procedure INITIALIZE(mark(x), C[*], S1)
Sy — 0;
for d € {1,2,...,n} do C[d] < 0 end for
for j € {1,2,...,n} do
if deg(v;) = mdeg(vy,) then
mark(v;) « 2; S1 — S1 U {v;};
else mark(v;) < 3; end if
end for

Fic. 5. Initialization procedure: initializes data structures for main while loop.

boolean function IN TSET(v;)
IN_TSET « 1;
for each vertex vy € adjg[v;] do
if mark(v,) = 1 and deg(vi) # deg(v;) + 1 then
IN_TSET « 0;
end if
end for

Fi1Gc. 6. Boolean function that tests for membership in the mazimum-cardinality T-set R;.

procedure ELIMINATE(v;)
mark(v;) « 1; R, — R;U {v;}; U U — {v;};
r—r+1; a(vj) « r;
for each vertex vy € adjg[v;] in ascending order do
deg(vi) — deg(vi) — 1;
if mark(vg) > 2 then
Update f if necessary; U «+ U U {vg};
if & < j then mdeg(vy) «— mdeg(vy) — 1;
if deg(vi,) = mdeg(vy,) and mark(vi) = 3 then
mark(vi) — 2;
Clolddeg(vi)] < Clolddeg(v)] U {vi };
dmaz — Mmax{dmnqz, olddeg(vi)};
end if
end if

end for

Fia. 7. Elimination procedure: updates data structures to reflect the selection of v; for elimination.

20

Input: A chordal graph G = (V, E); for each vertex v; € V, deg(v;) (= dega(v;)),
mdeg(v;) (= mdega(v;)), and adjg[v;], sorted in ascending order by the numbers as-
signed by the initial PEO.

Output: Upon termination, Rl, R2, cee R, is precisely the minimum-cardinality
T-partition Ry, R,, ..., R;, where each partition member R; is the maximum-cardinality
T-set of the reduced graph G; = G\ {R1U---UR;_1}. The PEO « (computed in Fig-
ure 7) is a compound T'EO of G with respect to the T-partition Ry, Ra, ..., R;.

INITIALIZE(mark(x),C[],S1); /*Figure 5*/
r—0t—1;,G «— G U—V;
while G; # 0 do
dmaz — 05 dmin — |V|;
for v; € 5; do
dmaz — Max{dmaqz, deg(v;)};
dmin — Min{dmin, deg(v;)};
Cldeg(v;)] — Cldeg(v;)] U Lo}
end for
for v; € U do olddeg(v;) < deg(v;) end for
R, — 0; Siy1 — 0; U «— 0;
while d,.;, < dpox do
for each vertex v; € Cldmin] do
Cldmin] < Cldmin] — {vi};
if IN_TSET(v;) =1 then /*Figure 6*/
ELIMINATE(v;); /*Figure 7%/
else
Siz1 + Sip1 U{v;};
end if
end for
while C[dnin] = 0 and d,nin < dppae do
dmin — dmin + 15
end while
end while
Gita HG'i\Ri;iHi—l-l;
for v; € R; do mark(v;) — 0 end for
end while

FiG. 4. Detailed implementation of scheme in Figure 2.

19

Acknowledgement. The third author would like to thank Professor Joseph Liu
for the guidance and encouragement he received when he was a student at York Uni-
versity.

F.

F.

J.

J.

N.

REFERENCES

L. ALvarAaDO, A. POTHEN, AND R. S. SCHREIBER, Highly parallel sparse triangular solu-
tion, Tech. Report CS-92-51, Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, Oct. 1992. To appear in Sparse Matrix Computations: Graph Theory
Issues and Algorithms, J. A. George and J. R. Gilbert and J. W. H. Liu (eds.), Springer
Verlag. (IMA volumes in Mathematics and its Applications).

L. Arvarapo AND R. S. SCHREIBER, Optimal parallel solution of sparse triangular systems.
SIAM J. Sci. Stat. Comput., to appear, 1992.

A. GEORGE AND J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

A. GEORGE AND J. W. H. Liu, The evolution of the minimum degree ordering algorithm,
SIAM Review, 31 (1989), pp. 1-19.

J. HicHAM AND A. POTHEN, The stability of the partitioned inverse approach to parallel
sparse triangular solution, Tech. Report CS-92-52, Computer Science, University of Waterloo,
Oct. 1992. Submitted to SIAM J. Sci. Stat. Comput.

. G. LEwis, B. W. PEYTON, AND A. POTHEN, A fast algorithm for reordering sparse matrices

for parallel factorization, SIAM J. Sci. Stat. Comput., 6 (1989), pp. 1146-1173.

. W. H. Liu, Reordering sparse matrices for parallel elimination, Parallel Computing, 11 (1989),

pp- 73-91.

. W. H. Liu, The role of elimination trees in sparse factorization, STAM J. Mat. Anal. Appl.,

11 (1990), pp. 134-172.

. W. H. Liu AND A. MIRZAIAN, A linear reordering algorithm for parallel pivoting of chordal

graphs, SIAM J. Disc. Math., 2 (1989), pp. 100-107.

W. PEYTON, A. POTHEN, AND X. YUAN, A clique tree algorithm for partitioning ¢ chordal
graph into transitive subgraphs. Work in preparation, 1992.

PoTHEN AND F. L. ALVARADO, A fast reordering algorithm for parallel sparse triangular
solution, STAM J. Sci. Stat. Comput., 13 (1992), pp. 645-653.

H. SHERMAN, On the efficient solution of sparse systems of linear and nonlinear equations,
PhD thesis, Yale University, 1975.

R. SHIER, Some aspects of perfect elimination orderings in chordal graphs, Discr. Appl. Math.,
7 (1984), pp. 325-331.

E. TARJAN AND M. YANNAKAKIS, Simple linear-time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566-579.

18

1. a PEO of G, and
2. sorted adjacency lists so that neighbors can be processed in ascending order by
their labels in the PEQO.

The first can be obtained in O(|V| + |E|) time using the maximum cardinality search
algorithm [14]; the second can be obtained in O(|V| + |E|) time by careful application
of a bin sort. It is worth pointing out that in our application, the PEQ and sorting can
be obtained as a by-product of the symbolic factorization step, and thus are available
at no extra cost in computation time. (For further details consult Liu [7].)

The total work associated with the procedure INITIALIZE is clearly proportional to
|V|. Because S; C R; at each major step ¢, the total work performed by the for loop
that distributes the members of S; among the candidate sets is also proportional to |V|.
Each vertex is eliminated from the graph once, and thus the work associated with the
procedure ELIMINATE is O(|V| + |E|). Note that each vertex is eliminated either by
the major step during which it first becomes simplicial or by the next major step. As
a result, each vertex is examined for possible elimination no more than twice, and con-
sequently the work associated with the boolean function IN TSET is also O(|V| + |E|).
For each vertex v; € U whose “old” degree is updated by the algorithm at major step
i+ 1, we have v; € adjg, |[vi] for some vertex v;, € f?,i; that is, to each vertex v; € U there
corresponds one or more edges which were removed from the graph during the previous
major step ¢. In consequence, the total work spent updating the variables olddeg(v;)
(1< <n)is O(V| +|E).

Finally, we consider the work expended by the while loop that updates d,;,.
During any given iteration of the main while loop, the work performed updating d,.;»
is bounded above by the maximum of degg(v) over all vertices v examined for possible
elimination during the step. Since each vertex is examined for possible elimination no
more than twice during the course of the algorithm, it follows that the total work spent
updating dpmin is O(|V| + |E]). From this and the foregoing observations, it follows that
the time complexity of the algorithm in Figure 4 is O(|V| + |E|). Note that the space
complexity is also O(|V| + |E|).

7. Concluding remarks. In this paper we have developed an O(|V| 4+ |E|) algo-
rithm for solving the graph partitioning problem stated as Problem 2 in Section 1. Two
new ideas—7 FOs and T-sets—enabled us to devise a simple greedy scheme that solves
Problem 2. We then provided a high-level description of an algorithm for computing
a maximum-cardinality T-set R, along with the required TEO of G(R). Careful im-
plementation provides us with a detailed O(|V| + |E|) algorithm that implements the
greedy scheme, and thus solves Problem 2.

The approach taken in this paper has the virtue of simplicity and provides insight
into the essential features of this fairly involved graph partitioning problem. A forth-
coming paper [10] will present an implementation of a variant of the greedy scheme in
Figure 2 that processes a clique tree representation of 7, rather than the conventional
representation by adjacency lists. The new clique tree algorithm makes use of some in-
teresting new concepts about separators in the clique intersection graph of the chordal
graph.

17

and also places each simplicial vertex v; in the appropriate candidate set C[degg,(v;)]-
The algorithm maintains the degree value degg,(v;) in the variable olddeg(v;).

The second for loop updates olddeg(v;) for each vertex v; whose degree was reduced
during the preceding major step. To do this efliciently, the algorithm maintains a set
U, which contains every uneliminated vertex whose degree has been reduced during the
current major step.

Aslong as there remain candidate simplicial vertices to be processed, the algorithm
examines those of minimum degree in G; (i.e., those in C[dm]). For each vertex
v; € Cldmin], the boolean function IN_TSET (see Figure 6) uses the current degree
information to determine if v; satisfies the test for elimination given in (3). In Figure 6,
note that

deg(v) = |adjclvs] — Ri| = Inbdg[ve] — Rl
and
deg(v;) = |adjglv;] — R;| = |nbdg[v;] — R;| — 1.

If v; is not to be eliminated at this step, the algorithm then places v; in the
set of simplicial vertices S;+1, where it will be processed (and eliminated) during the
next iteration of the main while loop. Otherwise, the procedure shown in Figure 7
selects v; for elimination and updates the current T-set R; and the relevant marker
and degree variables. More specifically, while the degree variables of the neighbors of
v; are updated, new simplicial vertices detected in adjg[v;] — R; (see Proposition 6.1)
are placed in the appropriate candidate set. The set U of uneliminated vertices whose
degrees have been reduced is also updated.

Note that the procedure ELIMINATE must process the members of adjg[v;] in as-
cending order by their numbering in the initial PEO. This is needed to enable efficient
updating of the parameters f; and to ensure that the values mdeg(vs) have been cor-
rectly updated before they are used in simpliciality tests. In Figure 7, we have not
shown the details of how f; is updated. Efficient access to fi can be obtained by main-
taining a pointer to the first vertex in the ordered list adjg|vi] that has not yet been
chosen for elimination. If f; = j, where v; is the vertex just chosen for elimination,
then adjg|vi] must be searched to the right of v; for the new first uneliminated vertex,
and the pointer must be adjusted accordingly.

After the algorithm examines v; for possible elimination, it then increases d;, if
necessary. That d;, cannot possibly decrease during the course of a major step was
shown in Theorem 5.1. After computing f?,z (= R,), the algorithm then eliminates }A?,Z
from the graph and marks each vertex of R; as eliminated from the graph.

Finally, observe that the algorithm in Figure 4 correctly implements the greedy
scheme in Figure 2 follows immediately from the fact that each iteration of the main
while loop implements the algorithm in Figure 3.

6.4. Complexity analysis. In this section we verify that the algorithm in Fig-
ure 4 runs in time proportional to |V| + |E|. Recall that the algorithm in Figure 4
requires
16

Assume that (3) holds. It follows then from (4) that

A

(5) nbdg[u] — R = nbdg[v] — R for every u € nbdg[v] N R.

A

Choose a vertex w € adjg[v] — R. To show that (2) holds, it suffices to show that
nbdg[v] C nbdg[w]. Let z € nbdg|
w was taken, clearly z € nbdg[w] as required. If on the other hand z € nbdg[v] N R,
then from (5) we have w € nbdg|v] — R = nbdg[z] — R, whence z € nbdg[w], completing
the first half of the argument.

Now assume that (2) holds, and choose a vertex u € nbdg[v] N R. To show that (3)
holds, it suffices (by (4)) to show that

v]. If z belongs to the clique nbdg[v] — R from which

nbdg[v] — R C nbdg[u] — R.

Clearly, v belongs to both sets. Let w # v belong to nbdg[v] — R. It follows by (2) that
w € adjyv]Uadjl[v]. In consequence, nbdg[v] C nbdg[w]; hence u € nbdg|w], and thus
w € nbdglu] — R, which completes the proof. [

To test for (3), our algorithm must accurately maintain the variable deg(u) =
ladjg[u] — R| for eliminated vertices u € R as well as uneliminated vertices u € Vg — R.

6.3. Implementation details. The algorithm introduced in Figure 4 (along with
Figures 5, 6, and 7) implements the greedy scheme introduced in Figure 2. That is,
it generates the minimum-cardinality T-partition Ry, R,,..., R;, where each partition
member R; is the unique maximum-cardinality T-set of the reduced graph G; = G\
{RyU---UR;_1}, and it also generates a compound T'EO of G with respect to the
T-partition R;,R,,...,R;. For efficient access to the candidate simplicial vertex of
smallest degree in G, the algorithm maintains a collection of sets C[d] (1 < d < n),
where C[d] contains the current candidate simplicial vertices w for which degg, (w) = d.
We now discuss other details of the implementation.

Initialization for the algorithm is performed by the procedure INITIALIZE shown
in Figure 5. This procedure initializes S; to Simg (see Proposition 6.1), each candidate
set C[d] to the empty set, and each marker variable mark(v;) to an appropriate integer
value. The various values taken on by the marker variables mark(v;) during the course
of the algorithm have the meanings given below:

0 if v; has been eliminated during an earlier major step
1 if v; has been eliminated during the current major step

mark(v;) 2 if v; is simplicial, but not yet chosen for elimination
l 3 if v; is not yet simplicial,

where each major step is a single iteration of the main while loop.

An iteration of the main while loop in Figure 4 removes the vertices of the
maximum-cardinality T-set R; from the reduced graph G;, generating a TEO of G;(R;)
as the elimination sequence for the set. Note that the set S; = Simg, is available at
the beginning of the i-th iteration. The first for loop computes the minimum and max-
imum degrees encountered among the vertices of Simg; (dmae and dpyin, respectively),

15

discuss this test in Section 6.1.

Second, we need an eflicient way to implement the test for membership of a can-
didate simplicial vertex in R. Note that straightforward determination of whether or
not a vertex v satisfies (2) would require examination of the set adjg[w] for each vertex
w € adjg[v] — f?,, which is far too costly. We show in Section 6.2 that judicious use of
vertex degree information leads to a simple and efficient test that is equivalent to (2).

Other implementation issues are fairly straightforward and will be dealt with when
we look at the detailed algorithm in Section 6.3. In Section 6.4 we show that the
time-complexity of the algorithm is O(|V| + |E|).

6.1. An efficient test for simpliciality. In their efficient implementation of the
Jess and Kees reordering algorithm, Liu and Mirzaian [9] address the issue of how to
determine when a vertex has become simplicial in the reduced graph. Their approach
requires a perfect elimination ordering 8 of the chordal graph. Throughout the rest of
Section 6 we will often subscript the vertices with their position in this P EQO; that is, we
will let Vg = {v1,vs,...,v,}, where 3(v;) = 7 for 1 < j < n. Note that a PEO can be
computed in O(|V| + |E|) time using the maximum cardinality search algorithm [14].

For each vertex v;, let f; be the index given by

f; := min{k | vy € nbdg[v;]},
and let mdegg(v;), the monotone degree of v;, be given by
mdega(v;) := |[madjalvj]|.

The following result is Theorem 3.5 in Liu and Mirzaian [9].

PROPOSITION 6.1 (Liu AND MIRZAIAN [9]). We have v; € Stmg if and only if
dega(v;) = mdega(vy,).

In order to use the simpliciality test of Proposition 6.1, the algorithm will main-
tain the degree values degp(v;) and mdegn(v;) in the variables deg(v;) and mdeg(v;)
respectively, where H is the current reduced graph.

6.2. An efficient test for membership in R. As noted earlier, a naive imple-
mentation of the test in (2) is far too expensive to lead to a linear-time implementation.
The following result provides us with an efficient alternative to (2).

PROPOSITION 6.2. Suppose the algorithm in Figure 3 is currently testing the sim-
plicial vertez v € C for elimination, and let R be the set of vertices removed from G

thus far by the algorithm. We then have (2) if and only if
(3) Inbdg[u] — R| = |nbdg[v] — R| for every u € nbdg[v] N R.

Proof. Let v and R be as stated, and choose a vertex u € nbdg [v]ﬂf?,. Because u was
simplicial in the reduced graph from which it was removed, it follows that nbdg[u| — R
is complete in G. Since v belongs to the clique nbdg[u] — }A?,, the following statement
holds true:

A~ A~ A~

(4) nbdg[u] — R C nbdg[v] — R for every u € nbdg[v] N R.
14

uwe RC R, by (1) we have Ag(u) < 2, and thus by the Adjacency-Partition Lemma the
sets adjg[u], adji[u], and adjf[u] form a partition of adjg[u]. It follows that u belongs to
one of the three sets adjz[v], adj%[v], and adj}[v]. Now consider a vertex w € adjg[v]—R.
Since v passes the test for inclusion in R, it follows that w € adj%[v]U adjt[v]. We have
therefore shown that adjz[v], adji[v], and adjf[v] form a partition of adjg[v], whence
A¢(v) < 2 by the Adjacency-Partition Lemma. Since adjg[v] — R C adj&[v] U adji[v],
we have adjz[v] C R C R; hence, by (1), Ag(u) < 2 for each vertex u € adjg[v]. Tt
follows by (1) then that v € R, giving us RCR as required. This concludes the first
part of the proof.

We now complete the proof that R=R by showing that Ris not properly contained
in R. By way of contradiction assume that R C R. Choose v € R— R for which dega(v)
is minimum. We first show that adjg[v] C R. Consider a vertex u € adjgz[v]. By (1),
Ag(u) < 2; moreover, since v € R and adjg[u| C adjg[v], it follows by (1) that v € R.
From nbdg[u] C nbdg[v] we have degg(u) < dege(v), and thus by the minimality of
dega(v) among the vertices of R excluded from f?,, it follows that u € }A?,, thereby giving
us adjz[v] C R.

Let R be the set of vertices already selected for elimination by the algorithm
immediately after the last vertex of adjg[v] has been selected for inclusion in f?,, s0
that we have adjzlv] C R. Tt follows by applying the Adjacency-Partition Lemma to
v € R that adjz[v], adj&[v], and adjf[v] form a partition of adjg[v], and thus we have
adjc[v]— R C adj%[v]Uadjl[v]. In consequence, v is simplicial in the reduced graph G\ R
(by Lemma 2.3) and also henceforth satisfies the test for inclusion in R. Observe that
the algorithm has not yet examined v for inclusion in }A?,, because degg(u) < dega(v)
for any vertex u € adjg[v], and moreover u becomes simplicial in the reduced graph
no later than v does. The algorithm therefore eventually examines v sometime after
eliminating the last member of adjz[v] and includes it in f?,, despite our assumption to
the contrary. From this contradiction we conclude that R=R.

To conclude the argument, note that the test for inclusion in R ensures that for
every vertex v € R = R the vertices of adjz[v] precede v in the elimination sequence.

A~

The elimination sequence is therefore, by the TEO Theorem, a TEO of G(R). Finally,
note that the test for inclusion in R also ensures that dega(w) > degg(v) for each new
simplicial vertex w resulting from the elimination of v. In consequence, the minimum
degree among the vertices in C is non-decreasing, which concludes the proof. [

6. Implementing the greedy scheme. Repeated application of the algorithm
in Figure 3 to a chordal graph gives us an algorithm that implements the greedy par-
titioning scheme in Figure 2. With careful attention to certain implementation details,
we can obtain an algorithm whose runtime is linear in the number of vertices and edges
in the chordal graph.

Two implementation issues in particular must be successfully dealt with in order
to achieve a linear-time algorithm. First, we need an eflicient technique for detecting
new simplicial vertices (i.e., the vertices w € Simpg: — Simpg in Figure 3). Liu and
Mirzaian [9] showed how to use a previously computed PEO and certain vertex degree
information in the graph to devise a simple and efficient test for simpliciality. We briefly

13

H«— G R—0; C«— Simg;
while C # () do
Choose v € C for which degg(v) is minimum;
C—C—{v}
if adjg[v] — R C adj%[v] U adj}[v] then
H — B\ {v}; R — RU{o);
for w € Simg — Stmyg do
C — CU{w};
end for
H — H';
end if

end while

Fi1G. 3. High-level algorithm for computing the mazimum-cardinality T-set R and ¢ TEO of G(R).
Upon termination, R = R and the elimination sequence is a TEO of G(R).

(It can be proven formally using Lemma 2.2 and the Adjacency-Partition Lemma). The
vertex d (degree one in G) will be removed first, whereupon the newly simplicial vertex
g will be added to the candidate set C'. The vertices a, b, and ¢, each of degree two in G,
will be removed next in succession. Observe that after the removal of these vertices, e
has become simplicial and f remains non-simplicial, whence C' = {e, g}. The algorithm
will next examine either e or g for inclusion in R. (Both are of degree three in G.)
No matter which is examined first, g will fail the test because the vertex f € adjs|g]
remains uneliminated, and e will pass the test because the vertex f € adjf[e] is the
only neighbor of e in the reduced graph. The vertex f (degree five in G) becomes
simplicial upon the removal of e, but upon examining it the algorithm will reject it for
membership in R because the vertex g € adjt|f] remains uneliminated. The algorithm
thus terminates with R = R = {a,b,c,d,e} as required.

While the primary purpose of the following result is to prove the algorithm correct,
it also shows that the minimum degree among the candidates is non-decreasing as
the algorithm proceeds. This property of the algorithm provides the implementation
presented in Section 6 with efficient access to the minimum-degree members of C.

THEOREM 5.1. The set of vertices R removed by the algorithm in Figure 3 is
precisely the mazimum cardinality T-set R. Furthermore, the order in which the vertices
are removed is a TEO of G(R) and the minimum degree among the vertices of C is
non-decreasing as the algorithm proceeds.

Proof. Let R be the set of vertices removed by the algorithm. We first show
that R C R. Toward that end, let R denote the set of vertices already selected for
elimination at some point durmg the computation, and let v be the next vertex selected
for elimination. To prove that RC R, it suffices to prove the following: if R C R, then
v € R.

Let R and v be as stated above, and consider a vertex u € adjg[v] N R. Since

12

A

induced subgraph of G\ R,. Whereas R2,f23, ..., Rs is a T-partition of Vg — Rl, it
follows by Lemma 4.1 that

t—1=7(G\R) <7(G\R)<s—1.
In consequence we have ¢ < s as required. [

5. Computing a maximum-cardinality T-set. This section introduces an al-
gorithm for computing the maximum-cardinality T-set R and a TEO of G(R). The
algorithm removes one simplicial vertex after another from the graph so that upon
termination the vertices of R have been eliminated and the order in which they were
eliminated is a TEO of G(R). Using this algorithm, Section 6 presents the implementa-
tion details needed for a linear-time implementation of the greedy scheme in Figure 2.

The algorithm introduced in this section is based on two simple ideas. As the
algorithm eliminates simplicial vertices from the graph, new simplicial vertices appear in
the reduced graph. The first, and most important, idea incorporated into the algorithm
is a technique for determining whether or not a “candidate” simplicial vertex in the
reduced graph is a member of R and hence should be eliminated. Let R denote the set
of vertices that have been eliminated thus far by the algorithm, and let v be the next
simplicial vertex examined as a candidate for elimination. We will show that, within
the context of our algorithm, v € R if and only if

(2) adj[v] — R C adjg[v] U adjg[v]-

To enable the test in (2) to accurately distinguish members from non-members of
R, the order in which the candidate simplicial vertices are examined must be carefully
prescribed. The second idea incorporated into the algorithm deals with this issue. Let
dega(v) be the degree of a vertex v in G (i.e., |adjg[v]|). At each step, the algorithm
chooses as the next vertex to examine for elimination a candidate simplicial vertex u
for which degg(u) is minimum. Whenever v € adjg[v], we have nbdg[u] C nbdg[v],
whence degg(u) < degg(v). We therefore incorporated this particular ordering of the
candidates into the algorithm to enforce examination of the vertex u € adjz[v] before
examination of v, so that whenever the algorithm finally tests whether or not a vertex v
satisfies (2), it will have already examined, and if called for, eliminated, every member
of adjz[v].

We have incorporated these two ideas into the algorithm shown in Figure 3. The
algorithm collects the eliminated vertices in the set R. The set C contains the candidate
simplicial vertices belonging to the current elimination graph. Initially ' = Stmg. As
the computation proceeds each “successful” candidate is eliminated from both the graph
and the set C'. When elimination of a successful candidate v results in a new simplicial
vertex w in the reduced graph, the algorithm places w in C where it will be examined
later for possible elimination.

Before proving the algorithm correct we examine how it processes the graph shown
in Figure 1. Initially, C = Simg = {a,b,c,d}. It is trivial to verify that each of these
vertices will pass the test for inclusion in R when it is finally examined by the algorithm.

11

v 1;

G1 — G

while G; # () do
Let R; be the maximum-cardinality T-set of Gi;
Compute G;,; <« G; \ R;,

with R; removed in a TEO of G;(R;);

t—1+1;

end while

FiGc. 2. Greedy partitioning scheme for which each R; is the mazimum-cardinality T-set of G;.

induced subgraph H of G, after which the main result of this section can be obtained
by a simple induction argument.

LEMMA 4.1. For any induced subgraph H of G, we have 7(H) < 7(G).

Proof. Let };31,};’,2, Rt be a T-partition of Vg, and let @ be a compound TEO
of G with respect to Rl, R2, R Consider the subgraph H of G induced by X C V
and the unique ordering 3 of H that is consistent with « in the sense that 8(u) < 3(v)
whenever u,v € X and a(u) < a(v). Now, for every vertex v € X we have madjg[v] C
madjg[v], with madjg[v] complete in G. It follows therefore that madjg[v] is complete
in H for every vertex v € X, whence fis a PEO of H.

Let Ry, Rs,..., R, be the partition of X defined by R; = = R, n X, 1< < ¢
To prove the result it suffices to show that 3 is a compound TEQ of H with respect
to Ri,Rs,.. Rt Clearly, 8 is a “block” ordering of Vg, consecutively numbering
the vertices in R; before numbering next those in R;;;. In the previous paragraph
we showed that 8 is a PEO of H. To complete the proof, it suffices to show that
B restricted to R; is a transitive ordering of H; (R). Toward that end, assume that
w,v € R, w € X, B(u) < B(v) < B(w), and (u,v),(v,w) € Egn. It follows that
u,v € R;, a(u) < a(v) < a(w), and (u,v),(v,w) € Eg. Since a is a compound T'EO of
G with respect to the T-partition };’,1,};’,2, .. .,}A?,t, we have (u,w) € Eg, which in turn
implies that (u,w) € Eg, thereby giving us the result. [

THEOREM 4.2. The greedy partitioning scheme in Figure 2 generates a minimum-
cardinality T-partition of V.

Proof. We prove the result by induction on n = |V|. Clearly, the result is true for
n < 2. Let G be a graph with n > 3 vertices, and assume the greedy scheme produces a
minimum-cardinality T-partition for any graph with fewer vertices. Let }A?,l, }%2, e ,}A?,s
be a T-partition of Vi for which s = 7(G), and let Ry, R»,..., R; be the T-partition of
Vi generated by the greedy scheme in Figure 2. Clearly 7(G) = s < t; thus to prove
the result it suffices to show that ¢ < s.

Since the greedy scheme applied to G processes the reduced graph G\ R; precisely
as it does when applied directly to G \ Ry, it follows by the induction hypothesis that
Ry, Rs,..., R, is a minimum-cardinality T-partition of Vg — R;, and thus we have

t —1 = 7(G\ R;). Now, Theorem 3.3 implies that R, C R;, whence G \ R; is an

10

@ with v in the interior. Let o moreover be any PEO of G(R) where v € R. It suffices
to show that « is not a transitive ordering of G(R) Since v € R, we have a(v) # a(w);
there are, therefore, two cases to consider. Consider first the case where a(v) < a(w).
Since a is a PEO of G(f?,), it follows that a(u) < a(v) < a(w). Such an ordering
cannot be a transitive ordering of G(f?,) because (u,v),(v,w) € E, but (u,w) ¢ E.
Now consider the case where a(w) < a(v). Since ais a PEO of G(f?,), it follows that
a(z) < a(w) < a(v). Such an ordering cannot be a transitive ordering of G(f?,) because
(z,w),(w,v) € E, but (z,v) € E.

Now suppose that A(v) = 2, but A(u) > 3 for some vertex u € adj~[v]. Again let
be any PEO of G(}A?,) where v € f?, it again suffices to show that « is not a transitive
ordering of G’(R) First, by the argument in the precedmg paragraph it is 1mp0551b1e
for a to be a transitive ordermg of of G’(R) if w € R, and thus we assume that u ¢ R;
that is, we assume that a(u) = n + 1. By Lemma 2.2, there exists another vertex
w € adj~[v] such that (w,u) ¢ E. Note that [u,v,w] is a chordless path in G. Since

a(v)<a() = n+ 1, we must have a(w) < a(v) < au)inorderforatobeaPEO
of G(R). Such an ordering however cannot be a transitive ordering of G’(R) because

(w,v),(v,u) € E, but (w,u) € E. This concludes the proof. [

4. A greedy scheme for the chordal partitioning problem. We can partially
reduce the graph G by choosing a T-set R of G and removing the vertices in R from @
in the order specified by a TEO of G(f?,); we then complete the reduction of G to the
null graph by applying this process recursively to the reduced graph G \ R.

Suppose the graph G is reduced to the null graph after the removal of ¢ distinct
T-sets, each ordered by a TEQ. Define G; := G, and let G3,Gs,...,Gi11 be the
sequence of reduced graphs obtained at the end of each “block” elimination step. (Note
that Gyy1 is the empty graph.) Let Rl, R2, Rt be the sequence of T-sets, so that R;
is removed from G; by a TEO of Gz(};’%) to obtam the reduced graph G;1; = G; \ R;.
We shall refer to any vertex set partition Rl,R2, e ,Rt obtained by this process as
a T-partition of Vg;” we shall refer to any PEO of G generated by this process as a
compound T EQ of G with respect to the T-partition }A?,l, }%2, e ,}A?,t.

Note that the solution to Problem 2 consists of a compound T EQ, along with its as-
sociated T-partition and DAG, for which ¢, the number of members in the partition, is as
small as possible. Let 7(G) be the minimum value ¢ for which there exists a T-partition
};’,1, }%2, ey R, of V. Consider a greedy approach for generating a T-partition of V by
eliminating the T-set of maximum cardinality at each major step, as shown in Figure 2.
We let Ry, R», ..., R; be the T-partition of Vs obtained by this process. For the graph
in Figure 1, the T-partition obtained by this process has members R; = {a,b,c,d, e}
and R, = {f7g}'

It is not difficult to show that this process obtains a minimum-cardinality T-partition
of Vi, and hence a solution to Problem 2. First we show that 7(H) < 7(G) for any

7 Henceforth we will incorporate the graph into our notation as a subscript when needed. For
example, if G has been reduced to G;, we might write Vg,, Ag, (v), adjg,[v], etc. to distinguish these
items from the corresponding items for a different graph.

9

statements hold for the graph in Figure 1 (R = {a,b,¢,d, e}).

Toward that goal, we first characterize the TEOs of G(R). The outmatching re-
lation on V is the key concept needed to obtain the result. Henceforth, for any pair
of vertices u,v € V, we shall write v < v if v € adj~[v], or equivalently, v < v if
nbdju] C nbd[v]. The relation < clearly imposes a strict partial order on the vertex
set. An ordering a of G(X) is consistent with the partial order < if v < v implies
that a(u) < a(v). The following result says that the TEOs of G(R) are precisely the
orderings of G(R) that are consistent with the partial order <.

THEOREM 3.2 (TEO THEOREM). An ordering o of G(R) is a TEO of G(R) if
and only if a 1s consistent with the partial order <.

Proof. First we show that any ordering o of G(R) that is consistent with the partial
order < is a PEO of G(R). Let a be any ordering of G(R) for which a(u) < a(v)
whenever v < v. From (1) and the Adjacency-Partition Lemma, it follows that for
each vertex v € R the sets adj~[v], adj’[v], and adjT[v] form a partition of adj[v].
Furthermore, our assumption that « is consistent with the partial order < implies that
for each vertex v € R, the set madj[v] includes no vertices from adj~[v], and hence
contains only vertices from adj’[v] U adj*[v]. From Lemma 2.3 it follows that madj[v]
is complete in G for every every vertex v € R, and « is therefore a PEO of G(R).

Next we show that any ordering a of G(R) that is consistent with the partial order
< is also transitive, and hence a TEO of G(R). Assume the ordering a of G(R) is not
transitive. There exist then vertices u,v € R and w € V such that a(u) < a(v) < a(w),
(u,v),(v,w) € E, and (u,w) ¢ E. From (1) and the Adjacency-Partition Lemma, it
follows that adj~[v], adj®[v], and adj*[v] form a partition of adj[v]. Consequently, since
u,w € adj[v] and (u,w) ¢ E, we have u,w € adj~[v]. Since a(v) < a(w), the ordering
a clearly is not consistent with the partial order <, and thus we have proven the “if”
part of the result.

To complete the proof, we show that any T EO of G(R) is consistent with the partial
order <. Let a be any ordering of G(R) that is not consistent with <. Then for some
vertex v € R there exists a vertex u € adj~[v] such that a(v) < a(u). Now by (1) and
Lemma 2.2, A(v) = 2 and moreover there exists a vertex w € adj~[v], w # u, that is not
adjacent to u. If a(w) < a(v), then we have a(w) < a(v) < a(u), (w,v),(v,u) € E,
and (w,u) ¢ E, whence « is not a transitive ordering of G(R). If on the other hand
a(w) > a(v), then u,w € madj[v] and (w,v) € E, whence a is not a PEO of G(R). In
either case, a is not a TEO of G(R), and this concludes the proof. I

That the vertex set R is a T-set of G follows immediately from the T F O Theorem.
We now show that any T-set of (G is contained in R.

THEOREM 3.3. For any T-set R of G, we have RCR.

Proof. To prove the result it suffices to show that for every vertex v € V — R there
exists no T-set that contains v. We therefore choose a vertex v € V — R and consider in
turn the following two mutually exclusive cases, at least one of which must hold true:

1. A(v) > 3.
2. A(v) =2, but A(u) > 3 for some vertex u € adj~[v].
Assume first that A(v) > 3, and let [u,v,w, z] be a chordless path of length three in

8

of G as an ordering of G(X). Whenever X =V, clearly the “incomplete” ordering is an
ordering of G. A perfect elimination ordering of G(X) is an ordering of G(X) such that
madj[v] is complete in G for every vertex v € X. (We emphasize that G(X) does not
refer to the subgraph induced by the vertex set X, and that in the previous sentence
madj[v] is complete in the graph G and not in the subgraph induced by X.) Note that
any incomplete PEO can be “completed” into a PEQ of G.

Unless G is a complete graph, there are some sets X C V for which there exists no
PEO of G(X). The following result identifies every vertex set X C V for which there
exists a PEO of G(X).

PROPOSITION 3.1 (SHIER [13]). Let X C V. There exists a PEO of G(X) if
and only if the vertices of every chordless path in G joining two vertices in V — X are
ncluded in V — X.

A transitive ordering of G(X) is any ordering of G(X) for which the following
property holds: If a(u) < a(v) < a(w) and (u,v),(v,w) € E, then (u,w) € E. Note
that the vertices u and v are necessarily taken from X (because a(u) < a(v) <n + 1),
while the vertex w may be taken from either X or V—X. A transitive perfect elimination
ordering (T EO) of G(X) is any ordering of G(X) that is both a PEO of G(X) and a
transitive ordering of G(X). Any vertex set X C V for which there exists a TEO of
(X)) shall henceforth be called a T-set of G.

Due to the additional transitivity condition, the collection of T-sets of GG is generally
much smaller than the collection of vertex sets X C V for which merely a PEO of G(X)
exists. For example, while there exists a PEO of G(V) for every chordal graph G, it
is not the case that there exists a TEO of G(V) for every chordal graph G. On the
contrary, V is not a T-set for most chordal graphs G = (V, F). Indeed, any chordal
graph G for which V is a T-set is also a member of another major class of perfect
graphs known as comparability graphs.® In other words, if a chordal graph G is not
also a comparability graph, then V is not a T-set of G. Note, however, that a graph G
can be both a chordal graph and a comparability graph without possessing a TEO of
G(V). That is, there exist graphs which are both chordal and comparability graphs, but
for which the set of transitive orderings is disjoint from the set of perfect elimination
orderings. An example is P;, the path on four vertices.

Though V is not a T-set for most chordal graphs G = (V, E), T-sets nevertheless
exist for any chordal graph G. For example, consider the vertex set X = Simg # 0,
where Simg is the set of simplicial vertices of G. It is easy to verify that any ordering

of G(X)is a TEO of G(X), and hence X is a T-set of G.

3.2. The T-set of maximum cardinality. In this subsection we show that G
has a unique maximum-cardinality T-set R, and that this set is given by

(1) R={veV|Av) <2, and A(u) < 2 for every u € adj~[v]}.
More specifically, we will show that (a) the vertex set R is a T-set of G, and (b) for any
T-set R of G we have R C R. (The reader can, with some care, verify that these two

8 An arbitrary graph G = (V, E) is a comparability graph if there exists a transitive ordering of
G(V); each comparability graph is associated in a natural way with a finite partially ordered set.

7

LEMMA 2.2.
1. M(v) =1 if and only if v is simplicial; in which case adj~[v] = 0.
2. If Mv) = 2, then |adj~[v]| > 2 and for every vertex w € adj~[v] there exists a
vertez v’ € adj~[v] for which (u,u') € E.

Proof. For the first statement we prove both directions by contraposition. If A(v) >
2, then v is an interior vertex of some chordless path in G, say [u,v,w]. Whereas
u,w € adj[v] and (u,w) ¢ E, it follows that adj[v] is not complete in G, whence v is
not simplicial in G. Now assume v is not simplicial in G. Since adj[v] is not complete
in G, we can choose u,w € adj[v] for which (u,w) ¢ E. The chordless path [u,v,w] in
(ensures that A(v) > 2. To prove the last part of the first statement, assume that v
is simplicial, so that nbd[v] is complete in G. It follows that nbd[v] C nbd|w] for every
vertex w € adj[v], whence adj~[v] = 0.

To prove the second statement, assume that A(v) = 2, and let [u, v, u'] be a chordless
path in G of length two with v in the interior. It follows from the Adjacency-Partition
Lemma that u belongs to one and only one of the sets adj~[v], adj®[v], or adj*[v]. Since
u' € nbd[v] — nbd[u], it follows that v € adj~[v]. By the same argument, v’ € adj~[v]
too, whence |adj~[v]| > 2, as required. To prove the last part of the second statement,
again assume that A(v) = 2; moreover, let u € adj~[v] # 0, so that nbd[u] C nbd[v].
Choose a vertex u' € nbd[v] — nbd[u] # 0. Clearly v’ ¢ adj[u], whence it follows that
u' & adj’[v] U adj*t[v], and thus «’' € adj~[v]. This concludes the proof. [

Here, also for later use, we verify that each of the sets adj’[v] U adj*[v], v € V, is
complete (i.e., pairwise adjacent) in G.

LEMMA 2.3. The vertez set adj®[v] U adjt[v] is complete in G for each v € V.

Proof. Let v € V, and choose w,w’ € adj’[v] U adj*[v]. Since nbdjv] C nbd[w],
clearly w' € adj[w], whence nbd[v] is complete in G. [

3. Transitive perfect elimination orderings.

3.1. Definitions and notation. An ordering of GG is a bijection
a:V —{1,2,...,n},

where n := |V|. For any vertex v of an ordered graph, let the monotone adjacency set

of v be defined by
madj[v] := {w € adj[v] | a(w) > a(v)}.

A perfect elimination ordering (PEO) of G is any ordering of G such that madj[v] is
complete in GG for every vertex v € V.

In this paper we will be interested in perfect elimination orderings that are “partially
specified” in the following sense. An incomplete ordering of G relative to a vertex set
X CV is a mapping

a:V—-{,2,...,|X| -1, X|,n+ 1}

such that « restricted to X is a bijection from X to {1,2,...,|X|} and a(v) =n+1 for
each vertex v € V — X. For convenience we shall refer to such an incomplete ordering
6

FiG. 1. Chordal graph with A(a) = A(b) = A(c) = A(d) = 1, A(e) = 2, and A(f) = A(g) = 3.

nbd[v] are incomparable. Some of these relationships in Figure 1 are: a € adj~[e] and
e € adjT[a]; b € adj~[e] and e € adj*[b]; e € adj~[f] and f € adj*|e]. There are no pairs
of indistinguishable vertices in Figure 1.

It is worth noting that some of these ideas have already played an important role in
sparse matrix computations. In particular, vertex indistinguishability and outmatching
play an interesting and vital role in efficient implementations of the minimum degree
ordering heuristic [4]; vertex indistinguishability also plays a critical role in the subscript
compression scheme introduced by Sherman [12] and in improving the time-efficiency
of the symbolic factorization step [3].

The reader may easily verify that the sets adj~[v], adj’[v], adj*[v], and adj*[v] form
a partition of adj[v]. The following result shows that the vertices v € V for which
A(v) < 2 are precisely those vertices for which adj~[v], adj’[v], and adj*[v] form a
partition of adj[v] (i.e., adj*[v] = 0). Before reading the proof, the reader may find it
helpful to verify the result for the graph in Figure 1.

LEMMA 2.1 (ADJACENCY-PARTITION LEMMA). The sets adj~[v], adj’[v], and
adj*t[v] form a partition of adj[v] if and only if A(v) < 2.

Proof. We first prove the “only if” part by contraposition. Assume that adj=[v],
adj®[v], and adj*[v] do not form a partition of adj[v]. It follows then that there exists
a vertex u € adj*[v], and thus we can choose w, € nbd[u] — nbd[v] # 0 and w, €
nbd[v] — nbd[u] # 0. Note that w,, u, v, and w, are necessarily distinct, and moreover
[Wy, u, v, w,] is a path in G. Since (w,,v) and (u,w,) clearly are not edges in G, the
only other possible chord for the path is (w,,w,). If, however, w, were joined to w, by
an edge in G, then [w,,u,v,w,,w,] would be a chordless cycle of length four, contrary
to the chordality of G. It then follows that [w,,u,v,w,] is a chordless path in G, and
consequently we have A(v) > 3.

We now prove the “if” part of the result, also by contraposition. Suppose A(v) > 3,
so that there exists a chordless path [u,v,w, z] of length three in G with v in the interior.
Clearly, u € nbd[v] — nbd|w] and z € nbd[w] — nbd[v], whence w € adj*[v]. It follows
that adj~[v], adj’[v], and adj*[v] do not form a partition of adj|v], thereby giving us
the result. O

The vertices v € V for which A(v) < 2 play a key role throughout the rest of the
paper. The following properties of these vertices will be useful in later proofs. The
reader may find it useful to confirm that the result holds for the vertices a, b, ¢, d, and
e in Figure 1.

In this paper we introduce an O(|V|+ |E|) algorithm for solving Problem 2. Our
solution, which we discuss briefly now, involves the lengths of certain chordless? paths
in G. A vertex v is an interior vertex of a path if it lies on the path and is not an
endpoint of the path. Observe that any vertex v is either an interior vertex on some
chordless path in the graph, or else it is an endpoint of every chordless path on which
it lies. In the former case, let A(v) denote the length of the longest chordless path in
G which includes v in its interior. (Note that A(v) > 2 for all such vertices.) In the
latter case, let A(v) = 1. The vertices v € V for which A(v) = 1 or A(v) = 2 have
certain properties which will play a crucial role in our solution to Problem 2. Section 2
introduces a few of these properties.

From among all solutions to Problem 2, choose one for which |R;| is as large as
possible. In Section 3 we show that R; is the unique set consisting of vertices v which
satisfy A(v) < 2, and also satisfy A(u) < 2 for all u € adj[v] such that {u} U adj[u] C
{v} U adj[v].® This characterization moreover can be applied recursively to obtain the
largest possible partition member R; in the reduced graph G\ (R U---U R;_1). As
we shall see in Section 4, we can solve Problem 2 by using a simple greedy scheme
that eliminates at the :-th step a maximum cardinality set R; from the reduced graph.
This greedy scheme is based on concepts associated with transitive perfect elimination
orderings of subgraphs of G which are introduced in this paper.

The remainder of the paper is concerned with the expansion of this greedy scheme
into an eflicient algorithm for solving Problem 2. Section 5 develops two ideas needed
for efficient implementation of the high-level scheme. Further details needed to realize
our goal of an O(|V| + |E|) implementation are given in Section 6. A few concluding
remarks are given in Section 7.

2. Chordless paths and an adjacency set partition. Assume G = (V,E)is a
connected chordal graph,* and let the “length” parameters A(v), v € V, be as defined in
Section 1. Figure 1 displays a chordal graph for which A(a) = A(b) = A(c) = A(d) =1,
A(e) = 2, and A(f) = AM(g) = 3. It is interesting to note that the simplicial vertices® of
the graph are a, b, ¢, and d: precisely the vertices for which A(.) = 1. We formalize the
result suggested by this observation later in this section.

The following concepts will be used to define an interesting partition of adj[v] in the
case where A\(v) < 2. The neighborhood of a vertex v is denoted by nbd[v] := {v}Uadj[v].
A vertex u € adj[v] is said to be indistinguishable from v if nbd[u] = nbd[v]; the set of
neighbors indistinguishable from v will be denoted by adj’[v]. A vertex u € adj[v] is
said to strictly outmatch v if nbd[u| C nbd[v]. The set of vertices that strictly outmatch
v will be written adj~[v]; the set of vertices strictly outmatched by v will be written
adjt|v]. Finally, let adj*[v] consist of the vertices u € adj[v] for which nbd[u| and

2 A path is chordless if no edge in G joins two nonadjacent vertices on the path.

8 The set adj[v] contains all vertices joined to v by an edge in G.

* A graph is chordal if every cycle containing more than three edges has a chord (i.e., an edge joining
two non-adjacent vertices on the cycle).

5 A vertex v € V is simplicial if the vertices of adj[v] induce a complete subgraph of G (i.e., adj[v]
is a clique in G).

independent, and let F = L 4+ LT denote the symmetric filled matriz corresponding
to its Cholesky factor L. Then Gp, the adjacency graph of F, is a chordal graph.!
The ordering o : V — {1,...,|V|} of the vertices of G that corresponds to the order
in which the unknowns in the linear system are eliminated is a perfect elimination
ordering (PEO) of G. In the case of sparse symmetric factorization, because G is a
chordal graph, the transitive reduction of G4 (a data structure called the elimination
tree [8]) can be used to obtain an extremely efficient O(|V|) time and space algorithm
for solving the chordal DAG partitioning problem [11]. The only other data required
are the outdegrees of the vertices in G4, which are either already available or easily
computed.

Further details on DAG partitioning problems connected with highly parallel al-
gorithms for the solution of sparse triangular systems and computational results from
a Connection Machine CM-2 implementation may be found in the papers [2, 11]. The
partitioned inverse approach has been shown to be normwise but not componentwise
forward and backward stable when a certain scalar, which can be loosely described
as a growth factor, is small; this scalar is guaranteed to be small when L is well-
conditioned [5]. A comprehensive survey of the partitioned inverse approach to highly
parallel sparse triangular solution is provided in [1].

The more general chordal graph partitioning problem addressed in this paper arises
when we consider a larger class of elimination orderings for Cholesky factorization
(thereby potentially reducing ¢ further). Given the matrix A, we may compute an
appropriate ordering in two steps: First, we compute the filled graph Gz for a Cholesky
factor L by means of a primary fill-reducing ordering; then we compute a secondary
reordering that minimizes the number of factors ¢ in the triangular matrix over all re-
orderings of A that preserve the structure of the filled graph Gr. The computed ordering
is then applied to the coefficient matrix A before the factorization is computed. When
there are several systems to be solved involving the same triangular matrix, the use
of an ordering for factorization that has been optimized for efficient parallel triangular
solution is justified. This two-step approach is similar to that used to compute the Jess
and Kees ordering for parallel sparse Cholesky factorization [6, 9].

Given a chordal graph G = (V, E) with vertices numbered in a PEO, we can
associate a DAG Gy with G by directing each edge in E from the lower-numbered
vertex to the higher-numbered vertex. The more general chordal graph partitioning
problem may be stated as follows.

PROBLEM 2. Given a chordal graph G = (V, E), compute a PEQ, the associated
DAG Gy, and an ordered partition Ry < Ry < --- < R, of its vertices such that

1. for every v € V, if v € R; then all predecessors of v belong to R,,...,R;,

2. the edge subgraph induced by each R; is transitively closed, and

3. t is munimum over all partitions that satisfy the first two properties for some
DAG G’d, where Gy ranges over all DAGs obtained from PEQOs of G in the

manner described above.

! Definitions of some technical terms will be deferred until later in the paper.

L' = TI}_,P; ! can be represented in a space-efficient manner, storing the ¢ factors P,
in the space required for L. Furthermore, the vector z can be computed as a sequence
of ¢t matrix-vector multiplication steps, exploiting parallelism fully within each step.

The number of factors ¢ in the factorization of L is an important measure since it is
proportional to the number of (expensive) router communication steps required by the
parallel algorithm based on this approach; hence it is a good predictor of the running
time of triangular solution on highly parallel machines like the Connection Machine CM-
2. It has been recognized that the triangular matrix can be symmetrically permuted
to minimize the number of factors, and hence several strategies for minimizing ¢ over
appropriate permutations of L have been considered in previous work [2, 11].

Minimizing ¢ over all symmetric permutations of I for which the permuted ma-
trix remains lower triangular gives rise to a directed acyclic graph (DAG) partitioning
problem [2]. After introducing some notation, we discuss this problem in some detail,
after which we proceed with a description of the closely related partitioning problem
addressed in this paper.

Let G4 = (V, F) be the directed graph of the matrix L with vertices V = {1,...,n}
corresponding to the columns of L and edges £ = {(j,7) : ¢ > j and [;; # 0}. The
edge (7,7) is directed from the lower numbered vertex j to the higher numbered vertex
. It follows that Gy is a directed acyclic graph (DAG). If there exists a directed
path from a vertex j to another vertex ¢ in Gy, then j is a predecessor of 7, and ¢ is a
successor of j. An ordering of G4 is any bijection from V to the set {1,2,...,|V|}. A
topological ordering is any ordering that, for every predecessor-successor pair, numbers
the predecessor with a lower number than that received by the successor. Note that the
initial ordering imposed on Gy by L is a topological ordering.

Given a set X C V, let Fx C F be the set comprising every edge from a vertex in
X to any vertex in the graph. The edge subgraph induced by Fx is the subgraph of G4
with edge set Fy and vertex set consisting of all vertices which are endpoints of these
edges. (We will refer to this as the edge subgraph induced by X.) A directed graph is
transitively closed, or more briefly transitive, if the existence of edges (u,v) and (v, w)
implies the existence of edge (u,w).

We can now give a precise statement of the DAG partitioning problem:

PROBLEM 1. Gwen ¢ DAG Gy, find an ordered partition Ry < Ry < -+ < R; of
its vertices such that

1. for every v € V, if v € R; then all predecessors of v belong to R,,...,R;,
2. the edge subgraph induced by each R; is transitively closed, and
3. t is minimum over all partitions that satisfy the first two properties.

Problem 1 can be solved in O(|V| |F|) time and O(|F|) space when L is an arbitrary
lower triangular matrix, or is obtained from the sparse LU factorization of an unsym-
metric coefficient matrix [2]. However, if L is a Cholesky factor of a symmetric positive
definite matrix, then there is a more efficient O(|V|) time and space partitioning algo-
rithm [11]. We consider this latter case in more detail now since it will be helpful in
describing the graph partitioning problem considered in this paper.

Let A be a symmetric positive definite matrix whose nonzeros are algebraically

2

PARTITIONING A CHORDAL GRAPH INTO TRANSITIVE
SUBGRAPHS FOR PARALLEL SPARSE TRIANGULAR SOLUTION*

BARRY W. PEYTON!, ALEX POTHEN!, AND XIAOQING YUANS

Abstract. A recent approach for solving sparse triangular systems of equations on massively
parallel computers employs a factorization of the triangular coefficient matrix to obtain a representation
of its inverse in product form. The number of general communication steps required by this approach is
proportional to the number of factors in the factorization. The triangular matrix can be symmetrically
permuted to minimize the number of factors over suitable classes of permutations, and thereby the
complexity of the parallel algorithm can be minimized. Algorithms for minimizing the number of
factors over several classes of permutations have been considered in earlier work.

Let F = L + LT denote the symmetric filled matrix corresponding to a Cholesky factor I, and
let Gr denote the adjacency graph of F. In this paper we consider the problem of minimizing the
number of factors over all permutations which preserve the structure of Gr. The graph model of this
problem is to partition the vertices G into the fewest transitively closed subgraphs over all perfect
elimination orderings while satisfying a certain precedence relationship. The solution to this chordal
graph partitioning problem can be described by a greedy scheme which eliminates a largest permissible
subgraph at each step. Further, the subgraph eliminated at each step can be characterized in terms
of lengths of chordless paths in the current elimination graph. This solution relies on several results
concerning transitive perfect elimination orderings introduced in this paper. We describe a partitioning
algorithm with O(|V| + |E|) time and space complexity.

AMS(MOS) subject classifications: primary 65F50, 65F25, 68R10.

Keywords. chordal graph, directed acyclic graph, massively parallel computers,
partitioned inverse, perfect elimination ordering, sparse triangular solution, transitive
closure, transitive perfect elimination ordering.

1. Introduction. We consider a graph partitioning problem which arises in the
development of a partitioned inverse approach to the solution of sparse triangular sys-
tems of equations on highly parallel computers. On such machines it is advantageous
to compute the solution to a lower triangular system Lz = b by matrix-vector mul-
tiplication z := L~'b when there are several systems (not all available at the same
time) involving the matrix L to be solved. This is due to the fact that there is much
more parallelism to be exploited in the multiplication approach than in the conven-
tional substitution algorithm. If we can find a factorization L = II{_, P;, where each
factor P; has the property that P, and P! have the same nonzero structure, then

* Written Dec. 1992. Also published as Oak Ridge National Laboratory Mathematical Sciences
Section Technical Report ORNL/TM-12270.

I Mathematical Sciences Section, Oak Ridge National Laboratory, P. O. Box 2008, Bldg. 6012, Oak
Ridge, TN 37831-6367 (peyton@msr.epm.ornl.gov). The work of this author was supported by the
Applied Mathematical Sciences Research Program of the Office of Energy Research, U. S. Department
of Energy under Contract No. DE-AC05-850R21400.

! Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
(apothen@narnia.uwaterloo.ca, na.pothen@na-net.ornl.gov). This author was supported by
NSF grant CCR-9024954 and by U. S. Department of Energy grant DE-FG02-91ER25095 at the Penn-
sylvania State University and by the Canadian Natural Sciences and Engineering Research Council
under grant OGP0008111 at the University of Waterloo.

§ IBM Canada Lab, 1150 Eglinton Ave. East, North York, Ontario, M3C 1H7, Canada.

1

