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TABLE 3.1
Dense system Lz = b, n = 15.

Keo(L) =2.18€12, cond(L,z) = 3.62¢ll

p | m  nberr ferr p maxy Keo(Gr)

1 |15 0.00 2.04e—6  3.00 8.38e6

2 | 8 4.98¢—18 5.68e—6 2.65el 1.55e7

4 | 4 b5.77e—16 4.94e—4 1.49e3 9.51e8

6 3 2.14e—14 4.36e—3 3.62e¢4 9.51e8

8 | 2 9.10e—14 8.42e—3 5.68ed 1.03el1

10| 2 4.73e—13 7.34e—3 2.04e6 1.41e10

12 2 6.63e—13 1.11e—2 2.72¢6 3.83e9

15 1 6.60e—13 1.13e—2 2.78e6 2.18e12

Lz = ¢, cond(L,z) = 3.90e4
15 1 9.07e—23 8.78e—11 2.78e6 2.18e12
TABLE 3.2
Sparse system Lz = b, n = 20.
Koo(L) = 2.69€28, cond(L,z) = 1.47¢16

partition (41,%2,...,%m) nberr sberr cbherr p
A: (1,20) 5.49¢—9 4.26e—6 2.47e—1 7.36el9
B: (1,15,20) 1.83e—14 4.26e—6 9.48e—2 1.06el4
C: (1,2,3,10,11,12,18,20) | 4.03e—24 1.55e—14 6.96e—14 b5.67¢3
D: (1,5,9,11,17,19) 4.93e—24 1.55e—14 6.96e—14 5.67e3
E: (1,2,3,...,20) 727e—24 3.80e—17 1.70e—16  3.00
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system is taken from [5, Sec. 4]. We solved the system Lz = b using the partitioned
inverse method with “fixed-width” partitions (1.3) having ix+1 = ¢5+p, for several values
of p. Results are reported in Table 3.1; since L is dense, nberr & sberr, so we do not
give the sberr values. We see that as p increases, the normwise backward error increases
and the algorithm loses backward stability. In these examples, both (2.12) and (2.18)
are a factor ~ 10® from being equalities for p > 4, and the bound p < m maxy £ (Gk)
is clearly very weak. The ideal forward error bounds (2.2) and (2.3) are 6.43e-4 and
3.87e-3, respectively; ferr exceeds both values for p > 6, so the algorithm also loses
forward stability. The quantity  in (2.17) has the value § = 3.60ell, so the bound
(2.16) predicts forward instability when m = 1, but is a factor ~ 10® from being an
equality. We also solved Lz = ¢, where ¢ = (—1,1,—1,1,...)T, and the result for p = 15
is reported in the last line of Table 3.1. Here, # = 1, and, as predicted by (2.16), the
algorithm performs in a forward stable manner; the tiny backward error is not predicted
by our analysis.

In our second experiment L is a 20x 20 matrix with 58 nonzeros; the entries and their
locations were chosen randomly and then manipulated “by hand” to produce interesting
behavior. The inverse of L has 93 nonzeros. We solved the system Lz = b, where b = Le,
using five different partitions. Partition A corresponds to forming z = L™ x b (m = 1),
partition B has m = 2 with G; = LiL,...L14 and Gy = Lis... Ly, partition C is a
best no-fill partition, partition D is a best reordered partition, and partition E gives
a variant of forward substitution (m = n). (Recall that partition D corresponds to a
partition of a symmetric permutation of L that preserves its lower triangular structure.)
In Table 3.2 we report the backward errors and p (the system is too ill-conditioned for us
to determine the forward errors, but the computed solutions probably have no correct
digits).

The results confirm two properties suggested by the analysis.

(1) For partitions in which the factors are not invertible in place (partitions A and B in
the table), the sparse backward error can greatly exceed the normwise backward error.
(2) Even a best no-fill partition can yield sparse or componentwise backward errors
appreciably larger than those for substitution.

We have been unable to construct a numerical example where the sparse backward
error is large even when p is small, which the analysis suggests may be possible for
partitions where the factors are not invertible in place. Our limited experience with
the partitioned inverse method suggests that, like substitution, it frequently achieves
surprisingly small forward and backward errors in practice. However, in view of the
possible instability it is wise to compute one of the backward errors and make an a
posteriori test for stability. Alternatively, if many right-hand sides are to be handled,
it may be preferable to compute p or estimate its upper bound mk (L) before solving
the systems. If any of these tests reveal or predict instability, substitution could be
used instead.

Acknowledgements. We thank Des Higham for suggesting improvements to the
manuscript.



L™ 'b. Gill, Murray and Wright [9, Sec. 4.7.2] analyze the L~'b method under the simpli-
fying assumption that the computed inverse is the correctly rounded inverse. Their for-
ward error bound from a normwise analysis is proportional to Ko (L)(|| L7 ||co [[0]|co /||| ),
and so is consistent with our bound.

For general m, a more useful bound is obtained by manipulating the backward error

result. Since (L + AL)Z = b implies |z — z| < |L7!||AL||Z|, we obtain from (2.11)

((m = DIL7HIL] 4 [L7(E5 Gel | He||Gr| = (m — 1)T))|z]||,

[E[

[z = 2l
2]

(2.18) + O(u?).

S dnuH

The summation term precludes this bound from matching the ideal bound (2.2), but
(2.18) does share with (2.2) the very desirable property that it is independent of the
row scaling of the system. We can weaken (2.18) to obtain

[z — 2l

2]

(2.19) < dyu(m — 1+ p)keo(L) + O(u?),

where p is the growth factor in (2.13) (of course, this bound could have been obtained
directly using (2.12)). Hence if p is of order one then the partitioned inverse method
satisfies a bound of the form (2.3), that is, it is normwise forward stable.

3. Numerical Experiments. We describe two numerical experiments that il-
lustrate the error analysis and confirm the potential instability of the partitioned in-
verse method. Our experiments were performed in Matlab, which has unit roundoff
u ~ 1.1 x 10716, Statistics that we report include

nberr = min{e: [b— LZ| < eHLHooeeT|£|},
sberr = min{e: |b— LZ| < ¢||L]|Z|Z|},
cherr = min{e: |b— Lz| < €|L]|Z|},
and
ferr = 7]@ — wHoo,
[E2PS

where e = (1,1,...,1)T and Z is defined in (2.14). The quantity nberr is the usual
normwise backward error, written in a way that shows its connection with the “sparse
normwise backward error” sberr. From (2.12) it follows that, to first order, nberr <
d,u(m — 1 + p) and, if each Gy is invertible in place, sberr satisfies the same bound,
by (2.15). The componentwise backward error cberr is O(u) for substitution, by (2.1).
We mention that in both experiments, modifying the backward errors nberr, sberr and
cberr to include a b term (thus, allowing b to be perturbed in the definition of backward
error) changes the backward errors by at most a factor 2.

In our first experiment L = RT, where V = QR is a QR factorization of the 15 x 15
Vandermonde matrix with (,5) element ((j — 1)/(n — 1))*"!, and b = Le. This linear

8



Then, if each Gy, is invertible in place,
(2.15) (L+AL)z =b, |AL| < (dpu(m — 1+ p)||L]|e + O(x?))Z,

where the matrix inequality both bounds Al;; and shows that AL has the same sparsity
structure as L.

Two useful upper bounds can be obtained for p. By examining the form of the ma-
trix whose norm is the numerator in (2.13) it is easy to show that p < m maxy Keo(Gk).
From the relation

Glzl — Gk_|_1 P GmL_lGl P Gk—l
- Iis 0
= Gy Gm 0 L Ykin,k:in)|’

we have |G " |leo < max(1, ||L||co) max(1, ||L}||e). As p is invariant under scalar mul-
tiplication of L, we can assume, without loss of generality, that ||L||cc = 1, and hence
we have, for all partitions,

p < mKkeo(L).

We conclude that the normwise backward error for the partitioned inverse method is
bounded by a multiple of ko (L)u. Although this bound may be very weak when L is
ill-conditioned, it shows that if L is well-conditioned then the partitioned inverse method
15 guaranteed to be normwise backward stable.

It is interesting to note that this dependence of the backward error on the condi-
tion number occurs also in block LU factorization [4]. Another example is a parallel
triangular system solver analyzed by Sameh and Brent [19], for which a backward error
result with ||AL|| < c,ux®(L)||L|| is obtained. It seems to be a rule of thumb that if
we attempt to improve the parallelism of Gaussian elimination or substitution we will
achieve only conditional stability, with the backward error potentially proportional to
some function of the condition number.

Now we turn to the forward error. One way to obtain a forward error bound is to
expand the equation Z = (H,, + F)(Hm-1+ Em-1) ... (H1 + E1)b, which follows from
(2.7) and (2.10). For m = 1, this leads to the bound

LML L2]B] oo

[z — 2l

2 1 2
E N [T O
(2.16) < on+ 1ub]| (L] | + O,
where
111
(2.17) p= 12 1Bl g
10b].n

The scalar 6 can be regarded as a measure of forward stability for the L~'6 method. Note
that 6 is large only when there is a lot of cancellation through subtraction in the product
7



and precisely the same bound is obtained if we use (2.5).

Define d,, = 2maxy, c;. To obtain a convenient bound for AL we use (1.4), together
with the observation that since |Gy||Hy||Gk| differs from the identity only in columns
Thky+-+,lkt1 — 1, it can be treated like |G| when we invoke (1.4). We have

ALl < dou ) |Gi|...|Groa] - |Gel|Hil|GR| - |Grsi] - - - |G| + O(%?)

< dnuzuélh SRR |ék—1|7 |Gk||Hk||Gk|7 |§k+1|7 SRR |@7H|]+O(u2)
< dyu((m = DI+ 3300, -, 0, [GHEIIGA], O, ..., 0] + O(u?)
k=1
211) = duu((m — DILI+ 3 |Gull Hul|Gel — (m — 1) + O(u?).
k=1

This bound is not of the form (2.1) that holds for substitution, because of the summation
term. If m = 1, the bound is |AL| < 2(n + 1)u|L||L7}||L| + O(u?). When m = n, the
relation |Lg|| Ly " || Ly| < 3| L] allows us to simplify the bound to |AL| < 4(n + 2)u|L| +
O(u?), which is of the same form as in (2.1).

Taking norms in (2.11) we obtain

(2.12) 1ALl < dnu(m — 14 p)||L]|e + O(w?),

where

ISR (GGG — (m — DI,
1l

(2.13)

The scalar p > 1 might be loosely described as a growth factor for the partitioned
inverse method, although it is not related to the growth factor in Gaussian elimination.
For any m < n, p can be arbitrarily large, but for m = n it is easy to show that
p < 3. Under scaling of the system, p behaves as follows: if D; and D, are nonnegative
diagonal matrices and we scale Lz = b — (D;LD,) - (D5'z) = D;b, then

130y D1|Grl|GRH|Gr| D2 — (m — DI|
| D1LDs |

p—p=

This expression suggests that p is fairly insensitive to the scaling of the rows and columns
of L.

We see from (2.12) that if L and the partition are such that p is of order one, then the
partitioned inverse method is normwise backward stable, that is, the computed solution
Z solves a system obtained by making a tiny normwise perturbation to L. Using (2.12),
the sparse backward error property noted earlier can be expressed as follows. Define

Z E Rn)(n by

0, otherwise.
6



where ¢ = ig11 — i + 1. Each residual bound implies the forward error bound
(2.6) |Hy, — G| < cou|Hy||Gr|| Hy| + O(u?).

(Since we are working to first order, H,, and H, are interchangeable in all the bounds.)
Applying standard error analysis of matrix-vector products [10, p. 66] to (1.6) we

obtain
(2.7) &= (Hn+ Ap)(Hpo1 + A1) ... (Hi + A1),
where

(2.8) |Ak| < (e + O(u?))|Hyl.

If the inner products that occur in the matrix vector products are evaluated using the
fan-in algorithm for summation, then the constant ¢ in (2.8) can be replaced by log, .

We can rewrite (2.7) as (L + AL)Z = b, where

(29) L—|—AL - (Hl —|—E1)_1(H2 —|—E2)_1(Hm —|—Em)_1,
with
(2.10) Ey, = A + (H, — Hy).

Now we consider the sparsity of AL. First, we note that if Hj is computed by
forward substitution then, by (2.1), its jth column Z,j satisfies (G + Fk)?bj = e;, where
e; is the jth unit vector and |F¢| < ((n + 1)u + O(u?))|Gk|, so that F; has the same
sparsity structure as Gy. It follows that if Gy is invertible in place then H,, has the same
sparsity structure as G. The same is true for any of the stable methods in [5], because,
as explained there, these methods all incur essentially the same rounding errors. Next,
we observe that by (2.8), Ay has the same sparsity structure as f{\k, and therefore if Gy,
is invertible in place then (Hy + Ex)™! = (Ek + Ax)7! has the same sparsity structure
as Gy. From (2.9) and the structural relation L = G1G;...G,,, we conclude that if
each Gy, is invertible in place then the backward error matrizc AL has the same sparsity
structure as L. It remains to bound AL.

From (2.9) we have

AL = — i H'...H -H'E.H.'-H. ...H, +0(?),
k=1
so that
AL S H o B | P B - iy - B + O(a).
k=1
If (2.4) holds, then, from (2.10),
[HO BGHY| = |H AGH + H (HGE - 1)

cwu| H [ Hil [ H | + cou H | Hiel | Gil + O(w?)

= 2c,u|Gr||Hi||Gi| + O(u?),
5
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2. Error Analysis. In this section we give an error analysis of the partitioned
inverse method for solving Lz = b. To keep the analysis general we will not make any
assumptions about sparsity. As our model of floating point arithmetic we take

fllz £y) = 2(1+a)xy(1+8), |a,I8] <,
fl(zopy) = (zopy)(1+46), [6|<w, op=x,/,

where u is the unit roundoff. This model admits machines that lack a guard digit
in addition and subtraction. We place a hat over a variable to indicate a computed
quantity.

For later comparison we summarize what can be said about the substitution algo-
rithm. The computed Z satisfies (see, for example [20, p. 150], or [13])

(2.1) (L+ALE=b, |AL|l < ((n+1)u+O@?))|L].

(Absolute values and inequalities are interpreted componentwise for matrices.) This
result shows that there is a componentwise tiny backward error matrix AL that has the
same sparsity structure as L. From (2.1) it is easy to obtain the forward error bound

(2.2) (n + Vucond(L,z) + O(u?),

which contains the Bauer-Skeel condition number

_ LTI |2 e

[E[

cond(L, )

This bound may be weakened to

|z — 2]/
(2.3) el < (n + Duke (L) + O(u?),
where £oo(L) = ||L||oo]|L7™!||cc- Our aim is to see how close the partitioned inverse

method comes to achieving the ideal bounds (2.1) and (2.2). Note that if L is sparse,
the constant n + 1 in (2.1)—(2.3) can be replaced by p + 1, where p is the maximum
number of nonzeros per row over all the rows of L. Similarly, the constants ¢, that we
introduce below can be redefined to take account of sparsity.

First, we consider the computation of the factors H, = G;' of L™! (from L).
Because of its special structure, G}, is formed without error, and we assume that G '
is computed by one of the several stable methods described by Du Croz and Higham in
[5] (for example, its columns may be computed one at a time by forward substitution).
For each of these methods applied to Gy, precisely one of the following two residual
bounds holds, depending on the method:

[Hi Gy, — I| < (cru + O(w?))| Hy |G,
|GrHy, — I| < (cru + O(uw?))|Gr| | Hel,
4



Algorithms for finding a best no-fill partition (1.2) are described in [1, 2, 3]; such a
partition has the smallest possible number of factors (the minimum value of m) subject
to the requirement that each Gy, is invertible in place. A matrix X is tnvertible in place
if (X71);; = 0 whenever z;; = 0, for any assignment of (nonzero) numerical values to
the nonzeros in X. Note that L in (1.1) is invertible in place, so a partition with
m = n is always a no-fill partition. When L is sparse, a best no-fill partition could have
m < n. Partitions that incur some fill-in have also been investigated [3].

Algorithms are also given in [1, 2| for finding a best reordered partition: this is a
no-fill partition with the fewest factors over all lower triangular matrices PLPT, where
P is a permutation matrix. Let F = L + LT denote the filled matriz corresponding
to a Cholesky factor. It is well-known that if L is the Cholesky factor of a symmetric
positive definite matrix A whose nonzero elements are algebraically independent, then
the adjacency graph of F' is chordal. By exploiting chordality, very efficient algorithms
for computing best reordered partitions in time and space linear in the order of the
matrix (rather than the number of nonzeros) can be designed for a Cholesky factor
L [1, 17]. Furthermore, algorithms for finding a partition with the fewest factors over
all permutations P such that the permuted matrix PF PT preserves the structure of the
filled matrix F' have also been designed [16]. Note that in this case, the permutation
may change the structure of L, and hence the permutation P has to be applied to A
before it is factored.

The numerical stability of the partitioned inverse method has not been studied in
previous work, either theoretically or in numerical experiments. The numerical stability
is clearly questionable because when m = 1 (the best no-fill partition for a dense matrix)

~! x b, and a numerical example in [5, Sec. 4] shows that

the method computes = L
this evaluation need not be backward stable. To answer the question of stability we
have done an error analysis of the partitioned inverse method; this analysis is presented
in Section 2. In Section 3 we describe some numerical experiments that illustrate the
analysis and confirm the possible numerical instability of the method.

Our main findings are as follows.

(1) In general, the partitioned inverse method does not satisfy the componentwise
backward and forward error bounds enjoyed by the substitution algorithm (namely,
(2.1) and (2.2)).

(2) Normwise stability depends on a quantity p, defined in (2.13), which is a function
of the matrix L and the partition, and which can be arbitrarily large. Specifically, the
computed solution Z to Lz = b satisfies (L + AL)Z = b, where ||AL||» is bounded in
(2.12); the relative error ||z — Z||co/||%||co is bounded in (2.19). If p is of order 1, which
is guaranteed if L is well-conditioned, the partitioned inverse method is both normwise
backward stable and normwise forward stable.

(3) If L is sparse and each G, is invertible in place (as is guaranteed by a best
no-fill or best reordered partition), then the backward error matrix AL mentioned in
(2) can be taken to have the same sparsity structure as L.

In future work we intend to examine how particular sparsity structures and other
special properties of L affect the stability of the partitioned inverse method.

3



the identity matrix only in the kth column:

I
Lk
lerie 1

(1.1)

B~
kol
|

Lk 1
The factorization of L can be partitioned
(12) L: G1G2...Gm,

where 1 < m < n and

(1.3) Gk:LikLik_l_l...Lik_l_l_l, ]_:74]_ <742 < - <lm+1 :n‘l_]_.
Note that Gy is the lower triangular matrix equal to the identity except for columns
iks -+, ik41 — 1, Which equal the corresponding columns of L, , ..., L, -1 respectively.

Defining G, = Gi(:,ix:ix41—1) (using the colon notation from [10]) we have the relation

(]_4:) G1G2Gm :[él, é2, ceey ém],

which we will use later. Equation (1.2) yields the partitioned, product-form represen-
tation

(1.5) L'=HnHyp...H, H,=G;".

For a sparse matrix L, the idea behind the “partitioned inverse method” is to choose
the partition (1.2) so that (1.5) represents L™' as a short product of sparse factors.
Then Lz = b is solved by forming

(16) L = HmHm—l [ Hlb,

and the advantage is that  can be computed in m serial steps of parallel matrix-vector
multiplication. Thus on a massively parallel SIMD computer such as the Connection
Machine, only m communication steps involving the router are necessary in the algo-
rithm. All the scalar multiplications in each product =y = Hpzy_; (where o = b) can
be done concurrently (with a sufficient number of processors), and the additions can be
done in logarithmic time [1]. The two extreme cases are m = n, which gives a modified
version of forward substitution (or forward substitution itself if I has unit diagonal),

and m = 1, for which the method forms z = L™ x b. For a sparse matrix L we would

not take m = 1, because H; = L' is usually much denser than L [6, Sec. 12.6]. Rather,
we would like to minimize m subject to the condition that each factor Hj can be stored
in the same space as Gy, since m is the number of serial steps in the parallel evaluation
of z. Since we are assuming that many right-hand sides are to be processed, we can
afford to spend some computational effort in constructing the partition (1.2).

2



STABILITY OF THE PARTITIONED INVERSE METHOD FOR
PARALLEL SOLUTION OF
SPARSE TRIANGULAR SYSTEMS*

NICHOLAS J. HIGHAM! AND ALEX POTHEN!

Abstract. Several authors have recently considered a parallel method for solving sparse triangular
systems with many right-hand sides. The method employs a partition into sparse factors of the product
form of the inverse of the coefficient matrix. It is shown here that while the method can be unstable,
stability is guaranteed if a certain scalar that depends on the matrix and the partition is small, and
that this scalar is small when the matrix is well-conditioned. Moreover, when the partition is chosen so
that the factors have the same sparsity structure as the coefficient matrix, the backward error matrix
can be taken to be sparse.

Key words. sparse matrix, triangular system, substitution algorithm, parallel algorithm, rounding
error analysis, matrix inverse.

AMS(MOS) subject classifications. primary 65F05, 65F50, 65G05

1. Introduction. The method of choice for solving triangular systems on a serial
computer is the substitution algorithm. Several approaches have been suggested for
parallel solution. Implementations of substitution for distributed memory architectures
are described in [11] and [14], and a short survey of this work is given in [8, Sec. 3.5.2]
(see also [10, Sec. 6.4.4]). Implementations of substitution for sparse matrices on shared
memory architectures are investigated in [18]. Algorithms that are not based on sub-
stitution are surveyed in [8, Sec. 3.5], [12] and [15]. A new method has been developed
recently for the parallel solution of sparse triangular systems with many right-hand
sides when these vectors are not necessarily available at the same time [1, 2, 3, 7]. The
method involves representing the inverse of the coefficient matrix as a product of sparse
factors, and can be explained as follows.

If L € IR™" is lower triangular we can write L = Ly L ... L,, where L;, differs from
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