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Iterative methods for N�S equations �

� Introduction

Finite volume or �nite element discretizations of primitive variable formulations of the incom�
pressible Navier�Stokes equations result in a large system of non�linear algebraic equations� These
algebraic equations can be solved in a sequential� decoupled manner �as for example in the SIMPLE
algorithm ��	
� or more fully coupled methods may be used ��� �� �� 
	�

There are two main approaches for fully coupled solution methods� One popular technique is
to simply use full Newton iteration ��� �� �� �� �� �	� Newton iteration has the advantage that
convergence is quadratic provided an initial guess is close enough to the solution� Consequently� it
is usually possible to obtain solutions of the discrete equations which have a very small non�linear
residual� at the expense of a relatively small number of non�linear iterations ���� �	� On the other
hand� it is often the case that arbitrary initial solution estimates may cause the Newton iteration
to diverge� In practice� this problem is avoided by using pseudo�timestepping ��� �	� or continuation
in the Reynolds number ��	� Frequently� direct methods are used to solve full Newton Jacobians
���	� which are very expensive for three dimensional problems� Iterative methods have recently
been used for solution of full Newton Jacobians ��� �	� but care must be taken with the ordering of
the unknowns ��� ��	� and the type of preconditioning used ���	�

Another fully coupled solution method is based on �frozen coe�cient� iteration� In this ap�
proach� non�linear terms are linearized by �freezing� some the unknowns at old iteration values�
For example� if vki is the value of the discrete velocity at node i� nonlinear iteration k� then a term
in the discrete equations such as

vi����vi

would be linearized as

vki����v
k��
i

This frozen coe�cient matrix is usually more diagonally dominant than the Jacobian matrix� and
hence easier to solve with an iterative method� Direct methods ���� �
	� have been used to solve the
frozen coe�cient matrix� Multigrid methods typically iterate on a variation of the frozen coe�cient
matrix ���� ��� ��� ��	� Frozen coe�cient nonlinear iteration also appears to be a very stable method
���	 and convergence can often be obtained with initial solution estimates that would cause Newton
iteration to diverge ���	� A disadvantage of frozen coe�cient iteration is that convergence of the
nonlinear iteration can be very slow� if a small nonlinear residual is required�

Note that both of these nonlinear methods �frozen coe�cient and full Newton
 require few� if
any� iteration parameters� This is a distinct advantage over the more decoupled methods�

The objective of this paper is to compare both of these fully coupled nonlinear iteration meth�
ods� while using an iterative method to solve the resulting large sparse matrices� In fact� it will
be demonstrated that the best method uses a combination of frozen coe�cient and full Newton
iteration� in order to utilize the best features of both techniques� Note that some comparisons of
full Newton and frozen coe�cient nonlinear iteration were carried out in ���	� however� a direct
method was used for the full Newton iteration�

In this work� the matrices are solved using a preconditioned conjugate gradient method �PCG

with CGSTAB ���� ��	 acceleration� An incomplete LU �ILU
 type preconditioning is used ���	�
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Poor results can be obtained with ILU preconditioning unless careful attention is paid to the
ordering of the unknowns in the matrix ���� �� ��� ��� �
	� and even to the discretization used in the
preconditioning matrix ��	� which may be di�erent� in general� from the discretization used in the
actual Jacobian� Another level of sophistication is introduced in this article� by noting that an ILU
factorization of the frozen coe�cient matrix may be used to precondition the Jacobian� Completely
general sparse matrix methods are used� and no special properties of the discretization are required�
Consequently� we believe that these same methods can be used with little or no modi�cation for
�nite element or �nite volume discretizations on unstructured meshes�

The most e�cient methods developed in this work have very few parameters �i�e� no underre�
laxation is used
� which is convenient for non�expert users of software�

As model problems� we consider the primitive variable formulation of the incompressible Navier�
Stokes equations on a variety of two dimensional regions� A standard �nite volume discretization
on a staggered grid is used� Results will be reported in terms of total CPU time for solution of the
nonlinear algebraic equations for a speci�ed convergence tolerance� Total times will include matrix
construction� �incomplete
 factor and solve�

Comparisons will be made using full Newton iteration with pseudo�timestepping� frozen coe��
cient iteration� and a combination of frozen coe�cient iteration and full Newton iteration� Various
preconditioning techniques and ordering methods for solution of the linear equations will also be
tested� and compared to direct solution methods� The e�ect of cell aspect ratio on the performance
of the iterative methods will also be demonstrated�

For the convenience of the reader� a nomenclature is provided in Appendix A�

� The Governing Equations and Their Discretization

The equations governing two�dimensional incompressible �uid �ow are those for the conservation
of momentum �the Navier�Stokes equations
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and the conservation of mass equation
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Here u and v are the velocities in the x� and y�directions respectively� and p is the pressure�
Equations ����
 are in dimensionless form with a single parameter� the Reynolds number Re� If
the terms �u��t and �v��t are dropped from equations ��
 and ��
 respectively� we are left with
the elliptic �steady state
 �ow equations�

��� Discretization and Weighting Techniques

The equations ����
 are discretized using a �nite volume approach over a staggered grid as described
fully in ��	� The region is divided into rectangular cells� with the pressure unknowns placed in the
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centres of the cells� and the velocity unknowns at the faces� The mass conservation equation �the
M equation
 is integrated over each cell �Figure �a
 with dimensions �x� �y to give

�ui���j � ui�j
�y � �vi�j�� � vi�j
�x � ����


The equations ��
 and ��
 � the U and V equation respectively
 are integrated over �staggered� cells
which have u and v at their centres �Figures �b and �c
� Using the notation of Reference ��	� the
two equations can be written more generally as
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Fx � u��
�
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Fy � v��
�
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��

�y
���


The terms Fx and Fy represent �ux per unit volume in the x and y directions respectively� The
variable � represents u or v� and S represents the source term �in this case� the pressure di�erential
�
Integrating �

 over a cell of dimensions �x� �y with � at the centre gives

�n��i�j � �ni�j
�t

�x�y �
�
Fi�����j �Fi�����j

�
�y �

�
Fi�j����� Fi�j����

�
�x � Si�j��


Si�j �

�
�pi�j � pi���j
 �y where � � u�

�pi�j � pi�j��
 �x where � � v�

The terms Fi�����j and Fi�����j represent the values of Fx at the left and right cell interfaces� and
Fi�j���� and Fi�j���� represent the values of Fy at the top and bottom cell interfaces respectively�
Note that the equations are fully implicit� all variables except the �ni�j of the time derivative term
are solved at the new time �thus �i�j � �n��i�j 
�

Finally� we must discretize the �ux terms at the cell faces� Taking� for example� the Fx term
at the interface between cells centred at �i�j and �i���j� we may write Fi�����j as

Fi�����j � uavg�i�j � �A� B


�
�i�j � �i���j

Re h

�
��


B �

�
� if uavg � �

�Rec if uavg � �

uavg �
�ui�j � ui���j


�

where h is the distance between the two grid points� uavg is the average x direction velocity through
the interface between the cells� and Rec � Re uavg h is the cell Reynolds number� In concert with
B� A can be chosen to implement a number of weighting strategies� It is not the objective of this
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paper is to examine the various possibilities� nor to consider the e�ects of weighting methods on
the �nal solution� Most of the tests reported in this paper will be carried out using the power�law
weighting method described in ��	� This is a popular method� and is easily implemented by setting

A � max
h
�� ��� ��� j Rec j


�
i
����


Central weighting will be used for one test case�

� Solution Strategy Components

With the equations discretized� we are left with a large non�linear system that must be solved�
We have chosen to solve the system in its fully coupled form� Decoupling one set of equations�
such as is done with the conservation of mass equations in the SIMPLE family of algorithms� may
require more non�linear iterations as compared to the simultaneously solved set of equations �
	�
Although the work per non�linear iteration is less for SIMPLE type methods compared to fully
coupled approaches� the experimentally determined computational complexity of SIMPLE appears
to be O�N�
 �
	� which compares to O�N���
 of the fully coupled methods used in this work �where
N is the number of cells in the discretization
�

Both the full Newton �FN
 and frozen coe�cient �FC
 non�linear methods iterate according to
the equation

Ak�xk�� � xk
 � �rk����


where Ak is the linearized equation matrix �LEM
 formed from values determined in the kth non�
linear iteration� xk�� represents a vector of u� v� and p variables from iterations k and k� �� and rk

represents the non�linear residual vector formed by evaluating the u and v momentum equations�
and the conservation of mass equation at the kth non�linear iteration� For FN iteration� the matrix
Ak is the full Jacobian� In the case of FC iteration� some derivatives in Ak are ignored�

An important point to note is that the FN and FC methods di�er only in the construction of
the LEM� The evaluation of the residual is the same for both methods� and hence� both methods
can be used to solve the same problem� Both methods� when they converge �i�e� when the residual
approaches zero
� arrive at the same answer to a particular problem� although they may approach
that answer di�erently�

��� Full Newton Iteration

Full Newton iteration is performed by constructing the LEM with all the u� v and p unknowns of
the discretized equations evaluated at the current iteration point� To illustrate� consider equation
��
 for the U equation� and its partial derivative with respect to uk� The Rec term is fully expanded�
and when � � Rec � ��

FFN
i�����j �

�
uki�j � uki���j

�

�
uki�j �

�
	��

Re h

��
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Thus
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The full expansion of the U � and V equations is similar� and hence will not be given here� The M
equation is� of course� linear in the momenta�

��� Frozen Coe�cient Iteration

Frozen coe�cient iteration uses a simpli�ed form of the LEM� The M equation is expanded as
in the full Newton matrix� In the U and V equations� we replace ukavg with u�avg � ukavg� This
term is not expanded when constructing the partial derivatives� but is �frozen� as a value for the
coe�cients and nothing more� Consider equation ��
 from the U equation again� and its partial
derivative with respect to uk� with the same conditions as speci�ed for equation ���
�

FFC
i�����j � u�avgu

k
i�j �

�
��

Re h u�avg
��

��
uki�j � uki���j

Re h
����


Thus we obtain

�FFC
i�����j

�uki�j
� u�avg �

�

Re h

�
��

Re h u�avg
��

��
���



Not only are the partial derivatives less complicated� but certain other terms which appear in the
full Newton matrix disappear entirely under this scheme� The FC matrix� therefore� has fewer
nonzeros than the FN matrix to store� To recapitulate� the FC matrix is can be regarded as a FN
matrix with some of the derivative terms set to zero� and other terms slightly modi�ed�

��� Notes on the Resulting Matrices

Several matrix characteristics� important to PCG iterative matrix solvers� are evident from the
given expanded sections of the two types of LEM�s� For example� the rows of the FC matrix
corresponding to the momentum equations have the property that the diagonal is positive� and the
o��diagonal terms corresponding to neighbouring momenta are negative�

However� for full Newton Jacobian �FN
 linear equations� for cells where j Rec j� ��� derivatives
of A �Equation ��
 appear� These may cause o��diagonal momentum derivatives to appear which
have the opposite sign to the FC momentum terms� This tends to decrease the diagonal dominance
of the matrix and hence may cause problems for an iterative solver�

The M equation contains no pressure terms� Thus �Mij��pij � � for both FC and FN LEM�s�
and hence the diagonal entries for the M equations are zero� This can be the cause of problems when
the matrix is factored directly� as well as when it is partially factored to produce a preconditioner
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for a PCG type matrix solver� Zeros on the diagonal will cause a non�pivoting matrix factorization
to fail� so precautions to prevent this in the partial factorization must be taken� Since pivoting
during factorization would require a more complicated data structure� and greatly slow the process�
it is not considered�

For direct methods� this zero pivot problem can be avoided by realigning the equations and
unknowns ���� ��	 or preprocessing the matrix ���	� In the case of iterative methods� either of the
previous two approaches may be used� or care must be taken with the ordering of the unknowns
���� �	�

��� Matrix Solution Methods

Iterative� PCG�type matrix solvers have been found to be e�ective in solving the matrices arising
from �uid �ow problems� We use CGSTAB acceleration ���	� with right preconditioning� which was
chosen over a number of other available methods based on previous experiments �see ���	
� As a
preconditioner� we use an incomplete LU factorization� keeping the �rst few levels of �ll�in �referred
to ILU�n
 where n is the highest level of �ll�in kept
 ���� �	� It is possible to use a drop tolerance
preconditioning� but tests have shown that this method is sometimes unreliable for high Reynolds
number problems ���	� and hence will not be considered here�

��� Pre�elimination

Although special ordering techniques can be used to ensure that an incomplete factorization does
not produce a zero pivot ��	� this method does not necessarily produce a small amount of �ll in
the incomplete �ILU
 factorization� For direct methods� realignment of equations and unknowns
has been used successfully ���	� For example� �Uij��pij �� �� and �Mij��uij �� �� Consequently�
nonzero diagonals can be obtained by interchanging the rows of the matrix corresponding to the
U and M equations� as described in ���	� Although this method is successful if a direct method is
used for the matrix solve� our tests of this realignment �or row interchange
 procedure produced
poor results for iterative methods�

Alternatively� pre�elimination can be carried out on the rows of the LEM matrix corresponding
to the mass conservation M equation ��
� Each pressure term in the staggered grid has from
two to four adjacent velocity terms� all of which appear in the discretized M equation� Gaussian
elimination is performed using the U and V equations corresponding to those adjacent velocity
terms� which eliminates the neighbouring velocity terms from the M equation� This also introduces
non�zero terms in the diagonal entry of the M equation� We perform no non�symmetric row or
column reorderings such as was done in ���	� Experiments showed that selecting only one U or V
equation to pre�eliminate against the M equation caused poor convergence of the PCG methods�
The best results were obtained when all adjacent equations were used� Note that the resulting
pressure terms in the pre�eliminated M equation are similar to the SIMPLE pressure equation� Of
course� this pre�eliminated equation has additional momentum terms as well�

More formally� let fMg be the set of all rows of the LEM matrix corresponding to mass conser�
vation equations� Let k be the row of the LEM matrix which corresponds to the mass conservation
equation at cell �i� j
� Mi�j� and let fAgi�j � Ai�j be the elements of the LEM equation ���
� Then
the pre�elimination algorithm is shown in Figure �� The operation of pre�elimination is O�N
� where
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N is the number of pressure�centred cells in the grid� It is quick to perform� but does somewhat
increase the matrix storage requirements�

This pre�elimination step results in a preprocessed matrix �A
p and right hand side vector ��r
p

which are row equivalent to the original system� No approximations are made in this pre�elimination
step� Note that in ���	� some of the terms in the pre�elimination are lagged an iteration �placed in
the right hand side vector
� and hence the matrix in ���	 is not row equivalent to the original FC
matrix�

To avoid a profusion of superscripts� the superscript p� indicating pre�eliminated matrix A and
right hand side �r will be dropped in the following� It will be clear from the context that a
pre�eliminated or non�pre�eliminated matrix is being used�

This pre�elimination method can be used for both complete or incomplete factorization� Note
that the realignment procedure of ���	 will require modi�cation in the presence of internal bound�
aries� while the pre�elimination method will always produce non�zeros on all diagonals� regardless
of the solution domain� It should also be noted that the pre�eliminated matrix does not� in general�
have a symmetric structure� However� this does not pose any particular di�culties for our matrix
solution methods�

��	 Ordering Methods

The ordering of the unknowns can have a large e�ect on the convergence rate of PCG type iterative
methods ���� ��	� The Minimum Discarded Fill �MDF
 ordering method attempts to determine a
good ordering by minimizing the size of the discarded �ll terms which are ignored in the incomplete
factorization� More speci�cally� at each stage of the incomplete elimination� the next pivot element
is selected �amongst the remaining uneliminated elements
 which minimizes the discarded �ll� For
matrices having a large number �on average
 of nonzeros per row� MDF can be costly to compute�
The Minimum Updating Matrix �MUM
 ordering method is an approximation to MDF ordering
which is less costly to compute� For more details concerning these ordering methods� the reader
is referred to ��� ��� ��	� Since at each stage� MUM ordering attempts to minimize the size of
discarded �ll terms� MUM ordering will attempt to determine a pivot sequence which tends to
avoid small elements on the diagonal� This is because a pivot row with a zero on the diagonal
would have an in�nite discarded �ll�

In the case of a PCG type iterative method� MUM ��	 was shown to be e�ective without pre�
elimination� Since it uses information from the numerical entries of the matrix� and not just the
graph� MUM ordering usually produces an e�ective ordering� Because of this numerical entry
sensitivity� re�ordering is occasionally required during the solution of the problem if the ordering
is to remain optimal� MUM is fairly robust� and in all our experiments has rarely produced an
ordering that caused the iterative matrix solver to fail� However� since MUM ordering is actually
an approximation to the MDF ordering described in ��
	� some information is lost using MUM or�
dering� While MDF ordering can determine a pivot sequence which produces rapid convergence for
anisotropic problems ���� ��	� MUM ordering can sometimes produce poor orderings for anisotropic
problems� In the context of Navier�Stokes problems� anisotropies are generated by discretizations
having large cell aspect ratios� However� in practice� MDF ordering is too time consuming for
Navier�Stokes type matrices�

It is also more costly to perform MUM ordering� both in terms of storage space for its data struc�
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tures� and the time it consumes� than the purely graph�based alternatives tested in the following
experiments�

Minimizing matrix bandwidth also tends to improve the quality of ILU factorizations� Brie�y�
this is because for a given number of nonzeros in the ILU factorization� bandwidth minimizing
orderings tend to retain higher level �ll terms compared with other orderings ���	� To this end� a
Reverse Cuthill McKee ���	 �RCM
 ordering was also used in conjunction with pre�elimination� First
the matrix was pre�eliminated� For the purposes of generating an RCM ordering� the data structure
of the pre�eliminated matrix was symmetrized� adding non�zero storage to the data structure as
required� �Of course� these non�zeros were removed in the actual symbolic incomplete factorization�

RCM ordering was then performed on this new matrix graph� This heuristic proved e�ective� when
combined with pre�elimination� for FC LEM�s� It has the advantage of being quick to perform� and
requires very little storage for intermediate work space� It was expected that with pre�elimination�
no special treatment of the ordering� �one based on matrix values�
 would be required� RCM with
pre�elimination will be referred to as Pre�RCM�

Note that in ���	 the zero pivot problem was avoided by ordering the pressure unknowns last�
While this is a robust method� tests in ��	 indicated that pressure last orderings were poor in terms
of convergence of the iterative solver�

��
 Preconditioning the Full Newton Jacobian

Computational experiments indicated that the frozen coe�cient matrix �LEM
 was relatively easy
to solve compared to the full Newton Jacobian �FN
 matrix� Based on the observation in ��	 that the
performance of iterative methods is sometimes improved when preconditioning with an upstream
weighted matrix� or equivalently� a preconditioning matrix with additional arti�cial viscosity ����
��� ��	� we have also tested the use of a frozen coe�cient matrix �FC
 as a preconditioner for a
pre�eliminated Full Newton �FN
 matrix� With the M equations pre�eliminated� the full Newton
LEM�s still produced unsatisfactory ILU preconditioners when ordered with pure matrix graph
methods� They were prone to very small diagonal entries after incomplete factorization� which
in turn led to numerical instability in the CGSTAB acceleration� The FC LEM proved to be an
e�ective FN LEM preconditioner�

It is important to note that the solution to the LEM remains the same� regardless of the
preconditioner chosen� More precisely� if right preconditioning is used� then the CGSTAB algorithm
is applied to the equivalent system

�
Ak

��
�xk�� � xk
� � �rk�

Ak
��

� AkP��

�xk�� � xk
� � P�xk�� � xk


where P is the incompletely factored FC matrix�
In the following� when pre�elimination is used with the full Newton �FN
 matrix� frozen coef�

�cient preconditioning will be used� To be more precise� the FC matrix is constructed� and then
pre�eliminated� This pre�eliminated FC matrix is then incompletely factored and used as a pre�
conditioner� The FN matrix and right hand side are pre�eliminated as usual� and are used in the
CGSTAB algorithm�
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� Test Cases

The solution techniques were tested on over �� two�dimensional geometries� In the interests of
brevity� �ve representative problems are presented in this paper� ranging from the standard Driven
Cavity problem� to the more di�cult Backward Step ��	� We have found that the standard test
problems appear to belong to two categories� those with roughly square physical dimensions �e�g�
the driven cavity
 and those having anisotropic physical dimensions �the Backward Step
� All walls
in these problems are set to no�slip boundary conditions �u � �� v � � at the boundary
�

��� Driven Cavity �DC�

This test is over a square region� with a non�dimensional width of ���� with a lid�driven �ow� See
��
	 for the details of this common test�

��� Two In
 One Out
 Symmetric Flow Chamber �Symm�

This test involves a more complicated geometry� and accelerating �ow� and is speci�ed in Figure
� �without the interior blocks A and B in the middle of the chamber
� The �ow speed reaches
the maximum of ��� at the upper outlet� The inlets and outlet have parabolic in�ow and out�ow
conditions� For reasonable Reynolds numbers it was expected that we would observe symmetric
�ow patterns�

��� Two In
 One Out
 Asymmetrically Blocked Chamber �Asym�

This geometry is fully speci�ed in Figure �� As with the Symm problem� �ow speed reaches the
maximum of ��� at the upper outlet� and inlets and outlet have parabolic in�ow and out�ow
conditions� This problem was created to demonstrate that �ow symmetry� and interior boundaries
do not a�ect our method� As we shall see later� patterns of �ow in the chamber are fairly complex�

��� Three Chamber Problem ��Cham�

The dimensions of this problem are given in Figure �� The walls of the chamber are speci�ed to be �
grid cell thick� The maximum �uid speed is attained in the gaps between the chambers� Parabolic
in�ow and out�ow conditions have been normalized so that the maximum speed in the chamber
is ���� This problem involves a larger pressure di�erential than the others� and also experiences
accelerating �ow due to the gaps in the wall being smaller than the inlet and outlet�

��� Backwards Facing Step �BFS�

The dimensions of this problem are given in ��	� This problem� proposed as a standard test case�
has parabolic in�ow conditions� We imposed parabolic out�ow conditions since in ��	 and ���	 this
was given as within �� of being correct� This problem is distinguished by physical dimensions that
greatly exceed the characteristic length used to set the Reynolds number� Maximum �ow speed
was set at ��
 at the inlet� to adhere to the published setup�
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� Comparing Non�Linear Methods

Given the non�linear methods outlined above� three approaches were studied� All three solved the
steady state U � V and M equations beginning from the initial guess of a zero �ow �eld �u � �� v � �
over the entire region
� To arrive at the steady state� all these methods solve the time�dependent
equations at t � ���� which in e�ect causes the time�dependent term to disappear� Previous tests
��	 have shown that for �ows at Re� ���� this time condition produces the steady�state �ow to
four digits accuracy� The approaches used were 

�� Frozen coe�cient iteration from the beginning until convergence �AllFC
�

�� Full Newton iteration from the beginning until convergence �AllFN
�

�� Frozen coe�cient iteration until a certain non�linear residual reduction is observed� then full
Newton iteration �FC�FN
�

The AllFC method is robust� allowing the use of a single� very large pseudo�timestep of ����
No underrelaxation is required for convergence� even starting from a zero �ow initial guess� but
convergence tends to be slow�

Because a zero �ow �eld generally does not appear to lie within the radius of convergence of
Newton�s method when it is applied to the elliptic form of the Navier�Stokes equations� pseudo�
timestepping is required� and under�relaxation used to improve the e�ciency of the solve� The
method we used is fully described in ��	� Note that a very aggressive timestepping strategy is
used� Typically� �� � �
 pseudo timesteps are required to reach the steady state� from an initial
state of zero velocity� The �nal time step is typically of the order of ���� and results in a rapid�
large reduction of the residual of the elliptic equations� Also of note is that this method uses an
incompletely factored FN LEM as a preconditioner�

As with the AllFC method� the FC�FN method uses a single time step of ���� Early experiments
showed that for small problems �where all problem dimensions� in dimensionless units� were O��
�
e�g� DC� Symm� Asym� �Cham
 the switch from FC to FN could occur at a ���� non�linear residual
reduction� Problems with a larger dimension �i�e�� in dimensionless units� one of the problem
dimensions was � � 
� such as BFS� required continuing with FC iteration until the non�linear
residual was reduced to between ���� and ���� ����� Note that this method uses the FC LEM as
a preconditioner at all stages� for reasons that will be explained in section ����

A minor point to note is that the internal data structure for all methods was constructed for the
FN LEM� Thus� during any FC iterations� some zero entry overhead was introduced� However� this
also meant that the ILU factorization of the FC LEM contained more entries� and was therefore
more complete� The reason for this in the FC�FN method was to avoid reworking the data structure
after the change to the FN method� Although these extra non�zeros could be easily eliminated for
the All FC method� they were left in the FC data structure to avoid skewing the tests by changing
the number of zeros in the ILU factorization� In fact� some tests showed that an ILU factorization
of the FC matrix using a symbolic ILU based on the FN data structure was slightly superior to an
ILU based solely on the FC data structure�

It remains unclear how one can determine an appropriate point at which the FC�FN method
should switch from the �rst to the second phases� This would require determining whether the
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intermediate solution is within the radius of convergence of Newton�s method� which is not an easy
task� We suggest that at the point where the method attempts to switch to FN� the intermediate
solution be saved� Our experience suggests that if Newton�s method is going to diverge� it will
tend to diverge on both the �rst and second FN iterations� If this is the case� then the saved
intermediate solution can be restored and more FC iterations performed� Presumably� a point will
eventually be reached where the Newton iteration will converge�

��� Convergence Criteria

The solution for a particular time step was considered converged �and thus the solution for the
All FC and FC�FN methods
 when a non�linear iteration made no change to the solution greater
than ���� in any of the u� v� or p variables� The �nal time step of the All FN method was
considered converged when an entire time step made a such a small change� �Recall that a very
aggressive timestepping method was used� so that typically this last timestep was of the size O����

in dimensionless time
� As pointed out below� this convergence criteria is not necessarily the best�
but it is commonly used�

This convergence criterion had some interesting side�e�ects� The All FC strategy �nished after
having reduced the non�linear residual by a much smaller factor than the strategies that �nished
with Newton iteration� FN iteration reduced the non�linear residual� in general� by a factor of
���� or more� The FC methods tended to terminate with less than a ���� residual reduction�
Convergence criteria based on an absolute reduction in non�linear residual would guarantee that
the solution is accurate to a given degree� However� the FC method converges so slowly that
for a number of problems �BFS in particular
 the cost of a large residual reduction would be
prohibitive� Other experiments with tighter tolerances demonstrated that more extreme residual
reductions were easily obtained� but we decided� given the non�linear residual reduction typical in
most publications� that the ���	 reduction typical of our FC�FN method was ample�

Mixed tolerance convergence criteria was used for the iterative linear solver� We de�ne krL� k as
the l� linear residual at the start of an iterative matrix solve �which the reader will note is equal
to the non�linear l� residual at that point
� and krLmk� as the linear residual after the mth linear
solver iteration� The linear residual of each LEM had to be either reduced by a relative precision
factor of ����� or the change in the updates in the linear iteration for all variables had to be less
than ���
� More precisely

krLmk�
krL� k�

� �������


or

max
i�j

h
jum��

ij � umij j� jv
m��
ij � vmij j� jp

m��
ij � pmij j

i
� ���
����


The reasoning behind the tight relative residual reduction is based on an estimate of how much
the �ow will vary from grid cell to grid cell� The large dimension problems have �ow speeds and
pressures that vary by a factor of up to �� times less than those of the small problems because
of their extreme length� Hence a tighter convergence tolerance was required in the linear solve in
the early stages� Early experiments showed that a less accurate a linear solve led to convergence
problems in the early steps of the solution�
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The absolute tolerance criterion ���
 is simply a time saver which rescues the matrix solver
from having to reduce the linear residual to tolerances far beyond those required by the non�linear
convergence tolerances during the later non�linear iterations�

The CGSTAB acceleration was generally allowed to continue for up to ��� iterations� We
encountered a number of cases �typically when the switchover from FC to FN iteration in the
FC�FN method was done too early
� when CGSTAB would �stall� �i�e� many iterations with little
or no residual reduction
� If the linear residual remained in a small range ����
 for �� iterations�
we considered CGSTAB to be in this state� Restarting CGSTAB by simply calling the routine
again� with the initial guess equal to the one attained in the stalled state� generally caused the
acceleration to continue reducing the linear residual� Occasionally the restart had to be performed
more than once� but was permitted no more than � times� There is still the possibility� however�
that the criterion ���
 could cause CGSTAB to return earlier with a poor solution if the CGSTAB
acceleration is �stalling� ���	� and the above restart condition was not triggered� We did not observe
this problem in any of our tests�

Few of the runs presented in this paper required this restart� The restart was generally only
needed in geometries not presented in this paper where the solver converged to one of two or more
possible solutions to the �ow �i�e� the �ow was bifurcating and not steady state
 or when the
preconditioning was inadequate due to ordering or aspect ratio problems �see Section ���
� If the
four restarts failed� the entire solution process was stopped� but this was only encountered when
the non�linear Newton process was diverging�

In practice� these criteria worked well on virtually all the problems� provided a good precon�
ditioner was selected� The reader will note in the results that follow� that when used with FN
iteration� these convergence criteria produce an overall non�linear residual reduction that is indeed
quite large�

��� Test Results

Table � compares the three non�linear methods over �ve test problems� All CPU times given in
this paper are for a Sun �!���� which is nominally rated at � MFLOPS� All arithmetic is Fortran
double precision� The �ve test problems were DC� Asym� and �Cham on an ��x�� grid at Re������
and BFS on a ���x�� grid� with Re����� The value Re���� for BFS was chosen to match the
tests run in ��	� The FC�FN method switched to FN at a ���� residual reduction in all but the
BFS test� where the switchover point was ���� ����� These switchover points were experimentally
determined and all matrix ordering was done with MUM at ILU��
�

From Table �� we note that the FC�FN method was consistently superior to both the FC and
FN method �note that the FC and the FN methods did not converge within the maximum CPU
time limit for the BFS problem
� The FC�FN also produced a considerably smaller nonlinear l�
residual reduction than the FC method�

Table � does not� however� show the manner in which the convergence occurred� In Figure 

the non�linear l� residual reduction is plotted against CPU time for the DC problem� which shows
the rapid convergence of FC�FN� Figure � shows similar results for the BFS problem� Note that in
both cases� the line for the FC�FN method becomes suddenly steeper� This is a result of switching
from FC to the FN method�

The rapid� and large l� residual reduction of the FC�FN method� and the general pattern of
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residual reduction of all the methods shown in Figure 
 was typical for all problems of roughly
square geometry� In particular� note that both FC�FN and All FN show quadratic convergence as
the nonlinear residual becomes small� Figure � was also typical of the methods� residual reduction
patterns for problems with a longer physical domain� In this case� the All FN method did not
converge within the CPU time limit� and the region of quadratic convergence was never reached�
However� if the time axis of Figure � is extended su�ciently far to the right� then the All FN
method does eventually show quadratic convergence behaviour� similar to Figure 
�

Note that the full Newton LEMs can take longer to solve than the FC LEMs� The question
also arises of what parameters are best to use when performing the linear solve� This leads us to
our next section� which covers the linear methods�

Figures �� � and � display the streamline plots for the Symm� Asym and �Cham problems�
solved on a ���� ��� grid� at Re������ with power�law weighting�

� Comparing Linear Methods

	�� The Ine�ectiveness of Direct Methods

As noted in the introduction� direct methods are often used to solve LEM matrices� Table � shows
why this� even in two dimensions� is not advised� The direct method shown �MD � Direct
 in the
table uses minimum�degree ordering ���	� a popular and generally accepted method� The iterative
method uses CGSTAB� with both pre�elimination with RCM ordering� and MUM ordering� The
problem being solved is the Driven Cavity� Re������ on a set of grids of increasing size� From
these experiments we see that the direct method is slower� In these tests we see the direct method
is O�N��

� while the iterative methods are about O�N���
� where N is the number of grid cells�
�This is the complexity of the solution of the entire non�linear problem
� For model second order
elliptic problems� the complexity of the linear solve for a PCG method is O�N���
 ���	� Direct
methods also tend to take up more storage space than iterative methods ���� 
	� Thus we dispense
with considering direct methods further�

	�� Level of ILU Factorization

The matrix computations performed in our solver are done using a static data structure� In deter�
mining the appropriate ILU to use for the linear solve� we considered overall performance over the
entire nonlinear solution� In ��	 �see also ���	
 it was determined that ILU��
 or ILU��
 was best
for the AllFN process�

The current experiments showed that for the Pre�RCM method� ILU�

 was the quickest
�balancing the time for incomplete factorization of the preconditioner with the time for the iterative
solve
� With the MUM ordering method� ILU��
 was best for all problems up to a grid size
of �� � �� for square problems and ��� � �� for rectangular problems� With larger grid sizes�
ILU��
 was required� lower levels of ILU demonstrated erratic convergence and a higher overall
time complexity order� Thus for the main body of tests to follow� ILU��
 is used with MUM
ordering�

If these experiments were to be extended to three dimensions this issue would have to be re�
evaluated� These relatively high levels of incomplete factorization would likely lead to unreasonable
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amounts of �ll�in because of the larger number of non�zeros per row in the three dimensional case�

	�� Preconditioning the FN LEM with MUM Ordering

As already noted� attempting pre�elimination and RCM ordering on the FN LEM�s produced ILU
factorizations with unreasonably small diagonals� which in turn led to the failure of the iterative
matrix solver� The FC LEM proved to be a good preconditioner for Pre�RCM�

The question remained as to what the best preconditioner for the FN stage with MUM ordering
was �recall that no pre�elimination step is necessary with MUM ordering
� Somewhat surprisingly�
the FC LEM turned out to be a better preconditioner for the FN stage even with MUM ordering�
Table � shows tests run on the ����� DC and ������ BFS problems that illustrate the point� Thus
from this point on� all tests with MUM ordering for the FC�FN method use FC preconditioning
at all stages�

� Grid and Reynolds Number Dependence of FC	FN

In order to calculate the dependence of the solution time for the FC�FN method �and its linear
solution strategies
 on the size of the grid� and the Reynolds number the following series of tests
was performed� The Reynolds number was kept within the range ��� to ����� where one can expect
a steady state �ow to exist�


�� Grid Size Dependence

For the square problems ��Cham� Asym and DC
 tests were run at Re����� for grid sizes of ������
�� � ��� and ���� ���� For the rectangular problems tests were run at Re���� for grid sizes of
���� ��� ���� �� and ���� ��� The three grid sizes for each group will be referred to as coarse�
medium and �ne respectively� The raw results for FC�FN with Pre�RCM are compiled in Tables
� and 
� The results for FC�FN with MUM ordering are compiled in Tables � and �� Tables � and
� list the time complexity exponent for the method over the test regions� This complexity exponent
was taken from the medium and �ne grids� and was measured in terms of the grid size�

Of note is that although MUM ordering required less CPU time over the range of grid sizes
tested� it produced� in DC� Symm� Asym� and �Cham� a higher time complexity exponent� Pre�RCM
took between ��� and ��� more time at the medium grid� but only between �� and ��� more
time for the �ne grid for these square�domain tests�

A remarkable result is that for square�domain problems� the Pre�RCM time complexity is
considerably below the theoreticalO�N���
 that would be expected for a second order linear elliptic
problem� This may be due to fact that we are solving a non�linear problem� with linearized
equations considerably di�erent from the model problems used for the usual analysis� As well� the
convergence criteria ��� � ��
 may have an e�ect� MUM ordering produced no surprising results
for square domains� but for the BFS problem� �our long�dimensioned example
� it produced a time
complexity of O�N����
� again faster than would be expected for a model problem ���	�

The number of non�linear iterations for both the FC and FN phases remained roughly the
same for square�domain problems� and only became substantially larger for the BFS test� Other
experiments on the BFS region have determined that the boundary conditions are not to blame
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for the di�culty in obtaining a solution� When the region was shortened to length ���� and the
boundary conditions kept the same �although this is highly non�physical
 the solution converged in
roughly the same time as the DC test� Our tests seemed to indicate that the extreme length relative
to the characteristic length used to set the Reynolds number was at the root of the generally slower
convergence� In any case� the convergence for the Pre�RCM method on the BFS problem was
roughly the expected O�N���
� which should reduce to O�N���
 in three�dimensional cases ���	�
The reader should note� however� that the matrix�value sensitive MUM ordering did much better
on the same test�


�� Reynolds Number Dependence

For the square problems� tests were run at Re����� 
�� and ����� The rectangular problems were
run at Re���� instead of ����� The timing and iteration results are given in Tables �� and �� for
Pre�RCM and MUM orderings� We have also listed the time complexity exponent measured in
terms of the Reynolds number for the last two tests �i�e� time � O�ReOrd
� for a �xed grid size but
varying Re
�

The MUM ordered tests show a less sharp increase in time with Reynolds number than the
Pre�RCM ordered tests� This would seem to indicate that sensitivity to the contents of the
matrix� and not just the graph� �gure more prominently in the solution time as the Reynolds
number increases�

Table �� shows that the behaviour of the BFS problem is somewhat anomalous compared to
the other test problems� As the Reynolds number increases� the other problems show only a small
increase in the number of frozen coe�cient iterations required to obtain a solution which is within
the radius of convergence for Newton�s method� However� the BFS problem shows a big jump in
the number of frozen coe�cient iterations between Re�
�� and Re����� This increase in solution
time is similar to that reported in ���	� Examination of the streamline plots of the solution after
each nonlinear frozen coe�cient iteration showed an interesting behaviour� The primary eddy at
the step corner and the secondary eddy at the upper wall form after only a few iterations� Smaller
eddies also form and disappear� However� the two major separation zones near the step move
very slowly �in terms of iterations
 to their �nal position� It is this very slow movement to the
�nal position which causes the large increase in frozen coe�cient iterations between Re�
�� and
Re����� The frozen coe�cient iteration is thus qualitatively similar to the behaviour of a transient
approach to the steady state solution� as described in ���	� Consequently� for problems with long�
thin domains� it may be that the frozen coe�cient iteration is ine�cient for obtaining a solution
that is within the radius of convergence of Newton�s method� Nevertheless� this approach is still
extremely robust�


�� Solution Accuracy

As already noted� with the FC�FN method� the discrete equations were solved to a small non�linear
residual� Although we are mainly concerned in this paper with e�cient techniques for solution of the
discretized equations� and not the accuracy of any particular type of discretization� it is worthwhile
to compare our solutions for the DC and BFS problems with previously published computations�

The center vortex of the driven cavity at Re����� on a ������� grid had a maximum negative
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streamfunction value of �����
� for power law weighting� For reference� computations were also
made for the same problem with central and hybrid weighting �using the FC�FN method
� where
the values were ������� and �������� Table �� lists the maximum streamfunction value� and the
maximum negative x�direction velocity on the vertical centerline of the cavity� for all our tests� and
those found in ���� �
� ��� ��� ��� ��	� Our measurements fell within the ranges given� and closely
matched when the upwinding techniques were the same� Taking into account the variation that
typically arises with di�erent grid sizes� and discretization techniques� we conclude our results are
comparable to previous computations�

The features of the �ow of BFS on the ���� �� grid closely matched those given in ���� �	� The
length of the recirculation region below the step was somewhat shorter in our study �roughly ��

vs� ���� in ��	
� but U �direction �ow speeds at the x � � and x � �
 points di�ered by less than
�� of the maximum �ow speed� However� it should be noted that Gartling used a �ner� adaptive
�nite element mesh� and central weighting�

The variation between our results and those in the cited studies can be accounted for by di�er�
ences in the grid size� discretization ��nite elements on a variable grid versus our use of the �nite
volume formulation
� and in upwind weighting techniques �or absence thereof
�


�� Notes on Aspect Ratios

The BFS problem provides a case in point whereby we can emphasize the importance of the ordering
of the unknowns for successful application of preconditioned�conjugate�gradient methods to Navier�
Stokes problems� The BFS problem has the most extreme physical aspect ratio of the tests at hand�
and previous studies have shown that when anisotropies arise in a problem �for example� from a
large di�erence in x and y direction coe�cients� or from large control�volume aspect ratios
 more
attention needs to be paid to the matrix ordering ���� �� �
� ��	�

For this section� two new orderings are introduced� The �rst is �natural� in the x� then y

direction �NatX
� This orders the equations by pressure centered cell along the x�axis �rst� grouping
the u� v� and p unknowns together in a small block for each cell� The second ordering� NatY� follows
the idea of NatX� only ordering in the y direction �rst� More details on these orderings can be
found in ��� �
� ��	� NatX and NatY allow us to compare graph�based orderings that follow or
run against the anisotropy of the BFS problem� The NatX and NatY orderings are combined with
pre�elimination during the solution� since there is no mechanism inherent in NatX and NatY that
prevents a zero pivot on the diagonal of the matrices�

Table �� lists the results for the BFS run on two grids� with the four di�erent orderings� When
the control volume aspect ratio was favourable ���
 �
� MUM ordering produced the best timing
results� For problems with �nite volume cells with large x�dimensions compared to the y�dimension�
this creates a strong �discrete
 coupling in the y�direction� The work of ��
� ��	 indicates that an
e�ective ordering for this situation is produced by �rst ordering along the x�direction �rst �which
is somewhat counter intuitive
 and then in the y�direction� i�e� NatX ordering� When the control
volume aspect ratio became more extreme ��� �
� NatX ordering� which follows the anisotropy of
the problem� produced by far the best solution time� This con�rms the �ndings of ��
� ��	� Note
that as pointed out in ���	� MUM ordering is unable to detect anisotropies �compared to MDF
ordering ��
	
�

When the Pre�RCM ordering failed� it did so due to a small diagonal pivot produced in the
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ILU factorization� �Note that the diagonal pivots measured for Table �� were normalized using the
maximum absolute value in the row of the pivot�
 Indeed� when any ordering method completely
failed to produce a solution� a small pivot had been encountered� A small pivot causes a rapid
numerical growth in the matrix entries� leading to the failure of the iterative method�

Further investigation into the challenges posed by aspect ratios in the solution of PDE�s is under
way� Su�ce to say for the time being that proper matrix ordering appears to be the solution to
the problems produced by anisotropies induced by �nite volume aspect ratio problems�

It is worthwhile to point out� as indicated in Table �� that the aspect ratio problem a�ects the
linear iterative equation solution� The number of nonlinear iterations is actually smaller for the
unfavourable aspect ratio problem�


 Conclusion

The FC�FN approach to the solution of the non�linear problem presented by the steady�state�
incompressible� Navier�Stokes equations is designed to take advantage of the best aspects of both
the frozen coe�cient and full Newton iteration schemes� In general� the frozen coe�cient linear
equations matrices are easy to solve� The frozen coe�cient method alone shows adequate initial
convergence� which rapidly becomes slow� Provided that the actual solution to the discrete problem
was not bifurcating� and that the linearized FC equations were solved to su�ciently small tolerances�
the FC method was an extremely robust method for solution of the nonlinear equations� The
full Newton method cannot� in general� be used from a initial zero �ow �eld without pseudo�
timestepping� but can be used on the steady�state equations after the frozen coe�cient method has
partially resolved the solution� The full Newton linear equation matrices are generally somewhat
more costly to solve� but fewer solutions are required since the method� once started within its
radius of convergence� converges extremely rapidly�

Consequently� it would appear that the FC�FN method is superior to a frozen coe�cient
�FC
 method alone� if large non�linear residual reductions are required� If only a small non�linear
residual reduction is necessary� there are some situations where the FC technique alone might be
appropriate� The full Newton �FN
 method� with pseudo�timestepping to ensure convergence� was
always a poor third in all our tests compared to FC or FC�FN�

We have also presented a robust approach for solving the linear equations� Of particular note
is that the incompletely factored frozen coe�cient formulation of the linear equations is a good
preconditioner for the full Newton Jacobian� The frozen coe�cient matrix is a more easily �incom�
pletely
 factored preconditioner� and has been shown to produce more rapid convergence for the
full Newton iteration stage of the FC�FN method�

MUM ordering is the best of the tested matrix orderings if the problem domain is particularly
long in one direction� relative to the characteristic length used to set the Reynolds number of the
problem� Otherwise� a graph based ordering� coupled with the pre�elimination of the conservation
of mass equation to eliminate zero pivots on the diagonal of the matrix� proved most e�ective� We
have noted that ordering methods can overcome the problem of small diagonal pivots induced by a
high control volume aspect ratio� Note that high aspect ratio appears to a�ect the linear iteration
much more than the nonlinear iteration� More research on this problem will be presented in future
papers� We emphasize once again that the question of the ordering of the unknowns is crucial for
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application of PCG methods to Navier�Stokes equations�
We have presented �ve of over thirty problem geometries on which this method was tested� The

reader will note that the FC�FN solution method coupled with a PCG solver for the linear equations
is entirely independent of the problem geometry �with the exception of the above comment on
ordering of the unknowns
� and that internal boundaries and �ne �ow details �the Asym problem�
for example
 are resolved as easily as geometries with coarser �ow features �such as the driven
cavity
�

Performance of the FC�FN non�linear and linear methods together exceeds the previously ex�
pected limits� Instead of the O�N���
 generally expected in two�dimensional elliptic problems� our
method obtained performance between O�N����
 and O�N���

 for all problems presented �assuming
that the best ordering was selected
� Note that other studies ����	
 have indicated that these meth�
ods should apply to �nite element discretizations on unstructured grids with equal e�ectiveness�
Since the generally expected performance of iterative methods on three�dimensional domains is
O�N���
� we expect the performance of this method to improve in three dimensions� This method
has been tested with the other upwind weighting techniques presented in ��	� and was equally as
e�ective�

Convergence is rapidly obtained to an arbitrary precision through the use of Newton iteration
at the �nal stage� and the solutions obtained have been shown to be accurate� The only problem
dependent parameters are the residual reduction required for switching from FC to FN iteration�
and the ordering for the unknowns for the linear solve� Any estimate for the former parameter can
be used� since the algorithm can recover �by continuing FC iteration
 if the FN iteration begins to
diverge� The matrix ordering question is more di�cult� but a completely automatic method �MUM
ordering
 can be used� which is very robust� However� it is certainly possible to use orderings which
outperform MUM ordering in some circumstances�

Further research is anticipated to extend the FC�FN approach and the accompanying linear
methods to three dimensional �ows� and to irregular grids�
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A Nomenclature

�Cham Three Chamber problem
AllFC Non�linear method using only frozen coe�cient iteration
AllFN Non�linear method using only Newton iteration
Asym Asymmetric Flow Chamber problem
BFS Backwards Facing Step problem
DC Driven Cavity problem
FC Frozen Coe�cient
FC�FN Non�linear method using frozen coe�cient� then Newton iteration
FN Full Newton
ILU�n
 Incomplete Lower!Upper factorization keeping n levels �ll
LEM Linearized Equation Matrix
MDF Minimum Discarded Fill �matrix ordering

MUM Minimum Update Matrix �matrix ordering

NatX Natural� grid�wise matrix ordering �X direction �rst

NatY Natural� grid�wise matrix ordering �Y direction �rst

PCG Preconditioned Conjugate Gradients
Pre� Pre�elimination performed with the given ordering
RCM Reverse Cuthill�McKee �matrix ordering

Symm Symmetric Flow Chamber problem
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Table � Non�linear methods compared over �ve test problems

Non�linear Method
All FC FN�FC All FN

Test NLI Time NLRed NLI Time NLRed NLI Time NLRed

DC �
 ���
� ����
e��
 � ����� ����
e��� �� 
���� �����e���
Symm �� ��
� �����e��� � 
��� ��
��e��� �� ���

 �����e���
Asym �
 ���� �����e��
 � 
��� �����e��� �� ����� �����e���
�Cham �� ����� �����e��
 �� ����
 
����e��� �� ����� �����e���
BFS ��� �
���� �����e��
y �� ����� �����e��� �� �
���� �����e���y

NLI is number of non�linear iterations�
Time is the CPU time in minutes�
NLRed is the non�linear residual reduction at convergence�
y Failed to converge within the ��� minute CPU time limit�

The DC� Asym� and 	Cham tests were performed over an ��� �� grid at Re
����� whereas the
BFS test was done over a ���� �� grid with Re
���� All tests were performed with the MUM
ordering method�

Table � A comparison between direct and iterative matrix solvers on the Driven Cavity problem

MD � Direct Iterative �Pre�RCM
 Iterative �MUM

Grid Total Avg� Per Total Avg� Per Total Avg� Per
Size Time Matrix Time Matrix Time Matrix

��� �� ��
� ���
 ��

 ���
 ���� ����
��� �� ���� ���� ���� ���� ���� ����
��� �� ���� ���� ���� ���� ���� ����
��� �� ����� ���� ���� ���� ���� ����

The DC problem is solved here at Re
����� Note that these times are in CPU minutes� In this
series of tests� the direct method is O�N��
�
�
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Table � FC and FN as Preconditioners for the FN stage of FC�FN

Time for FN Stage
with Preconditioner Type
FC FN

Test Total per Matrix Total per Matrix

DC ���� ���� ���� ����
BFS ����� ���� ����� 
��


Times are in CPU minutes� The DC problem was run on an ��� �� grid at Re
����� The BFS
problem was run on a ���� �� grid at Re
���� In all tests� MUM ordering was used at ILU�	
�

Table � Times by phase and grid size for Pre�RCM ordered tests with FC�FN method

Grid Size� with Time by Phase of FC�FN with Pre�RCM
Coarse Medium Fine

Test Total FC FN Total FC FN Total FC FN

DC ���� ���
 ���� ����� ���
 ���� ����� 
���� �����
Symm ���� ���
 ���� ���� ��
� ���� 
���� ����� �����
Asym ���� ���� ���� ���� 
��� ���� ����� ����� �����
�Cham ���� ���� ���
 ���

 ����� ��
� ������ �
��� �����
BFS ����� ����� ���� �
���� ������ ����
 ������ 

���� �����

Times are in CPU minutes� Tests DC� Asym� and 	Cham were run with Re
����� while the BFS
test was run with Re
���� ILU��
 was used�
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Table 
 Iterations by phase and grid size for Pre�RCM ordered tests with FC�FN method

Grid Size� with Iterations by Phase of FC�FN with Pre�RCM
Coarse Medium Fine

Test FC FN FC FN FC FN
NLI Avg� NLI Avg� NLI Avg� NLI Avg� NLI Avg� NLI Avg�

DC � ���� � ���� 
 ���� � ���� 
 ���� � ����
Symm 
 ���� � ���� 
 ���� � ���� 
 ���� � ����
Asym � ���
 � ���� � ���� � ���� 
 ���� � ����
�Cham � ���� � ���� � ���� � ���� � ���� � 
���
BFS �� �
�� � ���� �� ���
 � ���� �� 
��� � �����

NLI denotes number of non�linear iterations that phase�
Avg denotes the average number of linear iterations per non�linear iteration for that phase�

Times are in CPU minutes� Tests DC� Asym� and 	Cham were run with Re
����� while the BFS
test was run with Re
���� ILU��
 was used�

Table � Time Complexity by phase and grid size for Pre�RCM ordered tests with FC�FN method

Time complexity exponent
Test Overall FC Phase FN Phase

DC ���� ���� ����
Symm ���� ���
 ����
Asym ���� ���� ����
�Cham ���� ���� ����
BFS ��
� ��
� ��



The �gures in this table are the exponent � of the order expression O�N�
 where N is the number
of grid pressure cells� The measurement is taken from the medium and �ne grids listed in table ��
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Table � Times by phase and grid size for MUM ordered tests with FC�FN method

Grid Size� with Time by Phase of FC�FN with MUM
Coarse Medium Fine

Test Total FC FN Total FC FN Total FC FN

DC ��
� ���� ���� ����� ���� ���� ����� 
���� �����
Symm ���� ���� ���� 
��� ���� ���� ����� ����� �
���
Asym ���� ���� ���� 
��� ���
 ���� ����� ����� �����
�Cham ���� ���� ��
� ����
 ���� ���� ������ ����� �����
BFS ���� ���� ���� ����� �
��� ���� ������ ������ �����

Times are in CPU minutes� Tests DC� Asym� and 	Cham were run with Re
����� while the BFS
test was run with Re
���� ILU��
 was used�

Table � Iterations by phase and grid size for MUM ordered tests with FC�FN method

Grid Size� with Iterations by Phase of FC�FN with MUM
Coarse Medium Fine

Test FC FN FC FN FC FN
NLI Avg� NLI Avg� NLI Avg� NLI Avg� NLI Avg� NLI Avg�

DC � ���� � ���
 
 ���� � ���� 
 �
�� � ����
Symm 
 ���� � ���
 
 ���� � ���� 
 ���� � ����
Asym � ���� � ���� � �
�� � ���� 
 ���� � �
��
�Cham � ���� � ���� � ���� � ���� � 
��� � ����
BFS �� ���� � ���� �� ���� � 
��
 �� ���� � ����

NLI denotes number of non�linear iterations that phase�
Avg denotes the average number of linear iterations per non�linear iteration for that phase�

Times are in CPU minutes� Tests DC� Asym� and 	Cham were run with Re
����� while the BFS
test was run with Re
���� ILU��
 was used�
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Table � Time Complexity by phase and grid size for MUM ordered tests with FC�FN method

Time complexity exponent
Test Overall FC Phase FN Phase

DC ��
� ��

 ����
Symm ��
� ��
� ��
�
Asym ���� ���� ��
�
�Cham ��
� ���� ����
BFS ���� ���� ��
�

The �gures in this table are the exponent � of the order expression O�N�
 where N is the number
of grid pressure cells� The measurement is taken from the medium and �ne grids listed in table ��

Table �� Solution time� and iteration count for Pre�RCM ordered tests over varying Reynolds
numbers

Reynolds Number
��� 
�� ��� ����

Tests Time NLI Avg Time NLI Avg Time NLI Avg Time NLI Avg Ord

DC ���� 
 ���� ����� � ���� � � � ����� � ���� ��
�
Symm ��
� 
 ���� ���� � ���� � � � ���� � ���� ����
Asym ���� 
 ���� 
�
� � ���� � � � ���� � ���� ��
�
�Cham ���� � ���
 ����� �� ���
 � � � ���

 �� ���� ���

BFS ����� �
 ���� ����� �
 ���� �
���� �� ���� � � � ����

� �dashes
 indicate that the test was not run at that Reynolds number�
Time is total solution time in CPU minutes for FC�FN solve�
NLI is total non�linear iterations� FC and FN�
Avg is average linear iterations per non�linear iteration� FC and FN�
Ord is the exponent �time complexity
 of the change in time for the last two tests with respect to
Reynolds number�
All solutions are for the medium grid size ���� �� or ���� ��
 using the FC�FN method with
Pre�RCM ordering� and ILU��
�
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Table �� Solution time� and iteration count for MUM ordered tests over varying Reynolds numbers

Reynolds Number
��� 
�� ��� ����

Tests Time NLI Avg Time NLI Avg Time NLI Avg Time NLI Avg Ord

DC ����� 
 ���� ����� � ���� � � � ����� � ���� ����
Symm 
��� 
 ���� ���� � ���� � � � 
��� � ���� �����
Asym 
��� 
 ���� 
��� � ���� � � � 
��� � ���� ����
�Cham ����� � ���� ����� �� �
�
 � � � ����
 �� ���� �����
BFS ����
 �
 ���� ���
� �
 ���� ����� �� ���� � � � ����

� �dashes
 indicate that the test was not run at that Reynolds number�
Time is total solution time in CPU minutes for FC�FN solve�
NLI is total non�linear iterations� FC and FN�
Avg is average linear iterations per non�linear iteration� FC and FN�
Ord is the exponent �time complexity
 of the change in time for the last two tests�
All solutions are for the medium grid size ���� �� or ���� ��
 using the FC�FN method with
MUM ordering� and ILU��
�
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Table �� Comparison of two features of the Driven Cavity at Re����� with other studies

Reference Weighting Grid Size �min umin on CL y�location

Ghia et� al� ��
	 y �
�� �
� ������� ������� ������
Gresho et� al� ���	 STU ���� ��� ������ �����
 �����
Vanka ���	 Hybrid ���� ��� ������� ������ ������
Sohn ���	 STU ���� ��� ������� z z

Central ���� ��� �����
� z z
Thompson % Ferziger ���	 Power Law �
�� �
� ������� z z

Central ���� ��� ������� z z
Bruneau % Jouron ���	 x �
�� �
� ������� ������� ������

This study Central ���� ��� ������� ������� �����
�
Hybrid ���� ��� ������� �����
� �����
�
Power Law ���� ��� �����
� ������� �����
�

yindicates study used ��	 formulation of the Incompressible Navier�Stokes Equations�
zindicates values not given explicitly�
x� see �����
Weighting is the upwind di�erencing scheme� Power law� hybrid and central are explained in ����
For other schemes� such as streamwise upwinding �STU
� please refer to the cited papers�
�min is the minimum value of the streamfunction at the center of the primary vortex of the driven
cavity�
umin on CL refers to the greatest negative x�direction velocity on the vertical centerline�
y�location is the vertical location of umin on CL�
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Table �� The BFS problem at various aspect ratios and grids

Grid Ordering Method
Size Pre�RCM MUM Pre�NatX Pre�NatY

Medium Time y ������ ����� ��
���
���x�� NLI y �
 �
 �


�� � Avg y �
�� ���� ����
Fill �����
� ��
���� ������
 ���
�
�
Min� ���E��� ���E��� ���E��� ��
E���

Medium Time �
���� ����� ������ �
��


���x�� NLI �� �� �� ��
��
 � Avg ���� ���� 
��� ���


Fill ������� ����
� ������
 �������
Min� ��
E��� ���E��� ���E��� ��
E���

y Indicates failed to converge due to small normalized diagonal�
Grid Size also gives the number of x and y direction pressure cells� and the ratio of
pressure�centered control volume width to height�
Time is total solution time in CPU minutes�
NLI is total non�linear iterations�
Avg is the average number of linear �inner
 iterations per non�linear iteration�
Fill is the total number of non�zero �ll terms generated during the ILU factorization� ILU��
 was
used for the MUM ordering� and ILU��
 used for the others�
Min� is the minimum diagonal encountered in the ILU factorization� All diagonals were
normalized by the max� absolute value in their respective rows�
All tests were on the BFS problem at Re
���� at the given grid sizes�
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Figure � Pre�elimination algorithm
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Figure � Streamfunction contours of Symm problem at Re������ on a ���� ��� grid� Levels are
�������� �����
� ������� ������� �����
����� �������� ������� and �������
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Figure � Streamfunction contours of Asym problem at Re������ on a ���� ��� grid� Levels are
�������� ������
� �������� �����
����
� ����
������ �������� �������� �������� ������� ������� �������
������� ������� and ����
��
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Figure � Streamfunction contours of �Cham problem at Re������ on a ��� � ��� grid� Levels
are �������� �������� �������� �������� ����
��� �������� �������� �������� �������� ������
� ��������
������� ������� and �������


