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�� Abstract� Recent work �BJKTV� has shown that parallel algorithms that are sensitive
to the size of the input domain can improve on more general parallel algorithms� The cited
paper demonstrates an O�log log log s��step algorithm on an n�processor CRCW PRAM
for �nding the pre�x�maxima of n numbers in the range �	��s�� This paper proves a lower
bound demonstrating that no algorithm is asymptotically faster as a function of s
 by

showing that for s � ��
��logn log logn�

the upper bound is tight�

�� Introduction� Few techniques exist to show general lower bounds for parallel com�
putation� One of the most useful ones has been the application of powerful methods from
Ramsey theory� Intuitively
 a Ramsey�like theorem states that in some large and possibly
complex universe
 there exists a subuniverse with some simpler or more regular structure�
To prove a lower bound on the complexity of a problem
 it is often possible to take an
arbitrary program which may exhibit complex behaviour when considered over all inputs

and apply Ramsey theory to show that there exists a subdomain of inputs on which the
program behaves in very simple ways� In e
ect
 the program is reduced to operating in a
structured fashion
 or with a restricted set of operations� Ad�hoc techniques can then be
used to prove a lower bound on the running time of the program on this subdomain� In
this fashion
 the following lower bounds have been proved�

� An ��
p
logn� lower bound on searching in a sorted table of size n with an EREW

PRAM �S��

� An ��
p
log n� lower bound on sorting n items with an n�processor Priority CRCW

PRAM �MW��

� An ��
p
log n� lower bound on deciding element distinctness of n items with an n�

processorCommon CRCW PRAM �RSSW�� This was improved in �Bo� to the optimal
result ��log n� log log n��

� An optimal ��log log n� lower bound on merging two sequences of length n with an

n logO��� n�processor Priority CRCW PRAM �BBGSU�

� An ��log log log n� lower bound on simulating a n�processor Arbitrary PRAM on
an n�processor Collision PRAM �GR�� This was improved in �C� to ��log log n��

One of the drawbacks of these uses of Ramsey theory is the fact that
 in order to show
that the subdomain exists
 the domain size must be a very rapidly growing function of n�
The possibility thus exists that
 if inputs are taken from the domain �	��s�
 where s may
be polynomial or even singly or double exponential in n
 then algorithms may exist which
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beat these lower bounds� As an analogy
 consider the case of sequential sorting
 which
has an ��n log n� lower bound on the RAM model� Radix sort will
 for suitably restricted
domains
 give an O�n� algorithm�

The challenge
 then
 is to either reduce the domain size required in the lower bounds

or to produce algorithms with better running times on moderate sized domains� �BH�
improves both the asymptotic result and the domain size for the sorting bound mentioned
above by proving an ��log n� log log n� lower bound on computing parity with a Priority
CRCW PRAM� This implies the same lower bound for sorting with domain size �� �E� has
obtained the same lower bound as �Bo� for element distinctness but with a domain size
that is doubly exponential in n�

When improved algorithms can be found
 new impetus is given to the lower bound
e
ort� This was the case when �BJKTV� reported two interesting algorithms
 for the
problems of merging and maximum mentioned above� In the case of merging two sorted
lists drawn from the domain �	��s�
 they give an O�log log log s� algorithm on a CREW
PRAM� �This is remarkable
 given that even computing the OR of n bits on a CREW
PRAM requires ��log n� time�� In the case of maximum �nding
 they are able to �nd the
maximum of n numbers from domain �	��s� in time O�log log log s� on a Priority CRCW
PRAM� in fact
 the pre�x maxima can be computed in this time bound�

In this paper
 we show a value of s for which ��log log log s� time is required to compute
the maximumof n numbers on an n�processorPriority CRCW PRAM
 thus demonstrat�
ing that the domain�sensitive result cannot be improved without further restriction on s�
This represents a modest beginning to the search for lower�bound techniques that work on
problems de�ned over small domains�

�� The Upper Bound� For completeness
 we brie�y sketch the domain�sensitive upper
bound for �nding the maximum which is claimed �but not elaborated upon� in �BJKTV��
First
 we give a fast domain�sensitive algorithm that works with more than n processors �
in fact
 with a number of processors that is also a function of the domain size�

Theorem �� An �n log s��processor CRCW PRAM can �nd the maximum of n numbers
in the domain �	��s� in constant time�

Proof� For ease of presentation
 consider s to be a power of �� The input numbers
x�� x�� � � � xn are log s bits long� let xki be the �rst �high�order� k bits of xi� We label the
processors Pi�j 
 where i ranges from 	 to n and j from 	 to log s� We label s� 	 locations
in memory A�
 where � is a string of bits of length at most log s� Location A� will be
used to indicate whether there exists an input xi such that � followed by the bit 	 is xki
for k � j�j� 	� Finally
 we label n locations in memory Bi
 where i varies between 	 and
n� Location Bi will be used to indicate whether there is an input with higher value than
xi�

In the �rst step
 each processor Pi�j reads xi� Then processor Pi�j writes 	 to Axj��

i

if the jth bit of xi is 	� This sets the A�s as stated above� In the second step
 Pi�j reads
Axj��

i

if the jth bit of xi is �� There is a input of value greater than xi if and only if no

processor Pi�j read 	 at this step
 since any greater value will have some common pre�x
with xi and then have a 	 where xi has a �� Consequently
 Bi can be set by having any

�



processor Pi�j that read 	 in the second step write the value 	 to Bi� The maximum input
value xi is the only value for which Bi � ��

Next
 we need a fast algorithm that is not domain�sensitive
 but uses more than n
processors�

Theorem � �K�� An n����processor CRCW PRAM can �nd the maximum of n numbers
in O�	� time�

Proof� Let the processors be labelled Pi�j 
 for 	 � i � j � n� Processor Pi�j reads the
cells containing the ith number and the jth number
 and writes � over whichever one is
smaller� The only number not overwritten by � is the maximum�

We use this second algorithm to design a fast algorithm that is not domain�sensitive

but uses only n processors�

Theorem � �SV�� An n�processor CRCW PRAM can �nd the maximum of n numbers
�from an unrestricted domain� in O�log logn� time�

Proof� The algorithm proceeds in phases
 starting with phase 	� At the beginning of
phase i
 there are n���

i��
�� candidates remaining that could be the maximum� The

candidates are divided into n���
i
�� groups of size ��

i��

� Each group is assigned a number

of processors equal to half the square of its size �that is
 each group gets ��
i
�� processors��

The maximum of each group is found in constant time using the algorithm of Theorem
�� Each group contributes this one candidate to the next phase� this leaves the claimed
number of candidates at the beginning of phase i � 	
 as required� It is easy to see that
O�log log n� phases are needed�

Finally
 we can describe the domain�sensitive algorithm that uses only n processors�

Theorem 	� An n�processor CRCW PRAM can �nd the maximum of n numbers in the
range �	��s� in O�log log log s� time�

Proof� The numbers can be divided into groups of size log s
 and log s processors assigned
to each group� The maximum of each group can be found in O�log log log s� time using
the algorithm of Theorem �� This leaves n� log s candidates for the global maximum
 and
using n processors and the algorithm of Theorem 	
 the maximum can be found in constant
time�

Note that the algorithm claimed in �BJKTV� is actually more general than this
 as it
�nds pre�x�maxima�

�� The Lower Bound� The lower bound given here follows the general outlines of other
PRAM lower bounds ��FMW�
�FRW�
�GR�
�RSSW��� The input to a PRAM will be an n�
tuple of positive integers �x�� x�� � � � � xn�
 where xi is drawn from the domain �	��s� and is
initially stored in the local memory of processor Pi� �Since memory is unbounded
 this is
equivalent to the situation where the input variables are stored in shared memory
 one to
a cell�� The output of the PRAM will be in the local memory of processor P� at time T �
One step of a PRAM consists of a parallel write followed by a parallel read�
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It is useful to slightly modify the Priority PRAM� We disallow overwriting of mem�
ory � that is
 a cell may be written into only once� To compensate
 we allow each processor
to simultaneously read t� 	 cells at step t
 providing that those cells
 if they were written
into at all
 were written into at steps 	� �� � � � � t� 	 respectively� One can prove easily �see
�FMW�� that for in�nite memory
 this does not decrease the power of the PRAM� This is
a technical convenience that makes the proof slightly easier�

Theorem 
� Any Priority CRCW PRAM requires ��log log log s� steps to �nd the

maximum of n numbers in the domain �	��s�� when s � ��
��logn log logn�

�

Proof�

Given a Priority CRCW PRAM algorithm that claims to solve the maximum prob�
lem
 we proceed to construct a set of �allowable� inputs for each step� This set is chosen
to restrict the behaviour of the machine so that its state of knowledge can be easily de�
scribed� As long as the set of allowable inputs for step t is su�ciently rich
 we can show
�based on our characterization of the state of knowledge of the machine� that there exists
an allowable input on which the machine cannot answer correctly after t steps� In order
to fully describe the set of allowable inputs after step t
 we will require some additional
sets
 which are described below�

� A set Ut of free variables� These are variables to which no �xed value has been
assigned� We denote the total number of variables in Ut as vt� Intuitively
 after t steps
the algorithm has succeeded in determining only that the maximum is one of the free
variables� In other words
 the free variables are the candidates that the algorithm has
to work with �whether or not the algorithm is explicitly structured in this fashion��

� A set St of positive integers� In any allowable input
 the values given to the free
variables will have distinct values chosen from St�

� A setMt of �xed variables� Any variable that is not free will be �xed� A �xed variable
has the same value in any allowable input� It is set to some value that is smaller than
any value in St� Intuitively
 either the algorithm has determined that the variables in
Mt are not the maximum
 or we as adversary have given that information away�

Any input for which all the variables in Mt have their assigned �xed values and all
the variables in Ut have values in St is an allowable input for step t� We can now state two
inductive hypotheses which will be shown to hold by construction�

Hypothesis �� The state of each processor and each memory cell at each step up to and
including step t
 considered over the domain of allowable inputs for step t
 is a function of
at most one free variable� For a given processor or memory cell
 this variable
 if it exists
 is
the same over all allowable inputs� We say that the processor or memory cell knows that
variable�

Because of Hypothesis 	
 the choice of which cell processor Pi reads at a given step t
�again
 considered over the domain of allowable inputs for step t� is also a function of the
one free variable that Pi knows� This is called the read access function of Pi� A read access
function should be considered as a function of some variable z that can take on values from
St� a processor uses the read access function by substituting as an argument the value of
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the free variable it knows� Similarly
 the write access function of Pi �the choice of where
the processor writes� is a function of that one free variable�

Hypothesis �� For every step t� � t and over all allowable inputs
 a processor either
does not write at step t� or always writes� Any read or write access function at step t�

considered as a function over St
 is either constant or 	�	� any two such functions used
before or at step t are either identical
 or have disjoint ranges�

Given these hypotheses
 if at any time there are at least two free variables in Ut and
at least vt �	 values in St
 then the algorithm cannot answer after step t� This is because
processor 	 cannot distinguish two cases� the case when the variable it knows is set to the
second highest value in St and all other free variables have lower values and the case when
one other free variable is set to the highest value in St� We must attempt to carry out the
construction so as to keep the set of free variables and the domain size as large as possible�
When we can no longer maintain two free variables
 the construction will stop
 yielding a
lower bound on T � we can then extract an initial value for s which allows the construction
to continue for that many steps�

The proof proceeds by induction on t� For the base case
 we set S� � f	� �� � � � sg

U� � fx�� � � � � xng
 Mo � �
 and v� � n� the hypotheses are trivially satis�ed� For the
inductive step
 suppose the situation as described above holds through step t� We describe
how to maintain the inductive hypotheses by de�ning Ut��
 Mt��
 and St��� Initially
 let
St�� � St� we will change St�� by removing values
 based on what the PRAM algorithm
does at step t� 	�

We will �nd it useful to borrow a technique from �GR�� Lemmas 	 and � were used
there to restrict the manner in which processors may communicate with each other by
restricting the domain St��� The importance of the lemmas lies in the relatively small
reduction in domain size� Similar lemmas with greater reduction were given in �FMW��

Lemma �� If f�� f�� � � � � fk are functions with common domain S� where jSj � k�qk���
then there exists a subdomain S� of size q such that when f�� � � � � fk are restricted to S��
each function is either constant or ����

Proof� A theorem of Erd�os and Rado ��ER�� states that in any family of at least
��k��� �not necessarily di
erent� sets of size at most �
 there is a sun�ower formed by k
sets� that is
 a collection of k sets whose pairwise intersection is equal to its intersection�
With each element e � S
 associate the set of ordered pairs Ae �

�
�r� f�jf � ff�� � � � � fkg�

f�e� � r
�
� There are k�qk�� such sets
 and so there exists a sun�ower of size q among

them�

Let the elements corresponding to the sets in the sun�ower be e�� e�� � � � eq� If we set
S� � fe�� e�� � � � eqg
 the desired property is obtained� Consider an ordered pair �r� fi� in
the sun�ower� If this pair is in the center of the sun�ower �that is
 in all the sets Ae

e � S��
 it follows that fi�e� � r for all e � S�
 and fi is constant over S�� If �r� fi� is in a
petal �that is
 it is in the set Aej and in no other set�
 then fi�ej � � r but for no other ek
does fi�ek� � r� Since there was nothing special about our choice of r
 we conclude that
fi is 	�	 over S��

Let us de�ne the value of a write function to be � if the processor does not wish
to write
 and apply Lemma 	 to the set of all read and write access functions used at
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step t � 	� This further restricts St��� Remember that each processor uses t read access
functions and one write access function at step t�	� this is a total of k � n�t�	� functions�
We overestimate the domain reduction necessitated by Lemma 	 by assuming an initial
domain size of �kq�k�� reduced to q� Once we have applied Lemma 	 to a given f 
 if it is
	�	
 then there is at most one value in St�� on which it does not write� We can remove
that value from St��
 thereby ensuring that processors using f always write� At this point


then
 the size of St�� is
s
���n�t������
t

n�t� 	�
� n�t� 	��

Lemma �� If f� g are two ��� functions with common domain S� jSj � �q� then there
exists a subdomain S� of size q such that f and g� restricted to S�� are either identical or
have disjoint ranges�

Proof� If f� g have the same value for q elements in S
 then let S� be those elements�
As a result
 f and g are identical when restricted to S�� Otherwise
 remove all such elements
from S� Form a graph whose nodes are the elements of S� there is an edge between a and
b if f�a� � g�b�� This graph consists of disjoint cycles and thus is ��colourable� choose any
independent set of size q and let S� be this set� It follows that f and g have disjoint ranges
when restricted to S��

We apply Lemma � to all pairs consisting of one read or write access function used
before step t�	 and one function used at step t�	� There are n�t�	��t����� functions
in the �rst category and n�t�	� functions in the second category� each application reduces
the size of St�� by a factor of �� This ensures that Hypothesis � holds after step t� 	�

It remains to ensure that Hypothesis 	 holds after step t � 	� There are two ways
in which it can be violated� if a cell that knows one free variable is written into by a
processor knowing another free variable
 the state of that cell after step t � 	 may be a
function of two free variables� Also
 if a processor knowing one free variable reads a cell
knowing another free variable
 the state of that processor may be a function of two free
variables�

Let us construct a graph whose nodes are the free variables� there is an edge between
xi and xj if a processor knowing xj learns something about xi �in the sense described
above�� Each processor can contribute at most t� 	 edges to this graph
 since it reads at
most t cells and writes into at most one cell at step t�	� Tur�an�s theorem �Be� states that

in any graph with v vertices and e edges
 there exists an independent set of size
v�

v � �e
�

Hence in our graph there is an independent set of size
v�t

vt � �n�t� 	�
� v�t

�n�t� 	�
�

If there are j variables not in this independent set
 then we choose the j smallest
values of St��
 �x the variables to those values in an arbitrary fashion
 and remove those
values from St��
 thus ensuring Hypothesis 	� All three inductive hypotheses are now
satis�ed� The resulting recurrence equations �slightly simpli�ed� are�

vt�� � v�t
�n�t � 	�

 



st�� � s
��n�t�����
t

n�t � 	���t�����t���n�
� n�t� 	�

It is now not di�cult to obtain the following inequalities by estimation
 and to prove
them using induction on t �for n su�ciently large��

vt � n

���t

st � sn
��t

�n�t

Since the process can continue as long as there are at least two free variables
 the bound
on vt ensures T � �

�
log log n� If the domain size after step T is to be at least n
 then s

need only be as large as �n
	 log logn

� A simple calculation shows that T � �
� log log log s for

n su�ciently large�

	� Future Research� The lower bound proved above shows that the results of �BJKTV�
cannot be improved when expressed solely in terms of the domain size� If the range of the
domain is further restricted
 however
 improvements are possible� �FRW� gave an technique
which could be applied to �nd the maximum of n integers from the range �	��nk� in O�k�
time on a Common CRCW PRAM� this shows that t � !�log log log s� does not give the
correct tradeo
 between domain size and computation time for all values of s� More work
is needed to discover upper and lower bounds for parallel maximum computation that are
tight for all s�

�BJKTV� gives an algorithm for merging sorted lists of length n from the domain �	���n�
in time ��n�
 where ��n� is the very slowly growing functional inverse of Ackermann�s
function� The technique presented here does not seem to be powerful enough to deal with
the problem of merging
 since �xing values very quickly constrains the adversary� The
technique in �E� allows processors to learn more than one variable
 but is only good for
moderately large �doubly exponential in n� domains
 and its applicability to other problems
remains unclear�
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