upon them (such as numeric arithmetic and elementary simplifications)
were implemented in a locally-developed macro-preprocessor language called Mar-
gay. On any particular target machine, the Margay macros were translated into
a platform-dependent dialect of the C programming language and compiled as a
traditional C language program; the resulting executable is known as the Maple
kernel. The use of the Margay preprocessor considerably enhanced the degree of
portability achieved in the design of the Maple kernel, especially in the early days
of non-standardized C compilers. The kernel has been ported to a wide variety
of operating environments, including the Atari ST, the Commodore Amiga, IBM
VM/CMS, and many Unix platforms. Recent versions of Maple have dispensed

with the macro preprocessing step, and are implemented directly in C.

Basic I/O functionality is provided by the kernel, which permits the dynamic
loading of library functions on a demand basis. This scheme permits consider-

able flexibility, by providing a convenient means for enhancing the capabilities of

Chapter 2

Maple Interface Design

Considerations

This chapter is divided into two distinct parts. The first portion deals with Maple
itself, and provides the reader with some background on the design of the Maple

system and its existing interface.

The second part of this chapter is devoted to a discussion of some of the con-
siderations which motivated the design decisions made in the development of the
zirs interface for Maple. Some of these considerations arise from the nature of
the Maple system itself, while others stem from generally accepted principles of

interface design.

A description of the capabilities of the ziris interface is deferred until Chapter 5.

CHAPTER 1. INTRODUCTION 6

A “top down” approach is taken within the body of this thesis, by first address-
ing the design considerations for the overall interface, and the factors upon which
the design decisions were based. Subsequent chapters deal with specific sub-areas
of the interface, namely output formatting and techniques for handling large ex-

pressions, with emphasis on the particular problems posed by the nature of the

underlying CAS.

At the same time, discussions of CAS interface design principles occur at two
distinct levels. At the conceptual level, factors that influence the overall design
of the user interface are presented; these factors can loosely be considered the

“classical interface issues.”

These discussions are mainly confined to the opening
chapter. The second level of considerations are the practical issues governed by the
particular problems that CASs impose on interfaces in general. These are addressed

in the subsequent chapters in the context of the affected subarea of the interface.

A functional description of ziris as it stands currently, and some of the more
interesting details of its implementation, are presented in Chapter 5. This chapter
also contains a description of the ziris linebreaking mechanism, which utilizes a

novel variation of a previously unimplemented linebreaking algorithm.

CHAPTER 1. INTRODUCTION 5

A slightly different category of CAS interface is represented by the related Math-
CAD and MathStation [MATH89] systems. Both have interfaces that permit the
user to freely intermix text, equations and graphics on the same or over multiple
lines. A “spreadsheet” recomputation model is used to update any calculations and
graphics that appear below any changed inputs: since neither system embodies a
complete CAS, the recomputation times are not excessive. MathStation permits
the user to define their own customized formats for operators (through writing
PostScript code). Although both systems have been connected to Maple to provide
full symbolic computation capabilities, neither can format the medium and large

expressions that a full-fledged CAS can produce.

Theorist [BONA8T] is a new but small CAS with a fairly sophisticated interface
that runs on the Macintosh. It supports a variety of methods for entering mathe-
matical expressions, but the most interesting feature of its interface is the support
for the direct manipulation of the displayed expressions: subexpressions can be se-
lected and moved within the overall expression, or substituted into variables. The
interface endeavours to ensure that only legal manipulations are allowed, although

the question of determining legality is difficult to solve even with a locally available

CAS.

1.2 Scope of this Thesis

This thesis touches upon a variety of topics in the discussion of CAS user interfaces,
and presents them in light of an implementation of a new user interface, ziris for
the Maple system. The emphasis is placed on the formatting and presentation of
the mathematical expressions generated by the algebra system, since to date, the

zirts implementation does not include any sophisticated input or editing features.

CHAPTER 1. INTRODUCTION 4

as troff (with eqn) [OSSA78] and TgX [KNUT84] can handle sophisticated math-
ematical layout, at the cost of having to learn their cumbersome linear syntaxes.
Many of the more recent interactive document processors such as FrameMaker
[FRAMS89] and Microsoft’s Word for Windows [WORD91] support the WYSIWYG
(“what-you-see-is-what-you-get”) layout and formatting of equations. These sys-
tems do not communicate with CAS engines, however, and are not designed to

handle large expressions.

Attempts have been made to take advantage of the mathematical formatting
knowledge provided by these document processing systems. These efforts have
been primarily directed at the batch oriented systems, and fall into two general
categories. First are those systems that generate eqn or TEX forms of their CAS
output; their intention is to facilitate the creation of publication-quality documents
from CAS sessions. The principle problem faced in these systems is handling the
linebreaking of large expressions: Antweiler, Strotmann and Winkelmann’s TEX-
generating engine for Reduce [ANTWS89] is one of the few systems that addresses
this problem. The second category attempts to use document processing systems
to perform interactive formatting of CAS results; these efforts, such as Foster’s
DREAMS [FOST84] system for MACSYMA tend to suffer from poor performance,

and have generally been abandoned.

Leler and Soiffer’s 1985 Reduce pretty printer [LELES85] was the first system
since Martin’s work in the 1960’s that could handle both input and output, and
served as the basis for Soiffer’s MathScribe [SMIT86] system. MathScribe is the
most ambitious CAS interface developed to date, and supports a variety of input
techniques, bitmap-based formatting and display of traditional mathematical no-
tation as well as the interactive editing of displayed expressions. MathScribe does

not break large expressions over multiple lines.

CHAPTER 1. INTRODUCTION 3

up some of the shortcomings of traditional CAS interfaces. Furthermore, the advent
of readily available, low-cost bitmapped display terminals, coupled with higher user
expectations with respect to general interface quality and capabilities has led to an

increased demand for better CAS interfaces.

1.1 Related Work

A comprehensive treatment of CAS interface development efforts is provided by
Soiffer in the introduction to his dissertation [SOIF91]; only the highlights, along

with some of the more recent work in the field are presented here.

Initial attempts to improve CAS interfaces focused on improving the quality of
their output. The earliest effort in this direction was Clapp and Kain’s Magic Paper
[CLAP63] system, developed in 1963, which provided two-dimensional formatting
and notation for mathematical expressions. One early system that was particularly
capable (even by today’s standards) was Martin’s Symbolic Mathematics Labora-
tory [MART71] which could display mathematical expressions on a vector-based
display using multiple fonts, and permit the user to select subexpressions with a

light pen.

The interactive systems of the late 1970’s and 1980’s, such as MACSYMA
[MACS83] and Maple, provide only line-based input and character-based format-
ting of mathematical expressions; Figure 2.1 shows an example of this formatting
style. Until very recently, this form of output represented the “state of the art” of
the mathematical formatting provided by CAS interfaces.

Over this same time period, techniques for the computerized typesetting of

mathematical expressions have evolved steadily. Batch oriented text processors such

CHAPTER 1. INTRODUCTION 2

experiences obtained from the design and partial implementation of a new interface,

called ziris, for a particular CAS system, Maple [CHAR91].

Despite the relative maturity of computer algebra systems, most of their inter-
faces have provided only rudimentary input and display capabilities. By modern
standards, many of these interfaces can be classified as primitive. Users enter ex-
pressions in a linear, “programming language” style using only those characters
available on a standard keyboard, while results are presented as lines of ASCII

character-based text.

It is probable that a combination of factors has been responsible for this ap-
parent lack of evolution in CAS interfaces in general. In the case of Maple, it
is apparent that its own programming language paradigm has been a particular
influence in delaying the production of a high quality interactive interface. The
Maple system consists of a relatively small kernel, which implements primitive
speed-critical operations and acts to interpret libraries of user code; these libraries
embody the majority of Maple’s functionality. Both developers and users tend to
use an external editor to enter Maple programs or complicated series of calcula-
tions, and then invoke Maple upon their program file to test and debug the results.
This methodology has alleviated the need for effective input (and to a lesser de-
gree, formatted output) facilities within Maple itself. Furthermore, development
efforts by the University of Waterloo’s Symbolic Computation Group have — not
surprisingly — focused on improving Maple’s symbolic computation capabilities,
rather than upon interface improvements. Finally, the design and implementation
of an effective CAS interface requires a variety of interdisciplinary skills, including
knowledge of software engineering and human-computer interaction factors, as well

as familiarity with the CAS and the particular problems it poses for the interface.

The increased use of CASs as interactive mathematical scratchpads has shown

Chapter 1

Introduction

Computer programs that manipulate mathematical expressions symbolically are
not a particularly recent innovation. Libraries of routines for handling symbolic
computations were developed as early as the mid-1960’s [SAMMG66], while pro-
grams designed to handle specific problem types, such as symbolic differentiation
and integration, date from even earlier [NOLA53, KAHR53, SLAG63]. Modern
computer algebra systems (or CASs) are considerably more powerful, and handle a
wide range of problems over a diverse set of mathematical domains. Soiffer provides

a brief overview of many of these systems and their capabilities in [SOIF91].

Although most modern CASs provide some degree of programmability (typi-
cally in the form of some sort of embedded programming language), an interactive
“calculator” mode is usually made available in order to provide accessibility to the
casual user as well as to facilitate mathematical scratchpad calculations. For the
most part, the effectiveness of these systems has been hampered by the lack of user
interfaces that adequately address the issues peculiar to CAS requirements. This

thesis attempts to outline and consider these interface issues through the practical

5.5 Two-dimensional forms in ziris linebreaking

5.6 Pseudocode Sketch of the ziris Linebreaking Algorithm

List of Figures

2.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

Character-based Output Forms in Maple 10
Hierarchical Arrangement of Bounding Boxes. 26
Formatting Procedure for Exponentation 31
Attributes of a Bounding Box 0. 33
Glyph Creation by combining bitmapped characters 39
Subexpression Labelling in IRIS 45
An example of a poor line cut location 51
Two-dimensional and linear forms of a quotient 53
Results of Structural Linebreaking 57
A formatting DAG for 2ot oL 60
A sample ziris session L. oo e e 70
Information Flow in the ziris formatting process 71
Effects of the Name Translations Mechanism 75
Displayed format of a Maple Table structure in zirzs 7

List of Tables

3.1 Font Property Information Used by ziris

5.1 Optional Formatting Forms Provided in zeres

X

5.3 Formatting o 73

5.3.1 Simple Format Customizations 73

5.3.2 Linebreaking Requirements 76

5.4 Linebreaking. oo oL (i
5.4.1 Advantages and Disadvantages 78

5.4.2 Implementation 80

5.5 Sharing e e 82

6 Conclusions 84
6.1 Evolutionary Directions for ziris, 85
6.2 Future Work: CAS Interfaces in General 86
6.3 Conclusions 87
Bibliography 89

viil

3.2 Output Issues 37

3.2.1 Large Expressions oot 37
3.2.2 Device Independence 38
3.2.3 Specialized Formatting Cases 39
Handling Large Expressions 41
4.1 Visualization o 42
4.1.1 Labelling Subexpressions 43
4.1.2 Elision e 44
4.1.3 Alternative Views oo 47
4.2 Displaying Large Expressions 49
4.2.1 Scrolling 49
4.2.2 Line Cutting 50
4.2.3 Linebreaking 52
4.3 Memory Management 000 58
4.3.1 Sharing e 59
4.3.2 Session Memory oo oo 64
4.4 Rendering Performance L 0oL 65
The XIRIS Implementation 67
5.1 Functional Description 67
5.2 General Architectureo oo 69

vil

Contents

1 Introduction
1.1 Related Work o o o e e e e e

1.2 Scopeof this Thesis

2 Maple Interface Design Considerations
2.1 Maple e e e
2.2 The Existing Maple Interface
2.3 Interface Design Considerations
2.3.1 General Interface Considerations
2.3.2 Application Specific Considerations

2.3.3 Environmental Considerations

3 Formatting CAS Output
3.1 Basic Formatting 0000,
3.1.1 The Layout Phase

3.1.2 The Rendering Pass

vi

11

11

18

23

25

Acknowledgements

Many people have helped to make this thesis and the software a reality. I would
like to thank the members of the Symbolic Computation Group for their patient
explanations of Maple internals, as well as their helpful comments on the evolution-
ary progress of the interface software. David Clark deserves special mention—his

knowledge of the existing interface software was invaluable.

My thanks also go to the Computer Graphics Laboratory, which provided en-
couragement and a comfortable development environment as well as financial sup-
port through the kindness of John Beatty. I would also like to gratefully acknowl-

edge the scholarship support received from Alias Research.

My thesis readers, Richard Bartels and Keith Geddes, deserve particular thanks
for their valuable feedback on this document. To my supervisor, George Labahn, I
owe a particularly large debt of thanks. In addition to providing the vision, funding,
and encouragement, George gave me unlimited freedom to explore the issues, yet

was always available to discuss the problems as they arose.

My parents deserve much credit for the immeasurable support they have pro-
vided for my studies throughout the years. Finally, my wife, Irene, has contributed
infinite patience and understanding, even when the “extra term” stretched into an

extra year. I couldn’t have done it without her support.

Abstract

In recent years, the evolution of user interfaces for Computer Algebra Systems has
lagged behind both the advances in the algebra engines which they serve, and the
general developments seen in user interface principles as a whole. The increased
availability of bitmapped display devices and the graphical user interface software
running upon them has served to demonstrate the limitations of existing computer

algebra system interfaces.

This thesis discusses some of the design and implementation issues inherent in
the construction of an effective user interface for computer algebra systems. The
emphasis is upon the efficient handling of the output of algebra systems, and ef-
fective techniques for presenting the mathematical content to the user, particularly
when the expressions are large. A new user interface for the Maple system is de-
scribed in light of the issues discussed, and a new variation on an algorithm for

breaking long mathematical expressions over multiple lines is presented.

v

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

11

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-
tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

i1

i1

Mathematical Output Presentation in User

Interfaces for Computer Algebra Systems

Timothy Richard Tyhurst

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 1993

(©Timothy Richard Tyhurst 1993

