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Abstract

Partial constraint satisfaction problems (PCSPs) were proposed by Freuder and
Wallace to address some of the representational difficulties with traditional constraint
satisfaction techniques. However, the reasoning method of their proposal was limited to
traditional backtracking based algorithms. In this paper, we extend the PCSP model
by associating it with a local search algorithm, which has found great successes in
solving many large scale problems in the past. Furthermore, we extend the combined
model to incorporate abstract problem solving, and show that the extended model
has not only the advantages of both PCSP and local search, but also a number of
new features useful for scheduling applications. We demonstrate the feasibility of our
approach by an application to a university course scheduling domain.
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1 Introduction

Constraint Satisfaction Problems (or CSPs) have found many applications ranging from
temporal reasoning|l], machine vision[14], to scheduling problems[3, 4]. A CSP can be
formulated abstractly as consisting of a set of variables, each variable is associated with a
domain of values that can be assigned to the variable[9, 10]. In addition, a set of constraints
exists that defines the permissible subsets of assignments to variables. The goal is to find
one (or all) assignment of values to the variables such that no constraint is violated.

There are two major problems with the traditional CSP formulation, and reasoning
methods for solving a CSP. First, the traditional definition of CSP has met with some rep-
resentational difficulties in practice, due to its overly strict modeling. In particular, the
classical formulation of CSPs requires that all constraints must be satisfied. As such, it can
be overconstrained by the constraint set and in many cases, admits no solution. In practice,
however, it is sometimes the case that certain constraints can be violated occasionally, or
weakened to some degree. In addition, for domains where there is a fixed bound on com-
putational resources, it may not be possible to find a complete solution for a given CSP.
Instead, a partial solution, where some constraints are violated, is usually good enough for
many purposes. To address this problem, Freuder and Wallace introduced the concept of
Partial Constraint Satisfaction Problems [5, 6], also called PCSPs. Such a new formulation
is used to capture the idea that certain constraints can be relaxed, or violated in a solution.

Another problem of traditional CSPs is the inefficiency of their associated reasoning
algorithms. Most CSP algorithms proposed in Al area are backtracking-based, which sys-
tematically assign a value to each variable. When an inconsistent assignment is encountered,
the algorithm backtracks to another assignment. However, empirical results have shown that
such backtracking based methods are capable of solving only small scale CSPs, and cannot
meet the practical needs for solving problems with large sets of constraints or variables. An
alternative method, based on local search, was recently proposed by several authors, which
has been shown to be promising for solving very large scale constraint satisfaction problems.
The method is based on a heuristic known as minimal conflict, which when used with a
local, hill-climbing search algorithm performs assignment in a random fashion. Several au-
thors have demonstrated its efficiency on the N-queens problem, where N is on the order of
several million[13, 11].

As stated above, although the PCSP model extends the representation aspect of CSPs,
the reasoning technique proposed by Freuder and Wallace is still based on traditional back-
tracking methods. Therefore, it will suffer from the same problem of inefficiency as does
traditional CSPs. On the other hand, the local search method addresses the efficiency issue
of reasoning about a CSP, but the representational model was still aimed at solving a CSP
exactly. An extension would therefore be to merge the representational novelty of PCSPs
with the reasoning superiority of the local search method.

In this paper, we combine the two novel techniques, PCSP and local search, for formulat-
ing and solving constraint satisfaction problems. We will show that such a combination not
only keeps the advantage of both techniques, but has some additional properties. In partic-



ular, the combined representation allows for a unified way to model and reason about differ-
ent types of constraints, including hard constraints, soft constraints, and meta-constraints.
In addition, with the new framework the problem of revising past solutions can be easily
addressed. Furthermore, where constraints can be partitioned according to their relative
importance, an abstraction based method can be naturally applied as well.

The combined framework for solving CSPs has been implemented in LISP and applied to a
course scheduling domain. The implemented system, WATCOURSE effectively demonstrates
the feasibility of our approach.

Below, we first review the PCSP representation and the local search method. Then
we discuss how the two can be combined into a unified system. We then demonstrate the
feasibility of our approach through a course scheduling domain.

2 The PCSP Model

A CSP consists of a set of variables, a domain for each variable, and a set of constraints.
Formally, a CSP consists of the following components:

1. V is a set of variables,
2. D is a set of domains, i.e., sets containing values to be assigned to the variables.
3. Cis a set of constraints.

An often used example for demonstrating the CSP is the N-queens problem, where N
queens are to be placed on an N x N board. The constraints are that no two queens can be
on the same row, column, or diagonal. One way to look at the domain is to place a queen on
each row. If we take each row X as a variable, then a column number v is a domain value
for X. Represented in this way, the constraints are simply that no two queens can be on the
same column, and that no two queens can be on the same diagonal.

As an example, the 3-queens problem can be modeled as:

1. V. ={X;,X,, X3}, representing the three rows of the problem.
2. D ={D,,D,, D3}, where D; ={1,2,3}.
3. C is a predicate, such that

C((Xiyv1), (X, 02)) = ture, iff [v1 # va and |7 — 2] # vz — v,

The third constraint says that no two queens can attack each other.

A CSP may not have a solution due to its constraints. For example, the 3-queens problem
shown in Figure 1 has no solution. A partial constraint satisfaction problem, or a PCSP, is a
relaxation of the original CSP. For a given CSP, one might relax it by enlarging the domain of
a constraint, removing a variable or a constraint, or enlarging the domain of a variable. Any
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Figure 1: An unsolvable CSP problem and its relaxation.

of these operations gives an extended CSP. For example, in the above 3-queens example, if
one enlarges the domain of the first variable X; by including a new value 4, then the problem
becomes easy to solve (See Figure 1). The new CSP is therefore a relaxed version of the
original CSP.

Formally, a PCSP is a partially ordered set of CSPs, with a common root. The root is
the original CSP. The rest of the nodes in the graph are CSPs obtained form the original one
through a sequence of relaxation operations. Consult Figure 2 for an intuitive explanation.

Given two CSPs in the graph, one can measure the distance between them, by associating
a PCSP with a metric. The metric might measure the difference in the number of solutions,
the number of added domain values, or it might measure the number of missing (or relaxed)
constraints. Solving a PCSP then becomes a problem of finding a solution to a relaxed CSP
in the space of PCSP, so that the distance metric between the solution and the optimal
solution is within a certain bound, according to the metric. To ensure that the space of
partial CSPs is restrained, two special bounds are useful. The first one is a sufficient bound,
which specifies that a solution to a relaxed CSP is good enough, if the metric distance
between the solution and the optimal solution is within this bound. The second one is a
necessary bound, which specifies that the space of CSPs under consideration must all contain
solutions that are within the bound. This effectively restricts the size of the problem space
under consideration. For example, for the 3-queens problem, since we know that the 4-queens
problem has a solution, the necessary bound Nec can be set to 7, since 7 squares are added
to convert a 3-queens to a 4-queens problem. Similarly, one might set Suff to be 2, which
states that it is permitable to find a solution where two values are added to some variables’
domains. Note that by setting Suft to zero corresponds to the original CSP.

To find a solution, Freuder and Wallace proposed a series of backtracking based methods.
Such methods have been characterized as “constructive” algorithms by Minton et al.[11],
since they all start solving a CSP from scratch. At each step, a new variable is instantiated,
or a CSP is relaxed. The advantage of constructive type of methods is that they are complete:
if there is a solution, it will be found. The disadvantage of constructive methods is that, by
assigning one variable value at a time, they are often too conservative, the result of which
reduces their speed so dramatically that they are often not useful for practical purposes.
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Figure 2: The problem space of partial constraint satisfaction.

3 Local Search with Min-Conflict Heuristic

An alternative algorithm was proposed to address the efliciency issue of solving CSPs. Such
an algorithm, known as a local search method, performs a hill-climbing search. It usually
starts with a complete assignment of values to variables, by certain random process. Then it
repairs the initial assignment by changing the assignment of certain variables whose values
violate some constraints. The process repeats until no more constraint violation remains.

The hill-climbing process of local search is guided by a heuristic known as a min-conflict
heuristic. Stated simply, for a given set of variables with value assignments, the min-conflict
heuristic finds a variable X whose value v is in conflict. Then it finds another value v’ in
the Domain(X), such that the number of conflicts by v’ is minimal among all values in X’s
domain. Ties are broken randomly. More formally, let conf(X,v) be the number of conflicts
as a result of assigning v to X. Then if conf(X,v) # 0, then

X := ', where conf(X,v') = UED({?nialz}n(X)conf(X,u).

The local search method coupled with a min-conflict heuristic has many advantages over
a backtracking method. First, because of its simplicity, it is easy to experiment with and
implemented for different applications. Second, when the initial assignment is close to the
final solution, the number of repairs needed to reach the final solution is relatively small,
making the method extremely efficient. Third, in domains where revision of past schedule
occurs often, and where the repair is limited locally, the local search method is very natural
and eflicient.

However, since local search is a greedy method, it is possible that it can be trapped into
a local minimum. Experiments [13, 11| have shown that for many interesting domains, such
worry is unnecessary. For example, implementations of the local search method by Sosic and



Gu [13] and Minton et al. [11] have been able to solve N-queens problems, where N is as
high as several million, in less than one minute. Other supporting evidence comes from space
telescope scheduling applications[11], and the large scale graph coloring and space shuttle
payload scheduling problems [17].

4 Solving PCSPs with Local Search Methods

In the previous two sections, we reviewed a partial constraint satisfaction model, and a local
search method for solving traditional constraint satisfaction problems. Partial constraint
satisfaction problems was introduced by Freuder and Wallace to represent approximate so-
lutions to CSP, but the reasoning methods that they introduced was based on traditional
backtracking methods. In this section, we extend their PCSP model to include a local search
reasoning procedure. We show that the combination of PCSP and local search has the ad-
vantages of both systems. That is, a system can reason about and search for an approximate
solution to a CSP, and that such search is efficient. In addition, we show that the combined
system exhibit additional representational properties.

Recall that PCSP is defined as a partially ordered set P of CSPs, with the common
root node being the original CSP. Each of the rest of the CSPs is obtained by a sequence
of “weakening” operations applied to the root. On the other hand, a local search algorithm
works within a space § of complete assignments, starting from some initial assignment. Since
each node in this space corresponds to an approximate solution to the original CSP, each
node in R is also a solution to some weakened CSP in P. Therefore, the two spaces are
related to each other via the following relations:

1. Vs € §.dP C P, such that s is a solution of all CSPs in P. That is, every complete
assignment corresponds to a subset of relaxed CSPS.

2. Vp e P.45 C S, such that S are all solutions for p. That is, every CSP corresponds to
a subset of complete assignments.

3. Vs1,82 € 8, a path exists from s; to s, in S, if dp;, ps € P such that s; is a solution of
P1, o 1s a solution of p, and there is a path from p; to p, in P.

To find a solution to a PCSP using a constructive method, together with the necessary bound
Nec and sufficient bound Suff, a top-down process is followed (See Figure 2). This solution
process starts with a original CSP, and gradually weakens it until a CSP is found with a
solution within the bounds Suff and Nec.

However, to search in the space of PCSP model, one does not have to start with the root
node. Instead, one can also start from an internal node in Figure 2. This corresponds to
using a local search for solving a PCSP. The solution process with the local search starts
from a initial solution which may not be a strict solution to the original CSP. This initial
assignment must satisfy the necessary bound Nec, but it may not satisfy the sufficient bound
Suff. Thus, the whole local search process can be thought of as starting from a internal node
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Figure 3: Local search in a space of solutions.

in P, and following a path along which the total number of conflicts is decreasing. The
process stops when a modified assignment is found which satisfies the sufficient bound Suff
(See Figure 3). Note that the local search discussed here is a modified one; we no longer
search for a precise solution to the original CSP, as done by Sosic and Gu, and Minton et
al., instead our local search is looking for a solution to a weakened CSP.

The algorithms that implement the above ideas are shown in Tables 1 and 2. Table 1
shows the initialization algorithm. It basically scans through the variable set, picking a
value for each variable that minimizes the cost of the current assignment. If there are several
values in a domain with minimal costs, then a choice is made randomly. Tables 2 takes the
initialized solution from the initialization algorithm, and performs a repairing operation.

Clearly our algorithm has the advantage being able to model approximate solutions
to a CSP, as originally proposed by the PCSP model, as well as the advantage of being
efficient, as with the local search method using the min-conflict heuristic. Below, we consider
three additional advantages of the method, namely, the ability to represent different types
of constraints easily and using abstraction in problem solving, as well as the property of
naturally representing and solving a solution revision problem.

5 Hard and Soft Constraints

The constraints dealt with by both Freuder and Wallace with their PCSP model, and Sosic
and Gu, and Minton et al. with local search, are hard constraints. A hard constraint is one
that has to be satisfied. As such, a hard constraint is usually a binary function, giving a
value of either true or false. For example, in the N-queens problem, two queens either attack



Input: A set of variables V, Domains D, Constraints C, and a necessary bound Nec,
Output: sol, an initial assignment of domain values to variables.

Algorithm INIT

1. sol := 0;
2. for every variable X in V', do
3. if v is a value in Domain(X), such that

the cost of applying C to (X, v, sol) is minimal,
then sol := append({(X,v)}, sol);

4. endfor

6. if Cost(sol) < Nec then return(sol), else goto step 2.

Table 1: Initialization algorithm for local search.

Input: A set of variables V, Domains D, Constraints C, an initial solution sol, and a
sufficient bound Suff. Output: sol, a final assignment of domain values to variables.

Algorithm Local-Search

1. until Cost(sol) < Suff do

2. Let v be a value of an variable X, such that (X,v) € sol, and Cost(X,v) # 0.
If v’ is another value, such that Cost(X,v’, sol — {(X,v)}) is minimal,
then sol := append({(X,v’)},s0l — {(X,v)});

4. end until

5. return(sol).

Table 2: Initialization algorithm for local search.



each other or they do not, there is no intermediate case. In contrast, a soft constraint is one
that can be broken (or relaxed), and there is often a preference that it should be satisfied as
much as possible. In addition, a soft constraint can have a variable degree of satisfaction[3].
For example, in the N-queens problem, one might specify that it is preferred that the first
two queens do not attack each other, but if necessary, it is acceptable if the constraint is
violated. One might also specify a preference that as many queens in a solution should be
positioned to the left hand side as possible.

An orthogonal issue to hard and soft constraints concerns the importance of constraints.
In particular, a soft constraint may not be a less important one, and conversely, a hard
constraint may be of low importance. For example, in the N-queens problem it may be more
important to place the first queen to close to the left column as much as possible. The
distinction between importance of constraints and their hardness is particularly useful when
a hard constraint is easy to satisfy, while a soft one is hard to satisfy. For example, in a
course scheduling domain, it is often easy to satisfy the hard constraint that a course can be
taught by one teacher only, but hard to satisfy preference constraints.

We model hard and soft constraints in a unified framework. Let C; be a constraint.In
our framework, C; can be interpreted as a function, which takes as input a variable X, a
value v, and an assignment A to the rest of the variables. It returns an natural number n. If
n = 0 then the constraint is satisfied. Otherwise, n represents the cost of the assignment as
a result of assigning v to X. Hence the cost value is a measure of how bad the assignment
is due to X := .

Given a list of constraints C; represented as above, where ¢ = 1,2,...m,we assume that
the user has assigned to each constraint an importance value from 1 to k, with k& the most
important and 1 the least. The satisfaction of the set of all constraints can be collectively
represented as a vector. The j** element of the vector is a sum of all constraints among C;,
¢t =1,2,...m, that are of equal importance, j. This vector is called the cost of assigning v
to X, given the current assignment A to the rest of the variables. Formally,

cost(X,v,A) = (E1, Es, ..., Ey)
where E; = ¥{C;(X,v, A) | importance(C;) = j}.

Finally, our modeling requires that the cost of a complete, approximate solution s is the
vector sum over all variable assignments. Formally,

cost(s) = X{cost(X,v,A) | for all (X,v) € A}

where the sum 3 is a vector summation.

To compare the cost of different assignments, we define a vector comparison operator as
follows: a vector Vi = (A1, As,..., Ag) is less than (denoted by <) Vo = (B1, Ba,... By), if
d5 <k, such that A; = B; for i < 3, and A4; < Bj;.

Using the above representation method, we can model the constraints in the N-queens
problem as follows.

No two queens can be on the same diagonal.

Ca(X;,v1,A) = 1if I(X;,v2) € A.|j — i| = |va — v1]. Else 0.
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No two queens can be on the same column.

Cn(Xi,v1,A) = 1if 3(X;,v3) € Avy = vy Else 0.

Preferring left columns.

Ol(Xi,’l)l, A) = 1.

With the above definitions, it is now possible to incorporate all constraints, hard and
soft, into a PCSP model with local search. Let () denote a vector whose elements are all 0.
During a local search process, let A be the current assignment. A search is made to look
for a variable X with assignment v, such that cost(X,v,A — {(X,v)}) # 0. Then a another
search is made in the domain of X, to look for a value v’ with a minimal cost value. The
minimality test utilizes the vector “<” operator. Finally, v’ is assigned to X.

As in the local search model, sufficient and necessary bounds are given to control search.
Given constraints of multiple levels of importance, both the sufficient and the necessary
bounds are vectors. In addition, through settings of the elements in the sufficient bound
vector, one can specify both hard and soft constraints. For example, suppose that there are
three constraints C;,C, and C3, with C; the least important and Cs the most important
constraints. In addition, suppose that C; and (5 are hard constraints, while C is a soft con-
straint. Then the information can be represented by a sufficient bound (0, 10,0), specifying
a tolerance of value 10 for C3. Thus, by setting a sufficient bound element to zero, one can
represent a set of hard constraints. On the other hand, by setting an element to a non-zero
value, one specifies a soft constraint.

6 Abstract Search

A second feature of our combined model is its ability to support abstract problem solving.
The importance values assigned to constraints naturally define a hierarchy of problem spaces
(See Figure 4). At the highest level (i.e. k" level) are the constraints that are the most
important. A solution to a PCSP can first be found in this space by considering only this
set of most important constraints. Then the system refines the solution in successively more
detailed spaces. During the refinement of an 3** level solution at the (i — 1) level, the
(2 — 1) level constraints are appended at the end of the vector of constraints. The process
continues until a time bound is exceeded, a sufficient bound is met, or a local minimum
is encountered. If a local minimum is found without satisfying the sufficient bound, then
the system can backirack to the next higher level and try finding an alternative solution.
Thus, the hierarchical system can be understood as a result of combining local search and
backtracking problem solving. That is, in the vertical direction a backtracking method is
used, while in the horizontal direction a local search method is used.

Abstract problem solving has received a lot of attention in Al planning area[12, 15, 16, 8|.
There are two central issues about abstraction that are being addressed in planning: the
question of how to effectively use an abstraction hierarchy, and the issue of how to find
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Figure 4: Refinement of an abstract solution.

a good abstraction hierarchy. In solving PCSPs, the same two issues are also of concern.
Similarly, solutions proposed in planning area to address the above issues are also applicable
to solving PCSPs. First, given an abstraction hierarchy, the refinement process should have
the property that all abstract level achievements in satisfying the abstract constraints are
preserved. That is, when a new value is assigned to a variable, care should be taken to ensure
that few abstract constraints are violated. In planning, if a refinement does not violate any
abstract level constraints, then it is called a monotonic refinement. With PCSP models, the
definition for monotonic refinements can be stated as:

If an abstract constraint (' is violated N times in a solution, then during refine-
ment of the solution, C' cannot be violated more than N times either.

Figure 5 presents the flow chart of our implemention of the abstraction system. After the
initial solution is found, the abstraction level counter 7 is first set to k. Then a loop repeats
the following operations. First, an evaluation function is constructed for constraints on level
t. Then a refinement of a previous solution is found at this level using the evaluation function.
Finally, ¢ is decremented by one. The loop repeats until the system is at the concrete level
(¢ = 0), and the solution cost is within the sufficient bound, Suff. Note that the function
“refine” is implemented simply as a call to the procedure “local-search” presented in Table 2.

The second issue regarding the use of abstraction is that of finding good abstraction hier-
archies. A good abstraction hierarchy should be one that ensures improvement in efficiency,
and furthermore, in the quality of solutions. In planning, several properties have been pro-
posed to address this issue. An ordered monotonic hierarchy [8, 7] is one that leaves all
abstract constraints intact when refining a solution at a lower level. Another property is
known as the downward refinement property[2], whereby every abstract solution has at least
one refinement. Experiments and theoretical analysis in planning has demonstrated that
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Figure 5: An overview of the hierarchical PCSP procedure.
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they are effective in improving the search performance dramatically. For example, in the
best case, one can reduce search time from exponential to linear in solution length. An ad-
vantage of these properties is that they enable one to automatically construct an abstraction
hierarchy. Although exploring their duals in the context of PCSPs is beyond the scope of
the current paper, we do intend to investigate this issue further in future research.

7 Revision

Another feature of of our combined model is its ability to revise solutions efficiently. Revision
of a given solution may be necessary because of changes made in variable domains and
constraints. Recall that the local search algorithm requires an initial assignment before a
search is conducted. When revising an existing solution, the initial assignment is set to
be the existing solution itself. Thus, the model naturally accommodates solution revision
operations.

An important aspect of solution revision is to maintain the stability of the revision process.
Typically, when a few variables in an existing solution are re-assigned, or when constraints
are added, a rippling effect can occur. For example, when a variable X’s value is changed, a
constraint may force the value of another variable Y to be changed. This will in turn cause
Z to be changed and so on. In many situations where stability of the organization is of
concern, a long chain of changes is not desirable. Instead, one would like the rippling effect
to die out when it reaches certain distance from the first change.

This damping effect on a chain of revision operations can be easily implemented via a
soft constraint. Let sy be the initial solution to be revised and let s be a current solution.
Then a stability constraint C is defined as

C = |(s0 — s)U (s — s0)|-

By assigning this constraint an appropriate importance value, it is possible to control the
stability of the revision process by preferring to a change that is as close to the original
solution as possible.

8 Experiments in the N-queens Domain

To test the effectiveness of our approach, we have conducted an experiment in the N-queens
domain. The main purpose of the experiment is to verify our prediction that the hierarchical
version of the PCSP model is more powerful than one without using abstraction. In partic-
ular, we have run two sets of experiments with the N-queens problem, one with abstraction
and the other without. The one with abstract search has two levels of abstraction. On the
top level are the constraints C, and Cj; (See Section 5), which state that no two queens can
conflict with each other. At the bottom level we satisfy an additional constraint C}, stating
a preference for a leftmost column. In actual implementation, the top level search is guided
by the constraint vector ((C,,Cy)), and at the bottom level the vector ((C,,Cq),(C1)) is
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Number of Queens | Abstraction | No Abstraction

10 (2 56) (8 38)

20 (2 198) (12 154)

30 (2 455) (14 325)

40 (2 814) (18 581)

50 (2 1262) (24 870)

60 (4 1793) (26 1303)

70 (4 2534) (34 1700)

80 (4 3252) (36 2283)

90 (10 4097) (42 2814)

Table 3: Comparison of solution quality of search with and without abstraction. Time-bound
is 17 seconds.

used. For the search without abstraction, the latter vector is the one used as constraints.
Recall that by this vector the constraints C,, and C; are considered more important than
the constraint C].

Table 3 describes the comparisons in the gquality of solutions found, taking both sets of
constraints as soft ones, and giving both problem-solvers an equal time bound (18 CPU
seconds on a Sun4 Sparc Station). Each item in the table is a vector (z,y), where z is
the number of remaining violations with the most important constraint, and y the least
important one. As can be observed from the table, the quality of solutions using abstraction
is much better than without using abstraction, since with abstraction there are much less
violations with the important constraints. However, it can also be observed that the quality
of solutions found by the abstract PCSP model, in terms of the constraint Cj, is worse than
that without abstraction. This is also expected, since a solution found at the abstract level
places a strong constraint on search at the lower level. Thus, during the refinement of an
abstract solution, it is more difficult to move away from a local minimum where most of
the important constraints are satisfied. This observation reveals that there is in general
a trade-off between the satisfaction of constraints of different degrees of importance, when
different problem sovlers are used.

9 Application to Course Scheduling

We now turn our attention to a practical application of our framework, in a course scheduling
domain. Course scheduling is an ideal domain for applying constraint satisfaction techniques,
since it is full of different types of constraints. Some constraints are more important than
others. Also, compromises in constraints are constantly made in this domain, making PCSP
models more realistic to apply.



15

Professor Structure
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Year Load Name Preferences in a Term Qualified
Spring Fall Winter
preferred alternate load

Figure 6: Professor data structure in the course scheduling domain.

Our course scheduling problem involves assigning professors to courses in one academic
year, subject to a large number of constraints. Typically, the scheduling work is done
by secretaries by hand, and is very time consuming. In the past, Operations Research
methods have been implemented to address this problem, but success has been limited due
to a number of reasons. First, using Integer Programming (IP) techniques to encode to
domain requires converting constraints into weights, which is very hard to do properly even
for experts. Second, secretaries would like to try adding and removing constraints during
schedule generation, in order to verify how a schedule would compare with others. However,
IP programs have to be changed each time this is done, and cannot meet the practical need
of performing such what-if analysis in real time. Third, the course scheduling domain is
typically revision oriented, which is not suitable for techniques that start from scratch. The
change of a schedule from one year to the next may be restricted, but may still require
modification due to changes in constraints, courses, professors, and student requirements.
Thus, we have decided to solve the problem using our combined PCSP model. The result is
a implemented scheduling system we call WATCOURSE.

The scheduling system, WATCOURSE, is implemented in Allegro Common Lisp on a
Sun/4 workstation. It is domain independent in nature, and has been applied to the N-
queens problem as well as the course scheduling problem. WATCOURSE has the ability
to perform search either with or without abstraction, and has modules that can analyze a
solution after it is found.

In the course scheduling problem domain, each professor is represented as a LISP struc-
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ture, with a number of slots (See Figure 6). The course preferences of each professor is
divided into three terms, Spring, Fall, and Winter, which correspond to the three teaching
terms in a year. In each term, there is a list of preferred courses, alternative courses, and a
preferred course load. In addition, each professor has a list of courses that he is qualified to
teach. This information will be used to choose a course in case no preferred courses can be
found for a professor.

The demand-list of a domain is a list of courses that are to be offered in one year. They
include the number of sections a course will be offered in each term. For example, an item
((CS 486) Fall 2) specifies that the course CS 486 will have two sections offered in Fall
term. WATCOURSE uses this information to build a list of variables in the domain. each
variable has the form:

(course-number term section-number)

For each variable, WATCOURSE builds a list of domain values based on the professors who
are qualified to teach the course. In addition, a (null professor) value is associated with each
course that can be cancelled due to tight constraints. That is, if a course X takes on the
(null professor) value, then the course X is considered cancelled.

The constraints in our course scheduling domain is more complicated than those found
in the N-queens domain. They include unary-constraints, binary-constraints, and k-ary
constraints. Examples of the constraints are given below. Recall that a constraint takes
as input a course-variable X, a professor v, and a remaining assignment A, and outputs a
natural number representing the degree of violation of the constraint.

Unary Constraint: course preference. If course X is preferred by professor v, then re-
turn 0, else return 1.

Binary Constraint: exclusive courses constraint. If a course X is offered in the same
term as 'Y, then return 1, else return 0.

3-ary constraint: year-offering constraint. If a course X is not offered in A, and v =
(null professor), then return 1, else return 0.

Meta Constraint. A meta constraint is one that is a constraint on the satisfaction of the
rest of the constraints. For example, the following constraint is a meta one:

If for course X taught by professor v, neither constraint C; nor constraint Cy is satis-
fied, then return 1, else return 0.

Note that our PCSP model for the course scheduling domain has the special advantage that
certain hard constraints are implicitly satisfied by any solution. For example, consider the
constraint that only one professor can teach a given section of a course in a given term. This
constraint is always satisfied by solutions to the PCSP since, by definition, a variable can
only take on a unique value in any solution.

The WATCOURSE program has been applied to course scheduling in our department,
involving 119 courses and sections, and 40 professors. Comparing WATCOURSE with a
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Linear Programming (LP) implementation for solving the same problem, we found that the
LP program takes more than ten times longer than WATCOURSE to produce solutions of
the same quality. We are currently still improving on the user-interface component of the
system. But our testing so far has shown a reduction in scheduling time from days to less
than one hour. What has been found to be particularly useful is the any-time feature of the
system. That is, the system can be interrupted at any time to provide a solution. Although
the solution may not satisfy all constraints, the more time is given to the system, the better
is the solution quality. In addition, due to the random feature of the local search algorithm,
every time the system is invoked, a different solution will be given. This feature is very
useful for the system to work well as a consulting program, because when making the final
decision, it is helpful to have several competing suggestions provided by the system.

10 Conclusions

In this paper, we have presented a model for partial solution of a constraint satisfaction
problems. This model is a combination of the PCSP model and the local search technique.
We have demonstrated that such a combination keeps all important features of the original
methods. In addition, the combined system can naturally hand soft and hard constraints,
solution revision, and hierarchical scheduling. We further demonstrated the feasibility of the
approach by an application to a course scheduling domain.

In the future, we wish to further investigate hierarchical scheduling, as well as apply
machine learning methods to solving partial constraint satisfaction problems with a local
search method.

Acknowledgement

The authors wish to thank Jane Prime for her help in explaining the course scheduling domain,
and to Nadia Benhessine for entering the course scheduling data.

References

[1] James F. Allen. Maintaining knowledge about temporal intervals. Communications of

the ACM, 26(11):832-843, 1983.

[2] Fahiem Bacchus and Qiang Yang. The downward refinement property. In Proceedings
of the 12th [JCAI pages 286-292, Sydney, Australia, August 1991.

[3] Mark Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Morgan
Kaufmann, 1987.

[4] Mark S. Fox, N. Sadeh, and C. Baykan. Constrained heuristic search. In Proceedings of
the 11th IJCAI pages 309-315, Detroit, Michigan, 1989.



[5]

(6]

[11]

[12]

[13]

[14]

18

E. C. Freuder. Partial constraint satisfaction. In Proceedings of the 8th AAAI pages
278-283, Boston, 1990.

E. C. Freuder and R. J. Wallace. Partial constraint satisfaction problems. Technical
Report 92-01, Department of Computer Science, University of New Hampshire, Durham,
NH, 03824, 1992.

Craig Knoblock, Josh Tenenberg, and Qiang Yang. Characterizing abstraction hierar-
chies for planning. In Proceedings of the 9th AAAI, Anaheim, CA, 1991.

Craig A. Knoblock. Automatically Generating Abstractions for Problem Solving. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1991. Tech. Report
CMU-CS-91-120.

Alan K. Mackworth. Consistency in networks of relations. In Webber and Nilsson,
editors, Readings in Artificial Intelligence, pages 69-78. Morgan Kaufmann Publishers
Inc., 1981.

Alan K. Mackworth and Eugene C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Artificial Intelligence,

125:65-74, 1985.

S. Minton, M. Johnston, A.B. Philips, and P. Laird. Solving large scale constraint
satisfaction and scheduling problems using a heuristic repair method. In Proceedings of

the 8th AAAI Boston, 1990.

Earl Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,

5:115-135, 1974.

R. Sosic and J. Gu. A polynomial time algorithm for the n-queens problem. In SIGART
1(3), 1990.

D. Waltz. Understanding Ling Drawings of Scenes with Shadows. The Psychology of
Computer Vision, ed. P.H.Winston. McGraw Hill, Cambridge, Mass., 1975.

David Wilkins. Practical Planning: FExtending the Classical AI Planning Paradigm.
Morgan Kaufmann, CA, 1988.

Qiang Yang and Josh Tenenberg. Abtweak: Abstracting a nonlinear, least commitment

planner. In Proceedings of the 8th AAAI pages 204-209, Boston, MA, August 1990.

M. Zweben. A framework for iterative improvement search algorithms suited for con-
straint satisfaction problems. In Technical report RIA-90-05-03-1, NASA Ames Re-
search Center, AI Research Branch, 1990.



