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1 Introduction

I saw the Holy Grail, All pall’d in crimson samite.

Tennyson,Holy Grail

They seemed to seek some Hofbrauhaus of the
spirit like a grail, hold a krug of Munich beer like
a chalice.

T. Pynchon,V

This equipment can be used to counter heat-
seeking missiles such as the Soviet SA-7 Grail
shoulder-fired weapon, now extensively deployed
in Third World countries.

Daily Telegraph, Nov. 22, 1985, 32/6

We can’t go doddering across Malaya behind an in-
spired crackpot following the Holy Grail, can we?

H.M. Tomlinson,Gallions Reach

Grail is an ongoing project devoted to the production of efficient, modular soft-
ware for managing finite automata, regular expressions, and other formal language
theory objects. Our goal is to develop software that is both more powerful and more
extensible than systems likelex, yacc, andgrep. Simultaneously, we hope to
makeGrailmuch more accessible than these systems; we intend to make it highly
modular and easy to use for teaching purposes. This report presents the design and
organization ofGrail, and serves as an introduction to the modules. We describe
the modules in sufficient detail to enable programmers to use them, but we do not
discuss the details of the data structures and algorithms that underlie the modules.

Grail is written in C++. We made this choice of language under the impression
that we would develop an elegant class hierarchy that would greatly increase code
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reuse and the overall robustness of the system. C++ has led to much better reuse
and robustness, but not because of the class hierarchy. Instead, we have found
that C++’s strict type checking and encapsulation have been the most important
contributors to better code.

The name ‘grail’ isn’t necessarily an acronym, though it could be. In the past,
we have sometimes suggested thatGrail stands for something like ‘Grammars,
regular expressions,automata,languages’ (we’ve never come up with something
convincing for thei!). It’s probably just as reasonable to think of ourGrail
experience as a search for the hofbrauhaus of formal language theory.

2 A short history of Grail

The study of formal language theory has a long history at the University of Wa-
terloo. Fundamental contributions have been made over a long period, especially
Brzozowski’s work on regular expressions and Wood’s work on grammars and L-
forms. The implementationof grammars and automata has also been essential, both
in influencing theory and in supporting practical applications, such as the tag en-
hancement of the electronic text of theOxford English Dictionary. Probably the
earliest software at the University of Waterloo was Leiss’sREGPACK[12], a pack-
age written in 1977 to support experimentation and research with finite automata.
REGPACK, written in SPITBOL, supported the conversion of nondeterministic au-
tomata to deterministic automata, minimizationof deterministic automata, and con-
struction of syntactic monoids. WhileREGPACK did not directly influence the cur-
rent effort, it is interesting to note that we are still pursuingREGPACK’s goal of the
production of an environment for experimentation with automata.

A more recent package with direct influence onGrail was Howard Johnson’s
INR[9]. INR was developed because of Johnson’s interest in rational relations and
their use in defining string similarity[8].INR takes rational relations (including
regular expressions) as input and converts them into finite automata, which can
then be manipulated in various ways.INR can produce single- or multiple-tape
automata; the latter are useful for describing transducers, since one tape can be
considered an output tape for the other (input) tapes.

Johnson made special efforts to ensure thatINR was a highly efficient and powerful
tool for managing automata. His goal was the effective processing of automata with
thousands of states and transitions. As a result,INR is written very compactly in
C, uses its own memory allocation scheme, and is especially efficient in handling
potentially costly tasks such as subset construction and minimization. The basic
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algorithms for handling such tasks are well known, but there has been relatively
little attention paid to efficient implementation of these algorithms. Johnson took
the trouble to develop efficient implementations, with the result thatINR was the
only software system that was capable of handling the transduction of theOxford
English Dictionary[10]. Even today many ofINR’s capabilities are more advanced
than those of other automata software (though we like to think thatGrail is catch-
ing up). The present effort has borrowed heavily fromINR, adopting its philosophy
of combining powerful capabilities with efficient design, as well as its notation for
automata.

The first project to actually use the name ‘Grail’ was a joint effort between Howard
Johnson, Carl-Johan Seger, and Derick Wood. This was an attempt to extendINR
to handle context-free grammars and automata with regular expressions as transi-
tion labels. Software developed for this project consisted of a layer of code that
usedINR as an underlying computational engine. After some work, this effort was
discontinued.

Several years later, theGrail project was resuscitated by the present authors. We
began with the observation that some issues were not satisfactorily handled either
by INR or ‘old Grail.’ The first issue was obscurity. In pursuit of efficiency,INR
had become a somewhat complex and monolithic piece of code. The layer of soft-
ware added by ‘old Grail’ merely increased the complexity, because it was written
in a nonstandard C that was neither easily maintainable nor easily modifiable. The
lack of documentation forINR and ‘old Grail’ made this software difficult to un-
derstand for anyone other than its programmers. Thus, the first order of business
was to develop software that was more approachable and better documented, to im-
prove maintainability and robustness, and to ensure that many programmers could
work on the software.

The second issue was modularity. Much of the difficulty of building uponINR
was a result of its tightly connected structure. Adding a new routine for subset
construction, for example, required knowing much about the internals ofINR, in-
cluding its data structures, memory allocation, parser, and so on. We wanted a
software environment in which programmers could work on improving algorithms
without having to learn too much about the details of the existing code. This meant
that we would have to build the software in a modular fashion, devising interfaces
at several levels.

The third issue was end use. Tools likeyacc andlex were built for compiler
writers, whileINR was built as part of a research project. We wanted to add a third
type of use, namely, pedagogical. The algorithms for automata and grammars are
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routinely taught to computer science students, but the implementations are less of-
ten considered a fit subject for study. One reason is that there is no existing software
environment that supports short programming assignments in formal language the-
ory (whereas there are such environments for databases, operating systems, and
numerical analysis). We intendedGrail to be such a software environment. The
second reason is that language theory is usually taught by theoreticians whose pri-
mary interest is not the development of efficient software. BuildingGrail has
given us a healthy respect for the difficulty of implementing some ‘well-known’
solutions, and an interest in teaching formal language theory by combining its the-
oretical concepts with sound engineering principles. We hope thatGrail will
serve as a proof of concept of this approach to formal language theory, and indeed,
encourage others to take a similar approach in other areas.

Grail’s modularity can be beneficial to teaching in two ways. The most obvi-
ous way in which it is beneficial is that it permits students to explore small parts
of the code without needing to understand the whole; this is just the flip side of
the software maintenance advantage. The second beneficial aspect, however, is
that the modularity encourages the development of many solutions to a given prob-
lem, not just the most optimal one. This aspect is important because the teaching
of algorithms typically involves the presentation of many alternatives; sorting, for
example, is learned by the study of different characteristics of several sorting algo-
rithms, not just the study of quicksort. Hence, unlikeINR, Grail is designed to
support different implementations of a given function.

Multiple implementations also turn out to have other unexpected uses. One of the
most important is testing. A manual check of the correctness of subset construction
(as an example) for an automaton of fewer than five states is quite easy to do, but
a manual check of an automaton with tens or hundreds of states is quite another
matter. Multiple implementations allow us to compare output as a first check on
correctness.

Pedagogical use should extend beyond the simple problems addressed at the under-
graduate level; we wantedGrail to be capable of addressing problems of research
interest. Thus, we wantGrail to be a symbolic computing environment. By ‘en-
vironment’, we do not mean a monolithic, integrated enterprise with its own editors
and debuggers, but rather a philosophy of software construction similar to that of
Unix: Programmers should find inGrail a collection of useful tools and a num-
ber of ways to connect the tools to address new and interesting problems in formal
language theory.

Accordingly, the first attempt at the newGrailwas based on several shell-executable
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filters which could be pipelined to perform operations on an input automaton. The
minimization of an automaton, for example, could be achieved by executing the
following:

reverse <input-fa | subset | reverse >output-fa

This pipeline uses two invocations ofreverse and one ofsubset to implement
minimization. There are several points to note about this approach:

� Modularity by multiple processes

Each of the components of the pipeline is a separate process that communi-
cates by means of standard input and output. Encapsulation is automatically
enforced by the operating system, which does not allow processes to access
each others’ memory or other resources. Thus, the use of a multiple-process
design encourages programmers to solve simple, general problems. Another
advantage of this approach is that it is easy to distribute; by using the ca-
pabilities ofrsh to set up internet pipes, we can run processes on different
machines.

� Text-based interchange language

A multiple-process design requires some form of interprocess communica-
tion, since processes cannot access each others’ routines. We chose to use
a text-based description of automata and regular expressions as an interme-
diary; each process reads a text-based description of the input automaton,
converts it to an internal form, processes it, and writes a text-based descrip-
tion of an output automaton. One advantage of this approach is that the input
and output can be read, edited, and manipulated by standard Unix utilities.
One disadvantage is the extra cost of encoding and decoding between the
language and internal forms.

� Ready-made programming language

While the multiple-process approach requires an interchange language, it
saves us the effort of building a language for interacting with the software:
we rely on the same language that the user employs in day-to-day activities
with the operating system, namely the shell. This approach has the advan-
tage that the user need not learn a new language, and can use whatever shell is
most comfortable (e.g.,sh, csh, ksh, bash). It also facilitates the insertion
of other operating system utilities in the stream (e.g.,sort, wc).
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In our first attempt at the construction ofGrail, we developed the followingfilters:

cross compute the cross product of two automata
lreverse reverse the input automaton using lambda transitions
min minimize the input automaton by Hopcroft’s partition algorithm
min1 minimize the input automaton by reversal and subset construction
percent compute the alternation (i.e. (��)+) of two automata
plus computestar�� of the automaton
quest compute the automaton+�
reverse reverse the input automaton
star compute the Kleene star of the input automaton
subset subset construction of the input automaton
union compute the union of two automata

These filters were written in C and linked with a library of functions that did most
of the work. The library contained procedures for handling input/output, and for
processing automata. The idea behind this decompositionwas that the filters should
be efficient enough for most problems involving automata; for the largest problems,
a competent C programmer could access the library directly and thereby avoid any
inefficiences due to process communication.

While the filters were reasonably successful, the library was not. The first problem
was that we experienced some difficulty with software reliability. C (at least as we
wrote it) does not eliminate the temptation to access data structures directly, with
the result that encapsulation or abstraction is violated. As an example, we had tried
to plan for future changes to states in automata by using a type definition:

typedef STATE int

This tactic proved inadequate. When we decided to represent states aslongs, we
could change thetypedef, but we still had to change all code where we had used
variables of typeint to hold states. We needed a stronger form of information
hiding.

The second problem, lack of reusability, was irritating both as an aesthetic and as
an engineering problem. Operations on automata and regular expressions involve
frequent manipulation of container classes such as sets and relations; it would be
both elegant and efficient to use a single implementation of these classes for many
different contents. C, however, does not help with this problem. If one wants type
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checking, then one must provide each combination of container class and contained
element, which is tedious; alternatively, one can forego type checking, usevoid
pointers, and trust to luck. We were not willing to settle for either choice.

The final and probably most important problem was lack of clarity; despite our
efforts to write software that expressed the algorithms in a fluent and elegant form,
the result was unacceptable. Too much low-level detail kept cropping up in the
algorithms, because C did not help us to deal with automata and regular expressions
as first-class objects. In spite of these problems, the library was developed to the
point that it supported a significant research project on subset construction[13].

The remainder of this report describes the current version ofGrail, which is writ-
ten in C++. As with the first version, written in C, we provide both a library of
routines (in C++, this time) and a set of shell-executable filters, so thatGrail can
be used with relative ease at the shell level (with a slight decrease in efficiency), or
at the C++ programming level (with a slight increase in programmer effort). The
current version ofGrail is much better in terms of reliability, clarity, and resua-
bility.

3 Design

We shall present the design ofGrail in a top-down fashion, first discussing the
abstract objects, then the user level utilities, and finally the programming utilities.

3.1 Abstract Objects: Automata and regular expressions

Currently,Grail handles finite automata (deterministic and nondeterministic) and
regular expressions. It cannot handle context-free grammars, pushdown automata,
or other more powerful objects.

3.1.1 Finite Automata

In Grail, finite automata depart from the classical model in two ways: they may
have multiple start states, and transitions between states may depend on regular
expressions rather than simply on letters. We call theseextended finite automata.
The other properties of extended finite automata are the same as classical FAs (they
have multiple final states, they can be deterministic or nondeterministic, and they
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have a finite number of states, transitions, and labels). CurrentlyGrail does not
support�-transitions.

For simplicity, finite automata are specified inGrail as a set of transitions. Start
and final states are denoted by specialpseudo-transitions. For example, a simple
automaton that accepts the language�� can be specified as follows:

(START) |- 0
0 a 1
1 b 2
2 -| (FINAL)

An automaton specification is a set of transitions, usually one per line. Each transi-
tion consists of a source state, a transition label, and a target state. States are given
as integers and labels are given as regular expressions (though typically they are
single letters).

The start and final states of the example automaton are specified by the two pseudo-
transitions that have a fixed state and transition label. Note that we use the reserved
labels|- and-| for the pseudo-transitions; they are the only labels permitted for
these transitions. Conceptually, these special labels are ‘end-markers’ that bound
the input string. Also note that the states(START) and(FINAL) are not ‘real’
states, they simply indicate that the other state in the transition is either a start or
final state.

AlthoughGrail permits transition labels to be regular expressions, not all opera-
tions are applicable to such automata. Subset construction, for example, is defined
only for automata with single-letter transitions.Grail supports both automata
with general regular expressions as transition labels, and the more common form
that have only a single letter for each transition.

3.1.2 Regular expressions

Grail supports the classical form of regular expressions over the letters of the
(ASCII) alphabet, using the operators Kleene star (�), catenation (�), and union
(+). The precedence of the operators follows this order, with Kleene star having
the highest precedence. As usual, we can use parentheses to override the default
precedence.
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Grail stores its regular expressions in reverse-polish or postfix form; that is, with-
out parentheses. Thus, if one inputs an expression with redundant parentheses and
then outputs it, only the minimal parentheses are provided:

echo "(((ab)))" | remin
ab

The functionremin computes the minimal parentheses for a regular expression
(merely converting it to postfix form and then calling the standard output function).

Grail provides functions to convert regular expressions to finite automata and
vice versa.

3.2 User level

The outer layer ofGrail is a set of Unix processes, each of which performs some
useful transformation on its input and passes the result to its output. The input is an
automaton or regular expression which is filtered to produce the output automaton
or regular expression. We follow the convention that filters that are to be applied
to automata are prefixed withfa, while filters that are to be applied to regular ex-
pressions are prefixed withre. The filters that are currently implemented include:

fareverse reverse the input automaton
faquest compute ‘?’ of the input automaton
fastar compute ‘*’ of the input automaton
fatore convert the input automaton into a regular expression
remin generate the minimal parentheses for the input regular expression
restar compute ‘*’ of the input regular expression
retofa convert the input regular expression into an automaton

All process communicatation is solely by means of the automata or regular ex-
pressions that are generated as output; no state or other intermediate information
is transmitted. This choice ensures that the input and output of any filter can be
examined or further processed with text editors or other text processing tools. For
example, the number of transitions in an output automaton can be counted easily
with wc:

cat really-big-regexp | retofa | wc
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3.3 Programmer interface

Each of the user level filters is built using theGrail library libgrail.a; in
most cases the filter is simply an I/O program that makes one or more calls to
libgrail.a. Thus, competent programmers have easy access toGrail at the
function call level. Function call access is useful when the needed functionality
cannot be provided by combining existing filters (in this case, we encourage pro-
grammers to develop filters based onlibgrail.a and make them available to
other users ofGrail), or where the size of an automaton or the complexity of its
processing makes the use of multiple processes infeasible.

The internal construction ofGrail reuses as much of the existing code as possible.
We chose C++ as the implementation language to encourage reuse and modularity,
and to discourage hidden dependencies and connections.

Grail uses a combination of inheritance, containment, and multiple representa-
tions with transformations.

3.3.1 Inheritance

The inheritance hierarchy employed byGrail is flat. The major example of in-
heritance is the template-based use of sets.set is the generic template class that
maintains a collection of elements, each unique in the collection.Grail uses sets
of regular expressions, states, and transitions. Sets of regular expressions and states
are straightforward instantiations of the set template for those types; sets of transi-
tions have been captured in a special class definition (tset) because of the many
functions particular to sets of transitions.

There is currently one instance of inheritance fromxfa:

fa: xfa

xfa is the class for extended finite automata (whose labels can be general regular
expressions).fa is a subclass ofxfa that restricts the labels to single letters. It
inherits all the functions ofxfa, and (is planned to include) others, such as subset
construction and minimization, which are defined for automata with only single-
letter labels.
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3.3.2 Containment

Containment is a relationship in which a class includes an instance of another class,
rather than inheriting from it. Containment supports information hiding, but does
not require the container class to be a superclass of the contained class. InGrail
we make heavy use of containment to hide the details of the data structures used
to implement certain classes, while still permitting other objects to make use of
those classes. Containment is sometimes called composition[16] layering[15], or
delegation[4].Grail uses containment for the following relationships:

fa� tset An fa is represented as atset, a
set of transitions.

tset� trans A tset is aset of trans.
trans � regexp, state A trans is represented as a pair ofstates

and aregexp.
regexp � string A regexp is represented as a string, in

reverse polish notation.

Containment provides the advantages of encapsulation and code reuse without the
knotty ontological problems posed by inheritance. By using containment, we avoid
the question of whether aregexp ‘is-a’ type ofstring–we merely decide that
a string is a reasonable representation for aregexp.1 By using containment, we
ensure not only that improvements in the efficiency ofstring will be immediately
passed on toregexp (and indirectly, to any object that delegates toregexp), but
also thatregexp does not make any unwarranted assumptions aboutstring’s
implementation.regexp, like any other class, has no access tostring beyond
its public members and methods. Ifregexp inherited fromstring, however,
we would have no such guarantee of encapsulation.

3.3.3 Multiple representations and transformation

The third type of relationship inGrail is that among what we might callpeer
classes. The best current example is the relationship betweenfa andregexp–

1It might seem reasonable to implementregexp as a subclass ofstring, since then we can
reuse the representationand operationsofstring. But formally speaking,any fixedstring is trivially
a regular expression, which suggeststhatregexp should be a superclass, not a subclass,ofstring!
The conflict between the implementation and specification aspects of a class hierarchy is a common
problem in object-oriented design[17], one we try to avoid with containment.



16

these are peer classes because it is possible to convert from one to the other. Instead
of trying to arrange such classes in an inheritance hierarchy, we treat them as roots
of their own hierarchies, and use transformation routines to convert regular expres-
sions into finite automata and vice versa. Finite automata and regular expressions
are two different representations for the same class of languages, with well known
transformation algorithms.

In the future, we plan to implement classes such asdigraph, relation, and
monoid. Transformation routines will be written to convert fromxfa to these
classes, so that we can exploit algorithms from these new domains to address prob-
lems in finite automata. For example, automata can be converted to graphs and
then tested for connectedness using graph-based algorithms, and automata can be
converted to relations and processed with relational algebra.

With some peer classes, the existence of an inverse transformation is not guaran-
teed; we cannot map arbitrary graphs or relations to automata, as we can with reg-
ular expressions. This observation might suggest thatgraph andrelation are
more abstract objects and, perhaps, superclasses offa. But which is the more ap-
propriate superclass? Shouldrelation be a superclass ofgraph or vice versa?
The problem with a static inheritance hierarchy is that it sometimes forces us to
answer in advance problems that seem to be open research questions. We see little
advantage in trying to enforce one view, and so we treat the objects as ‘incompara-
ble’ peers.

4 Software organization

There are many ways to organize C++ applications; we have chosen one that seems
workable.

4.1 System directories

Grail is organized as four directories:

bin classes grail tests

bin contains theGrail executables and the library,libgrail.a.

classes contains the definitions of each of theGrail classes. Each individ-
ual class is kept in a separate directory whose name is the class name. Thus,
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classes/regexp andclasses/tset are subdirectories ofclasses that
contain the regular-expression class and the set-of-transitions class, respectively.

grail contains the definitions of the individualGrail filters. These filters are
programs that use theGrail classes to perform some useful activity. For example,
retofa is a program that reads a regular expression on its standard input and
generates a corresponding finite automaton on its standard output. Most of the
filters in theGrail directory are relatively simple programs that merely input some
structure, call a method defined by aGrail class, and output the result.

A very important directory istests; it contains a set of automata and regular ex-
pressions that can be used for testing the correctness and efficiency ofGrail and
any modifications that you make toGrail. It also contains scripts for automati-
cally running a set of tests against theGrail code.

4.2 Classes

Grail includes the following classes, each in its own directory:

fa: finite automata (letters on transitions)

xfa: finite automata (regular expressions on transitions)

regexp: regular expressions

set: sets (template definition)

state: states

string: strings of characters

trans: transitions (of automata)

tset: sets of transitions

4.3 A class directory

Grail uses a set of conventions for naming the files in a class directory. It is easier
to locate definitions, declarations, and other components in classes if they obey the
conventions.
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Each class directory contains a fileclassname.h that contains the class decla-
ration. Thestring class, for instance, is declared in the filestring.h. This is
the first place to look for information about the class, since it contains declarations
of all the methods.

Each of the methods defined for a class is contained in a separatemethod.cc file.
When the method is a function call with an alphanumeric name, its filename is the
same name (for compatibility with non-flexname file systems, long method names
are shortened to fit an 8-character limit). Hence, the methodparse in the class
regexp is located in the fileparse.cc. Some overloaded operators are defined
in files with the name used by the C++ class. The definition of the== operator,
for example, is found in the file==.cc. This approach does not work very well
for some overloaded operators; in particular, files with names like<.cc and>.cc
would be misinterpreted by many command shells. For these situations we have
chosen to use the following standard alphabetic names:

operator<< is defined inostream.cc

operator>> is defined inistream.cc

operator< is defined inlt.cc

operator> is defined ingt.cc

operator!= is defined inne.cc

operator+= is defined inpluseq.cc

operator-= is defined inminuseq.cc

operator�= is defined inconcat.cc

operator+ is defined inplus.cc

operator- is defined inminus.cc

operator[] is defined inindex.cc

We useclassname.cc for constructors and�classname.cc for destructors.

Constants, macros, and types that are specific to a class are kept in a file called
defs.h.

The set of system and local files that are necessary for compilation of methods are
specified in the fileinclude.h.
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Finally, there is aMakefile for compiling the code. TheMakefile does not
compile each method separately, but first constructs a single file to represent the
whole class. This technique is used for two reasons. First, it requires much less time
to compile the whole class than to compile each of its methods separately (though
it may lead to larger executables). Second, some C++ compilers use the name of
the file to construct an external entry point for the destructor function, which could
lead to linking problems if the same filename is used for some future class. We
avoid this problem by catenating all the method files into a singleclassname.c
file and then compilingclassname.c[6] The disadvantage of this approach is
that compilation errors are given relative toclassname.c instead of relative to
the original component source files, which makes correcting the code slightly more
complicated.

4.4 Making the code

The whole system can be compiled by executing

make clean
make

at the root directory. These commands first createlibgrail.a by compiling
each class. Then, each filter is created and placed inbin. Finally, the tests are run.

4.5 Test directory

The directorytests contains facilities for testingGrail. By executing

make checkout

in this directory, all the filters inbin are checked against the existing test au-
tomata and regular expressions.make checkout runs the appropriate testing
script (fatest for automata,retest for regular expressions). The script exe-
cutes each filter with each test object as input, and compares the result with a previ-
ously obtained result stored in a subdirectory named for the filter. Thus,fatore
is run againstdfa1 and the result compared withtests/fatore/dfa1. If the
result is identical, the script proceeds to the next test; otherwise, the differences are
printed and the whole test result is placed in the directoryerrors. Erroneous tests
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are named asfilter.object; for example, an error when runningfatore on
dfa1 would result in a file inerrors namedfatore.dfa1.

5 Miscellaneous information

5.1 How do I obtain Grail?

Grail is available without charge to researchers and teachers, or anyone who
wishes to use the software for their own private purposes.Grail is not in the
public domain; you can’t sell it or make it part of a commercial product without
our permission. For more information on how to obtainGrail, send e-mail to
drraymond@daisy.uwaterloo.ca.

5.2 Related software systems

Several systems for computing with automata have appeared in the literature.

The AUTOMATE system, written in C, supports finite automata and finite semi-
groups[3]. It can compute deterministic minimal automata, syntactic monoids, and
transition monoids of regular languages.

The AMORE system, written in C, supports finite automata, regular expressions,
and syntactic monoids[7]. It can produce minimal DFAs, handle�-NFAs, and
perform various tests on syntactic monoids (for example, star-freeness, finiteness,
cofiniteness, etc). AMORE can also graphically display its automata.

Both AMORE and AUTOMATE have goals similar to those ofGrail–to serve
as a research environment, to facilitate the study of automata implementations, and
to provide a package for executing automata for other purposes (such as validating
concurrent programs). WhereGrail differs is in its emphasis on several levels of
interface (process, function library, object); AMORE and AUTOMATE appear to
be monolithic programs that attempt to provide a single interface to the user.

One interesting experience is the development of automata tools in Nuprl, a proof
language based on lambda calculus[11]. Definitions were constructed in Nuprl for
finite sets, strings, tuples, and deterministic automata. Nuprl was then able to con-
struct a proof of the pumping lemma. The main point of this work was not the
development of an environment for manipulating automata, but an illustration of
the utility of the Nuprl proof development system.
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We know of two other systems whose motivation was primarily pedagogical. An
early effort was GRAMPA, which was only partially implemented[1]. More re-
cently, Hannay has built a Hypercard-based systems for simulating automata[5].
This program appears to be useful for introductory teaching purposes, and for sim-
ulating small automata.

In addition to these systems, there is a vast amount of work on using grammars
and automata in applications. Many operating system utilities understand a limited
form of regular expression, for example, and there is hardly a text editor that does
not perform general purpose search-and-replace. It seems that the automata used
in such tools are generally custom-built, or perhaps adapted from custom code;
operating systems have yet to offer a standard automata package in the same way
that they offer a standard sorting routine.

5.3 Future work

There is much work we would like to do onGrail.

In the near term, we intend to expand our collection of processes for manipulating
automata and regular expressions, until we attain a reasonably complete set. We
are also interested in considering some special cases of the objects that we have
already implemented; for example, Glushkov automata[2], and restricted classes
of regular expressions (that might be susceptible to automatic minimization).

In the long term we have several goals. The first goal is to increase the number
of “peer” classes to include objects such as monoids, digraphs, and relations (n-
tuples). Some types of automata computation can be reduced to well-known algo-
rithms on these objects. The second goal is to add more powerful objects such as
finite transducers, pushdown automata, Turing machines, and multitape automata.
The third goal is to develop simulators for these automata, so that they can be used
in text transformation, parsing, and other applications. Finally, we want to improve
the usability of the software by providing a variety of graphical ways to view au-
tomata and to observe their execution.

5.4 C++ references

The basic C++ reference book is theAnnotated C++ Reference Manual, by the
language’s author, Bjarne Stroustrup. More expository references are Stroustrup’s
introductory book[16] or Lippman’s excellent primer[14]. For a detailed discussion
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of the design of a basic C++ class library, seeData Abstraction and Object-Oriented
Programming in C++ by Gorlenet al. Handy tips and hints on effective C++
programming are discussed by Meyers[15], and also by Henricson and Nyquist[6].

5.5 Organizational quirks

� The software requires a version of C++ that supports templates. We have
successfully compiled it with AT&T cfront 3.0.

� The current approach toMakefile does not work with standard SunOS
make, which complains about the macros on the dependency line. The so-
lution: use a real version ofmake, like dmake.
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A Finite automata: fa

A.1 Definition

fa are standard finite automata that have a single start state, multiple final states,
and single-letter transition label.

fa is a specialization ofxfa.

A.2 Public functions

fa()

Constructor. Initializes status.

fa(const fa& a)

Copy constructor. Copies transitions and status.

�fa()

Destructor. A no-op.

A.3 Friend functions

istream& operator>>(istream& os, fa& s)

Inputss from streamis. Ensures that all transitions are single-lettered.
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B Regular expressions: regexp

B.1 Definition

regexp maintains a regular expression. It uses an instance ofstring to store
the expression:

string p;

The regular expression is maintained in reverse polish notation; that is,p contains
a recursive expression of the following form:

X Y size operator

The regular expression is obtained by recursively doingX operator Y, where
the value ofsize gives the size ofY, and the size ofX is the remainder of the
string.

B.2 Public functions

void clear()

Clears the expression by truncating the string to 0.

void concat(char ch)

Concatenatesch to the invokingregexp. Checks for non-alphabetic char-
acters.

void concat(char* str)

Concatenatesstr (a null-terminated character string) to the invokingregexp,
using iostream capabilities (i.e.istrstream). Checks for null strings.

void concat(const regexp& r)

Concatenatesr to the invokingregexp usingappend.

void epsilon()

Sets the invokingregexp to an�-expression.

void final()

Sets the invokingregexp to a final expression.
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int isfinal()

Returns 1 if the invokingregexp is a final expression; returns 0 otherwise.

int isstart()

Returns 1 if the invokingregexp is a start expression; returns 0 otherwise.

void minus(const regexp& r)

Subtractsr from the invokingregexp. If invoking regexp is empty, it
simply appends the argument regexp.

int operator!=(const regexp& r)

Returns 1 if the invokingregexp andr are not identical; returns 0 other-
wise. Does not compute language equivalence.

void operator=(const regexp& r)

Assignment operator. Checks for self-assignment and then copiesr to the
invokingregexp.

void operator=(char c)

Assignment operator. Assigns the invokingregexp to be the single letter
c.

int operator==(const regexp& r)

Returns 1 if the invokingregexp andr are identical; returns 0 otherwise.
Does not compute language equivalence.

void operator+=(const regexp& r)

Disjunction of the argument regexp with the invokingregexp. If invoking
regexp is empty, simply appendsr.

regexp()

Constructor. A no-op.

regexp(const regexp& r)

Copy constructor.

int size()

Returns the current size of the underlyingstring.
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void star()

Kleene start operator. A no-op if current expression is empty; otherwise
merely appends a star. This may result in superfluous stars.

void start()

Sets the invokingregexp to a start expression.

void wterm(char* str, int j, int upperop, ostream& os)

Recursively output terms of the invokingregexp. upperop gives the par-
ent operator of the parse tree, and is used to determine operator precedence
(and hence bracketing).j is the length of the right term (and hence the length
of the string that is skipped).

�regexp()

Destructor. A no-op.

B.3 Friend functions

xfa& xterm(char* s, int x, xfa& a)

Used in the conversion ofregexp to xfa.

void retofa(regexp& r, xfa& a)

Converts aregexp to anxfa. This function is defined in the classxfa.

void wterm(char* s, int x, int y, ostream& os)

Outputs aregexp by outputting terms recursively.

ostream& operator<<(ostream& os, const regexp& r)

Outputsr on streamos. Epsilon, start, and final regexps are treated as spe-
cial cases; for all otherregexps,wterm is invoked.

istream& operator>>(istream& os, regexp& r)

Inputsr from streamis. Calls shift-reduce parserparse repeatedly for
each concatenated segment of theregexp.
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B.4 Private functions

int term(char* str, int* input)

Parses individual terms of the input string.

int token(char* str, int* i)

Returns the next non-whitespace, non-operator, non-bracket token fromstr.
Returns 0 if at end of the string or if an unacceptable character is found (e.g.,
non-alphabetic, non-whitespace, non-bracket, and non-operator).

int parse(char* str, int* input)

Parses the stringstr to generate the corresponding regular expression.
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C Sets: set

C.1 Definition

set is a template for a set of objects of classItem.

set maintains the following variables:

Item* p; // array of Items
int max; // maximum size of array
int sz; // number of elements currently in array

Note thatoperator>> is not defined.

C.2 Public functions

void clear()

Sets the size to zero. Does not free any space used by current members.

void intersect(const set<Item>& s1, const set<Item>& s2)

Clears the invoking set, then adds any members belonging to the intersection
of s1 ands2.

int member(const Item& s)

Checks for membership ofs in the set. Returns 1 ifs is a member, and
returns 0 otherwise.

void operator=(const set<Item>& s)

Assignment operator. Checks for self-assignment; clears; addss to the in-
voking set.

void operator=(const Item& i)

Assignment operator. Checks for self-assignment; clears; addsi to the in-
voking set.

void operator+=(const set<Item>& s)

Addition operator. Checks for self assignment, and adds each member ofs
to the invoking set.



31

void operator+=(Item q)

Checksq for membership in the set, allocates additional space if necessary,
then addsq to the invoking set.q is copied with the assignment operator of
the classItem.

void operator==(const set<Item>& s)

Equivalence operator. Tests sets for equivalent sizes, then tests each member
of the invoking set for membership ins.

void print(ostream& os)

Prints every element of the set. This function is called byoperator<<.

rel operator[](int i) const

Selection operator. Returns theithItem. Though currently implemented as
array selection, it need not be, and programmers should not depend on this.

int size() const

Returns the current size of the set.

set()

Constructor. Allocates space and sets the size to zero.

set(const set<Item>& s)

Copy constructor. Allocates space and copiess to the invoking set.

�set()

Destructor. Deletes the array ofItems.

C.3 Friend functions

ostream& operator<<(ostream& os, set<Item>& s

Outputss on streamos. This function apparently cannot be defined within
the template, since it is a friend function; hence, it is defined outside the
template, and it calls the private functionprint.
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D States: state

D.1 Definition

state is a source or sink for transitions in an automaton. At the moment it is a
simple wrapper class forlongs. It exists for two primary reasons: first, to ensure
that no transition code is written that embeds knowledge of the storage type of state
(so that states may become arbitrarily complex in the future); and second, to handle
the exceptional states(START) and(FINAL).

state maintains the following variable:

long number; // state number

D.2 Public functions

int operator>(const state& s)

Returns 1 if the invokingstate is strictly larger thans; returns 0 otherwise.

int operator>(int& i)

Returns 1 if the invokingstate is strictly larger thani; returns 0 otherwise.

int isnull()

Returns 1 if the invokingstate is null; returns 0 otherwise.

int operator<(const state& s)

Returns 1 if the invokingstate is strictly smaller thans; returns 0 other-
wise.

int operator<(int& i)

Returns 1 if the invokingstate is strictly smaller thani; returns 0 other-
wise.

int operator!=(const state& s)

Returns 1 if the invokingstate is not equal tos; returns 0 otherwise.

int operator!=(int& i)

Returns 1 if the invokingstate is not equal toi; returns 0 otherwise.
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void null()

Sets the invokingstate to null.

void operator+=(const state& s)

Adds value ofs to the invokingstate.

void operator+=(int& i)

Adds value ofi to the invokingstate.

void operator-=(const state& s)

Checks that the invokingstate is greater thans, then subtracts the value
of s from the invokingstate.

void operator-=(int& i)

Checks that the invokingstate is greater thani, then subtracts the value
of s from the invokingstate.

void operator=(const state& s)

Assignment operator. Checks for self-assignment; copiess to the invoking
state.

void operator=(int& i)

Assignment operator. Copies the value ofi to the invokingstate. Does
not check thati is non-negative (otherwise we cannot setstate to null).

void operator=(long& i)

Assignment operator. Copies the value ofi to the invokingstate. Does
not check thati is non-negative (otherwise we cannot setstate to null).

int operator==(state& s)

Equivalence operator. Returns 1 if the invokingstate has same value as
s; returns 0 otherwise.

state()

Constructor. Sets value to 0.

state(const state& s)

Copy constructor. Copies value ofs to the invokingstate.
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long value() const

Returns value of the invokingstate.

�state()

Destructor. A no-op.

D.3 Friend functions

ostream& operator<<(ostream& os, const state& s)

Outputss on streamos.

istream& operator>>(istream& os, state& s)

Inputss from streamis.



35

E Strings: string

E.1 Definition

string maintains a dynamic array of characters. It uses the following variables:

char* c; // pointer to characters
int sz; // current length of string
int max; // length of allocated space

The character stringc is null-terminated for consistency with the standard string
package.

E.2 Public functions

char* chars() const

Returns a pointer to the characters.

void operator=(const string& s)

Assignment operator. Checks for self-assignment, clears, and then appends
s to the invokingstring.

void operator=(char* s)

Assignment operator. Clears, then appends null-terminated character se-
quences to the invokingstring.

void operator=(char ch)

Assignment operator. Clears, then appends characterch to the invoking
string.

int operator==(const string& s)

Equivalence operator. Returns 1 ifs is identical to the invokingstring;
otherwise returns 0.

int operator!=(const string& s)

Difference operator. Returns 1 ifs is different from the invokingstring;
otherwise returns 0.
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int operator+=(const char& ch)

Append the characterch to the invokingstring.

int operator+=(const char* str)

Append the character stringstr to the invokingstring.

int operator+=(const string&* str)

Appendstr to the invokingstring.

int operator+=(int value)

Convert integervalue to a character string, then append it to the invoking
string.

char operator[](int& i) const

Selection operator. Returns theith character in thestring. If string is
shorter thani, return EOF.

int size() const

Returns the current size of thestring.

string()

Constructor. Allocates space and sets size to zero.

string(const string& s)

Copy constructor. Allocates space and copiess to the invokingstring.

int truncate(int x)

String truncation. Sets size tox (x may be zero).

�string()

Destructor. Deletes space occupied byc.

E.3 Friend functions

ostream& operator<<(ostream& os, const string& s)

Outputss on streamos.

istream& operator>>(istream& os, string& s)

Inputss from streamis. Treats either pairs of whitespace or pairs of" as
string delimiters.
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F Transitions: trans

F.1 Definition

trans is a relation describing a single directed transition. It consists of:

state source; // source state
regexp label; // transition label
state sink; // sink state

F.2 Public functions

void assign(const state& s1, const regexp& r, const state&
s2)

Assigns the argument values to the invokingtrans.

regexp get regexp()

Returns the label.

state issfinal()

If the invokingtrans is a final (pseudo)transition, returns the sourcestate;
otherwise returns null.

state isstart()

If the invokingtrans is a start (pseudo)transition, returns the sinkstate;
otherwise returns null.

void make epsilon(const state& s1, const state& s2)

Makes the invokingtrans an �-transition, with the given source and sink
states.

void make final(const state& s1)

Makes the invokingtrans a final transition with the given sourcestate.

void make start(const state& s1)

Makes the invokingtrans a start transition with the given sinkstate.
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int operator!=(const trans& t)

If the source, sink and label are equivalent, return 0; otherwise return 1. Tests
for identity, not language equality.

int null()

Returns 1 if the invokingtrans is null; otherwise, returns 0.

void operator=(const trans& t)

Assignment operator. Checks for self assignment; then assigns components
of t to the invokingtrans.

int operator==(const trans& t)

If the source, sink and label are equivalent, return 1; otherwise return 0. Tests
for identity, not language equality.

void renumber(int bottom)

Renumbers the states in the invokingtrans by addingbottom to their
value.

void reverse()

Swap start and finalstates of the invokingtrans. Handles the special
cases of start and final pseudo-transitions.

void setnull()

Sets the invokingtrans to null.

int sinkis(const state& s)

Returns 1 if the sinkstate of the invokingtrans is equivalent tos.

int sourceis(const state& s)

Returns 1 if the sourcestate of the invokingtrans is equivalent tos.

int labelis(const regexp& r)

Returns 1 if the label of the invokingtrans is equivalent tor. Tests for
identical regexps, not language-equivalent ones.

trans()

Constructor. A no-op.
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trans(const state& s1, const regexp& r, const state& s2)

Constructor with initializers.

trans(const trans& t)

Copy constructor.

�trans()

Destructor. A no-op.

F.3 Friend functions

ostream& operator<<(ostream& os, const trans& t)

Outputst on streamos. Correctly handles start and final pseudo transitions.

istream& operator>>(istream& os, trans& t)

Inputst from streamis. Correctly handles start and final pseudo transitions.
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G Sets of transitions: tset

G.1 Definition

tset is a specialization ofset<trans>. It defines no new variables, but does
define several functions that are specific to sets of transitions (and thus is not merely
a standard instantiation of the template).

G.2 Public functions

tset add(const trans& a)

Addsa to the invokingtset.

void cartesian(const set<state>&a, const set<regexp>&b,
const set<stae>& c)

Computes the cartesian producta x b x c. The resulting set oftrans
is added to the invokingtset.

void finals(set<state>& s)

Returns the set ofstates that are finals.

void renumber(int b)

Renumber alltrans in the invokingtset by addingb to all states.

void reverse()

Reverse everytrans in the invokingtset.

void rmtrans(const state& s)

Removes everytrans in the invokingtset that hass as a source or sink
state.

void rmtrans(int i)

Remove the singletrans denoted byi (returned by a previous call to
member).

tset& select(const state& r, int which

Returns atset containing alltrans of the invokingtset that containr.
The argumentwhich selects whetherr should be a source, sink, or a non-
pseudostate (that is, one that does not participate in a pseudo-transition).
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tset& select(const regexp& r)

Returns atset containing alltrans of the invokingtset whose label is
aregexp identical tor.

set<state> sinks()

Returns the set of sinkstates (all that are the sink of some transition).
Creates a newset<state>.

set<state> sources()

Returns the set of sourcestates (all that are the source of some transition).
Creates a newset<state>.

void starts(set<state>& s)

Returns the set ofstates that are start states.

void labels(set<regexp>& r)

Returns the set ofregexps that are labels.

tset()

Constructor. Clears the set.

tset(const tset& s)

Copy constructor. Allocates space and copiess to the invokingtset.

�tset()

Destructor. Deletes the set.

void operator=(const tset& s)

Assigns to the invokingtset. Checks for self-assignment; ensure suffi-
cient storage; copy alltrans.

void operator+=(const tset& s)

Addss’s transitions to those of the invokingtset. Assumes a consistent
numbering scheme between the twotsets.

void operator-=(const tset& s)

Removess’s transitions from those of the invokingtset (if any are held in
common). Assumes a consistent numbering scheme between the twotsets.
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G.3 Friend functions

ostream& operator<<(ostream& os, const tset& s)

Outputs on ostreamos.

istream& operator>>(istream& is, tset& s)

Inputs from istreamis.
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H Extended finite automata: xfa

H.1 Definition

xfa are finite automata that have regular expressions for labels, and that allow
multiple start and final states.

xfa maintains the following variables:

tset transitions; // set of transitions
int status; // dfa, nfa, etc.

H.2 Public functions

void clear()

Clears all transitions and other interval variables.

state max state()

Returns the maximum state value.

int no start()

Returns the number of start states.

int no trans()

Returns the number of transitions.

void operator�=(const xfa& a)

Concatenatesa with invokingxfa. Computes the cartesian product of final
states of the invokingxfa with the start states ofa. Does not introduce
�-transitions.

void operator+=(const xfa& a)

Appends the transitions ofa to the invokingxfa, renumbering them to avoid
collision.

void operator=(const xfa& a)

Assignment operator. Checks for self-assignment; copiesa to the invoking
xfa.
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void quest()

Computes ‘?’ of invokingxfa by copying it, computing the Kleene start of
the copy, then concatenating the originalxfa with the copy.

void reverse()

Reverses the invokingxfa by reversing its set of transitions. This is accept-
able because multiple start states are permitted.

void single(const regexp& r)

Makes the invokingxfa a single-transition automaton (except for the neces-
sary start and final pseudo-transitions), withr as the label for that transition.

void star()

Computes ‘*’ of invokingxfa.

regexp fatore()

Converts the invokingxfa to aregexp using state elimination.

xfa()

Constructor. Initializes status.

xfa(fa& a)

Copy constructor. Copies transitions and status.

�fa()

Destructor. A no-op.

H.3 Friend functions

ostream& operator<<(ostream& os, const xfa& s)

Outputss on streamos.

istream& operator>>(istream& os, xfa& s)

Inputss from streamis.

void retofa(regexp&r, xfa& a)

Convertregexp to xfa. Most of the work is done byxterm.
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xfa& xterm(char* str, int j, xfa& a)

For each term inregexp, it computes the corresponding transitions. Oper-
ates recursively.


