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0. Abstract. Recent work [BJKTV] has shown that parallel algorithms that are sensitive
to the size of the input domain can improve on more general parallel algorithms. The cited
paper demonstrates an O(logloglog s)-step algorithm on an n-processor CRCW PRAM
for finding the prefix-maxima of » numbers in the range [1..s]. This paper proves a lower

bound demonstrating that no algorithm is asymptotically faster as a function of s, by
2ﬂ(log nloglogn)

showing that for s = 2 the upper bound is tight.

1. Introduction. Few techniques exist to show general lower bounds for parallel com-
putation. One of the most useful ones has been the application of powerful methods from
Ramsey theory. Intuitively, a Ramsey-like theorem states that in some large and possibly
complex universe, there exists a subuniverse with some simpler or more regular structure.
To prove a lower bound on the complexity of a problem, it is often possible to take an
arbitrary program which may exhibit complex behaviour when considered over all inputs,
and apply Ramsey theory to show that there exists a subdomain of inputs on which the
program behaves in very simple ways. In effect, the program is reduced to operating in a
structured fashion, or with a restricted set of operations. Ad-hoc techniques can then be
used to prove a lower bound on the running time of the program on this subdomain. In
this fashion, the following lower bounds have been proved:

e An Q(4/logn) lower bound on searching in a sorted table of size n with an EREW
PRAM I[S];

e An Q(y/logn) lower bound on sorting n items with an n-processor PRIORITY CRCW
PRAM [MW];

e An Q(y/logn) lower bound on deciding element distinctness of n items with an n-
processor COMMON CRCW PRAM [RSSW]. This was improved in [Bo] to the optimal
result Q(logn/loglogn);

e An optimal Q(loglogn) lower bound on merging two sequences of length n with an
nlog® n-processor PRIORITY CRCW PRAM [BBGSU]

e An Q(logloglogn) lower bound on simulating a n-processor ARBITRARY PRAM on
an n-processor COLLISION PRAM [GR]. This was improved in [C] to Q(loglogn).
One of the drawbacks of these uses of Ramsey theory is the fact that, in order to show

that the subdomain exists, the domain size must be a very rapidly growing function of n.

The possibility thus exists that, if inputs are taken from the domain [1..s], where s may
be polynomial or even singly or double exponential in n, then algorithms may exist which
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beat these lower bounds. As an analogy, consider the case of sequential sorting, which
has an Q(nlogn) lower bound on the RAM model. Radix sort will, for suitably restricted
domains, give an O(n) algorithm.

The challenge, then, is to either reduce the domain size required in the lower bounds,
or to produce algorithms with better running times on moderate sized domains. [BH]
improves both the asymptotic result and the domain size for the sorting bound mentioned
above by proving an (log n/loglogn) lower bound on computing parity with a PRIORITY
CRCW PRAM. This implies the same lower bound for sorting with domain size 2. [E] has
obtained the same lower bound as [Bo] for element distinctness but with a domain size
that is doubly exponential in n.

When improved algorithms can be found, new impetus is given to the lower bound
effort. This was the case when [BJKTV] reported two interesting algorithms, for the
problems of merging and maximum mentioned above. In the case of merging two sorted
lists drawn from the domain [1..s], they give an O(logloglog s) algorithm on a CREW
PRAM. (This is remarkable, given that even computing the OR of n bits on a CREW
PRAM requires (logn) time.) In the case of maximum finding, they are able to find the
maximum of n numbers from domain [1..s] in time O(logloglog s) on a PRIORITY CRCW
PRAM; in fact, the prefix maxima can be computed in this time bound.

In this paper, we show a value of s for which Q(log log log s) time is required to compute
the maximum of n numbers on an n-processor PRIORITY CRCW PRAM, thus demonstrat-
ing that the domain-sensitive result cannot be improved without further restriction on s.
This represents a modest beginning to the search for lower-bound techniques that work on
problems defined over small domains.

2. The Upper Bound. For completeness, we briefly sketch the domain-sensitive upper
bound for finding the maximum which is claimed (but not elaborated upon) in [BJKTV].
First, we give a fast domain-sensitive algorithm that works with more than n processors —
in fact, with a number of processors that is also a function of the domain size.

Theorem 1. An (nlogs)-processor CRCW PRAM can find the maximum of n numbers
in the domain [1..s] in constant time.

Proof: For ease of presentation, consider s to be a power of 2. The input numbers
T1,%2,...L, are logs bits long; let wf be the first (high-order) k bits of z;. We label the
processors P; ;, where ¢ ranges from 1 to n and j from 1 to log s. We label s — 1 locations
in memory A,, where « is a string of bits of length at most logs. Location A4, will be
used to indicate whether there exists an input z; such that « followed by the bit 1 is z¥
for £ = |a| + 1. Finally, we label n locations in memory B;, where ¢ varies between 1 and
n. Location B; will be used to indicate whether there is an input with higher value than
z;.

In the first step, each processor P; ; reads z;. Then processor P;; writes 1 to A_;-1
if the jth bit of z; is 1. This sets the A’s as stated above. In the second step, P; ; reads

A_j-1 if the jth bit of z; is 0. There is a input of value greater than z; if and only if no

processor P; ; read 1 at this step, since any greater value will have some common prefix
with #; and then have a 1 where z; has a 0. Consequently, B; can be set by having any
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processor P; ; that read 1 in the second step write the value 1 to B;. The maximum input
value z; is the only value for which B; = 0. =

Next, we need a fast algorithm that is not domain-sensitive, but uses more than n
processors.

Theorem 2 [K]. An n?/2-processor CRCW PRAM can find the maximum of n numbers
in O(1) time.

Proof: Let the processors be labelled P; ;, for 1 < ¢ < j < n. Processor P;; reads the
cells containing the ith number and the jth number, and writes 0 over whichever one is
smaller. The only number not overwritten by 0 is the maximum. =

We use this second algorithm to design a fast algorithm that is not domain-sensitive,
but uses only n processors.

Theorem 3 [SV]. An n-processor CRCW PRAM can find the maximum of n numbers
(from an unrestricted domain) in O(loglogn) time.

Proof: The algorithm proceeds in phases, starting with phase 1. At the beginning of
phase 7, there are n/221_1_1 candidates remaining that could be the maximum. The
candidates are divided into /2% ~! groups of size 22" Each group is assigned a number
of processors equal to half the square of its size (that is, each group gets 22" -1 processors).
The maximum of each group is found in constant time using the algorithm of Theorem
2. Each group contributes this one candidate to the next phase; this leaves the claimed
number of candidates at the beginning of phase ¢ + 1, as required. It is easy to see that
O(loglog n) phases are needed. =

Finally, we can describe the domain-sensitive algorithm that uses only n processors.

Theorem 4. An n-processor CRCW PRAM can find the maximum of n numbers in the
range [1..s] in O(logloglog s) time.

Proof: The numbers can be divided into groups of size log s, and log s processors assigned
to each group. The maximum of each group can be found in O(logloglog s) time using
the algorithm of Theorem 3. This leaves n/log s candidates for the global maximum, and
using n processors and the algorithm of Theorem 1, the maximum can be found in constant
time. m

Note that the algorithm claimed in [BJKTV] is actually more general than this, as it
finds prefix-maxima.

3. The Lower Bound. The lower bound given here follows the general outlines of other
PRAM lower bounds ([FMW],[FRW]|,[GR],[RSSW]). The input to a PRAM will be an n-
tuple of positive integers (z1,z2,...,&,), where z; is drawn from the domain [1..s] and is
initially stored in the local memory of processor P;. (Since memory is unbounded, this is
equivalent to the situation where the input variables are stored in shared memory, one to
a cell.) The output of the PRAM will be in the local memory of processor P; at time T'.
One step of a PRAM consists of a parallel write followed by a parallel read.
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It is useful to slightly modify the PRIORITY PRAM. We disallow overwriting of mem-
ory — that is, a cell may be written into only once. To compensate, we allow each processor
to simultaneously read ¢ — 1 cells at step ¢, providing that those cells, if they were written
into at all, were written into at steps 1,2,...,¢ — 1 respectively. One can prove easily (see
[FMW]) that for infinite memory, this does not decrease the power of the PRAM. This is
a technical convenience that makes the proof slightly easier.

Theorem 5. Any PRIORITY CRCW PRAM requires Q(logloglog s) steps to find the
Q(log nloglogn
maximum of n numbers in the domain [1..s], when s = 22 (lognloglog ).

Proof:

Given a PRIORITY CRCW PRAM algorithm that claims to solve the maximum prob-
lem, we proceed to construct a set of “allowable” inputs for each step. This set is chosen
to restrict the behaviour of the machine so that its state of knowledge can be easily de-
scribed. As long as the set of allowable inputs for step ¢ is sufficiently rich, we can show
(based on our characterization of the state of knowledge of the machine) that there exists
an allowable input on which the machine cannot answer correctly after ¢ steps. In order
to fully describe the set of allowable inputs after step ¢, we will require some additional
sets, which are described below.

o A set U; of free variables. These are variables to which no fixed value has been
assigned. We denote the total number of variables in U; as v;. Intuitively, after ¢ steps
the algorithm has succeeded in determining only that the maximum is one of the free
variables. In other words, the free variables are the candidates that the algorithm has
to work with (whether or not the algorithm is explicitly structured in this fashion).

o A set S; of positive integers. In any allowable input, the values given to the free
variables will have distinct values chosen from .5;.

o A set M, of fized variables. Any variable that is not free will be fixed. A fixed variable
has the same value in any allowable input. It is set to some value that is smaller than
any value in S;. Intuitively, either the algorithm has determined that the variables in
M are not the maximum, or we as adversary have given that information away.

Any input for which all the variables in M; have their assigned fixed values and all
the variables in U; have values in 9 is an allowable input for step £. We can now state two
inductive hypotheses which will be shown to hold by construction.

Hypothesis 1: The state of each processor and each memory cell at each step up to and
including step ¢, considered over the domain of allowable inputs for step ¢, is a function of
at most one free variable. For a given processor or memory cell, this variable, if it exists, is
the same over all allowable inputs. We say that the processor or memory cell knows that
variable.

Because of Hypothesis 1, the choice of which cell processor P; reads at a given step ¢
(again, considered over the domain of allowable inputs for step t) is also a function of the
one free variable that P; knows. This is called the read access function of P;. A read access
function should be considered as a function of some variable z that can take on values from
S¢; a processor uses the read access function by substituting as an argument the value of
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the free variable it knows. Similarly, the write access function of P; (the choice of where
the processor writes) is a function of that one free variable.

Hypothesis 2: For every step t' < t and over all allowable inputs, a processor either
does not write at step t' or always writes. Any read or write access function at step t',
considered as a function over S, is either constant or 1-1; any two such functions used
before or at step ¢ are either identical, or have disjoint ranges.

Given these hypotheses, if at any time there are at least two free variables in ¢; and
at least v; + 1 values in 5%, then the algorithm cannot answer after step ¢. This is because
processor 1 cannot distinguish two cases: the case when the variable it knows is set to the
second highest value in S; and all other free variables have lower values and the case when
one other free variable is set to the highest value in §;. We must attempt to carry out the
construction so as to keep the set of free variables and the domain size as large as possible.
When we can no longer maintain two free variables, the construction will stop, yielding a
lower bound on T'; we can then extract an initial value for s which allows the construction
to continue for that many steps.

The proof proceeds by induction on ¢. For the base case, we set Sy = {1,2,...s},
Uy = {z1,..., zp}, Mo = ¢, and vy = n; the hypotheses are trivially satisfied. For the
inductive step, suppose the situation as described above holds through step ¢t. We describe
how to maintain the inductive hypotheses by defining U; 11, M41, and Siy1. Initially, let
Si11 = S¢; we will change S;11 by removing values, based on what the PRAM algorithm
does at step ¢ + 1.

We will find it useful to borrow a technique from [GR]. Lemmas 1 and 2 were used
there to restrict the manner in which processors may communicate with each other by
restricting the domain S;y;. The importance of the lemmas lies in the relatively small
reduction in domain size. Similar lemmas with greater reduction were given in [FMW].

Lemma 1. If f1, f2,..., fu are functions with common domain S, where |S| = klg"t1,

then there exists a subdomain S' of size q such that when fi,..., fr are restricted to S',
each function is either constant or 1-1.

Proof: A theorem of Erdés and Rado ([ER]) states that in any family of at least
2kt (not necessarily different) sets of size at most £, there is a sunflower formed by k
sets; that is, a collection of k sets whose pairwise intersection is equal to its intersection.
With each element e € S, associate the set of ordered pairs A, = {(r, OINf €e{fi,- s fe}
fle) = r}. There are k!¢®t! such sets, and so there exists a sunflower of size ¢ among
them.

Let the elements corresponding to the sets in the sunflower be eq,e2,...¢e4. If we set
S" = {e1,€2,...€4}, the desired property is obtained. Consider an ordered pair (r, f;) in
the sunflower. If this pair is in the center of the sunflower (that is, in all the sets A,
e € §'), it follows that f;(e) = r for all e € S', and f; is constant over S'. If (r, f;) isin a
petal (that is, it is in the set A, and in no other set), then fi(e;) = r but for no other ey
does fi(er) = r. Since there was nothing special about our choice of r, we conclude that
fiis1-1 over S'. m

Let us define the value of a write function to be 0 if the processor does not wish
to write, and apply Lemma 1 to the set of all read and write access functions used at
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step t + 1. This further restricts S;y1. Remember that each processor uses ¢t read access
functions and one write access function at step ¢+1; this is a total of K = n(¢+1) functions.
We overestimate the domain reduction necessitated by Lemma 1 by assuming an initial
domain size of (kq)**! reduced to q. Once we have applied Lemma 1 to a given f, if it is
1-1, then there is at most one value in S;;; on which it does not write. We can remove

that value from S;, 1, thereby ensuring that processors using f always write. At this point,
1/(n(t+1)-1)
s

tn(t——l—l) —n(t+1).

then, the size of S;;1 is
Lemma 2. If f,g are two 1-1 functions with common domain S, |S| = 4q, then there
exists a subdomain S' of size q such that f and g, restricted to S', are either identical or
have disjoint ranges.

Proof: If f,g have the same value for ¢ elements in .S, then let S’ be those elements.
As aresult, f and g are identical when restricted to S'. Otherwise, remove all such elements
from S. Form a graph whose nodes are the elements of S; there is an edge between a and
bif f(a) = g(b). This graph consists of disjoint cycles and thus is 3-colourable; choose any
independent set of size g and let S’ be this set. It follows that f and g have disjoint ranges
when restricted to S'. =

We apply Lemma 2 to all pairs consisting of one read or write access function used
before step ¢t + 1 and one function used at step ¢+ 1. There are n(¢t +1)(¢ + 2)/2 functions
in the first category and n(¢+1) functions in the second category; each application reduces
the size of Si+1 by a factor of 4. This ensures that Hypothesis 2 holds after step ¢ 4 1.

It remains to ensure that Hypothesis 1 holds after step ¢t + 1. There are two ways
in which it can be violated: if a cell that knows one free variable is written into by a
processor knowing another free variable, the state of that cell after step ¢ + 1 may be a
function of two free variables. Also, if a processor knowing one free variable reads a cell
knowing another free variable, the state of that processor may be a function of two free
variables.

Let us construct a graph whose nodes are the free variables; there is an edge between
z; and z; if a processor knowing z; learns something about #; (in the sense described
above). Each processor can contribute at most ¢t + 1 edges to this graph, since it reads at
most ¢ cells and writes into at most one cell at step ¢+ 1. Turan’s theorem [Be] states that

in any graph with v vertices and e edges, there exists an independent set of size o 20
W
ve+2n(t+1) ~ 3n(t+ 1)'

If there are j variables not in this independent set, then we choose the j smallest
values of 541, fix the variables to those values in an arbitrary fashion, and remove those
values from S:;7, thus ensuring Hypothesis 1. All three inductive hypotheses are now

satisfied. The resulting recurrence equations (slightly simplified) are:

Hence in our graph there is an independent set of size

2
Vy

> _ "t
T = 3t 1)



1/n(t+1)+1
S¢

St41 Z ’I’I,(t —I— 1)2(t—|—1)2(t—|—2)n2 - n(t —I_ ]-)

It is now not difficult to obtain the following inequalities by estimation, and to prove
them using induction on t (for n sufficiently large).

n
vt Z 223t
— 3t
s”
St = 2n2t

Since the process can continue as long as there are at least two free variables, the bound

on vy ensures 1T > %log log n. If the domain size after step T is to be at least n, then s
4loglogn

need only be as large as 2™ . A simple calculation shows that T' > %log log log s for

n sufficiently large. =

4. Future Research. The lower bound proved above shows that the results of [BJKTV]
cannot be improved when expressed solely in terms of the domain size. If the range of the
domain is further restricted, however, improvements are possible. [FRW] gave an technique
which could be applied to find the maximum of n integers from the range [1..n*] in O(k)
time on a COMMON CRCW PRAM,; this shows that ¢ = ©(logloglog s) does not give the
correct tradeoff between domain size and computation time for all values of s. More work
is needed to discover upper and lower bounds for parallel maximum computation that are
tight for all s.

[BJKTV] gives an algorithm for merging sorted lists of length n from the domain [1..2n]
in time a(n), where a(n) is the very slowly growing functional inverse of Ackermann’s
function. The technique presented here does not seem to be powerful enough to deal with
the problem of merging, since fixing values very quickly constrains the adversary. The
technique in [E| allows processors to learn more than one variable, but is only good for
moderately large (doubly exponential in n) domains, and its applicability to other problems
remains unclear.
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